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Abstract— Legacy networks are often designed to operate with
simple single-path routing, like the shortest path, which is known
to be throughput suboptimal. On the other hand, previously
proposed throughput optimal policies (i.e., backpressure) require
every device in the network to make dynamic routing decisions.
In this paper, we study an overlay architecture for dynamic
routing, such that only a subset of devices (overlay nodes) need to
make the dynamic routing decisions. We determine the essential
collection of nodes that must bifurcate traffic for achieving
the maximum multi-commodity network throughput. We apply
our optimal node placement algorithm to several graphs and
the results show that a small fraction of overlay nodes is
sufficient for achieving maximum throughput. Finally, we propose
a threshold-based policy (BP-T) and a heuristic policy (OBP),
which dynamically control traffic bifurcations at overlay nodes.
Policy BP-T is proved to maximize throughput for the case when
underlay paths do no overlap. In all studied simulation scenarios,
OBP not only achieves full throughput but also reduces delay in
comparison to the throughput optimal backpressure routing.

Index Terms— Overlay networks, network control, backpres-
sure routing.

I. INTRODUCTION

WE STUDY optimal routing in networks where some
legacy nodes are replaced with overlay nodes. While

the legacy nodes perform only forwarding on pre-specified
paths, the overlay nodes are able to dynamically route packets.
Dynamic backpressure is known to be an optimal routing
policy, but it typically requires a homogeneous network, where
all nodes participate in control decisions. Instead, we assume
that only a subset of the nodes are controllable; these nodes
form a network overlay within the legacy network. The choice
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Fig. 1. Example of a network overlay. The bottom plane shows the full
network graph, while the top plane shows a subset of network nodes and their
conceptual overlay connectivity. In this work we study network throughput
under the assumption that overlay nodes implement dynamic routing schemes
and underlay nodes forward packets using pre-specified paths.

of the overlay nodes is shown to determine the throughput
region of the network.

A first finding is that ring networks require exactly 3 con-
trollable (overlay) nodes to enable the same throughput region
as when all nodes are controllable, independent of the total
number of nodes in the network. Motivated by this, we
develop an algorithm for choosing the minimum number
of controllable nodes required to enable the full throughput
region. We evaluate our algorithm on several classes of regular
and random graphs. In the case of random networks with a
power-law degree distribution, which is a common model for
the Internet, we find that fewer than 80 out of 1000 nodes
are required to be controllable to enable the full throughput
region.

Since standard backpressure routing cannot be directly
applied to the overlay setting, we develop extensions to back-
pressure routing that determine how to route packets between
overlay nodes. We confirm that maximum throughput can be
attained with our policies in several scenarios, when only a
fraction of legacy nodes are replaced by controllable nodes.
Moreover, we observe reduced delay relative to the case where
all nodes are controllable and operate under backpressure
routing.

A. Motivation and Related Work

Backpressure (BP) routing, first proposed in [16], is a
throughput optimal routing policy that has been studied for
decades. Its strength lies in discovering multipath routes and
utilizing them optimally without knowledge of the network
parameters, such as arrival rates, link capacities, mobility,
fading, etc. Nevertheless, the adoption of this routing policy
has not been embraced for general use on the Internet. This is
due, in part, to an inability of backpressure routing to coexist
with legacy routing protocols. With few exceptions, back-
pressure routing has been studied in homogeneous networks,
where all nodes are dynamically controllable and implement
the backpressure policy across all nodes uniformly. As will
be shown, backpressure routing — as proposed in [16] —
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is suboptimal when applied only to a subset of nodes in the
network.

Techniques to provide throughput-optimal multipath routing
have been explored in various contexts. The work in [3]
considers the problem of setting link weights provided to the
Open Shortest Path First (OSPF) routing protocol such that,
when coupled with bifurcating traffic equally among shortest
paths, the network achieves throughput equal to the optimal
multicommodity flow. The authors of [17] use an entropy max-
imization framework to develop a new throughput-optimal link
state routing protocol where each router intelligently bifurcates
traffic for each destination among its outgoing links. These
techniques all require centralized control, universal adoption
by all network nodes, or both; thus none of these techniques
could provide incremental deployment of throughput optimal
routing to wireless networks. Moreover, these techniques can-
not be used in conjunction with throughput optimal dynamic
control schemes, such as backpressure.

We would like to enable new network control policies to be
deployed in existing networks, alongside legacy nodes that are
unaware of the new control policies. There are many reasons
to integrate controllable nodes into heterogeneous networks in
a gradual manner, not the least of which is the financial cost
of replacing all nodes at once. Other reasons include a need
to maintain compatibility with current applications and special
purpose hardware, a lack of ownership to decommission legacy
equipment, and a lack of administrative privilege to modify
existing software.

Conceptually, we model controllable nodes as operating
in a network overlay on top of a legacy network. Network
overlays are frequently used to deploy new communication
architectures in legacy networks [13]. To accomplish this,
messages from the new technology are encapsulated in the
legacy format, allowing the two methods to coexist in the
legacy network. Nodes making use of the new communication
methods are then connected in a conceptual network overlay
that operates on top of the legacy network, as shown in Fig. 1.

Several works have considered the use of network overlays
to improve routing in the Internet. The work in [1] proposes
resilient overlay networks (RON) to find paths around network
outages on a faster timescale than BGP. Similarly, [5] proposed
a method for choosing placement of overlay nodes to improve
path diversity in overlay routes. While both of the preceding
works show that their strategies choose high quality single-
path routes, we go further and identify multipath routes that
offer maximum throughput.

Delay reduction for BP routing has been studied in a
variety of scenarios. While multipath routes are required to
support the full throughput region, the exploratory phase of
BP can lead to large queues when the offered load is low
and single-path routes would suffice. In [9], a hybrid policy
combining BP with shortest-path routing is proposed, where
flows are biased towards shortest-path routes, yet still support
the full throughput region. This hybrid policy is extended
in [8] to also include digital fountain codes, and shown to
achieve good end-to-end delay performance in the presence
of random link failures. The work in [18] develops a policy
that achieves a similar shortest-path result by minimizing the

average hop count used by flows. In a scenario with multiple
clusters that are intermittently connected, [15] combines BP
with source routing in a network overlay model to separate
the queue dynamics of intra-cluster traffic from longer inter-
cluster delays. The work in [2] applies shadow queues to
allow the use of per-neighbor FIFO queues instead of per-
commodity queues, as is typical with differential backlog
routing, and finds that this can improve network delay. A loop-
free backpressure policy is developed in [14] that dynamically
finds acyclic graphs for reducing delay while maintaining
throughput optimality. These prior works assume a homoge-
neous scenario where all nodes use the same control policy and
thus differ fundamentally from our approach. Our proposed
algorithms for applying backpressure in overlay networks can
help reduce delay by reducing the number of nodes between
which differential backpressure is formed. While our original
motivation for studying backpressure in overlay networks was
not to reduce delay, we believe that our scheme can be used
as part of a delay-reducing solution.

This paper is based on preliminary work that appeared
in [7] and [11].

B. Problem Statement and Contributions

We consider two problem areas for control of heterogeneous
networks. First, we develop algorithms for choosing the place-
ment of controllable nodes, where our goal here is to allocate
the minimum number of controllable nodes such that the full
network stability region is available. Second, given any subset
of nodes that are controllable, we also wish to develop an
optimal routing policy that operates solely on these nodes.

In the first problem area, we are given a graph G with
nodes N supporting shortest-path routes between each pair
of nodes. We wish to identify a minimal set of controllable
nodes V ⊆ N such that if only these nodes are allowed
to bifurcate traffic, maximum throughput can be achieved.
Ideally, we would like to solve P1,

V ∗
1 = min

V⊆N
|V|

s.t. ΛG(V) = ΛG(N ), (P1)

where ΛG(V) is the throughput region (i.e., the set of multi-
commodity arrival rate vectors that can be stably supported by
the network) for graph G when only nodes V are controllable,
while ΛG(N ) is the throughput region when all nodes are
controllable. Note that comparing throughput regions directly
can be difficult, so instead we identify a condition that
is necessary and sufficient to guarantee the full throughput
region, and then we search for the minimal V that satisfies
this condition.

In the second problem area, we consider the design of
dynamic network control policies that operate only at con-
trollable nodes V . These controllable nodes are connected
by “tunnels” or paths through uncontrollable sections of the
network, where the control policy can choose when to inject
packets into a tunnel but the tunnel itself is uncontrollable.
We develop an overlay control policy that stabilizes all arrival
rate vectors in ΛG(V) for the case when tunnels do not overlap.
We also develop a heuristic overlay control policy for use on
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general topologies, and show through simulation that stability
is achieved for all arrival rates considered.

Our solutions for the first and second problem areas are
complementary, in the sense that they can be used together
to solve the joint problem of providing maximum throughput
when only a subset of nodes are controllable. However, our
solutions can also be used in isolation; our node placement
algorithm can be used with other control policies, and our
BP extensions can yield maximal stability with any overlay
node placement and legacy single-path routing.

Our contributions are summarized below.
• We formulate the problem of placing the minimum num-

ber of overlay (controllable) nodes in a legacy network
in order to achieve the full multicommodity throughput
region and provide an efficient placement algorithm.

• We apply our placement algorithm to several scenarios
of interest including regular and random graphs, showing
that in some cases, only a small fraction of overlay nodes
is sufficient for maximum throughput.

• We propose a threshold-based control policy — BP-T —
as a modification of BP for use at overlay nodes, and
prove this policy to stabilize all arrival rates in ΛG(V)
when tunnels do not overlap.

• We propose a heuristic overlay BP policy — OBP — for
use at overlay nodes on general topologies. We show via
simulation that OBP can outperform BP when limited to
control at overlay nodes, and that OBP also has better
delay performance compared to BP with control at all
nodes.

II. MODEL

We model the network as a directed graph G = (N , E),
where N is the set of nodes in the network and E is the
set of edges. We assume that the underlay network provides
a fixed realization for shortest-path routes between all pairs
of nodes, and that uncontrollable nodes will forward traffic
only along the given shortest-path routes. Further, we assume
that only one path is provided between each pair of nodes.
Let P SP

ab be the shortest path from a to b, and let PSP =
(P SP

ab ), for all pairs a, b ∈ N , be the set of all shortest
paths provided by the underlay network. If (i, j) is a link
in G, then we assume that the single hop path is available,
i.e. P SP

ij ∈ PSP. Whenever a packet enters a forwarding
node, the node inspects the corresponding routing table and
sends the packet towards the pre-specified path. Therefore,
the performance of the system depends on the available set
of paths PSP. Optimal substructure is assumed for shortest-
paths, such that if shortest-path P SP

ac from node a to c includes
node b, then path P SP

ac includes shortest-paths P SP
ab , from a to b,

and P SP
bc , from b to c. This optimal substructure is consistent

with shortest-paths in OSPF, a widely used routing protocol
based on Dijkstra’s shortest-path algorithm [13], where OSPF
allows for the use of lowest next-hop router ID as a method
for choosing between multiple paths of equal length.

Next, we consider the subset of nodes V ⊆ N , called
overlay or controllable nodes, which can bifurcate traffic
by directing packets to the destination or other controllable
nodes along the provided shortest-path routes. Intuitively, these

nodes V can improve throughput performance by generating
new paths and enabling multipath routing. The remaining
uncontrollable nodes u ∈ N \ V provide only shortest-path
forwarding in the underlay network, with an exception that any
uncontrollable node u can bifurcate all traffic that originates
at u; this may occur, for example, in the source applications at
uncontrollable nodes, or in a shim-layer between the network-
layer and application-layer. Without such an exception, all
sources may be required to be controllable nodes.

Controllable nodes can increase the achievable throughput
region by admitting new paths to the network as con-
catenations of existing paths from shortest-path routing.
A 2-concatenation of shortest-paths P SP

av and P SP
vb is an acyclic

path from a to b, Pab, where v ∈ V is a controllable node
and v is the only node shared between shortest-paths P SP

av

and P SP
vb . Note that a 2-concatenation of acyclic paths will

always be acyclic, as we only allow the concatenated paths to
share the overlay node v at which concatenation is performed.
An n-concatenation is then the concatenation of n shortest-
paths at n − 1 controllable nodes, performed as a succession
of (n−1) 2-concatenations, and is therefore acyclic. Consider
the set of paths P(V), which contains all underlay paths PSP

as well as all possible n-concatenations of these paths at the
controllable nodes V . We will see that this set P(V) plays a
role in the achievability of the throughput region.

III. THROUGHPUT REGION

The throughput region ΛG(V) is the set of all arrival rates
that can be achieved by any policy implemented at controllable
nodes V on graph G. For the case where all nodes are
controllable, i.e., V = N , the throughput region equals the
stability region of graph G. This section characterizes this
region for a given set of paths P(V).

Packets destined for node c are called commodity c packets.
Let λc

a be the rate of exogenous arrivals at node a for
commodity c, and let λ = (λc

a) be the multicommodity arrival
rate vector for all sources a and commodities c. Let fab,c

ij

be the edge-flow for commodity c on edge (i, j) along the
shortest-path from node a to b. Flow for a path is allowed only
on the edges along that path, i.e. fab,c

ij = 0 unless (i, j) ∈ P SP
ab .

Let f̄ c
ab be path-flow for commodity c along shortest-path P SP

ab ,
from node a to b. Decision variable vi = 1 if node i is
controllable, and vi = 0 otherwise, for all nodes i ∈ N .
The capacity of edge (i, j) is Rij . The controllable throughput
region ΛG(V) is then the set of all arrival rate vectors (λc

a)
such that Eqns. (1-6) can be satisfied.

Flow Conservation:

λc
v =

∑

b∈{c,V\v}
f̄ c

vb −
∑

d∈V\v

f̄ c
dv, ∀v ∈ V , c ∈ N \ v (1)

λc
u =

∑

b∈{c,V}
f̄ c

ub, ∀u ∈ N \ V , c ∈ N \ u (2)

Path Constraint:

f̄ c
ab = fab,c

ij , ∀(i, j) ∈ P SP
ab , ∀a, b, c ∈ N (3)

Overlay Neighbor Constraints:

fab,c
ij ≤ (1 − vi)Rij , ∀(i, j) ∈ P SP

ab , a �= i, ∀c ∈ N (4)
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fab,c
ij ≤ (1 − vj)Rij , ∀(i, j) ∈ P SP

ab , b �= j, ∀c ∈ N (5)

Edge Rate Constraint:
∑

a,b,c

fab,c
ij ≤ Rij , ∀ (i, j) ∈ E (6)

Eqn. (1) represents flow conservation of commodity c
packets at controllable node v. Here, exogenous arrivals at
node v equal network departures minus (endogenous) network
arrivals at v. Similarly, Eqn. (2) represents flow conservation
for exogenous arrivals at uncontrollable nodes. The exogenous
arrivals for commodity c at uncontrollable node u are equal
to network departures on the shortest-path to destination c
plus network departures along shortest-paths to controllable
nodes. This is the special case where uncontrollable node
u is a source, in that u can dynamically route exogenous
arrivals but not endogenous network arrivals. Eqn. (3) is a path
constraint for each commodity c along the shortest-path from
node a to node b, where the path-flow equals the edge-flow
for each edge along path P SP

ab . Overlay neighbor constraints
in Eqns. (4-5) force edge-flow fab,c

ij = 0 (and therefore path-
flow f̄ c

ab = fab,c
ij = 0) if node i or j is a controllable node

intermediate to path P SP
ab , i.e., for i �= a and j �= b; such paths

would remove routing ability from intermediate controllable
nodes i or j. Eqns. (4-5) are necessary to allow for dynamic
choice of controllable nodes, and are redundant with Eqn. (6)
when nodes i and j both are uncontrollable. Finally, Eqn. (6)
is an edge rate constraint for every edge (i, j), such that total
flow over an edge is upper bounded by the edge capacity.

If there are no controllable nodes, i.e. V = ∅, then Eqn. (2)
simplifies to

λc
a = f̄ c

ac, ∀a, c ∈ N , a �= c, (7)

where Eqns. (4-5) can be ignored as they are always redundant
with Eqn. (6). The throughput region without controllable
nodes, ΛSP

G ≡ ΛG(∅), is thus limited to the set of arrival rate
vectors λ such that Eqns. (7), (3) and (6) are satisfied. Indeed,
these equations specify the shortest-path formulation for the
throughput region on graph G, defined as ΛSP

G ≡ ΛG(∅).
If all nodes are controllable, i.e. V = N , then there are

no constraints from underlay paths and all dynamic routing
decisions are allowed. Eqns. (1) and (6) simplify to

λc
a =

∑

b:(a,b)∈E
f̄ c

ab−
∑

d:(d,a)∈E
f̄ c

da, ∀a, c ∈N , a �= c, (8)

∑

c

f̄ c
ab ≤ Rab, ∀ (a, b) ∈ E . (9)

There are no uncontrollable nodes here, so Eqn. (2) is unused,
and Eqns. (3), (4), and (5) are redundant with Eqns. (8) and (9).
The full region ΛG ≡ ΛG(N ) is then defined as the set of
arrival rate vectors λ that satisfy Eqns. (8-9). This is the largest
region supported by network G.1

Any work-conserving policy with shortest-path routing can
support the region ΛG(∅), while backpressure routing is known
to support the full region ΛG(N ). However, how to achieve the
heterogeneous region ΛG(V) with a dynamic routing policy is

1Also known as the fractional Multicommodity Flow feasibility region.

Fig. 2. Projection of throughput regions ΛG(·) for sets of overlay nodes
V1,V2 : V1 ⊆ V2 ⊆ N , indicating subset relationship as described in
Eqn. (10).

not generally known. For heterogeneous networks, converting
an uncontrollable node u into a controllable node v relaxes
the constraints for node u from Eqn. (2) into Eqn. (1). Note
that when node v becomes controllable, the overlay neighbor
constraints from Eqns. (4-5) become active.

Recall that we assume optimal substructure for shortest-
paths. We use this structure to find an additional property
about the throughput region. Any path P SP

ab that passes through
a controllable node v can be split into two sub-paths P SP

av

and P SP
vb , where optimal substructure guarantees that both sub-

paths are in the set of underlay routes PSP. Node v can then
concatenate these sub-paths to form the original path P SP

ab .
Therefore, if there exists a flow decomposition of λ that
uses path P SP

ab , then there is also a flow decomposition that
uses sub-paths P SP

av and P SP
vb . Thus, with shortest-path routing,

adding controllable nodes can allow the throughput region to
grow, but never causes the region to shrink. This implies a
subset relationship in the throughput region with shortest-path
underlay routing, as represented in Fig. 2, such that for any
overlay node sets V1,V2 : V1 ⊆ V2 ⊆ N ,

ΛSP
G ≡ ΛG(∅) ⊆ ΛG(V1) ⊆ ΛG(V2) ⊆ ΛG(N ) ≡ ΛG. (10)

IV. OPTIMAL PLACEMENT OF OVERLAY NODES

We would like to place controllable nodes to solve P1,
but the constraint ΛG(V) = ΛG(N ) is difficult to evaluate
directly. A simple implementation for P1 can use the fact that
ΛG is a convex polytope, choosing the minimum number of
controllable nodes to satisfy all points in the throughput region,
as

V ∗
2 = min

V⊆N
|V|

s.t. λ(i) ∈ ΛG(V), ∀λ(i) ∈ ΛG, (P2)

where the constraint enumerates all extreme points of ΛG, and
λ(i) is the ith such extreme point. Note that regions ΛG(V)
and ΛG are polytopes by Eqns. (1-6). Then ΛG(V) ⊇ ΛG

by the constraint of P2. Combining this with ΛG(V) ⊆
ΛG(N ) = ΛG from Eqn. (10), we have ΛG(V) = ΛG(N ) =
ΛG, i.e. the constraints of P1 and P2 are equivalent. The
objectives of P1 and P2 are identical, therefore it is clear that
P2 and P1 are equivalent. Thus, P2 provides a straightforward
implementation of P1, however enumerating all extreme points
in P2 may be impractical.

Instead of evaluating P2, we propose a surrogate condition
that is easier to evaluate while still leading to the same optimal
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solution. Recall that the set of paths P(V) includes all underlay
paths PSP and all n-concatenations (for any n) of these paths
at controllable nodes V . Let PG be the set of all acyclic paths
between all pairs of nodes in G. A first observation is that
P(N ) = PG. This holds by the assumption that all 1-hop
paths are included in the set PSP, and since all nodes are
controllable we can produce any path in G as a concatenation
of 1-hop paths. Next, we define an important condition.

Condition C.1 (All-Paths): A set of controllable nodes V is
said to satisfy the all-paths condition if P(V) = PG.

The condition requires the formation of all acyclic paths in
a network. Since some of the paths are already given (in our
paper PSP), to satisfy the condition, a set of nodes V must
enable all missing paths PG \ PSP by path concatenations.
The following result establishes that this condition is necessary
and sufficient for ΛG(V) = ΛG. In other words, to allow
for maximum throughput achievability we must choose V to
ensure that the path concatenations on these nodes form all
missing paths in the network.

Theorem 1: Given a placement of controllable nodes V ,
satisfying the all-paths condition is necessary and sufficient
for maximizing the throughput region, i.e.,

ΛG(V) = ΛG if and only if P(V) = PG.
Sufficiency is proved by showing that any feasible network

flow can be decomposed into single-path flows that are simul-
taneously feasible, where we are given that all acyclic paths
are supported. Necessity is proved by showing that if any
acyclic path is not supported, a feasible network flow can be
constructed which requires the use of this unavailable path.
The full proof of Theorem 1 is in the appendix.

Using the all-paths condition C.1, we define P3:

V ∗
3 = min

V⊆N
|V|

s.t. All-paths condition C.1 (P3)

Corollary 1: P1 ⇐⇒ P3, therefore V ∗
1 = V ∗

3 .

A. Overlay Node Placement Algorithm

We design an algorithm to choose the placement of overlay
nodes V ⊆ N on a given graph G = (N , E) such that
the choice of overlay nodes is sufficient to satisfy the full
throughput region of the network, i.e. ΛG(V) = ΛG(N ).
At the end of this section we will show that the proposed
algorithm optimally solves P3.

The algorithm consists of three phases: (1) removal of
degree-1 nodes; (2) constraint pruning; and (3) overlay node
placement. These phases are explained below, while each step
is supported by a related claim which will help proving the
optimality of the algorithm.

Phase 1 (Remove Degree-1 Nodes): An attached tree is a
tree that is connected to the rest of graph G by only a single
edge. An intuitive observation is that the throughput region
does not increase by installing controllable nodes on attached
trees, since shortest-paths are sufficient in trees. Thus, at this
preparatory phase, we remove all attached trees by removing
degree-1 nodes recursively, as follows. Start with original
graph G = (N , E), and initialize N ′ := N and E ′ := E .

Fig. 3. Example illustrating the relationship between original graph G and
various subgraphs used in the node placement algorithm. (a) Original graph G.
(b) Modified graph G′ at end of Phase 1, after all attached trees have been
removed. (c) Destination trees Dn for each node n ∈ N ′. (d) Pruned trees
D′

n for each node n ∈ N ′. (e) Optimal overlay node placement on original
graph G. Destination nodes in red; leaf nodes in green; overlay nodes in blue.

While there exists any node n ∈ N ′ such that degree(n) = 1,
set N ′ := N ′ \ n and set E ′ := E ′ \ e, where e is the only
edge that connects to node n. Repeat until no degree-1 nodes
remain. All remaining nodes have a degree of at least 2, thus
all attached trees have been removed. The graph that remains
is G′ = (N ′, E ′). The relationship between graphs G and G′ is
shown for an example in Figs. 3a and 3b, where the subgraph
connecting nodes 6, 7, and 8 formed an attached tree.

Lemma 1: Suppose that placement V satisfies the all-paths
condition (C.1), and node n ∈ V lies on an attached tree.
Then V \ n also satisfies the all-paths condition.

For any nodes a, b ∈ N , the proof considers four arrange-
ments for the locations of a and b: (i) a and b are on the
same attached tree, (ii) a is on some attached tree while b
is not, (iii) b is on some attached tree while a is not, and
(iv) both a and b are on graph G′; this list is exhaustive.
The proof shows that any acyclic path Pab ∈ P(V) is also in
Pab ∈ P(V \ n), n �∈ G′, for each of the four arrangements.
The full proof is available in [6].

By induction, it suffices to allocate overlay nodes in G′ to
satisfy the all-paths condition.

Phase 2 (Constraint Pruning): In this phase, we define the
destination trees which will be used to find the constraints
for node placement. Exploiting a necessary condition from
Lemma 2 regarding the placement of controllable nodes,
we show that proper pruning of these destination trees will
identify the sufficient constraints over which we minimize the
allocation of controllable nodes.
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By optimal substructure, the union of shortest-paths P SP
xn to

any destination n from all nodes x ∈ N ′ \n forms destination
tree Dn. Destination trees Dn are shown for the example graph
in Fig. 3c. Define {P SP

xn}\n to be the set of nodes on the short-
est path from x to n, excluding node n. We have the following.

Lemma 2: If the degree of node x on tree Dn is less than
the degree of x on graph G′, and there is no overlay node
along the shortest path from x to n (i.e. �v ∈ V : v ∈ {P SP

xn}\
n), then the all-paths condition C.1 is not satisfied.

As an example, consider the network in Fig. 3 where node 3
has degree-2 on D1 and has degree-3 on G′. If node 3 is not
an overlay node, then the sequence of nodes 5-3-4-2-1 cannot
be formed as a concatenation of shortest-paths, in which case
the all-paths condition is not satisfied. The proof of Lemma 2
is in the appendix.

For Phase 2, we prune destination trees Dn at nodes x
with degree less in Dn than in G′ to obtain pruned trees D′

n.
In other words, the incoming edges and associated children
nodes are removed from x on Dn such that x becomes a leaf
node on D′

n (unless x is also removed). Continuing with the
example in Fig. 3, D1 is pruned at node 3 to form pruned
tree D′

1, where node 3 becomes a leaf node. By Lemma 2, for
the all-paths condition to be satisfied it is necessary to have
at least one overlay node on the shortest path to n from every
leaf node of pruned tree D′

n. The pruned trees D′
n and this

necessary condition from Lemma 2 will be used as constraints
in Phase 3.

Phase 3 (Overlay Node Placement): Consider the following
binary program to place the minimum number of overlay
nodes to satisfy Lemma 2 for all nodes on all pruned trees D′

n:

V ∗
4 = min

∑

n

vn

s.t.
∑

a∈{P SP
bn}\n

va ≥ 1, ∀b ∈ LeafNodes(D′
n), ∀n

vn ∈ {0, 1}, ∀n (P4)

where LeafNodes(D′
n) is the set of all leaf nodes on pruned

tree D′
n, and where {P SP

bn}\n is defined in Phase 2. Returning
to the example in Fig. 3, the set LeafNodes(D′

n) is highlighted
in green for each pruned tree D′

n in Fig. 3d, and the overlay
nodes identified by P4 are shown in blue in Fig. 3e.

Next, we show the placement from P4 to be sufficient.
Lemma 3: The overlay node placement of P4 satisfies the

all-paths condition for graph G′.
This is proved by showing that every path is either (i) a

shortest path or (ii) can be formed as a concatenation of
shortest paths at overlay nodes which satisfy the leaf node
constraint of P4. The proof of Lemma 3 is available in [6].

The following main result establishes the performance of
the proposed placement algorithm.

Theorem 2: Let V∗ be the solution produced by the overlay
node placement algorithm. Then, V∗ is an optimal solution
to P3. It follows that

• ΛG(V∗) = ΛG.
• V∗ is an optimal solution to P1.

Proof: By Lemma 2, the constraint of P4 is necessary for
the all-paths condition. By Lemmas 1 and 3 it is also sufficient.

Fig. 4. Minimum node placement required to yield maximum throughput for
several simple scenarios, where controllable nodes are bolded in blue. (a) No
controllable nodes on trees. (b) Exactly 3 controllable nodes on a ring (for
conditions specified in Lemma 5). (c) At least 3 controllable nodes on every
cycle. (d) All nodes must be controllable on a clique.

Thus, we have P4 ⇐⇒ P3. By Theorem 1, the remaining
assertions follow.

Phases 1-2 of the algorithm have complexity O(N2).
P4 solves a vertex cover problem, which is known to be
NP-Hard in general. However, note that the constraints of
our problem have optimal substructure, which might be
exploitable. For our experiments on graphs with 1000 nodes,
the solver found most solutions to P4 within 5 seconds, and
we only rarely encountered scenarios that required more than
a few minutes to solve. Thus, the algorithm is practical.

Program P4 is intended to be used offline to find an
optimal node placement. If an online solution is desired with a
polynomially-bounded runtime, then the following algorithm
can be used in place of P4 for each disjoint graph in G′.
Let V = ∅, mark all nodes as unvisited, and create a to-
visit list of nodes; choose node n with the highest number
of edges in its pruned tree D′

n to add to the to-visit list and
mark n as visited. While the to-visit list is not empty, remove
node a from the front of the list, update V := V ∪ a, and
add all unmarked leafs-nodes b from D′

a to the to-visit list,
marking such nodes b as visited. Repeat until the to-visit list
is empty. Every node in G′ will then either be included in V
or will be on at least one pruned tree D′

v : v ∈ V , Each of N
nodes can be marked at most once, and the marked status of
each node can be tested O(N) times, yielding a complexity
of O(N2).

V. OPTIMAL NODE PLACEMENT EXAMPLES

We provide results for various types of network graphs,
including specific graph families and random graphs.
By Theorem 1, the full throughput region is provided by the
placement of our algorithm on all these cases.

A. Simple Scenarios

1) Trees and Forests: Consider trees with single-path under-
lay routes P SP

ab for every pair of nodes a and b. A tree is loop
free, and thus each path P SP

ab is the unique acyclic path from
node a to b, as shown in Fig. 4a. Thus, the all-paths condition
is automatically satisfied, and ΛG(∅) = ΛG(N ).

It follows that no controllable nodes are required for a forest,
which is a disjoint union of trees.
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Fig. 5. Minimal placement of overlay nodes to support full throughput region
on a 7 × 7 grid. Overlay nodes indicated in blue. Node placement from P5.

2) Cycles and Rings:
Lemma 4: Every cycle requires at least 3 controllable

nodes to satisfy the all-paths condition.
For a ring, observe that shortest path P SP

ab connects nodes a
and b in only one direction, even when a and b are themselves
controllable. At least one more controllable node is required
to form path Pab �= P SP

ab in the counter direction. The proof
of Lemma 4 can be found in the appendix, generalizing the
above observation to consider all pairs of nodes on a cycle.

Further, the lower bound from Lemma 4 is tight for the
case of a ring, where the entire graph is a single cycle. These
scenarios are illustrated in Figs. 4b and 4c.

Lemma 5: Exactly 3 controllable nodes are required to
satisfy the all-paths condition for a ring network with N ≥ 5
nodes and hop-count as the metric for shortest-path routing.

This is proved by showing that shortest-paths exist from any
node to at least N/3 other nodes in each direction around the
ring. Thus, there exists a placement of 3 controllable nodes
that can satisfy the all-paths condition. The proof is in the
appendix.

3) Cliques: Consider cliques with single-path underlay
routes P SP

ab for every pair of nodes a and b. We require all
edges (a, b) be included in the underlay routes, however there
is an edge between every pair of nodes in a clique. Thus,
all underlay routes are single edges, i.e. P SP

ab = (a, b) for all
pairs a, b ∈ N . A Hamiltonian path, traversing all nodes, will
require all intermediate nodes to be controllable. Such paths
can start and end at any node, therefore the all-paths condition
requires all nodes to be controllable for a clique, i.e. V = N ,
as shown in Fig. 4d.

4) Regular Grids: Consider the regular grid topology (see
Fig. 5). The network can be viewed as a tiling of nodes
connected in squares of 2 × 2 nodes with total N = L × W
nodes. Each 2× 2 square tile is a cycle, so by Lemma 4 each
cycle requires at least 3 controllable nodes. Let Tj be the set of
four nodes on tile j. Then a simple program to place overlay
nodes on a grid is given by P5.

min
∑

n

vn

s.t.
∑

n∈Tj

vn ≥ 3, for each tile j,

vn ∈ {0, 1}, ∀n (P5)

In Fig. 5, we see that P5 chooses controllable nodes V in
a crosshatch pattern. We can apply this pattern to grids of
arbitrary size by choosing all nodes on even rows and even
columns to be controllable. Note that no two uncontrollable

Fig. 6. Results of overlay node placement algorithm on random graphs
where node degree follows a power-law distribution with exponent α. Graphs
generated with configuration model and truncated Zipf distribution.

nodes are adjacent in the crosshatching pattern.
For the crosshatch overlay node allocation, the ratio of

controllable nodes to total nodes, V/N , is shown in Eqn. (11).

V

N
=

L�W/2� + �L/2��W/2�
L × W

, for L ≥ 2 and W ≥ 2

(11)

This ratio is exactly 3/4 when both L and W are even and
asymptotically approaches 3/4 when either L, W , or both are
odd.

B. Random Networks

This section considers placement of overlay nodes to sup-
port the full throughput region on random graphs. We present
here results about power-law graphs, where the degree of
nodes is random and roughly follows a power-law distribution.
This is recognized as a realistic model for the Internet [10].
We have experimented with several other models for random
graphs, the results of which can be found in [6].

We construct random networks that have power-law degree
distributions using the configuration model and a truncated
Zipf distribution [10]. Zipf is a discrete distribution with
parameters α and Z , where α is the power-law exponent and
Z is a truncation parameter indicating the maximum degree
of the distribution. The Zipf PMF is

P(D = d) =
d−α

∑Z
k=1 k−α

, for d = 1, ..., Z.

For a given number of nodes N , the configuration model
attaches a number of stubs to each node according to the
Zipf distribution, where a stub is half of an edge. Pairs
of unconnected stubs are then chosen randomly and con-
nected to form edges. Thus, node degree follows a power-law
distribution.

Fig. 6 shows results from the overlay node placement
algorithm for random power-law graphs with N = 1000
nodes, averaged over 10 realizations per data point. Values
of α between 2 and 3 are considered, with α = 2.5 being
a frequent estimate for the Internet [10]. For α = 2.5, the
overlay node placement algorithm finds that less than 8% of
nodes need to be controllable for the full throughput region to
be achievable.
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Fig. 7. Results of P6 for chosen rate vector on 6 × 6 grid. (a) Arrival rate
vector λ includes traffic demands for all all pairs of nodes. Here we consider
λ with four active traffic demands with symmetric rates, as indicated with
arrows. (b) Fraction of λ supported when limited to |V| ≤ X controllable
nodes for a random shortest-path routing realization. (c)-(k) Node placements
for (b); note that placements are not necessarily unique.

VI. PLACING A LIMITED NUMBER OF OVERLAY NODES

A formulation similar to P2 is useful in scenarios where
only a small subset of arrival rate vectors require support,
such that the constraints are limited to the specific vectors
λ(i) of interest. For example, this includes networks with
nodes that neither generate nor consume information such as
network routers. This approach can also use P2 to minimize
the number of controllable nodes required to allow maximum
flow between a specific source and destination.

A similar formulation can be used to maximize the achiev-
able flow when the maximum number of controllable nodes is
upper bounded by some number X , as shown in P6. This can
be useful in scenarios where resource limitations don’t allow
enough controllable nodes to achieve maximum throughput.
As in P2, multiple rate vectors λ(i) can be supported with
additional constraints ρλ(i) ∈ ΛG(V).

max
V⊆N

ρ

s.t. ρλ ∈ ΛG(V)
|V| ≤ X (P6)

Fig. 7 shows results of P6 on a 6×6 grid for a specific rate
vector λ with four equal traffic demands. Fig. 7b shows that a
fraction 80% of throughput is supported in the direction λ with
only X = 4 and diminishing returns from additional overlay
nodes, with X = 9 required to provide maximum throughput
for the four specified demands. Note that by Eqn. (11), V = 27
overlay nodes would be required to support maximum through-
put for all possible traffic demands (i.e. ΛG) on this grid
network.

Fig. 8. (a) An example network of controllable and uncontrollable nodes,
where controllable (overlay) nodes V = {a, c, e} are shown in blue.
We indicate with bold arrows the shortest paths available to node a by the
underlay network. (b) The equivalent overlay network of controllable nodes
and tunnels.

VII. BACKPRESSURE OVERLAY POLICY

Subject to the placement of overlay nodes, we study the
problem of throughput maximization using dynamic routing
decisions at overlay nodes. We are interested in a dynamic
routing policy that is stable for any arrival vector in the
region ΛG(V), i.e. achieves maximum throughput.

For ease of exposition, we define the notion of “tunnels”
which correspond to paths (in the underlay network) between
controllable nodes. Let tunnel (i, j) correspond to a path in
the underlay where end-points are overlay nodes i, j and
intermediate nodes are underlay nodes. Thus, the overlay
network GR = (V , E) consisting of overlay nodes V and
tunnels E . Fig. 8b depicts the overlay network for the physical
network in Fig. 8a, assuming shortest path routing is used.
Physically packets are stored at different underlay nodes along
the tunnel. We assume that inside the tunnels packets are
forwarded in a work-conserving fashion.2

Every overlay node v ∈ V maintains a queue for each
commodity c and we denote its backlog with Qc

v(t) at slot t.
For two overlay neighbors v, w ∈ V , we define F c

vw(t) to
be the number of commodity c packets that have departed
overlay node v but have not yet reached overlay node w.
We call these the packets-in-flight between overlay nodes v
and w for commodity c. Moreover, let Fvw(t) be the total
number of packets-in-flight on the tunnel (v, w), across all
commodities. We note that while it may not be possible to
observe the individual queue sizes at uncontrollable nodes, the
number of packets-in-flight can be estimated using a simple
acknowledgment scheme. Note that in networks with reli-
able delivery, the number of packets-in-flight can be directly
inferred from the available information. Even for cases where
explicit control packets are required for the calculation of
packets-in-flight, using [4, §4.7] delayed backlog information
is sufficient for throughput optimality, and hence the number of
control messages can be limited to a desired frequency (at the
tradeoff of delay).

Under routing policy π, let μc
vn(t, π) be the service function

on the link (v, n) for commodity c packets, where v ∈ V and
n ∈ N . Thus, μc

vn(t, π) is the number of packets allocated
to commodity c on link (v, n), at time slot t. The edge rate
constraint implies

∑
c μc

vn(t, π) ≤ Rvn must be satisfied at
every slot. Thus, at each overlay node, the policy chooses the
number of packets to be sent to outgoing neighbors subject to
the edge rate constraint. In what follows, we study the problem

2In our simulations we use proportionally-fair random service on a packet-
by-packet basis.
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Fig. 9. Insufficiency of BP in overlay networks. (a) Scenario with contention
at uncontrollable node 3. (b) Queue size of BP in overlay vs. BP in underlay.

of controlling this system by observing queue backlogs Q and
packets-in-flight F , and choosing service function μ at overlay
nodes only.

A. Insufficiency of Traditional Backpressure

For an interference-free wired network, the backpres-
sure (BP) routing policy [16] is known to be throughput
optimal. However, traditional backpressure requires knowledge
of the queue sizes at all nodes in the network, and cannot be
used at uncontrollable nodes. A natural alternative is to apply
backpressure only at overlay nodes. However, as we show in
the following example, applying backpressure at overlay nodes
is not sufficient for network stability.

Traditional backpressure operates as follows. For each link
(a, b), define the differential backlog W c

ab(t),

W c
ab(t) = Qc

a(t) − Qc
b(t), ∀ (a, b) ∈ E , ∀ c ∈ N ,

and define commodity c∗ab(t) that maximizes this weight,

c∗ab(t) ∈ argmax
c∈N

W c
ab, ∀ (a, b) ∈ E . (12)

The BP policy chooses

μ
c∗ab

ab (t, BP) =

{
Rab if W

c∗ab

ab > 0
0 otherwise,

(13)

where μc
ab(t, BP) = 0, ∀c �= c∗ab.

In [16], this policy was shown to stabilize the network for
any arrival rates in the region ΛG(N ). The intuition behind
the optimality of BP is that congestion information propagates
through the network via queue backlogs. The policy balances
neighboring backlogs, such that when node n becomes con-
gested, any upstream neighbors of n also become congested.
Ultimately each node can optimally route packets to avoid
congestion based only on the observation of neighbor backlog.
In our setting, the uncontrollable nodes do not use BP, and thus
any congestion occurring on these nodes is not propagated.

Consider the example of Fig. 9a, where (controllable)
overlay nodes V = {1, 2, 5, 6} are indicated in blue, with
directed unit-rate links. It can easily be verified that the all-
paths condition C.1 is satisfied for this setting, thus ΛG(V) =
ΛG(N ). The dashed red arrows show two traffic demands
with symmetric arrival rates λ. With unit-rate links, offered
load ρ = λ, where ρ < 1 is required for this network to be
stable. We examine two different cases. First, we run BP at
all nodes; this achieves maximum throughout and it is stable

for all ρ < 1. Second, we run BP only at overlay nodes,
computing differential backlogs across the overlay edges, e.g.
node 2 computes W 6

2,5 = Q6
2 − Q6

5 and W 6
2,6 = Q6

2 − Q6
6.

Simulation results in Fig. 9b show that BP at the overlay nodes
cannot stabilize ρ > 2/3, i.e. it is throughput suboptimal. The
intuition is as follows. Note that Q6

6 = 0, since node 6 is
a destination. Then, any congestion at uncontrollable node 3
cannot be detected by source node 2, leading to positive traffic
flow from source 2 through node 3.

Thus, using backpressure only in the overlay nodes hides
any queue buildup in the underlay, and results in loss of
throughput. When the overlay tunnels do not overlap,3 it is
possible to infer the congestion in the underlay by observing
the packets-in-flight (Fvw(t)). This motivates our policy in the
next section, which is throughput optimal when tunnels do not
overlap. However in general tunnels do overlap, and Fvw(t)
no longer provides sufficient information about the backlog
of flows along different tunnels. Thus, in Section VII-C
we propose a simple heuristic scheme for general overlay
networks with overlapping tunnels.

B. Threshold-Based Routing Scheme

Our threshold policy attempts to keep the number of packets
inside the tunnel bounded, while at the same time keep traffic
flowing through the tunnel whenever the backlog outside the
tunnel is sufficiently large. Let Mij be the number of underlay
nodes associated with tunnel (i, j), Rmax

ij be the maximum link
capacity along the tunnel, Rmin

ij be the minimum link capacity
in the tunnel, and Rin

ij be the capacity of the input link to the
tunnel. Now define the threshold, T , as follows:

T � max
(i,j)∈E

[
MijR

min
ij +

Mij(Mij − 1)
2

Rmax
ij + Rin

ij

]
(14)

The value of T is engineered for the following effect: if
Fij(t) > T then we are sure that in slot t + 1 the tunnel
will output Rmin

ij packets.
Due to work-conservation, if tunnels do not overlap, a

tunnel with “sufficiently many” packets has instantaneous
output equal to its bottleneck capacity. Thus, we propose
the following Threshold-based Backpressure (BP-T) Policy
which is designed to keep the tunnel backlogs close to the
threshold T .

At each time slot t and tunnel (i, j), let

c∗ij ∈ argmax
c∈C

[
Qc

i (t) − Qc
j(t)

]
,

be a session that maximizes the differential backlog between
overlay nodes i, j, ties resolved arbitrarily. Then route into that
tunnel

μ
c∗ij

ij (t, BP-T) =

⎧
⎪⎨

⎪⎩

Rin
ij if Q

c∗ij

i (t) > Q
c∗ij

j (t)
AND Fij(t) < T

0 otherwise

(15)

and μc
ij(t, BP-T) = 0, ∀c �= c∗ij .

BP-T is similar to applying backpressure in the overlay,
with the striking difference that no packet is transmitted to

3Two tunnels are said to overlap if they share an underlay link.
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Fig. 10. Throughput comparison of routing schemes: BP-T, BP-O,
Shortest Path, and BP.

a tunnel if Fij(t) ≥ T . Therefore, when tunnels do not
overlap, the total tunnel backlog is limited to at most T+Rmax,
where Rmax is the maximum number of packets that may
enter the tunnel in one slot. Thus, the threshold-based policy
keeps the tunnel occupancy bounded, and ensures that when
the tunnel is full, a minimum rate of flow out of the tunnel is
guaranteed. It is the combination of these two conditions that
guarantees the throughput optimality of BP-T when tunnels
do not overlap.

Theorem 3: If underlay nodes use a work-conserving
scheduler and the tunnels are non-overlapping, BP-T is stable
for all arrival rates within the network stability region ΛG(V).

The proof is based on a pipelining argument combined with
a K-slot Lyapunov drift analysis. The proof details can be
found in [11].

BP-T is a distributed policy since it utilizes only local queue
information and the capacity of the incident links, while it is
agnostic to arrivals, or capacities of remote links, e.g. note
that the decision does not depend on the capacity of the
bottleneck link Rmin

ij . Moreover, tunnel backlogs Fij(t) can
be estimated at each overlay node using acknowledgments.
In practice, these estimates may be delayed; however, it is
easy to show that bounded delays do not affect stability [9].

We simulate the BP-T scheme on the simple network
topology of Fig. 8, where we define two sessions sourced at
a; session 1 destined to e and session 2 to c. We assume
that Rab = 2 and all other links have unit capacity as
shown in the figure. We choose Rab in this way to make the
routing decisions of session 1 non-trivial. We use a threshold
value of T = 6, which satisfies (14) in this example setting.
Since the example satisfies the non-overlapping tunnel con-
dition, by Theorem 3 our policy achieves the full throughput
region (ΛG(V)), as can be seen in Fig. 10. Also shown in
the figure is the performance of backpressure at overlay nodes
only (BP-O), and of backpressure at all nodes (BP). As can
be seen, BP-T achieves the same throughput region as BP
and greater throughput region than BP-O and shortest path
routing.

To better understand the operation of BP-T, we examine a
sample path evolution of this system under BP-T for the case
where λ1 = λ2 = 0.97. In this setting, in order to achieve
stability, session 1 must use its dedicated path (a, d, e), and
send almost no traffic through tunnel ac. Focusing on the
tunnel ac, Fig. 11 shows the differential backlogs per session
Qc

a(t) − Qc
c(t) and the corresponding tunnel backlog Fac(t)

for a sample path of the system evolution.

Fig. 11. Sample path evolution of the system under BP-T, λ1 = λ2 = .97.

In most time slots a is congested, which is indicated by
high differential backlogs. In such slots, the tunnel has more
than 1 packet, which guarantees that it outputs packets at
highest possible rate, hence the tunnel is fully utilized. Recall
that when the tunnel is full (Fac(t) > T =6) no new packets
are inserted to the tunnel preventing it from exceeding Fmax.
Observe that the differential backlog of session 2 always
dominates the session 1 counterpart, and hence whenever a
tunnel is again ready for a new packet insertion, session 2 will
be prioritized for transmission according to (15). Therefore,
the proportion of session 2 packets in this tunnel is close
to 100%, which is the correct allocation of the tunnel resources
to sessions for this case.

C. Overlay Backpressure Heuristic Algorithm

Although we are able to show that the BP-T is throughput
optimal when tunnels do not overlap, its performance in
the general case of overlapping tunnels is not guaranteed.
Nonetheless, simulation results on simple overlapping tunnel
topologies indicate good throughput performance even when
tunnels overlap [12]. In this section, we propose a heuristic
scheme that is inspired by BP-T, yet is much simpler to
implement. In particular, our heuristic takes tunnel congestion
into account, but does not require the threshold computation
and associated knowledge of the underlay topology.

1) Overlay Backpressure (OBP): Redefine the differential
backlog as,

W c
vw(t) = Qc

v(t) −Qc
w(t) −F c

vw(t), ∀ (v, w) ∈ E , ∀ c ∈ N ,

then determine c∗vw and μc
vw(t, OBP) as in Eqns. (12)-(13).

Intuitively, this policy takes into account both the packet
accumulation at the neighbor overlay node v, as well as any
packets-in-flight on the path Pvw, in the form of negative
pressure.

Although we are not able to demonstrate the throughput
optimality of OBP, we studied its performance through exten-
sive simulations. We observe the following properties of the
algorithm. (i) OBP maximizes throughput in all examined
scenarios, including the one of Fig. 9a, (ii) OBP outperforms
BP applied only at overlay nodes, and (iii) OBP has good delay
properties, outperforming BP even when the latter is applied
at all nodes.

In Fig. 12, we study different arrival vectors for the network
of Fig. 9a. The simulation results in Fig. 12b show that all
studied vectors are supported by the OBP policy.
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Fig. 12. Evaluation of OBP policy on scenario from Fig. 9a. (a) Throughput
region of Fig. 9a, with select rate vectors indicated. (b) Average queue backlog
of OBP, after 1e6 time steps, for rate vectors indicated in (a).

Fig. 13. Directed tandem with n nodes. (b) BP versus OBP for offered load
ρ = 0.8. Quadratic growth for BP. Linear growth for OBP. (c) BP versus OBP
for n = 25. Quadratic backlog in BP results for ρ > 0.5. Dotted horizontal
line at n(n − 1)/2 for BP, and at 2n for OBP.

In Fig. 13, we study a directed tandem network for the
purpose of illustrating the delay properties of OBP. From [2]
it is known that for BP on a tandem network, per-node
queues grow linearly with distance from the destination, and
thus network queue size grows quadratically with the total
number of nodes. However, for the OBP policy we observe this
linear growth of per-node queues only at controllable nodes,
implying smaller total network queues size and improved

Fig. 14. Comparing OBP with BP on a random graph. (a) Scenario with
two symmetric traffic demands. (b) Average queue size for BP, BP+SP,
and OBP.

delay performance when there are few controllable nodes. In
this particular example, only the source is controllable, with
n−1 legacy nodes, a setting that corresponds to the maximum
benefit. Delay is compared between BP and OBP for a fixed
offered load in Fig. 13b and for a fixed number of nodes
in Fig. 13c. Although BP is applied at all nodes it is still
outperformed by OBP applied only at the source.

Finally, in Fig. 14, we show simulation results from three
policies: OBP, BP at all nodes, and BP with shortest-path
bias (BP+SP) from [9].

Although the latter two are both throughput optimal policies,
they yield worse delay than OBP. The reason is threefold:
(i) the quadratic network queue size of BP is proportional
to the number of controllable nodes used (in this scenario,
OBP uses only 5 overlay nodes), (ii) no packets are sent to
attached trees in case of OBP, and (iii) under light traffic,
packets under BP perform random walks.

Finally, we consider the performance of OBP on a ring
network with N = 20 nodes and V = 3 overlay nodes,
where V = 3 was proved sufficient to achieve ΛG(V) = ΛG

by Lemma 5. The scenario is shown in Fig. 15a, with two
competing traffic demands indicated with red arrows. Fig. 15b
shows the throughput region for these two traffic demands,
with 4 rate vectors identified, and results for the OBP policy
on these rate vectors is shown in Fig. 15c. For each rate vector,
we see the queues remain small for all points internal to the
throughput region, indicating that OBP can stabilize the system
for these vectors.
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Fig. 15. Evaluation of OBP on a ring with N = 20 nodes. (a) Overlay nodes
indicated in blue; two traffic demands shown with red arrows. (b) Throughput
region for competing traffic demands λ8

1 and λ15
8 . Various rate vectors

identified for simulation. (c) Queue size of OBP policy after 1 million time
steps for rate vectors indicated in (b).

While our OBP policy seems to perform well in simulations,
we do not believe that it is optimal in general settings.
A promising future direction of research is to identify a
maximally stable dynamic routing policy for our overlay
architecture.

VIII. OVERLAY NODES IN WIRELESS NETWORKS

The goal of this section is to motivate the need for additional
study into the placement of overlay nodes for networks with
wireless interference.

The all-paths condition C.1 is sufficient to achieve ΛG(V) =
ΛG in all networks, but this condition is not always a necessary
condition in wireless networks. In other words, satisfying the
all-paths condition may over allocate controllable nodes under
certain wireless interference models. To see this, consider a
clique where all edges have unit-capacity and all transmissions
mutually interfere. Due to interference, the maximum network
sum throughput in this scenario is one, and this maximum
throughput can only be achieved when each source a sends
to destination b directly over edge (a, b). Thus no multi-hop
paths are required, and the all-paths condition is sufficient but
not necessary for this scenario.

To illustrate an overlay network in a wireless scenario,
we study the performance of the overlay node placement
algorithm on random geometric graphs, which is a simple
model for wireless networks with omnidirectional antennas.
The geometric model has parameters N and r, where N is the
number of nodes and r is the edge range. Random graphs are
then generated by randomly placing N nodes in a unit square,

Fig. 16. Results of overlay node placement algorithm on random geometric
graphs with N = 500 nodes. The blue curve shows the ratio V/N of overlay
nodes to total nodes. The red curve shows the ratio C/N for size of largest
connected component to total nodes.

and creating all edges (a, b) for which the Euclidean distance
between nodes a and b is within range r. Fig. 16 shows results
of the overlay node placement algorithm on random graphs
with N = 500, averaged over 10 realizations per data point.
Here, we see for the geometric model that the number of
overlay nodes, V , placed by our algorithm grows much faster
than the size of the largest connected component, C. The
reason is twofold: (i) triangles appear in minor components,4

and (ii) multiple large components grow simultaneously.
The results for random geometric graphs show that the

overlay node placement algorithm chooses most nodes to be
controllable. However, as noted above, the placement of con-
trollable nodes by this algorithm is sufficient but may not be
necessary for wireless networks. Thus, the minimum number
of controllable nodes required to provide full throughput in
wireless networks is unclear. A topic for future work is a study
of the necessary conditions for ΛG(V) = ΛG under various
interference models.

IX. CONCLUSIONS

We study optimal routing in legacy networks where only a
subset of nodes can make dynamic routing decisions, while
the legacy nodes can forward packets only on pre-specified
shortest-paths. This model captures evolving heterogeneous
networks where intelligence is introduced at a fraction of
nodes. We propose a necessary and sufficient condition for
the overlay node placement to enable the full multicommodity
throughput region. Based on this condition, we devise an
algorithm for optimal controllable node placement. We run
the algorithm on large random graphs to show that very
often a small number of intelligent nodes suffices for full
throughput. Finally, we propose dynamic routing policies to
be implemented in a network overlay. We provide a threshold-
based policy that is optimal for overlays with non-overlapping
tunnels, and provide and alternate policy for general networks
that demonstrates superior performance in terms of both
throughput and delay.

4If edges (a, b) and (a, c) exist at range r, then the distance between
b and c is at most 2r. Thus, every degree-2 node at range r is on a triangle at
range 2r.
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APPENDIX

Proof of Sufficiency for Theorem 1: We will show that
the all-paths condition is sufficient for supporting any mul-
ticommodity vector λ ∈ ΛG while bifurcating traffic only
at nodes V . Feasibility of λ implies existence of a feasible
flow decomposition of λ. Without loss of generality, choose
any one component of λ that sends flow from node a to
node b with corresponding arrival rate λb

a. This arrival rate
λb

a is supported by flow fλ
ab, where fλ

ab can be decomposed
into subflows fλ

ab(p) for paths p ∈ Pab. Since V satisfies all
path condition it follows that all-paths Pab can be formed as
concatenations of available shortest paths on nodes V , and
thus the feasible flow decomposition can be constructed with
a stationary policy using underlay routes and the given set of
controllable overlay nodes. �

Proof of Necessity for Theorem 1: We will show that given
a V such that there is a path that is not available either as a
shortest path or as a concatenation, i.e. the all-paths condition
is not satisfied, the full throughput region cannot be achieved.
Support of the full throughput region requires support for
all arrival rate vectors interior to the rate region allowed by
the network. Assume ΛG(V) = ΛG and some path P X

ab is
unavailable, both as a shortest-path and as an n-concatenation
of shortest-paths at controllable nodes V . Without loss of
generality, assume that this unavailable path does not traverse
any controllable nodes. Otherwise, split the unavailable path at
controllable nodes and choose an unavailable segment induced
from the split as path P X

ab; such an unavailable segment must
exist, otherwise the original path could be formed as an n-
concatenation of the induced segments. We will show that
there exists a feasible arrival rate vector that requires use of
the unavailable path P X

ab.
Construct an arrival rate vector λ that includes component

λb
a equal to the maximum flow allowed for path P X

ab, plus
edge rate Rab if edge (a, b) exists. In vector λ, also include
one-hop traffic demands for all edges (i, j) ∈ E \ (a, b) by
choosing λj

i to equal any remaining capacity on edge (i, j).
This rate vector λ is then feasible by construction.

Let NX
ab be the set of nodes on path P X

ab. For every node j
not on path P X

ab, i.e., j ∈ N \NX
ab, the arrival rate vector λ was

constructed such that
∑

i λj
i =

∑
i Rij . Applying the edge

rate constraints from Eqn. (6) at node j and taking the sum
over all neighbors i, we have

∑
i

∑
x,y,c fxy,c

ij ≤
∑

i Rij =∑
i λj

i for all j ∈ N \ NX
ab, where the final equality comes

from the previous equation. Then flow conservation requires
that fxy,c

ij = 0 for all commodities c �= j. Thus, no feasible
flow decomposition of λ can route flow for λb

a through any
nodes in N \NX

ab. Therefore, it remains to consider only nodes
in NX

ab to support λb
a.

If P X
ab is the only path from node a to b using nodes

from the set NX
ab, then P X

ab is clearly necessary to support
flow λb

a. Otherwise, recall that by assumption there are no
controllable nodes intermediate to path P X

ab. Then it remains
only to consider the case where the shortest-path from node
a to b uses a strict subset of nodes in NX

ab, as no controllable
nodes are available for path concatenation. Consider edge (i, j)
such that nodes i and j are on path P X

ab, where edge (i, j) is

on P SP
ab but not on P X

ab. Here, P SP
ij = (i, j) is the only available

path from i to j with unused capacity, because no controllable
nodes are available. Then, f ij,j

ij = λj
i = Rij , and Eqn. (6)

requires fab,b
ij = 0. Therefore, there is no unused capacity on

path P SP
ab , so λb

a and λj
i cannot be supported simultaneously.

There are no other paths to consider from node a to b for a
feasible flow decomposition of λ.

Therefore, ΛG(V) ⊂ ΛG if any path is not available. Thus,
we have proved the necessity of the all-paths condition for
wired networks with shortest-path routing. �

Proof for Lemma 2: Let (b, x) be an edge in G′ but not
in Dn, where such an edge exists by the premise of Lemma 2.
Consider path p formed from the concatenation of (b, x) and
shortest-path P SP

xn. We will show that this path cannot be
formed if there are no controllable nodes in the shortest path
from x to n, and thus the all-paths condition C.1 is not
satisfied.

First, observe that since edge (b, x) is not on tree Dn,
shortest-path P SP

bn does not include this edge. Thus, the path p
requires a concatenation of two or more shortest-paths. Such a
concatenation must occur at a controllable node on path P SP

xn.
However, this is impossible since there are no controllable
nodes on path P SP

xn. Thus, C.1 is not satisfied. �
Proof for Lemma 4: Consider controllable nodes v, w ∈ V

on a cycle, and without loss of generality assume shortest-path
P SP

vw is on the cycle. Then path P SP
vw allows one direction of

flow on the cycle, and at least one additional controllable node
is required to allow flow in the counter direction on the cycle.
Note that the same problem occurs in scenarios with 0 or 1
controllable node on the cycle, and when path P SP

vw is not on
the cycle. Thus, at least 3 controllable nodes are required on
each cycle in the network. �

Proof for Lemma 5: Lemma 4 establishes the necessity
of at least 3 controllable nodes, so it only remains to show
that 3 controllable nodes are sufficient to satisfy the all-paths
condition.

Starting from any node x, consider nodes y and z that are
neighbors, i.e., (y, z) ∈ E , where shortest-paths P SP

xy and P SP
xz

are disjoint. Without loss of generality assume |P SP
xy | ≤ |P SP

xz |
where |p| is the length of path p. With hop-count as the
shortest-path metric, the length of these disjoint shortest-
paths can differ at most by 1. Otherwise, there would exist
a contradiction, as the path formed as a concatenation of P SP

xy

with edge (y, z) would be shorter than shortest-path P SP
xz . Then

the following inequality holds for any number of nodes N ≥ 5.

|P SP
xy | ≥

⌊
N − 1

2

⌋
≥ N

3
(16)

Therefore, any node can reach a minimum of N/3 nodes in
either direction around the ring using shortest-path routing.
Conversely, any node can be reached by a minimum of N/3
nodes in either direction. Then we can place 3 controllable
nodes, v1, v2, and v3, such that shortest-paths P SP

vivj
and P SP

vivk

are edge-disjoint for all permutations i, j, k ∈ {1, 2, 3}. The
overlay edges between these controllable nodes then form a
bidirectionally connected ring as shown in Fig. 1, making use
of all-paths between the controllable nodes. Every uncontrol-
lable u is on the shortest-path between two controllable nodes
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vi and vj ; thus, by optimal substructure, paths P SP
uvi

and P SP
uvj

are edge-disjoint paths from u to vi and vj , and paths P SP
viu

and P SP
vju are edge-disjoint paths from vi and vj to node u.

Then every path in the network is either a shortest-path or
can be formed as an n-concatenation of shortest paths, and
the all-paths condition is satisfied with exactly 3 controllable
nodes. �
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