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Abstract—In this paper, we consider traffic grooming in
WDM/SONET ring networks when the offered traffic is charac-
terized by a set of traffic matrices. Our objective is to minimize
the cost of electronic add/drop multiplexers (ADMs) in the net-
work, while being able to support any offered traffic matrix in a
rearrangeably nonblocking manner. We provide several methods
for reducing the required number of ADMs for an arbitrary class
of traffic matrices. We then consider the special case where the
only restriction on the offered traffic is a constraint on the number
of circuits a node may source at any given time. For this case, we
provide a lower bound on the number of ADMs required and give
conditions that a network must satisfy in order for it to support
the desired set of traffic patterns. Circuit assignment and ADM
placement algorithms with performance close to this lower bound
are provided. These algorithms are shown to reduce the electronic
costs of a network by up to 27%. Finally, we discuss extensions
of this work for supporting dynamic traffic in a wide-sense or
strict sense nonblocking manner as well as the benefits of using a
hub node and tunable transceivers. Much of this work relies on
showing that these grooming problems can often be formulated as
standard combinatorial optimization problems.

Index Terms—Optical network design, SONET add/drop multi-
plexers (ADMs), SONET rings, topology design, traffic grooming,
wavelength division multiplexing.

I. INTRODUCTION

WAVELENGTH division multiplexing (WDM) is increas-
ingly used to expand the available capacity of an optical

network. Typically these networks have a SONET/SDH ring ar-
chitecture. In particular, the network nodes are arranged in a
ring and interconnected by fiber (typically multiple fibers for
protection purposes). Furthermore, each node in the ring uses
a SONET add/drop multiplexer (ADM) to electronically com-
bine lower rate streams onto a wavelength. For example, if a
wavelength supports OC-48 (2.5 Gb/s) traffic, then 16 OC-3
(155 Mb/s) circuits can be multiplexed onto this wavelength.
Using WDM technology, each fiber in a ring can support mul-
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tiple wavelengths; each additional wavelength can be used to
add an additional SONET ring among the nodes. This results in
a substantial increase of the network capacity. However, every
additional SONET ring will require additional ADMs. The dom-
inant cost for this increased capacity is the cost of these ADMs.

Often, the number of electronic ADMs can be reduced by em-
ploying WDM add/drop multiplexers (WADMs) which allow a
wavelength to be either dropped at a node or to optically by-
pass the node. When a wavelength is not dropped at a node, an
electronic ADM is not required for that wavelength; however,
the node cannot access any of the traffic on the bypassed wave-
length. Thus, for a wavelength to bypass a node, the traffic for
that node must be routed on the remaining wavelengths. Such
a routing is referred to as agroomingof the traffic. Grooming
with WADMs has been the topic of several recent papers in-
cluding [1]–[9], [20]. Traffic grooming itself predates the work
on WDM SONET rings. For example, there has been work (e.g.,
[10]) on grooming low rate traffic in SONET rings (without
WDM) to reduce the number of required line cards. The ideas
behind traffic grooming are also applicable to other WDM net-
works. For example, there has been recent interest in networks
using IP directly on top of an optical layer. In this situation,
traffic grooming can be used to reduce the number of IP ports
instead of SONET ADMs [11]. Notice that traffic grooming is a
special case of a virtual topological design problem. In our case
the cost is measured in terms of ADMs; other work in this area
considers designing virtual topologies to minimize such quan-
tities as the number of wavelengths or the blocking probability
(see, e.g., [12]–[15]).

Assume that the traffic requirement of each node in a ring is
given. Consider the problem of finding a grooming which min-
imizes the required number of ADMs needed to support this
traffic requirement; we refer to this as thegrooming problem.
In [1], [20] it is shown that the general grooming problem is
NP-complete. However, for several special classes of traffic re-
quirements, either optimal algorithms or heuristics with good
performance have been found (see, e.g., [1], [6], or [8]). In each
of these cases, the traffic requirement is characterized by a single
static traffic matrix. Often this is not the best description of the
traffic requirements, for example, if traffic changes throughout
the day. A better description of the traffic may be as a set of
traffic matrices. In this case, we want to minimize the number
of ADMs needed to support any traffic matrix in this set. We
refer to this as adynamic grooming problem, since the resulting
ring can support, in a nonblocking manner, traffic which dynam-
ically changes within the given set. This problem is the main
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emphasis of this paper. A similar formulation of the dynamic
grooming problem was considered in [3]–[5] for a bidirectional
ring employing digital cross-connects. In addition, in [16] and
[17], a similar nonblocking approach is considered but for wave-
length allocation problems as opposed to traffic grooming.

We now give a precise description of the network model to
be considered. Let denote a set of nodes
in a WDM SONET ring. Unless otherwise noted, we consider
unidirectional rings in the following. In other words, all traffic
must propagate in one direction around the ring. Unidirectional
path-switched rings (UPSR) are the primary example of unidi-
rectional rings in practice. Bidirectional rings, such as BLSR/2
and BLSR/4, are also of interest in practice. Some of the fol-
lowing results also apply to bidirectional architectures; when
this is true, we point it out below. We assume that each node has
one WADM and a SONET ADM for every wavelength dropped
at that node. The WADMs are static, i.e., the wavelengths that
are dropped at each node are fixed. The SONET ADMs multi-
plex low rate streams onto a single wavelength;is referred
to as the traffic granularity. All traffic is assumed to be duplex
and consists of circuits with granularity. A duplex circuit be-
tween two distinct nodesand is represented by- . A traffic
requirement, , between all the nodes is a multiset (a set with
repeated entries) of the form - . A
traffic requirement can also be represented by the traffic
matrix, , where represents the number of circuits-
in . Thus, for all and , and .

We assume that nodes do not have a digital cross-connect
system (DCS). We also assume nodes do not have optical wave-
length changers and that both parts of a duplex connection use
the same wavelength. Thus, a connection occupies a portion of
the same wavelength around the entire ring. In [1], [20] it is
shown that allowing wavelength changers or allowing each part
of a duplex connection to use a different wavelength does not re-
sult in any improvements with regard to grooming; so, there is
no loss in making this assumption and it simplifies the following
analysis. On the other hand, as we will see in Section IV, using
a DCS may be beneficial. It has been shown in [2] and [6] that
for static traffic, a DCS can help reduce the required number of
ADMs.

Consider a simple example of grooming for a single traffic
matrix. Suppose we have a ring with nodes and a granu-
larity of , e.g., OC-12’s on an OC-48. Consider the traffic
requirement 1-2, 1-2, 1-3, 1-3, 1-4, 1-4, 1-5, 1-5; this
corresponds to each node requesting 2 duplex circuits with node
1. The minimum number of wavelengths required to support
is 2. By using two wavelengths and dropping each wavelength
at each node, can trivially be supported using 10 ADMs.
Consider grooming the traffic so that1-2, 1-2, 1-3, 1-3 are
placed on one wavelength and-4, 1-4, 1-5, 1-5 are placed
on the second wavelength. In this case the traffic can be sup-
ported using only 6 ADMs. It can be seen that this is the min-
imum number of ADMs needed to support . In this example,
the topology which minimized the number of ADMs also mini-
mized the number of wavelengths. As shown in [2], this is often
the case, but, in general, it is not true [2], [4].

In the remainder of this paper we consider the dynamic
grooming problem, i.e., grooming for a set of traffic allocations.

In Section II, we give a general formulation of this problem.
We also present several approaches to reducing the required
number of ADMs which are particularly applicable when
the number of traffic allocations is small. In Section III, we
consider a specific class of traffic requirements. This class is
defined by requiring the network to support any traffic matrix
such that the number of circuits terminated at each node is less
than some constant. Such a class is natural, for example, if
each node is capable of sourcing onlycircuits. For such traffic,
we lower bound the number of ADMs needed and provide
necessary and sufficient conditions that a network must satisfy
to support such traffic. We use these conditions to develop
algorithms for allocating ADMs in the network. Finally, in
Section IV, we develop extensions to the basic model that allow
a network to be nonblocking in a strict sense; the use of a
hub architecture and tunable lasers in order to achieve further
reductions in electronic multiplexing costs is also considered.

II. THE DYNAMIC GROOMING PROBLEM

Suppose we know that, at any time, the traffic requirement
belongs to a set of allowable traffic require-
ments. The dynamic grooming problem is to find a topology
with the minimum number of ADMs such that any allowable
traffic requirement can be supported with an appropriate
grooming. A feasible topology for the grooming problem is
a topology which can support any allowable traffic matrix.
The minimum number of wavelengths required by a feasible
topology is , where is the
cardinality of the set , i.e., the number of circuits that need
to be supported. If each of the wavelengths is dropped
at each node, then clearly this is a feasible topology which
uses ADMs. Furthermore, this solution requires no
grooming of the traffic to support any allowable traffic set; by
this we mean that each call can be routed on any wavelength
with available capacity. We seek to improve on this obvious no
grooming solution.

If a ring can accommodate a particular traffic set, it can
also accommodate any subset of. Thus an allowable traffic
set which is the subset of another can be ignored. For any set of
allowable traffic requirements, a new single traffic requirement
can be defined which gives the worst-case characterization of
this traffic. Specifically, given , define to
be the traffic matrix corresponding to the traffic requirement

. Consider a new traffic set , which has the traffic matrix
defined by . Every allowable

traffic requirement is then a subset of . Thus we can apply
a grooming algorithm designed for a single traffic allocation to

(as noted above, grooming for single traffic matrices as been
addressed in several previous papers). The resulting topology is
clearly feasible for the dynamic grooming problem. As shown
in the next two examples, this approach may or may not yield a
topology which uses fewer than ADMs.

Example 1: Consider a ring with nodes and gran-
ularity, . Suppose we have the following two allowable
traffic requirements:

- - - - - -
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- - - - - -

Fig. 1. Network topology which supportsR in Example 1. In this figure,
horizontal lines correspond to the two wavelengths, and anX indicates that the
wavelength bypasses a node.

In this case, ; thus, with no grooming, both and
can be supported using 10 ADMs. For this example,

-3, 1-3, 1-4, 1-4, 4-2, 4-2, 5-2, 5-2. It is easy to see that the
topology shown in Fig. 1 can support (and therefore both
and ) using only 6 ADMs. So, in this case, grooming for
is beneficial.

Example 2: Consider the same ring with and .
Suppose that this time the allowable traffic sets are

- - - - - - - -

- - - - - - - -

Once again, and 10 ADMs are required with no
grooming. However, in this case, contains 14 circuits and
thus requires at least 4 wavelengths. It can be seen that 11 ADMs
are needed to support , which in this case is worse than the
no grooming solution.

In Example 2, each of the allowable traffic matrices corre-
sponds to uniform all-to-one traffic. For such traffic matrices,
the optimal grooming can be found by an algorithm in [1]. An
optimal topology for each of these traffic matrices is shown in
Fig. 2. We consider how this information can be used to come up
with a good topology for supporting both and . Recall that
a topology is specified by which nodes have ADMs on which
wavelengths. We say that a topologycontainsa topology
if can be obtained from by adding additional ADMs and
possibly additional wavelengths, but not removing any. Clearly
if can support a given traffic set, thencan also support it.
Let and be the two topologies in Fig. 2 which support
and , respectively. Consider forming a new topology, which
also uses and , as follows. In the new topology, drop at
each node which has an ADM on in either or . Like-
wise, drop at each node which has an ADM on in either

or . The resulting topology contains both and and
thus can support both and . For the topologies in Fig. 2,
such a combination results in both wavelengths being dropped
at every node, which is the same as the no grooming topology.

This is not the only way to “combine” the two topologies.
Consider a second new topology, again usingand . Now
drop at each node which either has an ADM onin or an
ADM on in . Likewise, drop at each node which either
has an ADM on in or an ADM on in . This new
topology is shown in Fig. 3; it contains and it also contains
a topology which is equivalent to , but with its wavelengths
permuted. Such an equivalent topology can clearly support the
same traffic as . Therefore, the new topology can support both

and . This topology only requires 7 ADMs, which is less
than the 10 ADMs required by the no grooming topology.

Fig. 2. Optimal topologies for supportingR (left) and R (right) from
Example 2.

Fig. 3. Bipartite graph for the two topologies in Fig. 2 and the resulting
topology.

Each of the two preceding combinations of and was
formed by assigning each wavelength into a wavelength in

, and then forming a new topology as above. Suppose that
and are now two arbitrary topologies which support two

corresponding traffic matrices. The above procedure can be gen-
eralized as follows. Let be the maximum number of wave-
lengths used in either or . If either or used less than

wavelengths, consider it specified for, but with no ADMs
on the extra wavelengths. There are now ways of matching
wavelengths in the two topologies. The best combination is one
which requires the fewest ADMs. For large values of, con-
sidering each of the combinations becomes unattractive, but
as shown next such a “brute force” approach is not necessary.
Every possible combination can be represented by a bipartite
graph . Recall, a bipartite graph is a graph
with two disjoint sets of nodes, and , and a set of edges,

, where each edge is between a node inand a node in .
Here, and will correspond to the sets of wavelengths in
and , respectively. Between each and , there is
an edge . We associate with each edge, ,
a cost which equals the number of distinct nodes with an ADM
on either wavelength in or wavelength in . The bipar-
tite graph for the two topologies in Fig. 2 is shown in Fig. 3.
A matching of all the wavelengths in to the wavelengths in

correspond to a set of disjoint edges in this graph; the
total cost of these edges gives the number of ADMs required for
this combination. Thus we want to find such a matching which
has the minimum total cost. This problem can be recognized
as a instance of an “assignment problem;” this combinatorial
optimization problem has several well-known polynomial algo-
rithms [18]. Such algorithms can be used to find the best com-
bination of wavelengths in polynomial time.

We wish to make several comments about this approach.
First, there are often multiple optimal topologies which are
not obtainable from each other by simply permuting the wave-
lengths. The number of ADMs in the optimal combination may
depend on which of these topologies is used. Second, we have
considered only a case with two allowable traffic matrices.1

For a larger number, one can generalize this assignment

1Note this is not as restrictive as it first appears, since we can also support any
subsets of the two allowable traffic sets.
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problem. Unfortunately, the generalization results in a much
more difficult combinatorial optimization problem.2 Of course,
one could consider combining topologies sequentially, i.e.,
first combining two topologies, then adding a third to this
combination, etc. For more than a few topologies, this approach
is unattractive. Finally we note that nothing in this formulation
required a unidirectional ring. Thus, this approach also works
in the bidirectional case.

III. -ALLOWABLE TRAFFIC

In this section we focus on a particular subclass of dynamic
grooming problems. Specifically, we consider sets of allow-
able traffic which are determined only by limiting each node
to sourcing at most duplex circuits at any time, whereis a
specified constant. In other words, a traffic matrix is al-
lowable if and only if it satisfies

for all (1)

This will be the only constraint on the set of traffic patterns
which must be supported. We call these allowable traffic ma-
trices -allowable. Such a constraint is natural in many cases.
For example, suppose each node represents a customer site and
that a service provider wishes to guarantee the customer the
availability of “switched OC-3 connections” at each site. To
satisfy this guarantee, the ring must be provisioned to handle
any -allowable traffic pattern.

A similar class of allowable traffic matrices was studied in
[3]–[5]. The model in [3] allows each nodeto source at most

circuits, where is constrained to be a multiple of(note
in [3] the units of are the number of light-paths as opposed
to the number of low-rate circuits as we have defined them here).
The work in [3]–[5] focuses on bidirectional rings where every
node has a DCS. In contrast, we focus on the unidirectional
ring case without using DCSs. Hence, the approaches in [3]–[5]
do not directly apply to the problem considered in this paper.
Furthermore, in [3] and [4] the grooming problem is divided into
two steps. First low speed traffic is groomed into light-paths, and
then these light-paths are grouped onto SONET rings. While this
simplifies the problem, it may lead to a suboptimal solution [6].
Our approach considers the two problems together.

In the following, assume that we are given a network with
nodes and a traffic granularity of. We refer to a traffic set as
-maximal if it is -allowable and if the addition of any other cir-

cuit would make it not-allowable. As noted above, if a network
can support every-maximal traffic matrix it can support every
-allowable one. For any-allowable traffic set, , the maximal

number of circuits in this set is bounded by

(2)

Furthermore, there exist-maximal sets which achieve this
bound. Therefore, the minimum number of wavelengths, ,

2The assignment problem is easy to solve because it is a unimodular problem.
Such problems have the characteristic that vertex solutions to the LP relaxation
are the same as the solution to the integer program. When we generalize to more
than two traffic matrices, the resulting problem is no longer unimodular.

for the set of -allowable traffic patterns is given by

(3)

Thus, ADMs are required for the no grooming solution;
this gives an upper bound on the required number of ADMs. We
will focus on reducing this number of ADMs while still sup-
porting any -allowable traffic matrix using wavelengths.
As noted above, the minimum ADM solution often uses the
minimum number of wavelengths, but not always. Hence, re-
stricting our solutions to those using the minimum number of
wavelengths is sensible not only because it makes efficient use
of wavelengths, but also because it is likely to yield a nearly op-
timal solution. The problem we address can be stated as follows.
For given values of , , and , we wish to specify a topology,
i.e., which of the nodes have ADMs on which of the
wavelengths. This topology must be able to support any-allow-
able traffic matrix using the minimum number of ADMs. In the
previous section, we considered finding topologies for each al-
lowable traffic set and then combining these topologies in order
to support every allowable traffic set. When there are

different -maximal traffic matrices. Clearly,
finding a topology for each possible-allowable traffic matrix
and then combining these is not a feasible approach. In the fol-
lowing we develop an alternative approach which relies on for-
mulating this problem as a bipartite matching problem. Before
looking at this approach, we give a lower bound on the required
number of ADMs.

A. Lower Bound on the Number of ADMs

Minimizing the required number of ADMs is equivalent to
starting out with every node having an ADM on each wave-
length and maximizing the number of ADMs that can be re-
moved while still supporting every-allowable traffic matrix. In
this section we give an upper bound on the number of ADMs that
can be removed or equivalently a lower bound on the number of
ADMs needed by a feasible topology. First we establish some
preliminary results. Throughout this section, assume that, ,
and are specified.

We look at a particular way to construct a-allowable traffic
set which attains the bound in (2). This construction is useful
in proving Lemma 1 below. Denote a permutation of the set
of nodes, , by , i.e., is some ordering of
the nodes. Let denote theth node in this ordering. De-
fine two sets of pairs of nodes, and . The set con-
tains all pairs of nodes where is odd
and strictly less than . The set contains all pairs of nodes

where is even and strictly less than
along with the pair . For a given , the de-
sired -maximal set contains circuits between each pair in

and circuits between each pair in . The resulting set
is obviously -maximal and contains

circuits

For example, suppose . With the trivial permutation,
, we have (1, 2), (3, 4) and (2, 3),

(4, 5), (5, 1) . If the -maximal set given by the above
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construction is -2, 1-2, 3-4, 3-4, 2-3, 4-5, 5- . This set con-
tains circuits as we desired. If instead we use
the permutation mod , then (5, 1), (2,
3) and (1, 2), (3, 4), (4, 5). In this case, we get the
3-maximal set -1, 5-1, 2-3, 2-3, 1-2, 3-4, 4-5.

Define to be the set of nodes with ADMs removed from
wavelength for . The following lemmas help to
bound the maximum number of ADMs which can be removed.

Lemma 1: If a network with wavelengths can support
every -allowable traffic set, then for all ,

.
Proof: To establish a contradiction assume that a network

can support every-allowable set, but for some, .
In this case, we construct a-maximal set where every connec-
tion involves a node in . Thus, no circuit in this set can be sup-
ported on wavelength. Furthermore, this set will require at least

wavelengths, and so cannot be supported. The particular
-maximal set we construct has the form discussed above. Let

be a permutation of such that for every odd ,
is in . Such a permutation exists since . Using
this permutation, consider the-maximal set defined above. This
set requires wavelengths and each circuit involves a node
from as desired.

Lemma 2: If a network with wavelengths can support
every -allowable traffic set, then for all ,

.
Proof: Again, we prove the lemma by contradiction. As-

sume that a network can support every-allowable set, but for
some , . By Lemma 1, .
Thus, we can pair up each node in with a distinct node in

and form a -allowable traffic set by setting upcir-
cuits between each pair. This traffic set consists of cir-
cuits, none of which can be placed on wavelength. This set
must be placed on the remaining wavelengths, but
these wavelengths can accommodate at most cir-
cuits. Thus this-allowable set cannot be supported, yielding a
contradiction.

Lemma 3: If a network with wavelengths can support
every -allowable traffic set, then for all ,

(4)

Proof: We show that we can always construct a-allow-
able set with circuits which cannot be carried
on either wavelength or and thus must be carried on the
other wavelengths. Since each wavelength can ac-
commodate at mostcircuits, (4) must be true for this set to be
supported. The proof will be completed once we show how to
construct the above set. Consider two wavelengthsand and
assume . Let be the set of nodes removed from
both and ( may be empty). From Lemma 1, we can assume
that . Thus, each node in can be paired with a
distinct node in . Likewise, every node in can
be paired with a distinct node in . Placing circuits be-
tween each pair gives the required-allowable set.

An immediate corollary of Lemma 3 is that for every wave-
length except one, we must have . Lemma

Fig. 4. Provisioning of ring in Example 3.

2 gives a bound on the ADMs that can be removed on the re-
maining wavelength. Thus, we have the following upper bound:

ADMs removed

(5)

The next example shows that this bound is tight for some choices
of , , and .

Example 3: Suppose we have a network with , ,
and . For this ring, and the above upper
bound yields that at most 4 ADMs can be removed. Fig. 4 shows
a topology that achieves this bound. Consider the 2-allowable
traffic requirement 1-2, 1-3, 2-3, 4-5, 4-5. This can be sup-
ported on a ring provisioned as in Fig. 4 by assigning1-2, 2-3
to the first wavelength,4-5, 4-5 to the second wavelength, and
1-3 to the third wavelength. Such an assignment can be found
for any other 2-allowable traffic set.

Next we establish a connection between this problem and
bipartite matching problems. By exploiting this connection,
we come up with necessary and sufficient conditions for a
topology to be able to support any-allowable traffic matrix.
This is then used to develop several heuristic algorithms for
removing ADMs from wavelengths.

B. Bipartite Matching Formulation

For a given ring network, we want to construct a bi-
partite graph which represents the possible
placements for each call from a given-allowable traffic
set, . We will denote one set of nodes in the graph by

. This set contains
elements for each of the wavelengths corresponding

to possible circuit assignments on that wavelength. The other
set of nodes, , will correspond to the traffic requirement

. There is an edge in the graph between and a circuit
- if both nodes and have an ADM on wavelength.

For example, the bipartite graph corresponding to the topology
and the traffic requirement from Example 3 is shown in Fig. 5.

A matching in a bipartite graph is a set of disjoint
edges. Being able to accommodate a traffic matrix in a given
topology is equivalent to being able to find a matching in
the corresponding bipartite graph which uses all the nodes in
the set of requested circuits. Such a matching is called a

-saturating matching. A necessary and sufficient condition
for the existence of such a matching is given by Hall’s theorem
which we state below. First we need the following definition.
For a bipartite graph , if is a subset of nodes in,
then the open neighborhood of, , is a subset of nodes in

such that is in if and only if there is an edge between
and a node in , i.e., and .
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Fig. 5. Bipartite graph corresponding to traffic set and topology in Example 3.

Hall’s Theorem: Let be a bipartite graph.
There exists a -saturating matching if and only if for all subsets

of , .
A proof of this theorem can be found in many texts on com-

binatorics (e.g., [19]). As stated, this theorem is useful to check
that a single traffic matrix can be supported. We are interested
in supporting every-allowable traffic matrix; the following the-
orem provides a necessary and sufficient condition for this. We
say that a circuit- must be routed on a set of wavelengths if
either or does not have an ADM on any wavelength not in
this set.

Theorem 1: For a given topology with wavelengths,
any -allowable traffic matrix can be supported if and only if
the following two conditions are satisfied.

For every pair of nodes , there exists a wavelength
on which both and have an ADM.
For any group of wavelengths and any-allowable
set, there exist at most circuits which must be
routed on this group.

Proof: We first show that these conditions are necessary.
Clearly, if A is not satisfied then any-allowable set containing
- cannot be accommodated. IfB is not satisfied then there

exists a set of wavelengths on which we must route more than
circuits in some -allowable set, . Consider the bipartite

graph corresponding to. Let be the subset of containing
the above circuits, then and . Thus by
Hall’s theorem there exists no-saturated matching, and this
traffic matrix cannot be accommodated.

Next we show that these conditions are sufficient. Assume
that they are not sufficient, so that there exists an assignment of
ADMs to wavelengths which satisfies both of the above
conditions, but which cannot support some-allowable traffic
set . Since cannot be supported, by Hall’s Theorem there
exists a subset of such that . Let be a
nonnegative integer such that . For a
bipartite graph corresponding to an allocation of ADMs,
will always be a multiple of . Thus implies that

. Therefore, this set of more than
calls must be routed on a set of or fewer wavelengths,
which contradicts conditionB, completing the proof.

C. Algorithms for Removing ADMs

We now use the results from Theorem 1 to develop algo-
rithms for removing ADMs from wavelengths. The resulting
topologies will support any -allowable traffic requirement.
Given such a topology, one then needs to know how to groom
the traffic for each allowable traffic set. For each traffic
matrix one can set up a maximum matching problem as in

Section III-B. Polynomial algorithms for solving this problem
are known (see, e.g., [18]). In many cases an assignment can be
found by inspection. These assignments can be all computed
off-line and stored in a look-up table. Also, in some cases, the
assignments can be stored in a more compact form than simply
listing every possible assignment. Alternatively, if the traffic
changes slowly, the assignment for the current traffic set can
be computed on-line.

If , no ADMs can be removed in any feasible
topology. If , every node must have an ADM on one
wavelength, and at most nodes can be removed from the
other wavelength. This follows directly from Lemmas 2 and 3.
Furthermore, if nodes are removed from the other wave-
length, the resulting topology is feasible. To see this, note that
the most circuits that will be forced onto one wavelength is

. So, by the Theorem 1 we can accommodate all-al-
lowable circuits. Thus for we have a trivial algorithm
which yields the minimum number of ADMs. Therefore, in the
following, we shall only consider the case where .

To use Theorem 1 to verify that a topology can support every
-allowable traffic pattern, conditionB must be checked for

every subset of wavelengths. There are possible subsets;
checking each set is not an appealing prospect. In the following
we avoid this by removing ADMs in certain symmetric patterns
which require us to check many fewer cases.

For a circuit - to be forced on a set of wavelengths, ei-
ther or must have an ADM removed from each of the re-
maining wavelengths. When , this
can only occur is at least one of the two nodes has an ADM
removed from more than one wavelength. So if we remove at
most one ADM for each node, we only have to checkB for sets
of and wavelengths. Clearly, we can re-
move nodes from each wavelength so that no node
will be removed from more than one wavelength. Also if we
remove or fewer nodes per wavelength, then
no more than circuits will be forced on any set
of or wavelengths. Thus if we remove

ADMs per wavelength and
no more than one ADM per node, conditionB is satisfied. Con-
ditionA is also easily satisfied in this case. Thus we have proved
the following lemma which immediately yields an algorithm for
allocating ADMs.

Lemma 4: For , one can always remove
ADMs from each of

wavelengths such that no node has more than one ADM
removed and any-allowable traffic matrix can be supported.

Recall that according to Lemma 3 we can remove more than
nodes from at most one wavelength. Thus if

(6)

the above algorithm removes the most nodes possible from
every wavelength except possibly one. When becomes
large for a given , the inequality in (6) is reversed. When this
occurs, the procedure in Lemma 6 will remove only a small
percentage of the ADMs. In such cases, to get further reductions
in ADMs, we have to consider removing nodes from more than
one wavelength. In the following we first consider the case
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where a node can be removed from at most 2 wavelengths; then
we generalize to an arbitrary number of wavelengths.

Suppose we allow a node to be removed from at most two
wavelengths. Assume (6) does not hold, then we can remove
at least ADMs from each wavelength. Consider re-
moving ADMs in the following manner: from wavelength, re-
move ADMs for nodes to

mod , where is a constant to be determined. For a node
to be removed from at most 2 wavelengths, we must have

. If a node is removed from wavelength, the only
other wavelengths it can be removed from are mod and

mod . Since a node is removed from no more than 2
wavelengths, traffic can only be forced onto groups of
or more wavelengths. Thus conditionB need only be checked
for sets of , , , or wave-
lengths. For a given choice of, the number of circuits forced on
a set of wavelengths is at most . The number forced
on a set of is at most , and the number forced on
sets of and is at most .
Thus for conditionB to hold, the following inequalities must be
satisfied:

(7)

(8)

(9)

(10)

For (7) to be satisfied for a positive value of, it must be that
. Also note that for conditionA to fail, there must be

a circuit which is blocked from every wavelength. When ADMs
are removed in the above manner, a circuit can be blocked from
at most 4 wavelengths. Thus, when , A is always sat-
isfied. Therefore, when , the largest
which satisfies (7)–(10) yields the most ADMs which can be re-
moved in this manner.

Assuming that , it is sufficient to check only (8)
and (9) out the four inequalities above; this is shown next. First
note that if (9) is satisfied, then clearly (10) must also be. Let

, then by assumption . Inequality (8) can be
rewritten as and (7) can be written as .
Note that for , . Thus if (8) is satisfied, then
(7) must also be. If either or is even, it can be shown that if
(8) is satisfied, then (9) must also be; thus in this case we only
need to check that (8) is satisfied. In this case it also follows
that (6) is never satisfied. These results are summarized in the
following lemma.

Lemma 5: If and (6) is not satisfied, then
ADMs can be removed per wavelength in the

above manner for any which satisfies (8) and
(9). If and either or is even, then
ADMs can be removed per wavelength in the above manner for
any which satisfies (8).

Next we generalize the above procedure to allow nodes to be
removed from an arbitrary number of wavelengths. For now we
assume that . For given integers and , suppose we
remove nodes to

mod from wavelength , where .
Thus we remove nodes from each wave-

length, and a node is removed from at mostwavelengths.
Traffic is then only forced onto groups of or more
wavelengths. For an arbitrary value of, as long as is less
than , conditionA is satisfied. We only need to check
conditionB for sets of or more wavelengths. The
most circuits that can be forced on a set of wave-
lengths is . To see this, consider adjacent wavelengths and
note that there arenodes without an ADM on any of the first
wavelengths and other nodes without an ADM on the next
wavelengths. By similar reasoning, we can find the most circuits
that can be forced on sets of to wave-
lengths. In this manner, we get the following set of inequalities
which must be satisfied forB to hold.

When , these inequalities are the same as (7) and (8). In the
case, we were able to reduce this set of inequalities to a

smaller subset. A similar reduction can be shown for an arbitrary
choice of . Specifically, out of this set of inequalities, it can
be shown via algebraic manipulations that if the following three
inequalities are satisfied, then the entire set ofmust also be.

From this it follows that the most ADMs that be removed in
this manner is given by the solution to the following integer
program:

maximize

subject to:

(P)

where and are constrained to be integers. This optimization
problem can be solved in the following manner. First, set
and find the largest value of which satisfies the constraints.
Next, fix at this value and find the largest value ofsatis-
fying the constraints. Again we summarize these results in the
following lemma which immediately yields an algorithm for re-
moving ADMs.

Lemma 6: Consider a ring with . Then we can
remove ADMs per wavelength in the above
manner where and are solutions to the integer program (P)
and still support every-allowable traffic matrix.

Example 4: The following provides an example of the algo-
rithms in Lemmas 4 and 6. Consider a ring with 15 nodes,

, and . For this ring, and .
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Fig. 6. Topology corresponding to Lemma 4.

Fig. 7. Topology corresponding to Lemma 6.

Using the algorithm from Lemma 4 we can remove 15 ADMs.
The resulting allocation is shown in Fig. 6. Using the algorithm
in Lemma 6, one finds that and , and thus one
can remove 4 nodes per wavelength, for a total of 20 ADMs re-
moved. The resulting topology is shown in Fig. 7. For compar-
ison, the upper bound on the number of ADMs removed from
(5) is 22.

When is larger that , then and the
above algorithms as stated will not remove any ADMs. We de-
scribe a way that these algorithms can be modified to be useful
in this case. First note that for positive integersand , a traffic
set is -allowable if and only if it can be written as the union
of an -allowable set and an-allowable set. When ,
we can use this to decompose the allowable traffic into smaller
sets such that each set will fit on or fewer wavelengths. Sup-
pose we want to support all-allowable traffic, and this re-
quires more than wavelengths. Let and let

. Decompose each-allowable traffic set into -al-
lowable sets and one-allowable set. Each -allowable set can
be accommodated on wavelengths and the remaining set re-
quires wavelengths. Note that

(11)

i.e., decomposing traffic in this way requires no more wave-
lengths. Since the number of wavelengths needed for each set in
this decomposition is less than or equal to, we can apply the
above algorithms to remove ADMs from each set. The resulting
topology will support all -allowable traffic. This is illustrated
next.

Example 5: Consider a ring with , , and
so that . Applying the above procedure, we get one
set of 5 wavelengths which must support 4-allowable traffic and
one set of 3 wavelengths which must support 2-allowable traffic.
Applying Lemma 4 to both of these sets, we find we can remove

Fig. 8. Number of ADMs in topology generated by Lemma 6 forN = 15,
g = 16.

1 ADM from each wavelength and thus eliminate a total of 8
ADMs.

As in Example 4, consider a ring with and .
In Fig. 8 we have plotted the number of ADMs resulting from
the algorithm in Lemma 6 asranges from 1 to 30. The number
of ADMs with no grooming is also plotted along with the lower
bound from (5). With the grooming, the number of ADMs is re-
duced by up to 27%. In [1], [20] it was found that approximately
60 ADMs were needed to support uniform all-to-all traffic in
this network. Uniform all-to-all traffic is -maximal. In
this example, supporting all -allowable traffic requires
77 ADMs, but this is a much less restrictive set of traffic.

We note that for any , the algorithms in this
section still work; in this case they generate a topology using

wavelengths which supports all-allowable traffic. As noted
above, at times using more than wavelengths can reduce
the required number of ADMs.

D. Hot Spot Node

In this subsection we consider a generalization the set of-al-
lowable traffic. Suppose there is one node in the network which
has no restriction on the number of circuits it can source, while
all other nodes are still restricted tocircuits. We refer to the
unconstrained node as ahot spot. For example, this node can
be used to model a central office node. In this case, the min-
imum number of wavelengths required to support all allowable
traffic is . Clearly the hot spot node needs
an ADM on each wavelength. Consider applying the grooming
algorithms to the set of nodes not including the hot spot with
the above number of wavelengths. The resulting topology will
handle all -allowable traffic between these nodes. This alloca-
tion is also sufficient for all allowable traffic including the hot
spot node. To see this, note that by including the hot spot node,
no additional calls are forced onto any group of wavelengths.
Thus, by Theorem 1, any allowable traffic matrix can be sup-
ported. This procedure applies with an arbitrary number of hot
spots.

IV. EXTENSIONS TO THEBASIC MODEL

In this section we will describe a number of extensions to our
basic model. First, we discuss the use of a strict sense or wide
sense nonblocking network to support rapidly changing traffic.
Then we discuss the benefits of using a hub node and tunable
lasers.



BERRY AND MODIANO: REDUCING ELECTRONIC MULTIPLEXING COSTS IN SONET/WDM RINGS 1969

A. Blocking Properties

In the previous sections we found topologies which can sup-
port any allowable traffic set. In this section we want to study
the properties of the rings as traffic changes from one allowable
set to the other. Specifically, suppose traffic changes from one
allowable traffic set to another, while some subset of the circuits
stay active. We look at whether we can support the new traffic set
without rerouting the existing calls. When discussing such prop-
erties, we will use some standard definitions from switching
theory which we repeat here. A ring isstrict senseor strictly
nonblockingif any allowable circuit between nodes can be es-
tablished without interference from any other existing allowable
circuits. A ring iswide-sense nonblockingif any allowable cir-
cuit between nodes can be established without interference from
any other existing allowable circuits, provided that the existing
circuits have been established according to some algorithm. A
ring isrearrangeably nonblockingif any allowable circuit can be
established by possibly rerouting any existing circuits. Clearly,

Strict sense Wide sense Rearrangeable

The converse implications do not, in general, hold.
A ring provisioned according to the algorithms in Sections II

and III is rearrangeably nonblocking but not necessarily strictly
or wide-sense nonblocking. If traffic changes frequently, then
the control overhead associated with rearranging existing cir-
cuits may not be acceptable. In such a case, one may prefer a
ring that is either wide-sense or strictly nonblocking. If every
node has an ADM on each of the wavelengths, then the re-
sulting ring is strictly nonblocking. Similarly, when a ring is pro-
visioned to support the traffic matrix defined in Section II,
it will also be strictly nonblocking. For any of the other cases
looked at, the resulting ring will not necessarily be strictly non-
blocking. For the case of-allowable traffic, any ring with
wavelengths must have ADMs in order to be strictly
nonblocking. In other words, in this case one cannot save on the
cost of ADMs by grooming. We prove this for the case of ,
but it can be modified for an arbitrary.

Theorem 2: For -allowable traffic, a strictly nonblocking
ring with and wavelengths must have an ADM
for each node on each wavelength.

Proof: When , the theorem is clearly true. For
, we know that all the nodes must be on one of the

wavelengths, if we remove only one node, say node, from
wavelength 1. We can find a set ofcircuits not involving node
and place them on wavelength 2. Then any additional circuit in-
volving node cannot be established without rearranging these
existing circuits, and so the ring is not strictly nonblocking.

For , we proceed by induction. First note, from
Lemma 1 there must be at least nodes on each wave-
length for the ring to be even rearrangeably nonblocking. When

and , it follows from the definition of
that . Thus there must be more than
nodes on each wavelength. Now assume that the theorem is
true for wavelengths, and consider the case when

. Without loss of generality, we can assume that
nodes are on wavelength 1. Thus we can consider
any 1-allowable set of circuits between of these nodes and

place these circuits on wavelength 1. Then any other 1-allow-
able set of calls between the remaining nodes must be
placed on the remaining wavelengths. If we consider a ring
with these nodes, then the minimum number of wave-
lengths for this ring is . Therefore, by the induction hypoth-
esis, we cannot remove any of these nodes from the
remaining wavelengths. The original nodes were picked
arbitrarily from the set of nodes that must be on wave-
length 1, and by choosing different sets and repeating this argu-
ment we have that every node must be on the remainingwave-
lengths. Likewise, by repeating this argument, but starting with
a different initial wavelength, we see that every node must be on
every wavelength. Thus the theorem is true for ,
and, by induction, for any ring with .

Next we consider wide-sense nonblocking rings. This case is
more difficult than the other cases due to the fact that a routing
algorithm must also be considered. The following gives an upper
bound on the ADMs that can be removed for a wide-sense non-
blocking ring with -allowable traffic.

Lemma 7: Consider a unidirectional ring with wave-
lengths. Let be the set of nodes removed from wavelength
. For the ring to be wide-sense nonblocking for-allowable

traffic, where is even, we must have for all

Proof: First note that for all . We show that
if , then it must be that . The
lemma then follows. If , then we can form the
following -maximal set which also has the maximal link load.
This set consists of two groups of traffic. One group consists

of circuits which are only between nodes in . The
other group consists of circuits only between nodes in .
Let be the subset of the circuits in which are routed
on wavelength ( cannot be empty since it is a-maximal set
and we are using wavelengths).

First we prove if the ring is wide-sense nonblocking, then

(12)

Assume this is not true. Suppose the circuits inwere discon-
nected as well as of the circuits involving the nodes in .
We can find a set of new circuits where each circuit in-
volves only one node in and one node which previously was
in a circuit in . Adding this set of circuits to the remaining calls
results in a new-maximal set, and none of these new calls can
be routed on wavelength. This new set will also have the max-
imum link load and thus requires all wavelengths. Thus,
these calls cannot be accepted without rearranging some of the
other active calls. This is a contradiction and so (10) must be
true.

If (12) is true, beginning with a-maximal set as above, as-
sume that the circuits involving the nodes in are discon-
nected along with circuits involving nodes from .
Then we can form circuits, as above, where each circuit
is between one node from and one node that was in a circuit
in . These additional circuits must be routed on the remaining

wavelengths without rearranging the active calls. This
means that at most calls not involving
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the nodes in can be routed on these wavelengths. There are
circuits in the original maximal set not involving

nodes in , thus we must have

Also . Combining these and performing some algebra
yields the desired result.

We assumed that was even in this lemma just to simplify
the proof; a similar bound can be found forodd. Consider
our previous example with , , and .
In this case, the above bound is ; so, for the net-
work to be wide-sense nonblocking, at most 5 ADMs can be
removed. Compare this to 20 ADMs that can be removed for a
rearrangeably nonblocking ring. For this example, withtaking
on any even value between 2 and 14, is always bounded
to be less than or equal to 1, resulting in at most an 8% re-
duction in ADMs. These results suggest that to get great ben-
efits from grooming for -allowable traffic, some rerouting of
existing traffic is needed, at least within the unidirectional ring
model considered here.

B. Using a Hub Node and Tunable Lasers

Investing in more sophisticated components elsewhere in the
network can yield further reductions in the cost of the electronic
layer multiplexing. We consider two examples—the use of a
hub node and the use of tunable lasers. First we consider a hub
node. By a hub node, we mean a node which has ADMs on
every wavelength and has a SONET DCS. The benefits of a hub
architecture in reducing the required number of ADMs has been
pointed out previously (see, e.g., [2] or [3]). For bidirectional
rings, several hub architectures are given in [3] which support
dynamic traffic. By similar arguments to those used in [2], we
can show that making one node in the ring such a hub node
will not require any more ADMs than were required without the
hub. It can easily be shown that the minimum number of ADMs
needed to support all-allowable traffic with a single hub node
is given by

ADMs. (13)

For example, consider a ring with , , and .
Using the algorithm from Lemma 6, 12 ADMs are needed to
support all -allowable traffic. By making one node a hub node,
this traffic can be supported using only 10 ADMs.

We can also reduce the required number of ADMs if, instead
of having fixed tuned lasers, each node is equipped with tun-
able lasers. For example, again consider the ring with ,

and suppose we want to support all 1-allowable traffic.
If nodes are equipped with tunable lasers, then each node only
needs one ADM, and thus only 7 ADMs are needed for the en-
tire ring. In this case, using tunable lasers reduced the required
number of ADMs by 58%. Clearly, with tunability, a node needs
no more than ADMs to support -allowable traffic. Thus, when

is small, there is a clear advantage to tunability. On the other
hand, for larger values of, the gain from tunability is not as
obvious and is an open issue. Both tunability and the use of a

hub node can also reduce the required number of ADMs for an
arbitrary set of allowable traffic as studied in Section II.

V. CONCLUSION

In this paper we examine the problem of designing a WDM
ring network to support dynamic SONET traffic. The goal of
our design is to minimize the number of electronic multiplexers
(e.g., SONET ADMs) used in the network. We developed a
number of algorithms for assigning ADMs to wavelengths in
a way that supports every allowable traffic matrix in a non-
blocking manner. For the special case of-allowable traffic,
these algorithms are shown to reduce the number of ADMs
needed by up to 27%. We also derive a lower bound on the
number of ADMs required to support all-allowable traffic, and
show that in some cases our algorithms perform close to this
bound. Finally, we discuss extensions of our model to include
supporting traffic in a strictly nonblocking manner. Addition-
ally, we discuss the use of a hub node and tunability to further
reduce the number of ADMs.
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