
Information and Computation 158, 71�97 (2000)

Communication Protocols for Secure Distributed
Computation of Binary Functions

Eytan Modiano

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

and

Anthony Ephremides

Electrical Engineering Department, University of Maryland, College Park, Maryland 20742

A common task in parallel processing is the distributed computation of
a function by a number of processors, each of which possesses partial
information relevant to the value of that function. In this paper we
develop communication protocols which allow for such computation to
take place while maintaining the value of the function secret to an
eavesdropper. Of interest is the communication complexity of such
protocols. We begin by considering two processors and two channels,
one secret and one public, and present a protocol which minimizes the
number of bits exchanged over the secret channel, while maintaining
=-uncertainty about the value of the function for the eavesdropper. We
show that all binary functions can be kept =-secret using a constant
number of bits independent of the size of their domain. We then generalize
our results to N processors communicating over a network of arbitrary
topology.] 2000 Academic Press

1. INTRODUCTION

This paper examines the communication complexity of secure distributed com-
putation. This is a relatively new area in the field of secret communications, which
studies the message exchange process that is needed to support a task such as a dis-
tributed computation or the implementation of a protocol, under secrecy con-
straints. Such computations may be needed in an environment where multiple com-
puters (processors) are connected via a network. The secrecy aspect of the problem
arises in many environments such as the military or the financial worlds. The
problem presented in this paper is still in its infancy, but once developed it may
have application ranging from defense applications such as missile guidance systems

doi:10.1006�inco.2000.2865, available online at http:��www.idealibrary.com on

71 0890-5401�00 �35.00
Copyright � 2000 by Academic Press

All rights of reproduction in any form reserved.

and distributed simulation to commercial applications such as electronic banking.
In this paper we focus exclusively on the communication complexity aspect of per-
forming this distributed computation and not on the computational aspects.

This problem in its simplest form was introduced in [Yao, 1979], and it involved
two processors, Px and Py , which are interested in exchanging the values of two
variables X and Y. Processor Px knows the value of X and Py knows the value of
Y, and they communicate according to a predetermined protocol. In addition to
exchanging the values of their variables, both processors wish to compute the value
of a Boolean function F(X, Y). This form of exchange may arise, for example, in
cryptographic protocols where users may want to exchange information in order to
compute a secret encryption key for their conversation. In such a case, the informa-
tion that they exchange may include some identification code which needs to be
completely exchanged, and the encryption key may be a function of that code. Yet
another example may arise in a battlefield environment where users, which in this
case may be aircraft or guided missiles, exchange information regarding a target, in
order to determine whether the target belongs to a friendly force or an enemy force.
In this case the information they exchange may include images of the target and the
function they wish to compute may be the binary function identifying the target as
a friend or a foe.

Nonetheless, in this paper we are not concerned with the design of a new encryp-
tion algorithm or any other issue related to computational complexity; rather, we
are only concerned with the information exchange that is involved in the secret
computation of the function. Originally the problem focused on the determination
of the minimum number of bits that need to be exchanged to perform this computa-
tion. In [Orlitski, 1984] a secrecy aspect was introduced by considering an
eavesdropper who monitors the channel in order to obtain information about the
value of F(X, Y) and who is aware of the protocol used by the processors and the
structure of the function they wish to compute. The criterion for secrecy is that the
communicating processors wish to keep the probability distribution of F(X, Y),
before and after the communication takes place, =-close to each other as they
appear through the channel monitored by the eavesdropper; i.e.,

|Pr[F(X, Y)=1 | I(X, Y)]&Pr[F(X, Y)=1]|�=, (1)

where I(X, Y) denotes the observed values of the quantities communicated between
Px and Py . To achieve this objective some of the bits are transmitted over a private
secret channel that is inaccessible to the eavesdropper. The problem we consider is
to find a protocol that minimizes the worst-case number of bits needed to be trans-
mitted over the secret channel in order for inequality (1) to hold. That is, the
protocol should minimize the number of bits that need to be exchanged secretly for
a worst-case function. It was shown in [Orlitski, 1984] that when X and Y are
uniformly distributed over their range, for any Boolean function F and =>0, Px and
Py need to exchange no more than 2 log(1�=)+16 bits over the secret channel. The
effects of noise on the above protocol were studied in [Modiano, 1992] where it
was shown that in the presence of noise in the eavesdropper's channel the transmis-
sion of fewer secret bits is required.

72 MODIANO AND EPHREMIDES

In this paper we generalize the problem in a number of ways. First we study the
effects of the nonuniform distribution of X and Y. In Section 2 we provide a lower
bound on the number of secret bits that any protocol would require in order to
achieve the =-secret computation of a worst-case function. In Section 3 we present
an alternating bit protocol which appears (via numerical optimization techniques)
to meet this bound. The use of an alternating bit protocol is of interest because it
provides a natural continuation to the problem addressed in [Orlitski, 1984].
However, in Section 4, we relax the need for an alternating bit protocol and allow
users to send messages of arbitrary size. In that case we are able to show that the
protocol meets the lower bound of Section 2. We then generalize our protocol to
N processors communicating over a broadcast channel and we discuss an extension
of this protocol to a network of arbitrary topology.

1.1. Problem Definition

Let X and Y be finite sets and X and Y be random variables distributed over X

and Y, respectively. Let F be a function from X_Y to [0, 1]. Processor Px knows
the value of X and Py knows the value of Y. The processors communicate according
to a predetermined protocol in order to exchange the values of their variables for
the purpose of computing F. An eavesdropper, who knows both their protocol and
the function F, listens to their communication in order to obtain information about
F(X, Y). Processors Px and Py want to make sure that for every value (x, y) of
(X, Y) the eavesdropper's probabilities of F(X, Y)=1, before and after the com-
munication takes place, are =-close. Therefore they transmit some of the bits over
a secret channel. The problem is to find a protocol that minimizes the worst-case
number of bits needed to be transmitted secretly.

The two processors use a protocol P. For every (x, y) # X_Y, P specifies the
following sequence,

(Ti , Bi , S i), i=1, ..., N,

where Ti describes the identity of the originator of the ith bit (i.e., Px or Py), Bi

describes the ith bit itself (i.e., 0 or 1), and Si denotes the channel used (Secret or
Public); N is the total number of bits communicated. When the sequence Ti , Bi , Si

is a deterministic function of x and y, the protocol is said to be deterministic. In
this paper we focus on deterministic protocols for the exchange of X and Y.
An eavesdropper who knows the originator of each bit but can decode only
the publicly communicated bits constructs the modified sequence (Ti , B$i , S i) ,
i=1, ..., N, where

B $i={Bi

0
if S i=public
if S i=secret.

Note that, if Si=Secret, the eavesdropper will have to guess the value of Bi .
Denote this modified sequence by I(x, y).

73PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

A protocol is said to be =-secret if for all transmission sequences e=(Ti , Bi , Si) N
i

which have nonzero probability,

|Pr[F(X, Y)=1 | I(x, y)]&Pr[F(X, Y)=1]|�=.

This ensures that the eavesdropper's a priori and a posteriori probability distribu-
tions of F are =-close.

Let CP(x, y) be the number of bits communicated secretly under a protocol P
when X=x and Y= y. Then the worst�case complexity of P is defined as

CP=max CP(x, y),

where the maximum is taken over all possible values x, y of X and Y. In other
words, CP(x, y) is the maximum number of bits that the protocol would have to
exchange secretly for any value of the variables X and Y.

The =-complexity of F is defined as

C(F, =)=min[CP | P is an =-secret protocol for F].

Thus, C(F, =) is the maximum number of secret bits that the function F requires
when using the best possible protocol.

Finally, our objective is to find a protocol which minimizes the worst case C(F, =)
over all possible functions. In other words, we are looking for a protocol which
minimizes the number of secret bits that are required for the worst possible func-
tion. Therefore this protocol may not be optimal for a particular function.
However, as we will show in the remainder of this paper, it provides bounded per-
formance for all functions. Furthermore, it will be shown that this bound is a tight
bound in the sense that there is a function whose =-complexity meets this bound.
We begin, in the next section, by demonstrating a particular function whose
=-complexity is the worst possible.

2. LOWER BOUND ON COMPLEXITY

We begin by proving a lower bound on the number of secret bits that any deter-
ministic protocol must use in order to exchange X and Y.1 When a protocol, such
as the one described in the previous section, is used to exchange the values of X and
Y, the eavesdropper has access only to the bits transmitted over the public channel.
Without access to the secret bit the eavesdropper is left confused with respect to the
different values for X and Y for which the protocol transmits the same public bits.
It is because of this confusion that such a protocol maintains the =-secrecy of F.

74 MODIANO AND EPHREMIDES

1 Note that the computation of a function F(X, Y) can usually be done without the full exchange of
X and Y. Here we simplify the problem slightly by assuming that this full exchange is needed even when
the value of F can be obtained earlier. In other words, we decouple the problem of the optimal computa-
tion of F from the secrecy problem.

Also, it is left to the secret bits to resolve this confusion for the communicators and
identify the exact values of X and Y in order to complete the exchange. Let

S(x, y)=[(x$, y$) # X_Y | I(x, y)=I(xy)],

where I(x, y) is the modified sequence defined earlier. That is, S(x, y) is the set of
pairs (x$, y$) for which the protocol produces the same sequence of public bits as
that of a given pair (x, y). Then, by the definition of =-secrecy we require that for
every pair (x, y)

|P(F=1 | S(x, y))&P(F=1)|�=.

It is shown in [Orlitski, 1990] that for deterministic protocols every S(x, y) must
be a rectangular subset of X_Y. That is, S(x, y)=X$_Y$, where X$�X and
Y$�Y. Let C(x, y) be the number of secret bits the protocol requires when X=x
and Y=y and let |S(x, y)| denote the number of distinct pairs (x$, y$) # S(x, y).
Then

C(x, y)�log(|S(x, y)|).

The above clearly holds because the secret bits must distinguish between |S(x, y)|
elements (since we are concerned with worst-case complexity, we assume that all of
the sequences are of the same size). Theorem 1 follows immediately from the above
observations.

Theorem 1. Let S*(x, y) be the smallest rectangular subset of X_Y containing
the pair (x, y) such that

|P(F=1 | S*(x, y))&P(F=1)|�=.

Then, when X=x and Y= y any deterministic protocol must transmit

C(x, y)=log((|S*(x, y)|) secret bits,

and

C(F, =)�maxx, y log((|S*(x, y)|),

where the latter part of theorem follows directly from the definition of C(F, =).

Lower Bound. We present a lower bound on the worst-case complexity of any
protocol by giving an example of a function that requires that many secret bits. Of
course, there are many functions that require far fewer bits, but here we are looking
for a worst-case complexity and therefore we search for the worst function that
requires the most secret bits.

75PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

Consider the function

F1(X, Y)={1
0

if X=1 or Y=1
otherwise

with probability mass function (PMF)

P(X, Y)={K:
:

if X=1 or Y=1
otherwise,

where :=1�(n2+2(K&1) n&K+1), n=|X|=|Y| and K=max P(x, y)�min P(x, y)).
The prior probability of F1 being equal to 1 is clearly (2n&1) K:. Suppose now

that the pair (1, 1) is contained in the rectangular subset X$_Y$. Then it follows
that

P(F1=1 | (1, 1) # X$_Y$)

=
(|X$|+|Y$|&1) K:

(|X$|+|Y$|&1) K:+(|X$|_|Y$|&|X$|&|Y$|+1) :
.

In order to maintain the =-secrecy of F1 we must have

(|X$|+|Y$|&1) K:
(|X$|+|Y$|&1) K:+(|X$|_|Y$|&|X$|&|Y$|+1) :

�(2n&1) K:+=.

In order to find |S(1, 1)| we must determine the minimum of |X$|_|Y$| so that the
above inequality is satisfied. By taking |X$|=|Y$| we have

P(F1=1 | (1, 1) # X$_Y$)=
(2 |X$|&1) K

(2 |X$|&1) K+|X$|2&2 |X$|+1
�(2n&1) K:+=,

from which it follows that

log(|X$|)�log(K)+log(1&=$)&log(=$),

where =$=(2n&1) K:+= and limn � � =$==. Therefore, when =�1�2 and n � �
we have

log(|X$|)�log(K)+log\1
=+&1

and

log(|X$|_|Y$|)�2 log(K)+2 log\1
=+&2.

Therefore, |S(1, 1)|�2 log(K)+2 log(1
=)&2, and C(F1 , =)�2 log(K�=)&2. We

have now shown a function that requires at least 2 log(K�=)&2 secret bits. In the

76 MODIANO AND EPHREMIDES

next section we will present a protocol which can achieve the =-secret computation
of any binary function using no more than 2 log(K�=)+10 secret bits, where K
denotes the ratio of the maximum to the minimum values of the PMF of (X, Y),
as it did in this example. The analysis presented in the next section relies only on
numerical techniques to evaluate the performance of the protocol and, therefore, we
cannot conclusively claim that the protocol of the next section provides an upper
bound on complexity. However, in Section 4.2 we present another protocol, for
which we are able to show that the worst-case number of secret bits that need to
be exchanged is 2 log(K�=)+10. We are therefore able to conclude that the protocol
of Section 4.2 is indeed optimal (within a specified small number of bits) for worst-
case functions. Nonetheless, the alternating bit protocol to be described is simple
and, given the numerical evidence of its optimality, worthy of consideration.

3. THE PROTOCOL

In this section we present an alternating-bit protocol for exchanging the values
of X and Y while maintaining the =-secrecy of F(X, Y). The protocol is based on a
suitable partitioning of the function table for F(X, Y). Partitions are formed so that
all subtables in each partition have approximately the same probability of F being
equal to 1. The protocol begins by Px partitioning X into X$ and X" and using one
bit to inform Py whse subset contains X. In the next step Py partitions Y into Y$
and Y" and uses one bit to inform Px of the subset containing Y. The processors
continue to partition X and Y and exchange partitioning information one bit at a
time, until the exact values of X and Y are obtained by both processors (and conse-
quently F(X, Y)). Figure 1 shows the partitioning of a function table for an
arbitrary function F(X, Y).

These exchanges take place over the public channel as long as the =-secrecy
requirement is not violated. Namely, if we let Ij denote the first j bits exchanged,
then bit j is sent over the public channel as long as

|P(F=1 | Ij)&P(F=1)|�=.

This, of course, ensures that the eavesdropper's probability of F being equal to 1
is within = of the prior probability of F being equal to 1. As a consequence, the pro-
cessors exchange information over the public channel until they must switch over
to the secret channel, after which they send the rest of the bits over the secret
channel. The key to this protocol is in the formation of the partitions of X and Y.
How we form these partition will determine the number of bits that must be sent
over the secret channel, and is described next.

3.1. The First Partition

Let P(x, y) be the PMF of X and Y which takes values in X_Y. We assume that
\(x, y) # X_Y P(x, y)>0 and we let

K=
maxx, y P(x, y)
minx, y P(x, y)

.

77PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

FIG. 1. The partitioning of a function table.

The first partition of X into X$ and X" is formed by first splitting X into m0 subsets,
X1, X2, ..., Xm0, where

Xi={x :
m0&i

m0

�P(F=1 | X=x)<
m0&i+1

m0 = .

These Xi 's are subsets of X for which the value of P(F=1) lies within a narrow
range; clearly the value of m0 denotes the step-size or granularity of the splitting.
We next proceed to divide the elements of each of the Xi 's between X$ and X" so
that P(F=1 | X$)rP(F=1 | X"). We do so by using the following procedure:

For all i, let us arrange the members of Xi, xi
1 , xi

2 , ..., xi
ki

, in decreasing order of
probability value; that is

P(xi
1)�P(xi

2)� } } } �P(xi
ki

),

where ki is the size of the set Xi. Partition each of the sets Xi into Xi $ and Xi "
using the following inductive set of steps:

Step 1. Let X1 $ contain odd-indexed members of X1 and let X1" contain even-
indexed members of X1.

Step i. If �i&1
l=1 P(Xl $)��i&1

l=1 P(Xl ") then let Xi $ contain odd members of Xi

and let X1 " contain even members of Xi; otherwise let Xi" contain odd members
of X i and let Xi $ contain even members of Xi

Next, let X$=� i=m0
i=1 Xi $ and X"=� i=m0

i=1 Xi". Figure 2 shows the splitting of X

into m0 subsets and forming X$ and X".
Finally, Px notifies Py if X is in X$ or X" by sending one bit x1 , where

x1={0
1

if X # X$
if X # X".

We call X$ and X" first-level subsets of X. We denote the first-level subset contain-
ing X by X1 .

78 MODIANO AND EPHREMIDES

FIG. 2. Partitioning X into X$ and X".

In the Appendix we show that (for K�n�3),

|P(F=1 | X1)&P(F=1)|�
3K
n

+
1

m0

,

where n=|X|. The above represents a measure of the information disclosed by
revealing X1 .

Upon receiving x1 , Py forms the first partition of Y into Y$ and Y" using the dis-
tribution P(Y | X # X1) and the same algorithm used by Px . First, Py partitions Y

into m0 subsets Y1, Y2, ..., Ym0, where

Yi={ y :
m0&i

m0

�P(F=1 | Y= y, X # X1)<
m0&i+1

m0 = .

Then Y$ and Y" are formed to approximate the condition P(F=1 | X1 , Y$)=
P(F=1 | X1 , Y"). We proceed as follows: For all i, label the members of Yi,
yi

1 , yi
2 , ..., yi

ki
, such that

P(yi
1 | X1)�P(yi

2 | X1)� } } } �P(yi
ki

| X1),

where ki now denotes the size of the set Yi. As before, partition each of the sets Yi

into Yi $ and Yi " using the following inductive set of steps:

Step 1. Let the set Y1 $ contain odd members of Y1 and the set Y1" contain
even members of Y1.

Step i. If �i&1
l=1 P(Yl $ | X1)��i&1

l=1 P(Y l" | X1) then let the set Y i $ contain odd
members of Yi and the set Yi " contain even members of Yi; otherwise, let Yi " con-
tain odd members of Yi and let Yi $ contain even members of Yi.

Next, we let Y$=� i=m0
i=1 Yi $ and Y"=� i=m0

i=1 Y i".
Finally, Py notifies Px if Y is in Y$ or Y" by sending one bit y1 , where,

y1={0
1

if Y # Y$
if Y # Y".

We call Y$ and Y" first-level subsets of Y. We denote the first-level subset contain-
ing Y by Y1 .

79PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

Again, it is shown in the Appendix that,

|P(F=1 | X1 , Y1)&P(F=1 | X1)|�
3K
n

+
1

m0

.

This quantity is a measure of the information disclosed by revealing Y1 . Here,
and for the remainder of this paper, we assume that |X|=|Y|=n. This assumption
is made for simplicity of presentation. However, this restriction can be easily
removed without significantly altering the results.

3.2. The jth Partition

The information exchange continues by forming successive partitions and reveal-
ing the partition to which the variables belong. Having exchanged the 2(j&1) bit-
sequence x1 , y1 , ..., xj&1 , y j&1 both Px and Py know that X and Y are contained
in Xj&1_Yj&1 , where Xj&1 and Yj&1 are the (j&1)st-level subsets of X and Y
respectively. The jth-level subsets are then formed according to the same rules used
in forming the first subsets. However, these subsets are formed using the distribu-
tion of X given that X and Y are contained in Xj&1_Yj&1 .

The set Xj&1 is partitioned into X$j&1 and X"j&1 by first splitting Xj&1 into m(j&1)

subsets and then dividing the elements of each of those subsets between X$j&1 and
X"j&1 according to the same rules used in forming the first partition of X.

Again, Px notifies Py if X is in X$j&1 or X"j&1 by sending one bit xj . We call X$j&1

and X"j&1 , the jth-level subsets of X. We denote the jth-level subset containing X
by Xj .

As was done for the first partition of Y we compute the probability that the func-
tion equals 1 given the jth partition as a function of that probability given the
previous partitions. We begin by noting that

P(F=1 | Xj , Yj&1)=
P(F=1, Xj | Xj&1 , Yj&1)

P(Xj | Xj&1 , Yj&1)
.

Again, it can be shown (using the same reasoning as was used for the first partitions
in the Appendix) that

P(x | Xj&1 , Yj&1)�
K

|Xj&1 |

and therefore it follows that

|P(F=1 | Xj , Yj&1)&P(F=1 | Xj&1 , Yj&1)|�
3K

|Xj&1 |
+

1
m(j&1)

. (2)

80 MODIANO AND EPHREMIDES

The proof of inequality (2) is identical to the proof presented for the first partition
and is therefore omitted.

Upon receiving xj , Py forms the jth partition of Y using the distribution
P(Y | X # Xj , Y # Yj&1). The set Yj&1 is partitioned into Y$j&1 and Y"j&1 by first
splitting Yj&1 into m(j&1) subsets and then dividing the elements of each of these
subsets between Y$j&1 and Y"j&1 in the same way as was done for the first partition.

Finally, Py notifies Px if Y is in Y$j&1 or Y"j&1 by sending one bit yj . We call
Y$j&1 and Y"j&1 , the jth-level subsets of Y. We denote the jth-level subset
containing Y by Yj .

Here, again, it can be shown that

P(x | Xj , Yj&1)�
K

|Yj&1 |

and therefore it follows that

|P(F=1 | Xj , Yj)&P(F=1 | Xj , Yj&1)|�
3K

|Yj&1 |
+

1
m(j&1)

. (3)

3.3. Complexity Analysis

The objective of our protocol is to minimize the number of secret bits that must
be exchanged, while maintaining the =-security of the function. The protocol con-
tinues to partition X and Y and communicate the partitioning information over a
public channel until the posterior probability of the function being equal to 1
exceeds the prior probability of F being equal to 1 by more than =. At that point
Px and Py exchange the rest of the information over the secure channel. We analyze
our protocol by first computing the probability of the function being equal to 1,
given an ith-level partition of X and Y.

Now, by repeatedly applying Eqs. (2) and (3) and accounting for the sizes of the
partitions(Xi , Yi) we have that the probability, Pi , of the function F being equal to
1 after i partitions is bounded by

Pi�P0+3K :
i&1

j=0 _ 2 j+1

n& :
j&1

l=0
ml2

l

+ :
i&1

j=0

2
mj& , (4)

where P0 is the prior probability of the function F being equal to 1, mi&1 is the
number of subsets used in forming the ith partition, n is the cardinality of the
ranges of X and Y (assumed to be the same), and K is defined by:

K=
maxx, y P(x, y)
minx, y P(x, y)

.

81PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

FIG. 3. C(=) vs. n with K=1 and ==0.1.

FIG. 4. C(=) vs. = with K=1 and n=106.

FIG. 5. C(=) vs. K with n=107 and ==0.1.

82 MODIANO AND EPHREMIDES

We still need to compute the number of bits that are left to transmit over the secret
channel. This, of course, is the logarithm of the size of the ith partition and can be
computed as follows:

|X0 |=n

|X1 |�
|X0 |

2
+m0

|Xi | �
n
2 i+ :

i&1

j=0

mj

2i& j .

Now, since the same holds for |Yi |, the number of secret bits, ai , that remain to be
transmitted is twice the log of the above quantity. Hence

ai�2 log _ n
2i+ :

i&1

j=0

mj

2 i& j& . (5)

In order to determine the worst-case number of secret bits that our protocol
requires, we must minimize the number of secret bits, ai , subject to the constraint
that Pi�P0+=. The resulting minimum, amin , is the smallest table-size possible that
does not violate inequality (1). The actual number of secret bits transmitted in the
worst case is given by Wlog(amin)X. This minimization should be done over all
possible values of i and all values of m0 , m1 , ..., mi . Since analytical minimization
does not seem feasible we resort to numerical computation of the minimum for
various values of n, K, and = by using techniques from constrained optimization
[Bertsekas, 1982]. Figure 3 plots the number of secret bits, C(=), versus n, when
==0.1 and K=1. Similarly, Fig. 4 plots C(=) vs =, when K=1 and n=106, and
Fig. 5 plots C(=) versus K, when n=107 and ==0.1. We performed this minimiza-
tion for various values of n, K, and = and our results indicate that C(=) is upper-
bounded by 2 log(K�=)+10. This implies that our protocol can achieve =-secrecy for
any binary function F and any distribution of its arguments X and Y by using a con-
stant number of bits that is independent of n.

4. PROTOCOL EXTENSIONS

In the previous section we considered two processors communicating over a
broadcast channel and using an alternating bit protocol to exchange the values of
their variables. Here we consider some alterations to the model. We begin by
extending our protocol of the previous section to N processors over a broadcast
channel. We then propose an alteration to the alternating-bit protocol so that each
processor can transmit messages of arbitrary size. Finally, we propose a scheme
that would allow this exchange to take place over a network of arbitrary topology.

4.1. N Processors over a Broadcast Channel

The contents of this section form a simple extension of the alternating bit
protocol of the previous section to N processors communicating over a broadcast

83PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

channel. The broadcast channel model requires that all of the nodes in the network
are connected to each other and, thus, every transmission by a node is received
directly by all other nodes. We assume that both the public and the secure channels
are broadcast channels.

We consider N processors, P1 , ..., PN , each with the value of a random variable
Vi which takes values in the finite set Vi . The processors, again, wish to exchange
the values of their variables, using a deterministic protocol, while keeping the value
of a binary function =-secret. The definitions of a deterministic protocol and of
=-secrecy are simple extensions of the ones from the previous section and for the
sake of brevity will not be repeated here. The objective, again, is to perform this
=-secret exchange with the minimum number of secret bits. We extend our protocol
from the previous section in the following way: Processor P1 forms its first partition
of V1 into V$1 and V"1 using the same algorithm as the one from the previous sec-
tion with m0 subsets. It then uses one bit to inform the rest of the processors where
V1 lies. The processors proceed in order to form their first-level partitions based on
the conditional distribution of their variables given the partitioning information of
the other variables and using m0 preliminary subsets. As in the previous protocol,
second-level partitions are formed using m1 subsets and ith-level partitions are
formed using mi&1 subsets. Applying Propositions 2 and 3 from the Appendix,
together with the repeated application of Eqs. (2)�(3) we can now express the
amount of information disclosed about the value of F after i partitions as follows,

Pi�P0+3KN :
i&1

j=0 _ 2 j

n& :
j&1

l=0
ml2

l

+ :
i&1

j=0

N
mj& , (6)

where P0 is the prior probability of the function F being equal to 1, mi&1 is the
number of subsets used in forming the ith partition, n is the cardinality of the
ranges of the Vi 's (assumed to be the same), and K is defined by:

K=
maxv1, ..., vN P(v1 , ..., vN)
minv1, ..., vN P(v1 , ..., vN)

.

As before, the size of the ith subset can now be bounded by:

|Vi |�
n
2i+ :

i&1

j=0

mj

2 i& j .

Since the same holds for all the variables, the number of secret bits, ai , that remain
to be transmitted is N times the log of the above quantity; hence

ai�N log _ n
2i+ :

i&1

j=0

mj

2i& j& . (7)

84 MODIANO AND EPHREMIDES

As before, to optimize the performance of the protocol we must choose the number
of bits, i, and the mi 's, so that to minimize the number of secret bits, ai , while main-
taining F, =-secret. This minimization is similar to that of the previous section. We
note here that ai is exactly N�2 times what it was in the previous section and the
secrecy constraint is also N�2 times that of the previous section. We are therefore
confronted with the same minimization problem as before, with a secrecy level
=$=2=�N. Since we concluded before that 2 log(K�=)+10 secret bits were required,
it immediately follows that in this case the requirement is for N log(K�=$)+10=
N log(KN�(2=))+10 bits.

4.2. Arbitrary Message Size Protocol

So far we have considered an alternating bit protocol for exchanging the values
of X and Y. The desired secrecy level was maintained by each processor partition-
ing the range of its variables into two parts at each step and using one bit to reveal
the subset containing the value of the variable. We wish to generalize our protocol
to allow for exchanges of arbitrary size between the processors. To do so, we let
each processor partition its range into a variable number of subsets at each step.
Our model is the same as the two-processors model from the previous section. We
begin by describing the protocol and proceed to show how such partitions are
formed. Processor Px starts by partitioning X into 2nx 0 subsets and then uses nx0

bits to disclose to Py , whose subset contains XW. Upon receiving that information,
processor Py partitions Y into 2ny 0 subsets and uses ny0 bits to disclose which subset
contains Y. In the next step, each processor partitions the range of its variale into
2nx1 and 2ny1 subsets, respectively. In the ith step they partition the range of their
variables into 2nx(i&1) and 2ny(i&1) subsets. This process continues until the values of
X and Y are disclosed. As before, the processors communicate over the public
channel as long as they can maintain the =-secrecy of F. When they can no longer
exchange partitioning information over the public channel without violating the
security requirement they switch over to the secret channel and complete their
exchange. The partitions are formed according to a procedure described by the
following proposition.

Let X be a random variable distributed over the range [1 } } } n] with PMF P(X)
and let F(X) be a random binary function. That is, for all x, F(x) is equal to either
0 or 1 with some probability. Also, let P(F=1) be the prior probability of F being
equal to one. That is

P(F=1)= :
x # X

P(F=1 | x) P(x).

Then the following holds,

Proposition 1. X can be partitioned into J subsets [X0 , X1 , ..., XJ&1], such that

\i |P(F=1 | Xi)&P(F=1)|�
3JK

n
+

2
m

,

85PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

where K=(maxx P(x))�(minx P(x)) and m is an arbitrary positive integer. Also

\i } |Xi |&
n
J }�m.

Proof. We prove this proposition by construction of the subsets. As in the
previous section we begin by partitioning X into m parts X1, ..., Xm, where

Xi={x :
m&i

m
�P(F=1 | X=x)<

m&i+1
m = .

We then proceed to divide the elements of these subsets between the Xi 's so that the
probability of F being equal to one is approximately the same for all of these sub-
sets. This is done as follows:

For all i, label the members of Xi, x i
0 , x i

1 , ..., x i
ki&1 , so that

P(x i
0)�P(x i

1), ..., �P(x i
ki&1),

where Ki=|Xi|. Now form the partitions according to the following inductive set
of rules:

Step 1. Let Xj contain members of X1 whose index mod(J) is equal to j.

Step i. Define Pi (j)=P(Xj & (X1 _ } } } _ Xi)). Rank the elements of the collec-
tion [X0 , X1 , ..., XJ&1] in increasing order of Pi (j) and let Ri (j) be the rank of Xi

in that list. That is,

Ri (k)>Ri (l) W Pi (k)>Pi (l).

Now for all i>1 let Xj contain members of X i whose index mod(J) is equal to
Ri (j).

Continue until i=m.
The above algorithm attempts to divide the elements of each of the X i 's between

the Xj 's so that they all have approximately the same probability of F being equal
to one. The proof of Proposition 1 follows directly from the above algorithm con-
structing the partition. The details of the proof are similar to those of Propositions
2 and 3 in the Appendix and are omitted here for brevity.

As stated earlier the processors partition their range into variable size partitions.
These partitions are formed according to the rules of the above proposition. In the
ith step, they partition their range into 2nx(i&1) and 2ny(i&1) subsets, respectively, using
mx(i) and my(i) preliminary subsets to form these partitions. It follows immediately
from the proposition that if we let X� i and Y� i be the ith level subsets containing X
and Y, then

|P(F=1 | X� i , Y� i)&P(F=1)|

� :
i&1

j=0
_3(2nxj) K

|Xj |
+

2
mxj

+
3(2nyj) K

|Yj |
+

2
myj& ,

86 MODIANO AND EPHREMIDES

where |Xj | and |Yj | represent the size of the ith subsets containing X and Y and are
expressed by

|X0 |=|Y0 |=n

and

} |Xi |&
n

2�i&1
j=0 nxj }� :

i&1

j=0

mxj

2�i&1
l=j+1 nxl

and

} |Yi |&
n

2�i&1
j=0 nyj }� :

i&1

j=0

myj

2�i&1
l=j+1 nyl

.

We now consider two special cases of this protocol. The first corresponds to letting
nxj=nyj=1, for all j, in which case we obtain the alternating bit protocol of Section
3. Alternatively, we can let i=1 and allow nx and ny to vary. This is the case where
we limit the number of transmissions to one message by each processor, but allow
the message to be arbitrarily long. Using the above results we obtain

|P(F=1 | X� 1 , Y� 1)&P(F=1)|�
3(2nx) K

n
+

2
mx

+
3(2ny) K

n
+

2
my

,

and

} |X� 1 |&
n

2nx}�mx ;

similarly

} |Y� 1 |&
n

2ny}�my .

To optimize the performance of this protocol we want to choose nx , ny , mx , and my

to minimize the worst-case size of the subsets containing X and Y while maintaining
the function =-secret. That is, we need that we find

min
nx , ny , mx , my

[log(|X1 |)+log(|Y1 |)]

such that

3(2nx) K
n

+
2

mx
+

3(2ny) K
n

+
2

my
�=.

By symmetry we let nx=ny and mx=my and require to find

min
nx , mx

log\ n
2nx

+mx+ (8)

87PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

such that

6(2nx) K
n

+
4

mx
�=. (9)

The above minimization can be easily solved to obtain

mx=�
4

=&
6(2nx)K

n |
and

nx=\log \(0.1)
=n
K+� .

These results lead us to an upper bound on the number of secret bits that our
protocol requires.

Theorem 2. Given any =>0 and any binary function F(X, Y), it is possible to
keep the function =-secret using no more than

2 log \K
= ++10

secret bits.

Proof. The proof follows immediately from Eqs. (8) and (9) when the optimal
values of mx and nx are used.

Before we go on, we wish to consider a subcase of the above problem which will
prove useful in the next section. Suppose that only Px wants to send the value of
X to Py , without needing to know the value of Y. Clearly, Px can use the above
one message protocol, to send X, while keeping F =-secret. If Px used nx public bits
and mx preliminary subsets, the difference between the eavesdropper's prior and
posterior probabilities of F being equal to one is upper-bounded by (3(2nx) K)�
n+(2�mx) and the number of bits which remain to be transmitted over the secret
channel is upperbounded by log((n�2nx)+mx). Using the optimal values of nx and
mx obtained for the two-way protocol we arrive at the following corollary.

Corollary 1. Given any =>0 and any binary function F(X,Y), Px can transmit
the value of X to Py while keeping the function =-secret using no more than

log \K
= ++5

secret bits.

88 MODIANO AND EPHREMIDES

4.3. Arbitrary Network Topology

So far we have considered processors communicating over a broadcast channel.
In many cases a broadcast channel is not available. We would like to be able to
perform these secure exchanges over a network of arbitrary topology. In this sec-
tion we consider one approach toward achieving this goal. We assume, as we must,
that our network is connected. That is, every node in the network has a path to
every other node. Also, since we are only concerned with minimizing the number
of secret bits exchanged, we assume that every node can communicate with every
other node over the public channel at no cost. This is equivalent to assuming that
our public channel behaves as if it were a broadcast channel. Therefore, our
restricted network topology applies only to the secret channel. In order to model
a network of arbitrary topology we consider a fully connected network with various
costs on the links. By varying the costs on the different links, we are able to create
any desired network topology. Figure 6 shows a fully connected network with costs
on the links. Note that setting the cost on a given link to infinity amounts to
eliminating that link.

Clearly, if we can arrive at an optimal solution for the =-secret exchange over this
fully connected network, we will have obtained the optimal solution for a network
of any topology by simply varying the costs on the links to reflect the desired topol-
ogy. Since we no longer use a broadcast channel, we make the following alteration
to the problem. Instead of requiring that all processors obtain the values of the
variables of all other processors, we simply require that one processor obtains the
values of all of the variables and computes F. This modification makes sense in view

FIG. 6. Fully connected network with costs C(i, j) on the link between nodes i and j.

89PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

of the fact that, in the absence of a broadcast channel, the requirement of a com-
plete exchange will result in a significant additional cost, while not affecting the
objective of computing F. We are therefore led to considering the following
modified model.

We have N processors, P1 , ..., PN , each with the value of a variable Vi , ..., VN .
Each processor has a secret channel to all the other processors. That is, processor
Pi has a secret channel to Pj and the cost of transmitting a bit over that channel
is C(i, j) . The objective is that one processor, for simplicity say PN , obtains the
values of all the variables (and thereby the value of F) while keeping F =-secret. If
we were only interested in an exchange, each node would send its value to PN inde-
pendently. However, since we want to maintain the =-secrecy of F, the nodes must
coordinate their transmissions so that the combined effect of the information
revealed by each node individually does not violate the secrecy requirement.

There may be many ways to achieve this objective. Here we describe one which
uses the techniques developed in the previous section and which we believe to be
efficient. Consider a path through the network which visits every node at least once.
We call such a path a spanning path for the network. If every processor were to
transmit the value of its variable along such a path terminating in PN , PN will
obtain the values of all the variables. Consider such a spanning path and without
loss of generality, assume that the newly visited nodes along this path are named
P1 , ..., PN (e.g., the nodes are visited in order) and that the cost of transmitting
from node i to node i+1, C(i, i+1) , is simply denoted by Ci . This cost may include
the cost of traversing multiple links as the path may visit nodes more than once,
and therefore the path from node Pi to Pi+1 may go through previously visited
nodes and include multiple links. Now, clearly, the cost of sending a one-bit
message from node one to node N along this path is equal to �N&1

i=1 Ci . Our objec-
tive is to have every node send the value of its variable to PN along this path
without violating the =-secrecy requirement. The motivation is as follows: We
showed in the previous section that one processor can transmit the value of its
variable to another using no more than log(K�=)+5 secret bits, a constant number,
which is independent of the size of the range of the variable. Once processor Pi

obtains the values of V1 , ..., Vi&1 it can form a new variable combining the values
of V1 , ..., V i&1 with its own and disclose the value of this new variable to P i+1

using no more than log(K�=)+5 secret bits. At that point, Pi+1 will have the values
of V1 , ..., Vi and proceed in a similar manner to inform Pi+2 . Our protocol
proceeds as follows: Processor P1 uses a one-way protocol, as described in the pre-
vious section, to disclose the value of V1 to P2 , while keeping the value of F,
=1-secure with =1<=. To do this P1 sends log(K�=1)+5 secret bits to P2 , at a cost
of C1(log(K�=1)+5). Also, in doing so P1 publicly discloses to everyone (including
the intruder) that V1 lies in a range V$1 . Only P2 , which receives the secret bits,
actually knows the exact value of V1 . At this point, P2 can form a new variable,
V$2 , which lies in V$1 _V2 . P2 can now communicate the value of this new variable
to P3 while revealing less than =2 additional information about F, using no more
than log(K�=2)+5 secret bits, at a cost of C2(log(K�=2)+5). The processors con-
tinue in this way until they disclose their values to PN . The =i 's are the amount of
additional information that each processor is allowed to reveal about the value of

90 MODIANO AND EPHREMIDES

the function. The sum of these values must, of course, be less than = in order to
comply with the secrecy requirement. Therefore we wish to choose the =i 's so that
the number of secret bits is minimized. Specifically we want to find

min
=$i s

:
N&1

i=1

Ci \log \K
=i++5+ ,

so that

:
N&1

i=1

=i�=.

This minimization is trivial to perform using Lagrange multipliers. It can be shown
that

Ci

=i
=

Cj

=j
\i, j.

Therefore

=i=\C i

Cj + =j

and consequently

=i=
=

:
N&1

j=1
\Cj

Ci+
=

=C i

:
N&1

j=1

Cj

.

The cost of the secret bits, C(=), can be expressed in terms of C, the cost of sending
one bit along the spanning path (C=�N&1

j=1 Cj), as,

C log \KC
= ++5C& :

N&1

i=1

Ci log(Ci).

Clearly, the choice of a spanning path has a critical effect on the complexity of this
exchange. Since in the above expression C log(KC�=) is the dominant term, we wish
to choose a spanning path which minimizes that term. Of course, that path would
be the one which minimizes C or, in other words, the minimum weight spanning
path. Of course, in this paper we are concerned only with the communication
complexity and not with the complexity of the task of finding such a path.

The results of this section provide a first approach to solving the problem for
a network of arbitrary topology. This approach yields an upper-bound on the
number of secret bits required for any network. Although we attempt to minimize
the communication complexity of this algorithm, we do not know if the algorithm
itself is efficient and leave this question as an open problem for future work.

91PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

5. CONCLUSION

This paper expands upon a new problem in the area of communication com-
plexity of distributed compution. This problem still has many unexplored, interest-
ing aspects. The most obvious is an extension to nonbinary functions. In [Orlitski,
1984] it is shown that such an extension is possible. The results of this paper, as
well as other works referenced in this paper, are worst-case results; that is, the
protocols are designed to be optimal for a worst-case function. In reality, an actual
function of interest could require far fewer bits than a worst-case function. It would
therefore be helpful to identify possible functions of interest and design protocols
which are optimal for those specific functions, or, alternatively, to consider average
rather than worst-case functions. Finally, in this paper, we just touched upon the
problem of performing these exchanges over a network of arbitrary topology. This
problem needs to be studied in greater depth. To start, it would be interesting to
identify a lower bound on the complexity of the exchange and, as was done in the
two-processor case, devise a protocol which meets that bound. Since such an
approach may prove to be overly ambitious, it may be interesting to consider some
specific networks of interest which are commonly used for parallel computation,
such as a hypercube or a mesh network.

APPENDIX

A.1. The Probability of F Being Equal to 1 Given X1

We compute the probability of F being equal to 1 given X1 as follows:

P(F=1 | X1)=
P(F=1, X1)

P(X1)
.

Proposition 2. The following inequality holds

1
2

&
K
2n

�P(X1)�
1
2

+
K
2n

.

Proof. Let X i
odd denote the odd members of Xi and let X i

even denote the even
members of Xi ; then, for all i we have

P(X i
odd)&P(X i

even)=P(x i
1)&(P(x i

2)&P(x i
3))& } } } &(P(x i

ki&1
)&P(x i

ki
))�P(x i

1).

Note that only the first term in the long expression of differences above is positive.
Also, in the above expression we implicitly assume that ki is odd; however, the
same inequality can be shown for ki even. Next we proceed to upper-bound the
probability of any single element x, thereby producing an upper bound on P(x i

1).

P(x)= :
y # Y

P(x, y)�|Y| max
x, y

P(x, y)

�|Y| min
x, y

P(x, y)

92 MODIANO AND EPHREMIDES

Therefore

maxx P(x)
minx P(x)

�K.

Now, since minx P(x)� 1
n , we have that maxx P(x)� K

n .
It should be also noted that the probability of the even members of X i is never

greater than that of the odd members; that is,

P(X i
odd)&P(X i

even)=(P(x i
1)&P(x i

2))+(P(x i
3)&P(x i

4))+ } } } +P(x i
ki

)�0.

Clearly, the above is true because all of the summands in the above expression are
nonnegative. Therefore, for all i, we have

0�P(X i
odd)&P(X i

even)�
K
n

.

We show next that for all i we have

} :
i

l=1

P(Xi $)& :
i

l=1

P(Xi ")}�K
n

. (10)

This is done by induction on i. Clearly, it is true for i=1. Assume now that it is
also true for i&1. Then we consider two cases:

1. If � i&1
l=1 P(Xl $)�� i&1

l=1 P(Xl"), the set Xi $ contains odd members of Xi

and the set Xi" contains even members of Xi; furthermore, since 0�P(X i
odd)&

P(X i
even)� K

n , the desired inequality holds for i as well.

2. If � i&1
l=1 P(Xl $)>� i&1

l=1 P(Xl") the set Xi" contains odd members of X i and
the set Xi $ contains even members of Xi and by a similar argument it is clear that
the inequality is true for i as well. Thus the induction step is valid.

Since inequality (10) holds for all values of i, we obtain

|P(X$)&P(X")|= } :
m0

l=1

P(X i $)& :
m0

l=1

P(Xi")}�K
n

.

In addition, we have P(X$)+P(X")=1.
Adding and subtracting the above two equations yields

1
2

&
K
2n

�P(X$)�
1
2

+
K
2n

and

1
2

&
K
2n

�P(X")�
1
2

+
K
2n

.

Now, since X1 is equal to either X$ or X" we have proved our proposition.

93PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

Proposition 3. The following inequality holds:

P(F=1)
2

&
K
2n

&
1

4m0

�P(F=1, X1)�
P(F=1)

2
+

K
2n

+
1

4m0

.

Proof. We have

P(F=1, X$)= :
i=m0

i=1

P(F=1, X$, X i)= :
i=m0

i=1

P(F=1 | X$, Xi)_P(X$, Xi).

By the definition of Xi, we know that

\x # Xi m0&i
m0

�P(F=1 | x)<
m0&i+1

m0

.

Therefore

:
i=m0

i=1 \
m0&i

m0 +_P(X$, Xi)�P(F=1, X$)< :
i=m0

i=1 \
m0&i+1

m0 +_P(X$, Xi).

Similarly, we can obtain an inequality involving X"; i.e.,

:
i=m0

i=1
\m0&i

m0 +_P(X", Xi)�P(F=1, X")< :
i=m0

i=1
\m0&i+1

m0 +_P(X", Xi)

which yields

P(F=1, X$)&P(F=1, X")� :
i=m0

i=1

[P(X$, X i)&P(X", X i)]_\m0&i
m0 ++\P(X$)

m0 + .

Let 2i=P(X$, Xi)&P(X", Xi). We show first that

:
i=m0

i=1

2i _\m0&i
m0 +�\m0&1

m0 +_
K
n

. (11)

Proof is by induction on m0 . Inequality (11) clearly holds for m0=1; assume that
it is true for m0= j&1 and show that it must then hold for m0= j. By the induction
hypothesis we have

:
i= j&1

i=1

2i_\j&i&1
j&1 +�\ j&2

j&1+
K
n

.

Noting that the (j&1)st term of this sum is equal to 0 we have

:
i= j&2

i=1

2i_\j&i&1
j&1 +�\ j&2

j&1+
K
n

.

94 MODIANO AND EPHREMIDES

Multiplying both sides of the inequality by (j&1�j) we obtain

:
i= j&2

i=1

2i_\j&i&1
j +�\j&2

j + K
n

which in turn yields

:
i= j&2

i=1

2i_\j&i
j +�\j&2

j + K
n

+ :
i= j&2

i=1

2 i_\ 1
j+ .

Now, when m0= j we have

:
i= j

i=1

2i_\j&i
j += :

i= j&2

i=1

2i_\j&i
j ++\2j&1

j + .

Using our induction hypothesis yields

:
i= j

i=1

2i_\j&i
j +�\j&2

j + K
n

+ :
i= j&2

i=1

2i _\ 1
j++

2j&1

j

=\j&2
j + K

n
+ :

i= j&1

i=1

2i _\ 1
j +�\j&1

j +_
K
n

.

This is because, as was shown in the proof of Proposition 2, for all j, we have that
�i= j

i=1 2i�
K
n . So, we have shown that

P(F=1, X$)&P(F=1, X")�\m0&1
m0 +_

K
n

+\ 1
m0+ P(X$) .

Finally, we upper-bound P(X$) according to Proposition 2 and obtain.

P(F=1, X$)&P(F=1, X")�
K
n

+\ 1
2m0 + .

Combining the above inequality with the fact that P(F=1, X$)+P(F=1, X")=
P(F=1) we obtain Proposition 3.

Now we are ready to upper-bound the probability of F being equal to 1 given X1 .
We do this by using the upper bound from Proposition 3 for the numerator and
the lower bound from Proposition 2 for the denominator; that is,

P(F=1 | X1)=
P(F=1, X1)

P(X1)
�

P(F=1)
2

+
K
2n

+
1

4m0

1
2

&
K
2n

.

95PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

Similarly we obtain a lower bound on the above probability and by simple
algebraic manipulation we obtain

|P(F=1 | X1)&P(F=1)|�
3K

n&K
+

n
2m0(n&K)

.

If we restrict our values of K to be less than (n
3),2 we obtain the following simplified

expression,

|P(F=1 | X1)&P(F=1)|�
3K
n

+
1

m0

.

A.2. The Probability of F Being Equal to 1 Given X1 and Y1

The probability of F being equal to 1 given X1 and Y1 is computed as follows,

P(F=1 | X1 , Y1)=
P(F=1, Y1 | X1)

P(Y1 | X1)
.

As before, we bound this probability by upper- and lower-bounding the numerator
and denominator, respectively. First we prove a basic property of the probability
density function of Y given X1 .

Proposition 4. The following inequality holds

max
y

P(y | X1)�
K
n

.

Proof. We have

P(y | X1)=
:x # X1

P(y, x)
P(X1)

�
|X1 | maxx, y P(x, y)

P(X1)

�
|X1 | minx, y P(x, y)

P(X1)
.

Therefore,

maxy P(y | X1)
miny P(y | X1)

�
maxx, y P(x, y)
minx, y P(x, y)

�K.

Now, since miny P(y | X1)� 1
n , the proposition has been proved.

96 MODIANO AND EPHREMIDES

2 We know from the lower-bound of the previous section that when K=0(n) essentially all of the bits
have to be sent over the secret channel; therefore, this restriction does not limit the generality of the
protocol.

Using the above result, and following the proofs of Propositions 2 and 3, we
obtain the following equations:

1
2

&
K
2n

�P(Y1 | X1)�
1
2

+
K
2n

and

}P(F=1, Y1 | X1)&
P(F=1 | X1)

2 }� K
2n

+
1

4m0

.

Hence

|P(F=1 | X1 , Y1)&P(F=1 | X1)|�
3K
n

+
1

m0

.

Received December 29, 1996

REFERENCES

Bertsekas, D. P. (1982), ``Constrained Optimization and Lagrange Multiplier Methods,'' Academic
Press, New York.

Modiano, E., and Ephremides, A. (July 1992), Communication complexity of secure distributed
computation in the presence of noise, IEEE Trans. Inform. Theory.

Orlitsky, A., and El Gamal, A. (April 1984), Communication with secrecy constraints, in ``Proc. of the
16th Annual ACM Symposium on the Theory of Computing, Atlanta, GA,'' pp. 217�224.

Orlitsky, A., and El Gamal, A. (January 1990), Average and randomized communication complexity,
IEEE Trans. Inform. Theory.

Yao, A. C. (May 1979), Some complexity questions related to distributed computing, in ``Proc. of the
11th Annual Symposium on the Theory of computing, Washington D.C.,'' pp. 209�213.

97PROTOCOLS FOR SECURE DISTRIBUTED COMPUTATION

	1. INTRODUCTION
	2. LOWER BOUND ON COMPLEXITY
	3. THE PROTOCOL
	FIG. 1
	FIG. 2
	FIG. 3
	FIG. 4
	FIG. 5

	4. PROTOCOL EXTENSIONS
	FIG. 6

	5. CONCLUSION
	APPENDIX
	REFERENCES

