IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992

1193

Communication Complexity of Secure
Distributed Computation in the
Presence of Noise

Eytan H. Modiano and Anthony Ephremides, Fellow, IEEE

Abstract—A simple model of distributed computation that
requires information exchange over a noisy channel is consid-
ered., A communication protocol is utilized that requires alter-
nate bit exchanges between two processors. Interest in determin-
ing the communication complexity of this exchange is also
shown. First, the case of a single public channel is considered
and the number of bits that need to be exchanged between the
processors to permit §-accuracy in their goal is computed. For
this computation, an error-detection-and-retransmission mecha-
nism of error control, as well as an error-correction-and-retrans-
mission mixture that are consistent with the logical protocol that
governs this exchange are considered. Second, the case of the
availability of an additional secret channel is considered and
interest in determining the minimum number of bits that need to
be exchanged over a secret channel in order to maintain e-uncer-
tainty about the computation for an eavesdropper on the public
channel is shown. Various subcases under this case are consid-
ered and an upper bound on the number of secret bits when no
error-control scheme is used is obtained.

Index Terms—Distributed computation, communication com-
plexity, secrecy, error control, protocol security.

[. INTRODUCTION

ONSIDER two processors P, and P,; each processor

has some information at its possession and they wish to
distributively compute the value of a binary function of their
information. Towards that end, they exchange some informa-
tion over a channel. The complexity of this exchange was
first studied by Yao in [1]. In [2], Orlitsky and El Gamal
consider the presence of an eavesdropper who is listening to
the above exchange in order to obtain the value of the
function. P, and P, wish to keep the value of the function
e-secure, namely, that the intruder’s probability of guessing
the value of the function before the exchange takes place is
e-close to that probability after the exchange.

To do so they exchange some of their information over a
costly secure channel, to which the eavesdropper has no
access. The remaining part of the information is exchanged
over a less costly public channel, which the eavesdropper can
of course access. Since the secure channel is more costly than

Manuscript received April 26, 1990; revised December 19, 1991. This
work was supported by the Naval Research Laboratory Grant No. N00014-
91-J2003. This work was presented in part at the IEEE International
Symposium on Information Theory, San Diego, CA, January 14-19, 1990.

The authors are with the Electrical Engineering Department, University of
Maryland, College Park, MD 20742.

IEEE Log Number 9108037.

the public channel, the objective is to transmit the smallest
number of bits over the secure channel while maintaining the
e-security of the function. Orlitsky and El Gamal present a
protocol in [2] that requires no more than 2log(1/€) + 16
secure bits in order to keep any binary function e-secure. In
this paper we study the effects of noise on this protocol. The
presence of noise in the channel is interesting because it
affects all of the parties involved; it affects P, and P, by
introducing the possibility of an error in the computation of
f; it affects the intruder by increasing his uncertainty about
the communication. We consider both aspects of the noise
effect. First we consider the complexity of the protocol and
show that, in the presence of noise, fewer secure bits are
required to keep the function secret. We go on to consider
the effect of noise on the reliability of the protocol and
propose two error-control schemes that can be used along
with the previous protocol, to guarantee reliable communica-
tion between the two processors.

A. Problem Definition

Let # and % be finite sets, X and Y random variables
uniformly distributed over 2" and % respectively. Let f be
a function from 2 % to {0, 1}. Processor P, knows the
value of X and P, knows the value of Y. P, and P,
communicate according to a predetermined protocol in order
to exchange their values for the purpose of computing f. An
eavesdropper, who knows both their protocol and the func-
tion f, listens to their communication in order to obtain
information about f(X, Y). Processors P, and P, want to
make sure that for every value (x, y) of (X, Y) the eaves-
dropper’s probabilities of { f(X, Y) = 1} before and after
the communication takes place, are e-close. Therefore they
transmit some of the bits over a secure channel. The problem
is to find a protocol that minimizes the worst case number of
bits needed to be transmitted securely.

The two processors use a deterministic protocol P. For
every (x,)€ 2 X ¥, P specifies the following sequence:
(T;, B;,S;), i=1,---,N,
where T; describes the originator of the ith bit (P, or P)),
B; describes the bit itself (0 or 1), S; denotes the channel
used (Secure or Public), and N is the total number of bits
communicated. An eavesdropper who knows the originator
of each bit but can decode only the publicly communicated

0018-9448/92$03.00 © 1992 IEEE

1194

bits constructs the modified sequence: (T}, B/, S;), i=
1,---, N, where

B.

i’

if §; = public,
B - i=P

! 0, if §; = secure.

(Note that, if S; = secure, the eavesdropper will have to
guess the value of B;. For simplicity let us assume that the
eavesdropper always guesses B; = 0.) Denote this modified
sequence by I(x, y).

A protocol is said to be e-secure if for all transmission
sequences e = ((T;, B;, S;))i"., that have nonzero probabil-
ity,

|[P{AX.Y) =1]I(x.»)} ~ P{f(X,Y) = 1}|=e.
(1.1)

This insures that the eavesdropper’s @ priori and a posteri-
ori probabilities of f(X,Y) = 1 are eclose. Let Cy(x,»)
be the number of bits communicated securely under a proto-
col P when X = x and Y = y. Then the complexity of P is
defined as

C, = max C,(x, y),

where the maximum is taken over all possible values x, y of
X and Y, and the e-complexity of f is defined as

C(f, €) = min {C,| P is an e-secure protocol for f} .
The problem is to determine C(f, €).

II. UprPER BoUND ON COMPLEXITY

We start by invoking the main result obtained in [2].

Theorem 1 [2]: For all n, f: [1,---,n} X [1,--+, n] —
[0,1] and € > O,

C(f,€) <2log(l/e) + 16.

The proof of Theorem 1 is based on the presentation of a
protocol with the above complexity. In what follows, we
describe the protocol and give a brief outline of its proof. We
omit the parts of the proof that are not essential to this paper
and can be referenced in [2].

The protocol is based on a decomposition tree for the
function table of f. A function table, A4, for f is a two-
dimensional array in which the entry at the (x,) coordi-
nate position is the value of f(x, y). Any such function table
can be partitioned along its x-coordinate (row-partition) or
y-coordinate (column-partition). A decomposition tree for the
function table, A, is a binary tree whose nodes at a given
depth represent a partition of A, i.e., they are disjoint
subarrays of A such that their union is A. Each internal
node is the union of its children. The root of the tree is A.
The leaves of the tree are singleton elements of A (i.e.,
subarrays of A whose X, y coordinates consist of single
elements { x}, { ¥}). Since the tree is binary, each node can
be either column partitioned or row partitioned by its chil-
dren. Also, there is a 1-1 correspondence between values of
JS(x, y) and leaves of the tree specified by single elements

{x, ¥}

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992

A. The Protocol

Given a decomposition tree for 4, we label the children of
each node by ““0” and “‘1’’ in an arbitrary way and we
proceed with the following rule: At each step of the commu-
nication, P, and P, consider one node of the tree starting at
the root. If the node is row partitioned by its children, then
P, transmits the label of the child whose x-coordinate con-
tains x. If the node is column partitioned by its children then
P, transmits the label of the child whose y-coordinate con-
tains y. The process terminates when they arrive at a leaf,
and the values of X and Y are obtained. They exchange
their information over a public channel until they arrive at a
subtree of height < 2log (1/€) + 16. In this way, they assist
each other in searching the tree up to that height. Following
that, they transmit the remaining bits over a secure channel.

Clearly, the previous protocol requires no more than
2log(1/€) + 16 secure bits. In order to prove Theorem 1,
we must show that the eavesdropper’s probability of guessing
the value of f given the publicly transmitted information is
within e of his prior probability of guessing the value of f.

B. Outline of Proof

The proof of Theorem 1 is based on proper choice for a
partition of A, the function table of f. A method for
partitioning A was introduced in [2] which is used to form
the decomposition tree for A as follows: Call A4 a table of
level 0. Recursively partition each table of level i into
subtables according to the method described in [2]. Call these
subtables, tables of level i + 1. Continue in this fashion until
the decomposition tree for A is formed. Processors P, and
P, communicate over a public channel until they both know
which subtree of height |2 /og (1/€) + 16| contains their
sequences. They then use a private channel to transmit their
indices in this tree. In order to prove that the protocol is
e-secure, we need to show that each subtree of height i =
2log (1/€) + 16 has a proportion of 1’s which is within € of
the original proportion of 1’s in A. This can be done by
showing that if A, is a tree of height / with S, 1’s and a;
total number of elements, then

(2.1)

S;
S—e<—=<S+e,
a;

where S = P(f(X.Y)=1) is the proportion of 1’s in
A. This is shown in [2] and completes the proof of the
theorem. O

The proof of Theorem 1 may be better understood via the
use of Fig. 1. As shown in the figure, every subtree of height
greater than 2log (1/€) + 16 corresponds to a subtree of A
with a proportion of 1’s which is within ¢ of S. Therefore,
disclosure of the identity of the subtree containing X and Y
does not violate the e-security requirement. Also note that
this protocol permits the two processors to compute the value
of f and it also provides each one of them with the exact
value of the variable that the other processor possesses. If the
objective is to merely compute the value of f and not
necessarily to perform the full exchange of the X, Y values,

MODIANO AND EPHREMIDES: COMMUNICATION COMPLEXITY OF SECURE DISTRIBUTED COMPUTATION

/”\
X1 v O3 YH e row punion
wry

.

wiy?y 16y

¥ e . M M . .

{ le Y‘} «s————— column partition

subtrees of height
2log(1/e)+16

S-e< P=11A) < S+e

Fig. 1. Decomposition tree with subtrees of height [2 log (1/€) + 16] .

then a different problem arises that has been studied in part
by Yao [1] and Ja’Ja’ [3].

Let us recapitulate some important properties of the proto-
col that will be useful later on.

1) Every subtree of height = 2log(1/¢) + 16 corre-
sponds to a subtable of the function table for f with a
proportion of 1’s which is within ¢ of S. In other
words, for all subtrees of height i = 2log(1/¢) + 16
with §; 1’s and a; clements, the following holds,

S;
S—es—=<S+e.

i

2

~

Since P, and P, exchange their respective locations in
the decomposition tree for f, each bit sent is a function
of previous bits sent and received. In other words if we

let x,,* -+, x;, -+ denote P,’s transmission sequence,
and y,, -, y;, " denote P)’s transmission se-
quence, then

Xp=Fy(yi v x5, Xi_1)s

where F, depends on the decomposition tree for f.

The protocol previously described can be used to secretly
compute the value of f using a constant number of secure
bits. If P, and P, communicate over a noiseless channel and
make proper use of the protocol, they will always arrive at
the correct value of f. However, if either the private or the
public channels is noisy, then the exchange will no longer be
error-free and the processors may end up with the wrong
value of f. At the same time, the eavesdropper listening to
this exchange will also receive a noisy version of the ex-
change and his uncertainty regarding the value of f may
increase. Consequently, P, and P, may need to exchange
fewer secure bits in order to keep f e-secret. So, the pres-
ence of noise introduces a trade-off that may result in a need
for fewer secure bits. In what follows, we examine the
various aspects of this trade-off. First, in Section III, we
consider the effects of noise on the eavesdropper’s uncer-
tainty, and the number of bits that must be exchanged over
the secure channel. Then, in Section IV, we develop and
analyze two error-control schemes which can be used to
maintain the reliability of the protocol.

1195

III. COMMUNICATION IN A NoisY ENVIRONMENT

In this section, we consider the effect of noise on the
protocol described in Section II, from the point of view of the
eavesdropper. Namely, we wish to determine the effect of the
noise on the number of bits that need to be exchanged over
the secure channel in order to keep f e-secure. The protocol
assumes the existence of two channels, a private channel and
a secure channel. We can assume that either, or both, are
noisy. However, here we are strictly concerned with the
effect of the noise on the eavesdropper’s uncertainty and,
since the eavesdropper has no access to the private channel, it
is reasonable to assume that only the public channel is noisy.

Consider the protocol described in Section IT; according to
that protocol P, and P, partition the decomposition tree for
the function table of f in order to arrive at the values of X
and Y. They exchange partitioning information publicly until
they arrive at a subtree of height less than 2log (1/¢) + 16,
at which point they exchange the remaining information over
a secure channel. It was shown in [2] that all subtrees of
height 21log (1/€) + 16 or greater, have a proportion of 1’s
which is within ¢ of S. An intruder listening to the conversa-
tion will only be able to identify the subtree corresponding to
the publicly communicated bits, and therefore will have a
probability of f(X, Y) = 1 between S — e and S + ¢. Con-
sequently, P, and P, need only transmit 2log (1/¢) + 16
bits securely in order to satisfy (1.1).

According to this protocol, the total number of information
bits exchanged between P, and P, is

Total Number of bits = [log | X | + log | Y |] = 2log (n).

For simplicity, we take 7 to be a power of 2. It can be easily
shown that the results of this section hold for all values of n.
The total number of bits that are transmitted over the public
channel is given by K = 2log(n) — 2log(l/e) — 16 =
2log (ne /256).

Now we consider the effect of the noise. We assume that
the public channel is modeled by a binary symmetric channel
model. There are 2% possible error patterns of length K that
can occur. Each error pattern will result in a different subtree
being eventually identified erroneously. We enumerate these
error patterns in order of increasing weight, that is, we let E,
denote the all-zero-error-pattern; then we let E,, E,,- -+, E K
denote those error-patterns that have weight 1; following that
we let Ex.y,"*, Ex, g, denote those error patterns that

2
have weight 2; we continue in this fashion the enumeration.
As a result we have wt(E;) < wt(E,, ;) for all i.

Let P, = the probability of error pattern E;; clearly (as-
suming probability of channel error is at most 0.5),

PyzP 2P,z -+ = Pyx_,.

As indicated earlier, each error pattern identifies a subtree of
the decomposition tree for the function table of f with a
proportion of 1’s which is between S — e and S + €. If S, is
the proportion of 1’s in the ith subtree, it satisfies

S—e<S,=S+e.

(3.1)

1196

Also, we have

2% S,
2K

= s. (3.2)

i=0
Let, a denote the intruder’s probability of f = 1; clearly

2K
«= Y PS, (3.3)
i=0
where S, is the proportion of 1’s in the subtree corresponding
to P;. Also note that n is a power of two and, therefore, all
subtrees are of equal size. In the following lemma, we
present upper and lower bounds on alpha by choosing the
§;’s that correspond to a worst case f, namely,

5,= |Ste forief0,2%" —q], (3.4)
S — €, otherwise.
Lemma 1:
2k-1_ 25—
2 P(S-e)+ X P(S+e)
i=0 i=2%-1
2k-1_q 2K
Sas Y P(S+e)+ Y P(S -).
i=0 j=nk-1

Proof: Suppose there exists a function with correspond-
ing §;’s that differ from those in (3.4) and that result in a
larger value of «. Then there must exist an / between O and
2¥71 — 1 such that S; =S+ ¢ — ¢, for some €, greater
than 0. In order to satisfy (3.1) and (3.2), there must also
exist a j between 25! and 2% — 1 such that §;=zS-¢e+
€, where 0 < ¢, < ¢, but then, if we subtract €, from S;
and add ¢, to S;, the value of « is increased and both 3.1
and (3.2) are still satisfied. Thus, we have a contradiction,
and the assignment of (3.4) results in the maximum value of
a. A similar proof exists for the lower bound. We complete
the proof of the lemma by combining equations (3.3) and
(3.4).

Let now
251

oy = Z P,
i=0
We can rewrite the inequality of Lemma 1 as
o (S—¢)+ (1 - a)(S + ¢€)
aso(S+e)+(1-a)(S—¢),or
< (20 — 1)e. (3.5)

A

la -S|

Theorem 2: In order to keep the communication e’-secure
we need only transmit

20, -1 .
2log (“, + 16 bits securely.
€

Proof: Let € = ¢ /(2a, — 1), then according to (3.5),
|a — S| < ¢, which by definition implies that by using the
protocol discussed in Section II we achieve communication
that is e’-secure.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992

Theorem 2 states that fewer secure bits are needed to keep
S e-secure, if noise is present. The savings in the number of
secure bits, of course, comes at a cost of incurring some
probability of error in the exchange. This leads to an alterna-
tive interpretation of Theorem 2. As long as P, and P, are
willing to tolerate errors in their exchange, they can reduce
the number of secure bits by adding noise to the channel. In
fact, they can add as much noise as they are willing to
tolerate. So, suppose they are willing to tolerate & error in
their exchange. Then the probability of error in the exchange
is the probability that at least one of the publicly communi-
cated bits is in error. If N = 2log(n) and p equals the
resulting channel crossover probability, the number of pub-
licly communicated bits will be less than N and P(error) <
1 - (1 - p)¥ <8, which yields p <1 — (1 - 8)'/N, This
means that in order to maintain the probability of error in the
exchange below 6 it suffices that the channel error probability
be kept below the value previously indicated.

IV. ERROR-CONTROL CODING FOR DISTRIBUTED
COMPUTATION

We now turn our attention to the effect of the noise on the
quality of the communication between P, and P,. We will
again assume that they employ the protocol described in
Section II, in order to exchange their values of X and Y.
They communicate over a noisy binary symmetric channel,
and wish to limit the probability of error in their exchange to
level 6. Therefore, they will employ some error control
scheme that will introduce redundant bits into the exchange.
The problem is to find an error-control algorithm that will
minimize the total number of redundant bits.

Recall that under the protocol presented in Section II, P,
and P, distributively compute the value of S as follows:
Given a decomposition tree for f, P, and P, consider one
node of the tree starting at the root. If the node is row-parti-
tioned, P, transmits the label of the child whose coordinate
contains the value of X (similarly, if the node is column-par-
titioned, P, transmits the label of the child whose coordinate
contains the value of Y). The communication terminates
when they arrive at a leaf where the values of X and Y can
be obtained. Clearly, if an error occurred in the transmission
of any of the labels, the wrong subtree would be identified
and as a result the subsequent transmissions become meaning-
less. Therefore, to avoid such logical errors, a transmission
error must be identified and corrected before the transmission
of the next bit.

In what follows we present two coding schemes that are
built to satisfy the previous requirements. The first scheme is
based on error-detection techniques, while the second scheme
uses error-correction techniques. In both cases, we search
among commonly used classes of error-control codes to
identify the ones that result in smallest number of redundant
bit transmissions.

A. Error-Detection Scheme

As we have already established, an error-control algorithm
for our protocol P cannot involve error correction on blocks
of size greater than one because such a scheme cannot correct

MODIANO AND EPHREMIDES: COMMUNICATION COMPLEXITY OF SECURE DISTRIBUTED COMPUTATION

logical errors. In order to correct logical errors, upon detec-
tion of an error all digits from the point of the first error must
be retransmitted. We, therefore, suggest the following algo-
rithm: Each processor needs to transmit a total number of
information bits N it proceeds as before, according to the
protocol P, except that after transmitting a block of & bits it
transmits additional C check bits. Recall that these k bits are
transmitted one at a time, alternating with the k bits that the
other processor transmits back in pursuit of the tree search
that the protocol P implements. Also, as a consequence of
Remark 2, we require that the check bits follow the informa-
tion bits.

Upon receiving the ¥ + C bits, both P, and P, check
them for errors; if an error is detected by either P, or P,
the entire sequence of 2(k + C) bits is retransmitted.' The
two processors repeat the process and continue to retransmit
the same block until no errors are detected, at which point
they proceed to the next sequence of k bits. Thus, no logical
errors occur unless undetected bit errors occurred. Clearly, it
is of interest to select the value of & to minimize the total
number of transmitted bits. We proceed to analyze the per-
formance of various classes of codes with respect to this
error-control scheme.

1) Analysis of Error-Detecting Scheme: Let N, k, C be
defined as before. Let

e U be the probability of at least one undetected bit error
occurring in the sequence of 2(k + C) bits, and no
detected bit errors occurring;

e D be the probability of at least one detected error
occurring in a sequence of 2(k + C) bits.

Notice that U and D are not conditional probabilities, but
rather the joint probabilities of an error occurring and being
undetected or detected respectively. Therefore, 1-D-U =
Prob(zero errors in the block) = (1 — p)*¥+©_ Also note
that, in effect, D represents the probability of a block being
retransmitted.

Let E be the event of an error in the overall exchange of
X and Y.

Let B, be the event that there is at least one undetected
error in the last transmission of sequence i.

Let X; be the number of transmissions of sequence i.

2) Probability of Error Computation: Let M = [N/ k|
be the number of distinct sequences or blocks of bits that will
need to be exchanged to effect the full transmission of the N
information bits (if £ does not divide N then the last block
will consist of the remainder of the information bits followed
by zeros in order to obtain a sequence of k bits). We have

f]lﬁi) oo fI‘P(E).
(4.1)

GIB,-) =1 —P(

'We do not consider here the separate protocol that will be needed to
signal that a retransmission rather than a new transmission commences after
errors have been detected.

1197

This upper bound results because an error in the Mth block
may or may not result in an error in the exchange. Note that
P(B;) = P(Ux,—: G)), where G, is the event that at least
one bit error is detected in the first X; — 1 transmissions of
sequence i and at least one undetected error and no detected
errors occur in the X th transmission. Therefore,

=]

S (D) (U) = ——

P(B,) =
(B)= 3 —

(4.2)

As noted earlier P(E) = 1 — ;% P(B,). Since the B,’s are
independent we have

P(E) = P(B)"

_ U 1-(D+U) (1-p)y*©

P(B)=1- = =

1-D 1-D (1 -D)
As a result,

1-(D+ U) M (1 _p)z(k+C)M
P(E)=1-|——p—| =1- "

1-D (1-D)
(4.3)

This is one performance index that we are interested in
keeping small. Next, we compute the total number of bits
communicated. Let n = k + C and T be the total number of
bits transmitted. We have E{T} = Mn(1 + E{number of
retransmissions per block}). Since the number of retransmis-
sions is geometrically distributed with probability of retrans-
mission D, we have,

E{T) = Mn :M(k+C)

1-D 1-D
This is the other performance index that we wish to keep

small. The question now remains how to calculate D for a
given code. We noted before that

(4.4

Ak+C) _

D+ U+ (1-p) 1. (4.5)

Since the exchange of the 2(k + C) bits proceeds alter-
nately bit-by-bit and since each processor uses its own code
for only half of the 2(k + C) bits that are exchanged, we
need to relate the probabilities U and D to those that affect
the transmission of (k + C) bits in each direction separately.
Thus, let

e u be the probability of an undetected error occurring in
the transmission of (kK + C) bits from one processor to
the other (and, of course, no detected errors occurring);

e d be the probability of a detected error occurring in
such a transmission.

As before, we again have the relationship between d and u
as follows:

d+u+(1-p)"=1. (4.6)

Now the event of undetected errors in the overall exchange of
the 2(k + C) bits while no detected errors occur is the union
of events that undetected errors occur in one direction (i.e.,

1198

in the transmission of (k + C) bits) while detected errors do
not occur in the opposite direction. Therefore,

U=2u(l - d) - u?. 4.7)

Now, if G is an (n, k) linear block code, used by either
processor (with n = k + C), let A, denote the number of
code vectors in G of weight i. Then, the numbers
Ay, 4y,+, A, constitute the weight distribution of G.
When G is used for error detection over a binary symmetric
channel, the probability of at least one undetected error is
given by [4, p.77]

n .
u=> Ap'(1-p)"".

i=1

(4.8)

Consequently, we can calculate D for a given code by
combining equations (4.5)-(4.8). Then we use the calculated
value of D in (4.3) and (4.4) to evaluate performance.

3) Performance Evaluation: We performed the computa-
tion previously outlined for various codes selected over typi-
cal classes of linear block codes (since we require that the
check bits follow the information bits, we were restricted to
the class of systematic codes; however, since every linear
block code can be put in systematic form, this restriction did
not limit our choice of codes). The objective was to select a
code that requires the minimum overall number of bits
exchanged, as expressed in (4.4), while keeping the probabil-
ity of error, as expressed in (4.3), below a specified value 6.
Both performance measures, as expressed in (4.3) and “4.4),
depend on the probability of an undetected error for the
particular code, which in turn is a function of that code’s
weight distribution as implied by (4.8). Theoretically, we can
compute the weight distribution of an (n, k) code by examin-
ing its 2% codewords. However, for large n and k the
computation becomes impractical. The weight distributions
of many linear codes are still unknown. Consequently, it is
difficult, if not impossible, to perform the exact computation
for an arbitrary code. It proved also difficult to find a good
bound on u over broad classes of codes (an upper bound
exists for the average probability of an undetected error over
the ensemble of all (n, k) linear systematic codes. However,
such a bound is not necessarily an upper bound on the
probability of an undetected error for all linear block codes).

Luckily, the weight distribution of certain useful classes of
codes is known, and is easily expressed as a polynomial of
degree n. This polynomial is known as the weight enumera-
tor polynomial of the code. Weight enumerator polynomials
are available for a variety of codes including such codes as
Hamming codes [4, p. 81], BCH codes [5, p. 451], the Golay
code [6, p. 121], and a few other less commonly used codes.
As a result, we performed the computations for these classes
of codes and determined amongst these classes the code that
requires the minimum number of bits and satisfies 8-error
constraint.

We define the rate R of our error control scheme to be the
ratio of the number of information bits to the expected value
of the total number of bits transmitted, i.e., R = N /E[T].
Given specific values for N, §, and P, we scan the various

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4,JULY 1992

(511,502)
IIXI'Y!IIIII|TII»II

(1023,1013)

—————""(ro23,1009)]
o 611.493)

Rate
2
1

r Golay(23,12)

TR AR v b e by v v L Ly
-4 -45 -5 -5.5 -6 -6.5 -7
P = Channel Error Prob. (log)

kN

Fig. 2. Rate for the error-detection scheme with N = 1000 and & = 105,

I e BB e e

r (31.26)")
(127,108) BCH o2

Rate

Golay(23,12)

4 v ben v b by v b Ly
-4 45 -8.5 -7

-5 =55 -6
p = Channel Error Prob. (log)

Fig. 3. Rate for the error-detection scheme with N = 100 and & = 108,

classes of codes and for each class we find the specific code
which minimizes the rate while keeping the probability of
error below 8. In other words, for each code that we
examine, we use (4.4) and (4.3) to compute the probability of
error and the rate R for our scheme when that code is
employed. We then select, from each class of codes, the
particular code which results in the highest value of R while
maintaining a probability of error below &. In Fig. 2, we plot
the rate (R) vs. the channel error probability (p) for N =
1000, and 6 = 1079, for various classes of codes. Similarly
in Fig. 3, we plot R vs. p for N = 100, and = 10~®. For
each sample value of p, we indicate the specific code that
was used to achieve the indicated value of R. It should be
noted that since R for our scheme accounts for both check
bits as well as retransmissions, the rate R for the scheme can
never exceed the rate of the particular code which was
employed. As can be seen from the plot, in this particular
example, the Hamming codes resulted in the best rate. Al-
though unpredictable, these results are rather simple to un-
derstand. Clearly, for N = 1000 and 6 = 10~°, the Golay
code represents a bit of an overkill and provides much more
protection from errors than necessary, therefore, it results in
a much lower rate. The same holds, to a lesser degree for the
BCH codes. The Hamming code is most efficient in the sense
that it provides sufficient protection at a lower rate. For
N =100 and 6 = 10782, the Golay code still provides too

MODIANO AND EPHREMIDES: COMMUNICATION COMPLEXITY OF SECURE DISTRIBUTED COMPUTATION

much protection and, therefore, has a lower rate. However
for high values of p the only Hamming codes that proved
sufficient protection are the low-rate ones and in a sense they
provide more than the necessary protection (they result in
actual error rate much lower than §). On the other hand, the
BCH codes provide sufficient protection at a much higher
rate. As can be seen from the figure, when p gets very small
the power of the BCH codes is no longer necessary and the
(31,26) Hamming code provides sufficient protection at a
lower rate. A more complete presentation of the results, for a
variety of values of N, §, and p is available in [7].

B. Error-Correction Scheme

In the previous section, we described an error-control
scheme that was based on error-detecting codes. In the event
that an error was detected in a given block the entire block
was retransmitted. That scheme has as its main drawback the
need to retransmit the entire block upon the detection of an
error. In this section, we describe a method that is based on
error-correcting codes. This method requires retransmission
not of the entire block but only from the point of the first
detected error. The error-correcting codes serve the purpose
of locating the first error in a block. As explained earlier,
however, these codes cannot be used for the actual correction
of errors because of the iterative nature of the computation
that leads to logical errors in the event of a transmission
error. Thus, even if the error is corrected, the subsequent,
logically wrong, but correctly transmitted bits are useless and
lead to an erroneous computation of f.

Let N be, as before, the total number of bits transmitted
by each processor. Just as in the previous section P, and P,
communicate in an iterative manner, a bit at a time. After
transmitting k bits each, P, and Py transmit additional C
bits each as check bits (again, as a consequence of Remark 2,
we require that the check bits follow the information bits).

Upon receiving the k + C bits, both P, and P, check
them for errors. After that they exchange the location of the
first detected error. They then accept all of the bits up to the
location of the first error and retransmit everything from that
location on. The additional protocol for the exchange of
information on the error location and on the need to retrans-
mit is again ignored. The processors continue to communi-
cate in blocks of size k + C until all of the N information
bits have been accepted. We next quantify the total number
of bits transmitted and the probability of error in the ex-
change.

1) Analysis of Error-Correcting Scheme: Let N, k, C,
n, and T be defined as before and let

e Z; be the number of useful information bits in the ith
transmission (a bit is considered useful if it occurred
before the location of the first detected error).

We keep transmitting blocks of size k + C until the total
number of transmitted useful bits is equal to or exceeds N. It
is important to note that each transmission (and retransmis-
sion) contains exactly k + C bits. This is so because if an
error is detected in the middle of a block we do not just
retransmit the remaining bits of the block starting from the

1199

error location but rather we jump ahead into what would have
been the next block and transmit again a total of k informa-
tion bits (plus C check bits); that is, we have a sliding
window of k information bits the next position of which is
determined by the location of the first detected error in the
sequence of k information bits contained in the window in its
previous position. In the event that fewer than & bits remain
to be transmitted, the next window is obtained by transmit-
ting the remainder of the information bits followed by zeros
so that again we can have a block of k bits which, of course,
is followed by C check bits.

Let J be the total number of block transmissions. Then
T=J%k+C), E{T} = E{J}(k+ C), and E{J} =
Z;’; lej, where Pj = P(J = j). Notice that P; is the prob-
ability that the first / — 1 transmissions produce fewer than
N useful bits, while the first / transmissions produce N or
more useful bits. We can, therefore, express the P;’s as
follows:

P, =P[Z, = N],
P,=P[(Z,<N)N(Z,+ Z, =N)],

j—1 J
P, =P Z:IZ’<N n Z:]Z"ZN}
J-1 J
=1-P Zz,.zN)u Zz,.<N)]
i=1 i=1
J=1 J
=P(ZZ,.<N —P(ZZ,<N) . (4.9)
i=1 i=1

We next consider the random variable Z;.

2) The Distribution of Z;: Let X; be the location of the
first error detected by P, in block i/ and let Y; be the
location of the first error detected by P, in block /. Then
Z, = min(k, X, Y;), because all bits subsequent to the loca-
tion of the first error detected by either P, or P, incorporate
logical errors and, hence, are not useful (ignoring the possi-
bility that X; need not be retransmitted if Y, is the first
error). No more than & bits can be considered as useful since
only the first k bits are information bits and the rest are
check bits. Thus, if the first located error occurs after the kth
information bit, it is simply corrected and nothing gets
retransmitted.

Let Z; = min(X,, Y;). Then

7= 1%
[k,

Z, <k,
Z, =z k.

Next, we note that the Z;'s are i.i.d; let us denote their
common probability mass function by f,(z). Moreover, the
X;sand Y;’s are i.i.d with distribution f, = f, = f. There-
fore,

z<k,

f(2),

fZ(z)z ané(Z), Z:k,

(4.10)

1200

and

_ i:P(x:z)P(Y=j)

+ an P(Y=2)P(X=1i)

i=z+1

—f@)|) 2 %

i=z+

= 2/(2) éf(f) ~ (F(2))"

lf(i)
(4.11)

To compute now the distribution of X, which represents the
location of the first error detected in a block, we have

f(x)

Sf(x) = P(location of first detected error = x)
t
=Y P
i=0

+ P(X = x|more than ¢ errors occurred)

(X = x| i errors occurred) P(i errors occurred)

X P(more than f errors occurred),

where ¢ is the maximum number of errors that the code can
correct. Hence,

[
M-~

P(X = x| i errors occurred)

f(x)

0
(1)

+ P(X = x|more than ¢ errors occurred)
n .
x 2 (f)ra-n

i=r+1

We first compute the probability that the first error location
is x, given that i < ¢ + 1 errors occurred. Let
(E,\, E,, -, E,) denote the received error pattern, where
E; = 1 denotes an error in the ith bit. When transmitting
over a binary symmetric channel all 'I’ error patterns of
weight i are equally likely, each with probability pi(1 —
p)" . All these error patterns are correctable and we know
that when fewer than ¢ + 1 errors occur the location of the
first detected error is the same as the location of the first
actual error. Therefore,

(4.12)

P(X = x| i errors occurred)
= P(first error occurred in position
x | i errors occurred)
=P(E,=0,-,E,_, =0,
E, = 1| i errors occurred).

Since there are (7: N

) such patterns, we have
n-— x)
i—1

P(X = x|ioccurred) = ((n) (4.13)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992

The location of the first detected error when more than ¢
errors occur is difficult to characterize. When more than ¢
errors occur the decoder decodes them into one of the 2%
codewords, and this process is entirely dependent on the
decoder. Therefore, in the previous equation the P(X = x|
> t errors occurred) cannot be expressed in a general form.
However, in order to quantify the total number of bits
transmitted, we attempt to use an approximation, namely that
the location of the first error is uniformly distributed over the
codeword length, i.e.,

P(X = x| more than ¢ errors occurred) = % (4.14)
Clearly this is a poor assumption when ¢ is relatively large;
however multiple errors have very small probability. We
compared this approximation to the actual performance of a
number of codes. In particular, we compared its performance
with those codes that are used in our analysis. We found that
for channel error probabilities of less than 102 this approxi-
mation was within 2% of the actual results. When the chan-
nel error probability was less than 10™*, this approximation
was within 0.5% of the actual results {7]. Putting together
(4.12)-(4.14), we approximate the distribution of X by

0= 5 (12 5) -

1 4 n A n—i
(5] 2 (H)pa-pr @
n/i=t+1

Finally, the performance index E{T} can be computed using
(4.9)-(4.15).

3) Computation of Probability of Error: Let E be the
event of an error in the overall exchange between P, and
P,. Let B, be the event that an error occurred before the first
detected error in the ith transmission. Then, we have

P(E) = Zl P(E N (j blocks transmitted))
=

8

> P(E|j)P, (4.16)

J=1
where P; is given by (4.9) and where

P(E| j blocks were transmitted)

J Joo_
= P| |J B;| J blocks transmitted] =1- P[N (B) j].
i=1 i=1

This probability is difficult to compute because of the
dependence on j, the number of blocks transmitted. Al-
though it is not obvious, the probability of error in a block is
dependent on the number of blocks transmitted; this depen-
dence can be seen by observing that when j is small few
errors must have occurred, and when j is large many errors
must have occurred. Consequently, P(B,) is likely to be
higher for large values of j. In order to compute the proba-
bility of error, one must have the joint distribution of j and
B;. This joint distribution is a function of the code and the

MODIANO AND EPHREMIDES: COMMUNICATION COMPLEXITY OF SECURE DISTRIBUTED COMPUTATION

decoder used, and, therefore, cannot be computed for the
ensemble of all codes. In fact, even for a given code and
decoder, it is still not clear how to compute the joint distribu-
tion of j and B;. As a result, we must again resort to an
approximation of this distribution.

Let us (incorrectly) assume that B, is independent of j;
then (4.16) can be approximated by

P(EIJ) =1~ T1P(B) =1 - P(B). (.17

We next find an upper bound on P(B)), the probability
that an error occurs before the location of the first detected
error in the ith transmission. When using a ¢ error-cor-
recting code, all errors of weight ¢ or less are detected;
therefore, the only way for an error to occur before the first
detected error is for more than ¢ errors to occur in either
P/’s or P,’s transmission. Even if more than ¢ errors occur,
it is possible that the location of the first detected error is
(erroneously) before the location of the first actual error.
However, P(B;) can be bounded above by the probability
that either P, or P, sustain more than f errors. Let #, be the
event that P, sustains more than ¢ errors, and let z, be the
event that P, sustains more than ¢ errors. Then,

P(B)=P(1,U1,) =1~ P(1,NT)

1 - P(E)P(T,).

Let o be the probability that more than ¢ errors occur in a
block of size n (a = P(t,) = P(¢,)), when transmitting
over a binary symmetric channel with crossover probability
p. Then,

o= 3 (o
and
P(B)<1-(1-a). (4.18)

Combining (4.17) and (4.18) yields an approximation for the
probability of error in the computation. Since equation (4.18)
is an upper bound on P(B,) it is possible that the entire
approximation yields an upper bound on the probability of
error. In support of this hypothesis, we computed the actual
probability of error for a number of select codes which we
use in our performance analysis and compared the actual
result to the approximation. The results of the comparison
suggest that the previous approximation is in fact an upper
bound for the codes examined [7].

4) Performance Evaluation: In analyzing the perfor-
mance of this scheme, we again considered a few classes of
codes for which we can compute the total number of bits
transmitted and the probability of error in the exchange.
These classes include: Hamming codes, BCH codes,
Reed-Solomon codes,? and the Golay code. In Fig. 4, we
plot the rate (as defined in Section IV-A) vs. channel error
probability for N = 1000 and 6 = 107, for the various
classes of codes. Similarly, in Fig. 5, we plot the rate vs.

2Reed-Solomon codes are nonbinary codes but can be used for transmis-
sion over a binary channel by representing g-ary symbols by blocks of
binary digits.

1201

L S s S B B T

1 T T T T

! I
[(127.120]
______ Bon ety]

(127,120)

T (240,206) (240,208)
r g A stcait
[s oo b
C pest ™ ,
6o L]
2 > " __Golay(23.12) 4
& Lse20) " (56,40) b
4 .
2 B
ol v b b b b]
—4 —-45 -6.5 -7

-5 55 -6
p = Channel Error Prob. (log)

Fig. 4. Rate for the error-correction scheme with N = 1000 and 6 = 1076.
L e L sy s B
8
6 (7.4) (s640) 8800
3 a8 e)]
K] - e Golay(23,12) 7]
4 —
L2 d
2 —
ol oo by b b v v by]
-4 -45 -5 -55 -6 -6.5 -7
p = Channel Error Prob. (log)
Fig. 5. Rate for the error-correction scheme with N = 100 and 6 = 105

channel error probability for N = 100 and & = 1075, It is
interesting to note that the BCH code performs best here due
to its high error-correcting capability. In this case, the Golay
code and the Reed-Solomon codes that have a higher error-
correcting capability are an overkill for the required level of
error protection and therefore, result in lower rates. A more
complete presentation of our results, for various values of N,
8, and p is available in [7].

C. Error Correction vs. Error Detection

In this section, we compare the performance of the error-
correction scheme to that of the error-detection scheme. We
base our analysis on the results presented in the previous two
sections. In Section IV-A-3, we presented performance re-
sults for the error-detection scheme for a variety of codes; in
Section IV-B-4, we did the same for the error-correction
scheme. In order to compare the performance of the two
schemes, we plot for each scheme the best rate that was
achieved by any of the codes examined. In Fig. 6, we plot
the best achievable rate for the error-detection and the error-
correction schemes with N = 1000 and & = 10~°, based on
the information presented in Figs. 2 and 4, respectively. It
can be seen from the figure that when the channel error
probability is high, error-correction results in better rates
than error detection. However, when the channel error prob-
ability is below 1073, the error-detection scheme results in

1202

LT LA B D o o e s o
- H(127,120) __ e H(511,502) H(1023,1013)
/// BCH(127.113)
- = Correction 4
81— i —
% q,w‘
S\s2ad B
2 -
o [~ -~
&
6 |
4 S S | ‘ J | \) | J) S S [| | | § U T |
4 “45 -6.5 7

-5 -55 -6
P = Channel Error Prob. (log)

Fig. 6. Best achievable rate for the error-correction scheme and the
error-detection scheme with N = 1000 and & = 10~9.

better rates than the error-correction scheme. This result is
reasonable because error detection requires fewer check bits
than error correction; however, error correction requires the
retransmission of fewer bits than error detection. Therefore,
when the channel error probability is low, few errors occur,
few retransmissions are required, and as a result the error-de-
tection scheme performs better. When the channel error
probability is high, many errors occur, many retransmissions
are required, and as a result the error-correction scheme
performs better. Similar results are obtained when comparing
the two schemes for different values of N and 6 [7].

V. CONCLUSION

In this paper, we examined the effects of noise on a
specific distributed protocol which can be used to perform the
computation of binary functions secretty and distributively.
This protocol was used in [2] to prove an upper bound on the
number of bits that must be transmitted over a secure channel
in order to keep the value of any binary function e-secret. It

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 4, JULY 1992

was assumed in [2] that both the public and secure channel
are error free. We showed that the presence of noise in either
the public or the private channels could impact the protocol
significantly. The case of having a noisy public channel was
studied in detail. It was shown that the complexity of the
protocol was reduced as a result of the noise. Also, two
error-control schemes were proposed in order to overcome
the adverse effects of the noise. The case of a noisy secure
channel remains unstudied. Also, it would be interesting to
consider the effect of error control coding, as in Section IV,
on the intruder. In particular, it is of interest to examine the
effect of keeping such codes secret.

When studying the impact of coding on the eavesdropper
one should also consider other possibilities for the noisy
channels, such as having the intruder listen on an independent
channel with independent noise. All of these cases will
depend in some measure on the approach we developed here.
Finally, it is of interest to study other protocols for the
computation of f that might display superior performance.

REFERENCES

[1] A. C. Yao, ‘‘Some complexity questions related to distributive com-
puting,”” in Proc. 11th Ann. ACM Symp. Theory of Computing,
Washington, DC, May 1979, pp. 209-213.

[2] A. Orlitsky and A. El Gamal, ‘‘Communication with secrecy con-
straints,”” Proc. 16th Ann. ACM Symp. Theory of Computing,
Atlanta, GA, Apr. 1984, pp. 217-224,

[31 J.JaJa’, V. K. P. Kumar, and J. Simon, ‘‘Information transfer under
different sets of protocols,”” SIAM J. Computing, vol. 13, no. 4,
Nov. 1984,

[4] S.Lin and D. J. Costello Ir., Error Control Coding: Fundamentals
and Applications. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

[51 F. J. MacWilliams and N. J. Sloane, The Theory of Error-Cor-
recting Codes. New York: North Holland, 1977.

[6] W. W. Peterson and E. J. Weldon Jr., Error-Correcting Codes.
Cambridge, MA: The MIT Press, 1972.

[71 E. Modiano, ‘‘Communication complexity of secure distributed com-
putation in the presence of noise,”” Master’s thesis, Dept. of Elect.
Eng., Univ. of Maryland, College Park, MD, 1989.

