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Abstract—In this paper, we consider traffic grooming in tiple wavelengths; each additional wavelength can be used to
WDM/SONET ring networks when the offered traffic is charac-  add an additional SONET ring among the nodes. This results in
terized by a set of traffic matrices. Our objective is to minimize 5 g pstantial increase of the network capacity. However, every
the cost of electronic add/drop multiplexers (ADMs) in the net- dditi |SONET ri il . dditi | ADMs. Th d,
work, while being able to support any offered traffic matrix in a f"l iiona . rnngwi requweq ,' lona S. Ihedom-
rearrangeably nonblocking manner. We provide several methods inant cost for this increased capacity Is the cost of these ADMs.
for reducing the required number of ADMs for an arbitrary class Often, the number of electronic ADMs can be reduced by em-
of traffic matrices. We then consider the special case where the ploying WDM add/drop multiplexers (WADMSs) which allow a
only restriction on the offered traffic is aconstrainton thg number wavelength to be either dropped at a node or to optically by-
of circuits a node may source at any given time. For this case, we th de. Wh I i td d at d
provide a lower bound on the number of ADMSs required and give pass ef node. . ena Wa\(e engtn Is not dropped at a node, an
conditions that a network must satisfy in order for it to support  €lectronic ADM is not required for that wavelength; however,
the desired set of traffic patterns. Circuit assignment and ADM the node cannot access any of the traffic on the bypassed wave-
placement algorithms with performance close to this lower bound |ength. Thus, for a wavelength to bypass a node, the traffic for
are provided. These algorithms are shown to reduce the electronic that node must be routed on the remaining wavelengths. Such
costs of a network by up to 27%. Finally, we discuss extensions ting i f dt . f the traffic. G -~
of this work for supporting dynamic traffic in a wide-sense or alrou Ing IS referred 1o asgroomlngo e trafiic. rooming )
strict sense nonblocking manner as well as the benefits of using aWith WADMs has been the topic of several recent papers in-
hub node and tunable transceivers. Much of this work relies on cluding [1]-[9], [20]. Traffic grooming itself predates the work
showing that these grooming problems can often be formulated as on WDM SONET rings. For example, there has been work (e.g.,
standard combinatorial optimization problems. [10]) on grooming low rate traffic in SONET rings (without

Index Terms—Optical network design, SONET add/drop multi-  WDM) to reduce the number of required line cards. The ideas
plexers (ADMs), SONET rings, topology design, traffic grooming, pehind traffic grooming are also applicable to other WDM net-
wavelength division multiplexing. works. For example, there has been recent interest in networks

using IP directly on top of an optical layer. In this situation,
|. INTRODUCTION traffic grooming can be used to reduce the number of IP ports

L . . . instead of SONET ADMSs [11]. Notice that traffic grooming is a
AVELENGTH division multiplexing (WDM) is increas- ns S[11] I °9 Ing1s

. . ) ._special case of a virtual topological design problem. In our case
ingly used to expand the available capacity of an optlc?rf

. . e cost is measured in terms of ADMs; other work in this area
nerork. Typically Fhese networks have a SONET/SDH ring 3onsiders designing virtual topologies to minimize such quan-
chitecture. In particular, the network nodes are arranged in;

th f length the blocki ilit
ring and interconnected by fiber (typically multiple fibers forgsﬁz;eeS aesg e{lnzljin[?g]r)o wavelengths or the blocking probability

protection purposes). Furthermore, each node in the ring u

: _ ®Assume that the traffic requirement of each node in aring is
a SONET add/drop multiplexer (ADM) to electronically Com.igiven. Consider the problem of finding a grooming which min-

bine lower rate streams onto a wavelength. For example, i izes the required number of ADMs needed to support this

wavelength supports OC-48 (2.5 Gbls) traffic, then 16 OC‘( affic requirement; we refer to this as tikeooming problem

(15.5 Mbrs) circuits can be mul_tiplexed onto this wavelengthn [1], [20] it is shown that the general grooming problem is
Using WDM technology, each fiber in a ring can support muj P-complete. However, for several special classes of traffic re-

quirements, either optimal algorithms or heuristics with good
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emphasis of this paper. A similar formulation of the dynamim Section Il, we give a general formulation of this problem.
grooming problem was considered in [3]-[5] for a bidirectionalVe also present several approaches to reducing the required
ring employing digital cross-connects. In addition, in [16] andumber of ADMs which are particularly applicable when
[17], a similar nonblocking approach is considered but for wavéiie number of traffic allocations is small. In Section Ill, we
length allocation problems as opposed to traffic grooming. consider a specific class of traffic requirements. This class is
We now give a precise description of the network model tefined by requiring the network to support any traffic matrix
be considered. Le¥V = {1,2,-.- N} denote a set oN nodes such that the number of circuits terminated at each node is less
in a WDM SONET ring. Unless otherwise noted, we considéhan some constarit Such a class is natural, for example, if
unidirectional rings in the following. In other words, all trafficeach node is capable of sourcing otiircuits. For such traffic,
must propagate in one direction around the ring. Unidirectionak lower bound the number of ADMs needed and provide
path-switched rings (UPSR) are the primary example of unidiecessary and sufficient conditions that a network must satisfy
rectional rings in practice. Bidirectional rings, such as BLSRt support such traffic. We use these conditions to develop
and BLSR/4, are also of interest in practice. Some of the faigorithms for allocating ADMs in the network. Finally, in
lowing results also apply to bidirectional architectures; whe®Bection IV, we develop extensions to the basic model that allow
this is true, we point it out below. We assume that each node lasietwork to be nonblocking in a strict sense; the use of a
one WADM and a SONET ADM for every wavelength droppedhub architecture and tunable lasers in order to achieve further
at that node. The WADMs are static, i.e., the wavelengths thaductions in electronic multiplexing costs is also considered.
are dropped at each node are fixed. The SONET ADMs multi-
plex g low ratg streams Qnto a sing_le_wavelengihs referred Il. THE DYNAMIC GROOMING PROBLEM
to as the traffic granularity. All traffic is assumed to be duplex
and consists of circuits with granularigy A duplex circuit be- ~ Suppose we know that, at any time, the traffic requirement
tween two distinct nodesand; is represented bizj. A traffic  elongs to a se{Ry,---, Rx} of allowable traffic require-
requirement R, between all the nodes is a multiset (a set witf1ents. The dynamic grooming problem is to find a topology
repeated entries) of the for®R = {i-jli,j € N,i # j}. A with the minimum number of ADMs such that any allowable
traffic requirement can also be represented by¥he N traffic ~ traffic requirement can be supported with an appropriate
matrix, [R; ;], whereR; ; represents the number of circuitg grooming. A fegsible topology for the grooming p.roblem.is
in R. Thus, for alli andj, R; ; = R;; andR;; = 0. a topo!ogy which can support any aIIowapIe traffic matrix.
We assume that nodes do not have a digital cross-connébg minimum number of wavelengths required by a feasible
system (DCS). We also assume nodes do not have optical wa@@0l09y isWmin = maxi—i ... i [|Ri|/g], where|R;] is the
length changers and that both parts of a duplex connection ¢§édinality of the set?;, i.e., the number of circuits that need
the same wavelength. Thus, a connection occupies a portio®pe supported. If each of thé,,;, wavelengths is dropped
the same wavelength around the entire ring. In [1], [20] it @8t €ach node, then clearly this is a feasible topology which
shown that allowing wavelength changers or allowing each p&§€S N Wwin ADMs. Furthermore, this solution requires no
of a duplex connection to use a different wavelength does not 8800ming of the traffic to support any allowable traffic set; by
sult in any improvements with regard to grooming; so, there i8iS we mean that each call can be routed on any wavelength
no loss in making this assumption and it simplifies the followin/ith available capacity. We seek to improve on this obvious no
analysis. On the other hand, as we will see in Section IV, usi§§°0ming solution.
a DCS may be beneficial. It has been shown in [2] and [6] that !f & ring can accommodate a particular traffic #gt, it can
for static traffic, a DCS can help reduce the required number @0 accommodate any subset/of. Thus an allowable traffic
ADMs. set which is the subset of another can be ignored. For any set of

Consider a simple example of grooming for a single traffigllowable traffic requirements, a new single traffic requirement
larity of g = 4, e.g., OC-12’s on an OC-48. Consider the traffihis traffic. Specifically, given{Ry, - -, Ry}, define[R} ] to
requirement?; = {1-2, 1-2, 1-3, 1-3, 1-4, 1-4, 1-5, 1}5this  be the traffic matrix corresponding to the traffic requirement

corresponds to each node requesting 2 duplex circuits with nddie Consider a new traffic set*, which has the traffic matrix
1. The minimum number of wavelengths required to supfirt [7%;;] defined by R} ; = maxp—,....x R} ;. Every allowable
is 2. By using two wavelengths and dropping each wavelendtgffic requirement is then a subset &f. Thus we can apply
at each nodeR; can trivially be supported using 10 ADMs.& grooming algorithm designed for a single traffic allocation to
Consider grooming the traffic so thal-2, 1-2, 1-3, 1-3 are " (as noted above, grooming for single traffic matrices as been
placed on one wavelength afd-4, 1-4, 1-5, 1-5 are placed addressed in several previous papers). The resulting topology is
on the second wavelength. In this case the traffic can be sgffarly feasible for the dynamic grooming problem. As shown
ported using only 6 ADMs. It can be seen that this is the mif# the next two examples, this approach may or may not yield a
imum number of ADMs needed to suppdit. In this example, topology which uses fewer thalii¥ i, ADMs.
the topology which minimized the number of ADMs also mini- Example 1: Consider a ring withV = 5 nodes and gran-
mized the number of wavelengths. As shown in [2], this is oftearity, g = 4. Suppose we have the following two allowable
the case, but, in general, it is not true [2], [4]. traffic requirements:

In the remainder of this paper we consider the dynamic
grooming problem, i.e., grooming for a set of traffic allocations. Ry ={1-3,1-3,4-2,4-2,5-2,5-2}
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Ry ={1-3,1-3,1-4,1-4, 5-2, 5-2}. A —?—?—?—)'e)'(— A *?*?_.._

RUDERY Node:1 2 3 4 5 Node:1 2 3 4 5
Ay —?*?_..* ® -Wavelength Dropped ¢ oce
A KXo - Not Dro
- pped
[ T T ® -Wavelength Dropped - Not Dropped
Node:1 2 3 4 5 X
Fig. 2. Optimal topologies for supporting; (left) and 2> (right) from

Fig. 1. Network topology which support®* in Example 1. In this figure, Example 2

horizontal lines correspond to the two wavelengths, and ardicates that the
wavelength bypasses a node.

5 p
Au] Au] A 1 ¥ 1 U 1
In this caseW.in = 2; thus, with no grooming, botik; and >< Al Co ;'E N
R» can be supported using 10 ADMs. For this examplé,= A, 4 e ARG
{1-3,1-3, 1-4, 1-4, 4-2, 4-2, 5-2, 5}2lt is easy to see that the 5 Node:1 2 3 4 5

topology ShOWﬂ inFig. 1 can sup_pdit‘_ (and therefore_ both, Fig. 3. Bipartite graph for the two topologies in Fig. 2 and the resulting
and Rz,) using only 6 ADMSs. So, in this case, grooming #8f  topology.

is beneficial.
Example 2: Consider the same ring with' = 5 andg = 4.

N . Each of the two preceding combinations’Bf andZ> was
Suppose that this time the allowable traffic sets are

formed by assigning each wavelengthiinto a wavelength in

Ry = {1-2,1-2,1-3,1-3,1-4,1-4,1-5,1-5} T,, and then forming a new topology as aboye. Suppose that
: : Ty and1» are now two arbitrary topologies which support two
corresponding traffic matrices. The above procedure can be gen-
Once againWm = 2 and 10 ADMs are required with no €ralized as follows. LetV" be the maximum number of wave-
grooming. However, in this cas&* contains 14 circuits and '€ngths used in eithéf, or 7. If eitherZ’ orT; used less than
thus requires at least 4 wavelengths. It can be seen that 11 ADWgvavelengths, consider it specified fidf, but with no ADMs

are needed to suppaR*, which in this case is worse than the®n the extra wavelengths. There are nidi ways of matching

no grooming solution. wavelengths in the two topologies. The best combination is one

In Example 2, each of the allowable traffic matrices corré¥hich requires the fewest ADMs. For large values/sf con-
sponds to uniform all-to-one traffic. For such traffic matricess:'de“”g each of th# ! combinations becomes u_nattracuve, but
the optimal grooming can be found by an algorithm in [1]. ARS Shown next such a “brute force” approach is not necessary.
optimal topology for each of these traffic matrices is shown igvery possible comblnatlo_n can be represented_ by a bipartite
Fig. 2. We consider how this information can be used to come BfPh(C; D, E). Recall, a bipartite grapfC’, D, £) is a graph
with a good topology for supporting bofty andR,. Recall that with two disjoint sets of nodes; and D, and a set of edges,

a topology is specified by which nodes have ADMs on whic¥, Where each edge is between a nod€’iand a node inD.
wavelengths. We say that a topologiycontainsa topologyZ” Here,C andD vylll correspond to the sets of wavelengthéﬁp

if 7" can be obtained frori” by adding additional ADMs and @nd7%, respectively. Between eache ¢’ andd € D, there is
possibly additional wavelengths, but not removing any. Clear! €d9€(c, d) € E. We associate with each edde, d) < E,

if 77 can support a given traffic set, théhcan also support it. & cost which equals the number of distinct nodes with an ADM
Let 7} andZ} be the two topologies in Fig. 2 which suppdit  ©On either wavelengthin 7; or wavelengthl in 75. The bipar-
and R,, respectively. Consider forming a new topology, whicfte¢ graph for the two topologies in Fig. 2 is shown in Fig. 3.
also uses\; and )., as follows. In the new topology, drop at A matching of all the wavelengths ifj; to the wavelengths in
each node which has an ADM oq in either7} or Ty. Like- 12 correspond to a set di disjoint edges in this graph; the
wise, drop), at each node which has an ADM da in either total cost of these edges gives the number of ADMs required for
T; or Ty. The resulting topology contains boffy andZ, and this combipgtion. Thus we want Fo find such a matching which
thus can support botR; and R,. For the topologies in Fig. 2, has the minimum total cost. This problem can be recpgmz_ed
such a combination results in both wavelengths being dropp@?i @ instance of an “assignment problem;” this combinatorial
at every node, which is the same as the no grooming topo|og§ptlm|zat|on problem hgs several well-known polynomlal algo-

This is not the only way to “combine” the two topologies.”thms [18]. Such algorithms can be used to find the best com-
Consider a second new topology, again uskagand A». Now bination of wavelengths in polynomial time.
drop); ateach node which either has an ADMJbnin 73 or an .We wish to make severgl comments about.this approach.
ADM on ), in T5. Likewise, drop, at each node which either First, there are often multiple optimal topologies which are
has an ADM on\, in 7, or an ADM on )\, in 5. This new Not obtainable from each other by simply permuting the wave-
topology is shown in Fig. 3; it contairf§, and it also contains lengths. The number of ADMs in the optimal combination may
a topology which is equivalent t6,, but with its wavelengths depend on which of these topologies is used. Second, we have
permuted. Such an equivalent topology can clearly support @nsidered only a case with two aIIowab!e traf_fic maFrit:es.
same traffic ag%. Therefore, the new topology can support bothFor & larger number, one can generalize this assignment

R; andR;. This t0p0|09_y only requires 7 ADMS' which is less  i\ote thisis not as restrictive as it first appears, since we can also support any
than the 10 ADMs required by the no grooming topology.  subsets of the two allowable traffic sets.

5,1-5
Ry = {1-2,1-2,2-3,2-3,2-4,2-4,2-5,2-5}.
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problem. Unfortunately, the generalization results in a mudbr the set oft-allowable traffic patterns is given by

more difficult combinatorial optimization probleOf course,

one could consider combining topologies sequentially, i.e., Wonin = [LNt/ZJ 1} (3)
first combining two topologies, then adding a third to this 9

combination, etc. For more than a few topologies, this approafHUS,NWmin ADMs are required for the no grooming solution:
is unattractive. Finally we note that nothing in this formulatiog .o gives an upper bound on the required number of ADMs. We
required a unidirectional ring. Thus, this approach also worlgy| focus on reducing this number of ADMs while still sup-
in the bidirectional case. porting anyt-allowable traffic matrix using¥,,, wavelengths.
As noted above, the minimum ADM solution often uses the
lll. ¢-ALLOWABLE TRAFFIC minimum number of wavelengths, but not always. Hence, re-

In this section we focus on a particular subclass of dynam##§icting our solutions to those using the minimum number of
grooming problems. Specifically, we consider sets of allowvavelengths is sensible not only because it makes efficient use
able traffic which are determined only by limiting each nodef wavelengths, but also because itis likely to yield a nearly op-
to sourcing at most duplex circuits at any time, whereis a timal solution. The problem we address can be stated as follows.

specified constant. In other words, a traffic mafii ;] is al- For given values ofV, g, and, we wish to specify a topology,

lowable if and only if it satisfies i.e., which of theN nodes have ADMs on which of thé,,;,,
wavelengths. This topology must be able to supportaaijow-
Z Ry, <t foralli. (1) @able traffic matrix using the minimum number of ADMs. In the
; previous section, we considered finding topologies for each al-

lowable traffic set and then combining these topologies in order
This will be the only constraint on the set of traffic patternto support every allowable traffic set. Wheén= 1 there are
which must be supported. We call these allowable traffic ma="/2N!/(N/2)! differentt-maximal traffic matrices. Clearly,
tricest-allowable Such a constraint is natural in many casefinding a topology for each possibteallowable traffic matrix
For example, suppose each node represents a customer siteaaddhen combining these is not a feasible approach. In the fol-
that a service provider wishes to guarantee the customer tbwing we develop an alternative approach which relies on for-
availability of ¢ “switched OC-3 connections” at each site. Tanulating this problem as a bipartite matching problem. Before
satisfy this guarantee, the ring must be provisioned to handib@king at this approach, we give a lower bound on the required
anyt-allowable traffic pattern. number of ADMs.

A similar class of allowable traffic matrices was studied in

[3]-[5]. The model in [3] allows each nodeo source at most A. Lower Bound on the Number of ADMs

t(i) circuits, wheret(¢) is constrained to be a multiple giinote  Minimizing the required number of ADMs is equivalent to
in [3] the units oft(¢) are the number of light-paths as opposeskarting out with every node having an ADM on each wave-
to the number of low-rate circuits as we have defined them hergiagth and maximizing the number of ADMs that can be re-
The work in [3]-{5] focuses on bidirectional rings where everyhoved while still supporting everyallowable traffic matrix. In
node has a DCS. In contrast, we focus on the unidirectionpls section we give an upper bound on the number of ADMs that
ring case without using DCSs. Hence, the approaches in [3]-tadn be removed or equivalently a lower bound on the number of
do not directly apply to the problem considered in this papegxpMs needed by a feasible topology. First we establish some
Furthermore, in [3] and [4] the grooming problem is divided intgreliminary results. Throughout this section, assume Mat,
two steps. First low speed traffic is groomed into light-paths, arghd g are specified.
then these light-paths are grouped onto SONET rings. While thiswe look at a particular way to construct-allowable traffic
simplifies the problem, it may lead to a suboptimal solution [6ket which attains the bound in (2). This construction is useful
Our approach considers the two problems together. in proving Lemma 1 below. Denote a permutation of the set
In the following, assume that we are given a network wWith of nodes, v, by 7, i.e., 7(1),---,#(N) is some ordering of
nodes and a traffic granularity gf We refer to a traffic set as the nodes. Let—1(¢) denote theth node in this ordering. De-
t-maximal if itis¢-allowable and if the addition of any other Cil’-fine two sets of pairs of nodeg;’l and Cs. The setC; con-
cuit would make it not-allowable. As noted above, if a networktains all pairs of nodeér—1(:), 7~1(: + 1)) wherei is odd
can support everyzmaximal traffic matrix it can support every and strictly less thatv. The setC, contains all pairs of nodes
t-allowable one. For angrallowable traffic setk, the maximal (7—1(;), #—1(i + 1)) wherei is even and strictly less thaN

number of circuits in this set is bounded by along with the pair(z—1(NV),#—1(1)). For a givent, the de-
siredt-maximal set containg /2] circuits between each pair in
|R| < [Nt/2]. (2) ¢, and|t/2] circuits between each pair i#,. The resulting set

is obviouslyt-maximal and contains
Furthermore, there existmaximal sets which achieve this

bound. Therefore, the minimum number of waveleng#is,,,, [t/2]|N/2] + |t/2][N/2] = | Nt/2| circuits

2The assignment problem is easy to solve because it is a unimodular problempqy example, supposl¥ = 5. With the trivial permutation,

Such problems have the characteristic that vertex solutions to the LP relaxation. .
are the same as the solution to the integer program. When we generalize tonﬁb&e) = 4, we haveC: = {(1, 2), (3, 4} andC; = {(2, 3),

than two traffic matrices, the resulting problem is no longer unimodular. (4, 5), (5, 1}. If ¢ = 3 the t-maximal set given by the above
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construction igf1-2, 1-2, 3-4, 3-4, 2-3, 4-5, %}. This set con- A —o—0—0— KK~ ® -Wavelength Dropped
tains | (5) (3)/2] = 7 circuits as we desired. If instead we use A, —a-—>{-o—o—0— % - Not Dropped
the permutationr(i) = (¢ + 1) mod N, thenCy = {(5, 1), (2, Ay —0—I-o—o—o
3)} andCy = {(1, 2), (3, 4), (4, 5). In this case, we get the
3-maximal se{5-1, 5-1, 2-3, 2-3, 1-2, 3-4, 4}5 Node:1 2 3 4 35
Define M; to be the set of nodes with ADMs removed fronkig 4. provisioning of ring in Example 3.
wavelength for¢ = 1-.. W,,;,. The following lemmas help to

bound the maximum number of ADMs which can be removed.
Lemma 1: If a network withW,,;, wavelengths can support2 gives a bound on the ADMs that can be removed on the re-

everyt-allowable traffic set, then for all= 1 - - Wi, [M;| < maining wavelength. Thus, we have the following upper bound:

NJ/2.
. I g

Proof: To establish a contradiction assume that a network ~ ADMs removed< (Wi, — 1) b (Winin — 2)J

can support everg-allowable set, but for some |M;| > N/2. N Lg (Wi — 1)J 5)

In this case, we constructtamaximal set where every connec- p o )

tioninvolves anode id/;. Thus, no circuit in this set can be sup- ) o _

ported on wavelength Furthermore, this set will require at least! e next example shows that this bound is tight for some choices

Wain Wavelengths, and so cannot be supported. The partiCLﬂErN' t, andy. .

t-maximal set we construct has the form discussed above: Let Example 3: Suppose we have a network with = 5, = 2,

be a permutation oV such that for every odd < N, »=1(;) andg = 2. For this ring, Wi, = 3 and the above upper

is in M. Such a permutation exists sinfe;| > N/2. Using bound yields that at most 4 ADMs can be removed. Fig. 4 shows

this permutation, consider tenaximal set defined above. This@ topology that achieves this bound. Consider the 2-allowable

set requiresV,,,;,, wavelengths and each circuit involves a noggaffic requirement{1-2, 1-3, 2-3, 4-5, 4-5 This can be sup-

from M; as desired. m Ported on aring provisioned as in Fig. 4 by assignifie?, 2-3}

Lemma 2: If a network withW,,,;, wavelengths can support!0 the firstwavelength{4-5, 4-5 to the second wavelength, and
everyt-allowable traffic set, thenfor all= 1- - - Wy, |M;| < 1-3 to the third wavelength. Such an assignment can be found

(Winin — 1)g/t. for any other 2-allowable traffic set.

sume that a network can support evesgllowable set, but for bipartite matching problems. By exploiting this connection,
somei, | M;| > (Wi — 1)g/t. By Lemma 1,|M;| < N/2. We come up with necessary and sufficient conditions for a
Thus, we can pair up each nodeff; with a distinct node in topology to be able to support amyallowable traffic matrix.

N — M; and form at-allowable traffic set by setting upcir- This is then used to develop several heuristic algorithms for
cuits between each pair. This traffic set consistg/df|¢ cir- '€moving ADMs from wavelengths.

cuits, none of which can be placed on wavelengtiihis set o . .

must be placed on the remainifij,;, — 1 wavelengths, but B. Bipartite Matching Formulation

these wavelengths can accommodate at f#d§li, — 1)g Cir-  For a given ring network, we want to construct a bi-
cuits. Thus thig-allowable set cannot be supported, yielding gartite graph (C,D,E) which represents the possible
contradiction. B placements for each call from a givenallowable traffic
Lemma 3: If a network withW...;, wavelengths can supportset, R. We will denote one set of nodes in the graph by
everyt-allowable traffic set, then for all £ j, D = { M1, g A1, AW, g} This set contains
g elements for each of th&/,,;, wavelengths corresponding
to possible circuit assignments on that wavelength. The other
min(|M;|, [M;]) < (Win — 2)g/t. (4) set of nodesC, will correspond to the traffic requirement
R. There is an edge in the graph betweern and a circuit
Proof: We show that we can always construct-allow- k-l € R if both nodest and! have an ADM on wavelength
able set withmin(|M;|, | M;|)¢ circuits which cannot be carried For example, the bipartite graph corresponding to the topology
on either wavelength or j and thus must be carried on theand the traffic requirement from Example 3 is shown in Fig. 5.
other W;» — 2 wavelengths. Since each wavelength can ac-A matching M in a bipartite graph is a set of disjoint
commodate at mogtcircuits, (4) must be true for this set to beedges. Being able to accommodate a traffic matrix in a given
supported. The proof will be completed once we show how topology is equivalent to being able to find a matching in
construct the above set. Consider two waveleng#nrsd j and the corresponding bipartite graph which uses all the nodes in
assumei;| < |M;]|. Let K be the set of nodes removed fronthe set of requested circuitS. Such a matching is called a
both: andj (K may be empty). From Lemma 1, we can assuntg-saturating matching. A necessary and sufficient condition
that|M;| < N/2. Thus, each node ik can be paired with a for the existence of such a matching is given by Hall's theorem
distinct node inV — M;. Likewise, every node id; — K can which we state below. First we need the following definition.
be paired with a distinct node i; — K. Placingt circuits be- For a bipartite grapliC, D, E), if S is a subset of nodes i@,
tween each pair gives the requiredllowable set. m then the open neighborhood 8f N(S), is a subset of nodes in
An immediate corollary of Lemma 3 is that for every waveD such that is in N (S) if and only if there is an edge between
length except one, we must hawe;| < (W,,in—2)g/t.Lemma dand anodeirf, i.e.,d € N(S) & (¢,d) € Eandc € S.
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12 Ay Section IlI-B. Polynomial algorithms for solving this problem
A2 are known (see, e.g., [18]). In many cases an assignment can be
1-3 Mot found by inspection. These assignments can be all computed
2-3 A ' off-line and stored in a look-up table. Also, in some cases, the
4-5 2 assignments can be stored in a more compact form than simply
45 N listing every possible assignment. Alternatively, if the traffic
Asz changes slowly, the assignment for the current traffic set can

be computed on-line.
Fig. 5. Bipartite graph corresponding to traffic set and topology in Example 3. If Wi, = 1, no ADMs can be removed in any feasible
) . topology. If Wy, = 2, every node must have an ADM on one

Hall's Theorem: Let & = (C, D, E) be a bipartite graph. ayelength, and at mosy/¢| nodes can be removed from the
There exists &'-saturating matching if and only if for all subsetsyther wavelength. This follows directly from Lemmas 2 and 3.
S of C, |N(S)| = [S]. _ Furthermore, iflg/t| nodes are removed from the other wave-

A proof of this theorem can be found in many texts on coMangth, the resulting topology is feasible. To see this, note that
binatorics (e.g., [19]). As stated, this theorem is useful to chegke most circuits that will be forced onto one wavelength is
that a single traffic matrix can be supported. We are interestEéd/tJt < g. S0, by the Theorem 1 we can accommodate-alt
in supporting every-allowable traffic matrix; the following the- |gwable circuits. Thus foW i < 2 we have a trivial algorithm
orem provides a necessary and sufficient condition for this. Wich yields the minimum number of ADMs. Therefore, in the
say that a circuit-j must be routed on a set of wavelengths ifollowing, we shall only consider the case whéfg,;, > 3.
ei;heri or j does not have an ADM on any wavelength not in 14 yse Theorem 1 to verify that a topology can support every
this set. _ . t-allowable traffic pattern, conditio® must be checked for

Theorem 1:For a given topology withVy,i, wavelengths, every subset of wavelengths. There a¥énin possible subsets;
any t-allowable traffic matrix can be supported if and only ifhecking each set is not an appealing prospect. In the following

the following two conditions are satisfied. we avoid this by removing ADMs in certain symmetric patterns
A. Forevery pair of nodeg, j), there exists a wavelengthwhich require us to check many fewer cases.
on which bothi andj have an ADM. For a circuiti-j to be forced on a set of wavelengths, ei-

B. For any group ofn wavelengths and anyallowable thers or j must have an ADM removed from each of the re-
set, there exist at mostm circuits which must be maining W,..;, — » wavelengths. Whei i, — n > 2, this
routed on this group. can only occur is at least one of the two nodes has an ADM

Proof: We first show that these conditions are necessargmoved from more than one wavelength. So if we remove at
Clearly, if A is not satisfied then anyallowable set containing most one ADM for each node, we only have to ch&dor sets
-7 cannot be accommodated. Bf is not satisfied then there of W,;,, — 1 andW,,;;, — 2 wavelengths. Clearly, we can re-
exists a set of wavelengths on which we must route more thamove | N/W,.,;,, | nodes from each wavelength so that no node
gm circuits in somet-allowable setC. Consider the bipartite will be removed from more than one wavelength. Also if we
graph corresponding 16 Let S be the subset af’ containing remove|(W,.in — 2)g/t] or fewer nodes per wavelength, then
the above circuits, thefiV(S)| = gm and|S| > gm. Thus by no more thanWy,;, — 2)g circuits will be forced on any set
Hall's theorem there exists nO-saturated matching, and thisof W,;,, — 2 or Wy, — 1 wavelengths. Thus if we remove
traffic matrix cannot be accommodated. min( | (Wiin — 2)g/t], | N/Wimnin|) ADMs per wavelength and

Next we show that these conditions are sufficient. Assunm® more than one ADM per node, conditiBris satisfied. Con-

that they are not sufficient, so that there exists an assignmentldfon A is also easily satisfied in this case. Thus we have proved
ADMs to W,,;, wavelengths which satisfies both of the abovthe following lemma which immediately yields an algorithm for
conditions, but which cannot support somallowable traffic allocating ADMs.

setC. SinceC cannot be supported, by Hall's Theorem there Lemma 4:For W, > 2, one can always remove
exists a subsef of C such that|N(S)| < |5|. Letk be a min(|(Wmin — 2)g/t], | N/Wwin]) ADMs from each of
nonnegative integer such th@t — 1)g < |S| < kg. For a Wy, wavelengths such that no node has more than one ADM
bipartite graph corresponding to an allocation of ADIM§(.S)| removed and ang-allowable traffic matrix can be supported.

will always be a multiple ofy. Thus|N(S)| < |S| implies that Recall that according to Lemma 3 we can remove more than
|IN(S)| < (k — 1)g. Therefore, this set of more th&h — 1)g |(Wwin — 2)¢/t| nodes from at most one wavelength. Thus if
calls must be routed on a set bf— 1 or fewer wavelengths,

which contradicts conditioB, completing the proof. u | (Wanin — 2)9/t] < | N/Wain] (6)

C. Algorithms for Removing ADMs the above algorithm removes the most nodes possible from

We now use the results from Theorem 1 to develop algevery wavelength except possibly one. WHéh,;,, becomes

rithms for removing ADMs from wavelengths. The resultindarge for a givenV, the inequality in (6) is reversed. When this
topologies will support any-allowable traffic requirement. occurs, the procedure in Lemma 6 will remove only a small
Given such a topology, one then needs to know how to groqgmarcentage of the ADMs. In such cases, to get further reductions
the traffic for each allowable traffic set. For each traffitcn ADMs, we have to consider removing nodes from more than
matrix one can set up a maximum matching problem as ame wavelength. In the following we first consider the case
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where a node can be removed from at most 2 wavelengths; tiemgth, and a node is removed from at maestavelengths.

we generalize to an arbitrary number of wavelengths. Traffic is then only forced onto groups ®¥,,.;,, — 2z or more
Suppose we allow a node to be removed from at most twaavelengths. For an arbitrary value ®f as long asc is less

wavelengths. Assume (6) does not hold, then we can remdhan¥,,;,/2, conditionA is satisfied. We only need to check

at least| N/W.;, | ADMs from each wavelength. Consider re-conditionB for sets ofW,,,;,, — 22 or more wavelengths. The

moving ADMs in the following manner: from wavelengtfre- most circuits that can be forced on a sebBf,;, — 2= wave-

move ADMs for nodegi — 1)| N/Whin] to (| N/Wmin| +  lengths iskt. To see this, consider: adjacent wavelengths and

k) mod NV, wherek is a constant to be determined. For a nodeote that there ark nodes without an ADM on any of the first

to be removed from at most 2 wavelengths, we must liage wavelengths ané other nodes without an ADM on the next

| N/Wyin]. If @ node is removed from wavelengththe only wavelengths. By similar reasoning, we can find the most circuits

other wavelengths it can be removed from@rel) mod NV and that can be forced on setsWf, i, — (22— 1) to Wi, — 1 wave-

(¢ + 1) mod N. Since a node is removed from no more than ngths. In this manner, we get the following set of inequalities

wavelengths, traffic can only be forced onto group®§f;, —4 which must be satisfied fd8 to hold.

or more wavelengths. Thus conditi@need only be checked

for sets Oﬂ/Vmin - 41 Wmin -3, Wmin -2, 0r I/Vmin — 1 wave- (Wmin - 2.’1')g

lengths. For a given choice f the number of circuits forcedon > kt

a set ofiW,;,, — 4 wavelengths is at mogt. The number forced (Wiain — (z +14))g

on a set oW ,;, — 3 is at most2kt, and the number forced on p ) L

sets ofWpin — 1 and Wi, — 2 is at most | N/Wiin| + k)t. > (= N 1= LN/ Wanin| + 2k}, Visle—l

Thus for conditiorB to hold, the following inequalities must be (Wanin — 1)g

satisfied: > ((z — DN/ Win] + k)t, Vi=1---,z.
(Winin —4)g > kt (7) Whenz = 2, these inequalities are the same as (7) and (8). Inthe
(Winin — 3)g > 2kt 8 = 2 case, we were able to reduce this set of inequalities to a
o - smaller subset. A similar reduction can be shown for an arbitrary
(Wain = 2)g 2 ([N/Win| + 5}t ©) choice ofz. Specifically, out of this set dfx inequalities, it can
(Wain — 1)g 2 (| N/Wia| + k)2 (10)  be shown via algebraic manipulations that if the following three

For (7) to be satisfied for a positive value bfit must be that inequalities are satisfied, then the entire se2:omust also be.

Wmin > 4. Also note that for conditior to fail, there must be (Winin — (22 — 1))g > 2kt
a circuit which is blocked from every wavelength. When ADMs

n — 1 > —2)|N ; 2
are removed in the above manner, a circuit can be blocked from (Wani = (2 +1))g 2 (2 = 2) LN/ Wanin] + 2K}t
at most 4 wavelengths. Thus, whdn,;, > 4, A is always sat- (Winin —2)g 2 ((z = 1LN/Win| + k)2,

isfied. Therefore, wheW i > 4,thelargest < [N/Wuin] = From this it follows that the most ADMs that be removed in
which sgt|sf|_es (7)~(10) yields the most ADMs which can be g manner is given by the solution to the following integer
moved in this manner. program:

Assuming thatV,;, > 4, it is sufficient to check only (8)
and (9) out the four inequalities above; this is shown next. Firstaximize (x — 1)|N/Woyin] + &
?otewt/hat if (f)t;]s saglsfled, the? ;Iiaily| (10) rr:.ltjst(g)lso b% '—%bject t0: (Win — (22— 1))g > 2kt

= Wmin — 4, then by assumptioh> 1. Inequality (8) can be
rewritten ag! 4+ 1)g/2 > kt and (7) can be written dg > kt. (Wanin = (2 +1))g 2 ((+ = 2) [N/ Wanin] + 2k)t
Note that forl > 1, (I + 1)/2 < I. Thus if (8) is satisfied, then Wiin — 2)g = ((x = 1[N/ Whain| + )t
(7) must also be. If eitheWV or t is even, it can be shown that if 0<k<|N/Wuin)
(8) is satisfied, then (9) must also be; thus in this case we only 1<z < [Winin/2] (P)
need to check that (8) is satisfied. In this case it also follows -
that (6) is never satisfied. These results are summarized in thieerex andk are constrained to be integers. This optimization
following lemma. problem can be solved in the following manner. First,iset 0

Lemma 5:If Wy, > 4 and (6) is not satisfied, thenand find the largest value af which satisfies the constraints.
| N/Win] + &£ ADMs can be removed per wavelength in thdext, fix « at this value and find the largest value fosatis-
above manner for any < | N/Wy.in| Which satisfies (8) and fying the constraints. Again we summarize these results in the
(9). If Win > 4 and eitherV or ¢ is even, thed N/W,in | + % following lemma which immediately yields an algorithm for re-
ADMs can be removed per wavelength in the above manner fopving ADMs.
anyk < | N/Wyin| which satisfies (8). Lemma 6: Consider a ring withi¥,,,;;, > 2. Then we can

Next we generalize the above procedure to allow nodes toteenove(z—1)| NW,,i, | +k ADMs per wavelength in the above
removed from an arbitrary number of wavelengths. For now weanner where: andk are solutions to the integer program (P)
assume thaV > W,.;,. For given integers andk, suppose we and still support every-allowable traffic matrix.
remove node§ — 1) | N/ W | +1t0 (42 —2) | N/ Wiin| + Example 4: The following provides an example of the algo-
k) mod N from wavelengthi, where0 < & < |N/Wyi|. rithmsin Lemmas 4 and 6. Consider a ring with 15 noges,
Thus we removéz — 1) | N/Wp,in | + k£ nodes from each wave- 16, and¢ = 10. For this ring,W;, = 5 and |[N/Wyin| = 3.
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* A In Fig. 8 we have plotted the number of ADMs resulting from

Node:l 2 3 4 56 7 8 910 111213 1415 the algorithm in Lemma 6 asranges from 1 to 30. The number

® -Wavelength Dropped X - Not Dropped of ADMs with no grooming is also plotted along with the lower

_ , bound from (5). With the grooming, the number of ADMs is re-
Fig. 7. Topology corresponding to Lemma 6. duced by up to 27%. In [1], [20] it was found that approximately

60 ADMs were needed to support uniform all-to-all traffic in
Using the algorithm from Lemma 4 we can remove 15 ADMshis network. Uniform all-to-all traffic iV — 1)-maximal. In
The resulting allocation is shown in Fig. 6. Using the algorithrihis example, supporting allV — 1)-allowable traffic requires
in Lemma 6, one finds that = 2 andk = 1, and thus one 77 ADMs, but this is a much less restrictive set of traffic.
can remove 4 nodes per wavelength, for a total of 20 ADMs re-We note that for any¥’ > W, the algorithms in this
moved. The resulting topology is shown in Fig. 7. For compasection still work; in this case they generate a topology using
ison, the upper bound on the number of ADMs removed frohk”” wavelengths which supports &lallowable traffic. As noted
(5) is 22. above, at times using more théi,,;, wavelengths can reduce

WhenW,,;, is larger thatV, then| N/W,,;,| = 0 and the the required number of ADMs.

above algorithms as stated will not remove any ADMs. We de-
scribe a way that these algorithms can be modified to be useful Hot Spot Node
in this case. First note that for positive intege@ndr, atraffic  |n this subsection we consider a generalization the setbf
setis(s+r)-allowable if and only if it can be written as the unionowable traffic. Suppose there is one node in the network which
of ans-allowable set and anallowable set. WheW r.in > N,  has no restriction on the number of circuits it can source, while
we can use this to decompose the allowable traffic into smallgy other nodes are still restricted taircuits. We refer to the
sets such that each set will fit @ or fewer WaVElengthS. Sup- unconstrained node ashmt Spot For examp|e, this node can
pose we want to support attallowable traffic, and this re- pe used to model a central office node. In this case, the min-
quires more thadV wavelengths. Lek = [t/2¢] and let?’ =  jmum number of wavelengths required to support all allowable
t — 2kg. Decompose eachallowable traffic set intd: 2g-al-  trafficis W,,;, = [(IN—1)t/g]. Clearly the hot spot node needs
lowable sets and ort¢-allowable set. Eacfg-allowable setcan an ADM on each wavelength. Consider applying the grooming
be accommodated o wavelengths and the remaining set reajgorithms to the set of nodes not including the hot spot with

quires[| Nt'/2|1/g] wavelengths. Note that the above number of wavelengths. The resulting topology will
handle allt-allowable traffic between these nodes. This alloca-
EN + ’7|_Nt’/2J 1} — ’7|_Nt/2J 1} (11) tionis also sufficient for all allowable traffic including the hot
g g spot node. To see this, note that by including the hot spot node,

. . . : . no additional calls are forced onto any group of wavelengths.
i.e., decomposing traffic in this way requires no more wave-

. hus, by Theorem 1, any allowable traffic matrix can be sup-

lengths. Since the number of wavelengths needed for each setin . . . .
. o ported. This procedure applies with an arbitrary number of hot

this decomposition is less than or equalXowe can apply the Spots

above algorithms to remove ADMs from each set. The resultin '

topology will support allt-allowable traffic. This is illustrated

next.

Example 5: Consider a ring withV = 5, g = 2, andt = 6 In this section we will describe a number of extensions to our
so thatW,,;, = 8. Applying the above procedure, we get ondasic model. First, we discuss the use of a strict sense or wide
set of 5 wavelengths which must support 4-allowable traffic arsgtnse nonblocking network to support rapidly changing traffic.
one set of 3 wavelengths which must support 2-allowable traffithen we discuss the benefits of using a hub node and tunable

Applying Lemma 4 to both of these sets, we find we can remolasers.

IV. EXTENSIONS TO THEBASIC MODEL
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A. Blocking Properties place these circuits on wavelength 1. Then any other 1-allow-

In the previous sections we found topologies which can su@P!€ Set of calls between the remainiNg— 2g nodes must be
port any allowable traffic set. In this section we want to studj'@c€d on the remaining wavelengths. If we consider a ring
the properties of the rings as traffic changes from one allowat}iéh theseN — 2g nodes, then the minimum number of wave-
set to the other. Specifically, suppose traffic changes from olf@9ths for this ring isk. Therefore, by the induction hypoth-
allowable traffic set to another, while some subset of the circuffS!S: We cannot remove any of theSe— 2¢ nodes from the
stay active. We look at whether we can support the new traffic $§Mainingk wavelengths. The origindlg nodes were picked

without rerouting the existing calls. When discussing such proprPitrarily from the set o2g + 2 nodes that must be on wave-
erties, we will use some standard definitions from switchin§n9th 1, and by choosing different sets and repeating this argu-

theory which we repeat here. A ring s#rict senseor strictly Mentwe have that every node must be on the remakingve-
nonblockingif any allowable circuit between nodes can be ed€n9ths. Likewise, by repeating this argument, but starting with
tablished without interference from any other existing allowabfedifferent nitial wavelength, we see that every node must be on
circuits. A ring iswide-sense nonblockiriiany allowable cir- €Very wavelength. Thus the theorem is truegin = & + 1,

cuit between nodes can be established without interference frBRfl: PY induction, for any ring with=1. e
any other existing allowable circuits, provided that the existing 'NeXt We consider wide-sense nonblocking rings. This case is
circuits have been established according to some algorithmMre difficult than the other cases due to the fact that a routing
ring isrearrangeably nonblockiniany allowable circuit can be @/90rithm mustalso be considered. The following gives an upper

established by possibly rerouting any existing circuits. Clearlg,oum,j on the ADMs that can be removed for a wide-sense non-
locking ring withz-allowable traffic.

Strict sense> Wide sense= Rearrangeable Lemma 7: Consider a unidirectional ring witi/,,;,, wave-
lengths. LetM; be the set of nodes removed from wavelength
The converse implications do not, in general, hold. 1. For the ring to be wide-sense nonblocking feallowable

A ring provisioned according to the algorithms in Sections fraffic, wheret is even, we must have for all
and Il is rearrangeably nonblocking but not necessarily strictly
or wide-sense nonblocking. If traffic changes frequently, then
the control overhead associated with rearranging existing cir- Proof: First note thath;| < & —2for all 4. We show that
cuits may not be acceptable. In such a case, one may pref%r I%/I‘I > 1 then it must bezthath < 2Wiing/t — N. The
ring that is either wide-sense or strictly nonblocking. If eve%mn;athen,follows. It < (M| < ]\;_—2’ the::mwe can form the
node has an ADM on each of the,..;, wavelengths, then the re'following t-maximal set which also has the maximal link load.

sulting ring is strictly nonblocking. Similarly, when aring is Pro-This set consists of two groups of traffic. One group consists
visioned to support the traffic matrik* defined in Section II, M;|t/2 of circuits which are only between nodes ;. The
it will also be strictly nonblocking. For any of the other case thzer group consists of circuits only between nodeNiF.} M.

looked at, the resulting ring will not necessarily be strictly NON-at ¥ pe the subset of the circuits iF — A which are routed

bIocklmg. ![:hor the ctars]e (g?/{lfowa’lilglt;aﬁlc, ar;y rl?g \év'tﬁ/f{/‘}liﬁ on wavelengthi (X cannot be empty since it istamaximal set
wavelengths must hav® W ;,, s in order to be strictly . 4\1e are USINGV ., Wavelengths),

nonblocking. In other words, in this case one cannot save on the-; - e :
cost of ADMs by grooming. We prove this for the casé of 1, First we prove if the ring is wide-sense nonblocking, then
but it can be modified for an arbitrary |X| > |M;|/2. (12)
Theorem 2: For t-allowable traffic, a strictly nonblocking
ring with ¢ = 1 and W,,,;,, wavelengths must have an ADMAssume this is not true. Suppose the circuitXinvere discon-
for each node on each wavelength. nected as well aX | of the circuits involving the nodes if;.
Proof: WhenW,,;, = 1, the theorem is clearly true. ForWe can find a set 02| X| new circuits where each circuit in-
Wain = 2, we know that all the nodes must be on one of theolves only one node inZ; and one node which previously was
wavelengths, if we remove only one node, say ngdéom inacircuitinX. Adding this set of circuits to the remaining calls
wavelength 1. We can find a set@€ircuits notinvolving nodg  results in a nevt-maximal set, and none of these new calls can
and place them on wavelength 2. Then any additional circuit ibe routed on wavelength This new set will also have the max-
volving nodej cannot be established without rearranging thegmum link load and thus requires aW,,;;, wavelengths. Thus,
existing circuits, and so the ring is not strictly nonblocking. these calls cannot be accepted without rearranging some of the
For Wumin > 2, we proceed by induction. First note, fromother active calls. This is a contradiction and so (10) must be
Lemma 1 there must be at led$¢/2) + 1 nodes on each wave-true.
length for the ring to be even rearrangeably nonblocking. Whenlf (12) is true, beginning with a-maximal set as above, as-
Wmin > 2 andt = 1, it follows from the definition ofiW,,,;;, sume that the circuits involving the nodes i#; are discon-
that N/2 > 2¢ + 1. Thus there must be more thag + 2 nected along withAZ;|¢/2 circuits involving nodes from¥X.
nodes on each wavelength. Now assume that the theorenTlen we can formA; |t circuits, as above, where each circuit
true for Wi, = k wavelengths, and consider the case whea between one node frof¥; and one node that was in a circuit
Wain = k + 1. Without loss of generality, we can assume thah X . These additional circuits must be routed on the remaining
nodesl, - - -,2¢g + 2 are on wavelength 1. Thus we can considéW,,;,, — 1 wavelengths without rearranging the active calls. This
any 1-allowable set qf circuits betweer2g of these nodes and means that at mosiV,,.;, — 1)g — |M;|t calls not involving

|M;| < max(2Wing/t — N, 1).
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the nodes inV/; can be routed on these wavelengths. There dnab node can also reduce the required number of ADMs for an
(N —|M,;|)t/2 circuits in the original maximal set not involving arbitrary set of allowable traffic as studied in Section II.
nodes inM;, thus we must have

V. CONCLUSION

X|>(N—|MDt/2— (Waim — 1 M;|t. . . _—
X = ( M)t/ ( )9+ |Mi] In this paper we examine the problem of designing a WDM

fé\ng network to support dynamic SONET traffic. The goal of
our design is to minimize the number of electronic multiplexers
(e.g., SONET ADMSs) used in the network. We developed a
number of algorithms for assigning ADMs to wavelengths in
a way that supports every allowable traffic matrix in a non-
blocking manner. For the special casetedllowable traffic,

Also |X| £ g. Combining these and performing some algeb
yields the desired result.

We assumed thatwas even in this lemma just to simplify
the proof; a similar bound can be found foilodd. Consider
our previous example wittv- = 15, ¢ = 16, and¢ = 10.
In this case, the above bound |i&/;| < 1; so, for the net- .
work to be wide-sense nonblocking, at most 5 ADMs can ggese algorithms are shown 1o redu_ce the number of ADMs
removed. Compare this to 20 ADMs that can be removed fOIngeded by up to 27%' We also derive a lower bou_nd on the
rearrangeably nonblocking ring. For this example, witaking number Of.ADMS required to suppor'F atallowable traffic, and .
on any even value between 2 and 14| is always bounded show tha't in some cases our algqnthms perform closg to this
to be less than or equal to 1, resulting in at most an 8% jgound. Finally, we discuss extensions of our model to include

duction in ADMs. These results suggest that to get great b pporting traffic in a strictly nonblocking manner. Addition-
efits from grooming fort-allowable traffic, some rerouting of ally, we discuss the use of a hub node and tunability to further

existing traffic is needed, at least within the unidirectional rin&educe the number of ADMs.

model considered here.
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