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Channel Probing in Opportunistic
Communication Systems

Matthew Johnston, Isaac Keslassy, and Eytan Modiano

Abstract— We consider a multi-channel communication system
in which a transmitter has access to M channels, but does not
know the state of any of the channels. We model the channel state
using an ON/OFF Markov process, and allow the transmitter to
probe a single channel at predetermined probing intervals to
decide over which channel to transmit. For models in which the
transmitter must transmit over the probed channel, it has been
shown that a myopic policy probing the channel most likely to be
ON is optimal. In this paper, we allow the transmitter to select
a channel over which to transmit that is potentially different
from the probed channel. For a system of two channels, we show
that the choice of which channel to probe does not affect the
throughput. For a system with many channels, we show that a
probing policy that probes the channel that is the second-most
likely to be ON results in higher throughput. We extend the
channel probing problem to dynamically choose when to probe
based on probing history, and characterize the optimal probing
policy for various scenarios.

Index Terms— Communication networks, wireless networks,
optimal scheduling.

I. INTRODUCTION

CONSIDER a communication system in which a trans-
mitter has access to multiple channels over which to

communicate. The state of each channel evolves independently
from all other channels, and the transmitter does not know the
channel states a priori. The transmitter is allowed to probe
a single channel after a predefined time interval to learn the
current state of that channel. Using the information obtained
from the channel probes and the memory in the channel
state process, the transmitter selects a channel in each time-
slot over which to transmit, with the goal of maximizing
throughput, or the number of successful transmissions.

This framework applies broadly to many opportunistic com-
munication systems, in which there exists a tradeoff between
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overhead and performance. In many wireless communica-
tion systems, knowledge of the instantaneous channel state
can improve the network throughput. For example, in an
LTE network, transmitters can intelligently select subcarri-
ers which have a high channel quality [3]. Additionally,
in scenarios in which an adversarial jammer is attempting
to block communication, channel probing may be used to
find the frequency bands that yield the highest throughput.
However, when there is a large number of channels over
which to transmit, or a large number of users to transmit
to, it may be impractical to learn the channel state informa-
tion (CSI) of every channel before scheduling a transmission;
consequently, it may be only practical for the transmitter
to obtain partial channel state information, and use that
partial CSI to make a decision. Therefore, the transmitter
must decide how much information to obtain, and which
information is needed in order to make efficient scheduling
decisions.

In the context of channel probing, the decision of what
information to obtain translates to the decision of which
channel to probe. We refer to this decision as the probing
policy. Similarly, the decision of how much information to
acquire translates to deciding how often to probe channels
for CSI. This decision is referred to throughout this work
as the probing interval. We consider both the scenario in
which the probing interval is constant between channel probes,
and the scenario where the probing interval is a function of
the channel probing history, and is allowed to vary from probe
to probe.

Several works have studied channel probing policies in
multichannel communication problems [4]–[10]. Of particular
interest is the work in [11] and [12], in which the authors
assume that after a channel is probed, the transmitter must
transmit over that channel. They show that the optimal probing
policy is a myopic policy, which probes the channel most
likely to be ON. This model is also considered in [4], which
characterizes the capacity region achievable and solves for the
optimal policy as the limit of a sequence of linear programs in
terms of state action frequencies with increasing state spaces.
The work in [13] extends the common two-state channel model
to a multi-state Markov model, and establishes the optimality
of myopic policy in a system similar to that of [11] and [12],
in which the transmitter must use a probed channel over which
to transmit.

The works in [5]–[9] consider a model where the channel
state is independent over time; thus, probing a channel in the
current slot will yield no information about that channel in the
future. Furthermore, these works allow for multiple channel
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probes per time slot, and are concerned with finding the opti-
mal subset of channels. On the other hand, [5]–[7], [14], [15]
consider a sequential channel probing problem. In this frame-
work, transmitters are able to probe one channel at a time,
and based on the result of that channel probe, decide whether
to probe another channel, use one of the probed channels for
transmission, or use an un-probed channel to save on the addi-
tional overhead of channel probing. These works are typically
modeled as stopping-time stochastic optimization problems,
where the optimization is concerned with a single time slot.
The work in [14] shows the optimal stopping-time policy
obeys a threshold structure, and can be described by an index
policy. The work in [15] considers independent, Rayleigh
faded channels and shows that a 1-step lookahead policy
is optimal for this setting. The work in [16] also analyzes
the sequential probing problem, but carefully considers the
overhead associated with acquiring channel state information
in an 802.11 implementation. Our paper differs from the above
works as we restrict the transmitter to probing a single channel
at each time slot due to the time and bandwidth associated with
the CSI acquisition.

Tang and Krishnamachari [17] consider allocating power
to two channels, with channel states that vary over time
according to a Markov Process. They formulate the rate
allocation problem as a partially observable Markov decision
process (POMDP) and show several properties of the optimal
solution. Finally, the work in [18] assumes the controller has
full CSI, but this information is delayed, in that it takes several
time slots for the controller to learn the channel state of each
channel.

In this work, we study the channel probing problem for
wireless opportunistic communication, in which the trans-
mitter is able to transmit over a channel other than that
which was probed. This model aims to capture the benefit of
opportunistically selecting channels based on a time-varying
channel state. In a system with two channels, we show that
the choice of which channel to probe does not affect the
expected throughput. Additionally, we identify scenarios such
that when the probability distribution of the channel state
differs between the two channels, it is optimal to always probe
one of the channels. For a system with an asymptotically large
number of channels, we show that the myopic probing policy
in [11] and [12] is no longer optimal. Specifically, we prove
using renewal theory that a simple policy, namely the policy
which probes the channel that is second most likely to be ON,
has a higher per-slot expected throughput. We characterize
the per-slot throughput for these policies, and calculate the
optimal fixed probing interval as a function of a fixed probing
cost. Furthermore, we prove the optimality of this policy for
a system of three channels, and conjecture that this policy
is in fact optimal for systems with any number of channels.
In the second half of the work, we extend our model to allow
for a dynamic optimization of the probing intervals based on
the results of past channel probes. We formulate the problem
as a Markov decision process, and introduce a state action
frequency approach to solve for the optimal probing intervals.
For the case of an infinite system of channels, we explicitly

Fig. 1. System model: transmitter and receiver connected through
M independent channels.

Fig. 2. Markov Chain describing the channel state evolution of each indepen-
dent channel. State 0 corresponds to an OFF channel, while state 1 corresponds
to an ON channel.

characterize the optimal probing interval for various probing
policies.

The remainder of this paper is organized as follows.
We describe the model and problem formulation in detail in
Section II. In Section III, we analyze the channel probing prob-
lem for a system with two channels. In Section IV, we find the
optimal probing policy for a system with three channels, and
conjecture the optimal policy in a general system. We extend
this to an infinite channel system in Section V, and apply
renewal theory to show that the myopic policy is suboptimal
by analytically computing the expected per-slot throughput
of another policy, which is proven outperform the myopic
policy of [11]. In Section VI, we solve for the optimal probing
intervals when a fixed cost is associated with probing.

II. SYSTEM MODEL

Consider a transmitter and a receiver that communicate
using one of M independent channels, as shown in Figure 1.
Assume time is slotted and at every time slot, each channel is
either in an OFF state or an ON state. Channels are i.i.d. with
respect to each other, and evolve across time according to a
discrete time Markov process described by Figure 2.

At each time slot, the transmitter chooses a single channel
over which to transmit. If that channel is in the ON state,
then the transmission is successful; otherwise, the transmission
fails. We assume the transmitter does not receive feedback
regarding previous transmissions.1 The objective is to maxi-
mize the expected sum-rate throughput, equal to the number
of successful transmissions over time.

The transmitter obtains channel state information (CSI)
by explicitly probing channels at predetermined intervals.
In particular, the transmitter probes the receiver every k slots

1If such feedback exists in the form of higher layer acknowledgements,
it arrives after a significant delay and is not useful for learning the channel
state.
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for the state of one of the channels at the current time. Assume
this information is delivered instantaneously, which is the
same assumption made in many previous works [9], [11].
The transmitter uses the history of channel probes to make
a scheduling decision. We emphasize that the transmitter
may use a channel other than that which was probed for
transmission. For example, if the transmitter probes a channel
and it is found to be OFF, the transmitter can use a different
channel for that transmission which is more likely to be ON.

While some communication systems, such as cognitive
radio and systems that employ sophisticated physical layer
techniques (e.g., beam forming, rate adaptation) do require
probing a channel before transmission, for many wireless com-
munication systems channel sensing is not a requirement. Such
systems may not achieve maximum throughput without sens-
ing when the channel is time varying, but they are often much
simpler to implement. Moreover, in a multi-channel system,
the transmitter can choose a channel blindly, or acquire CSI
of that channel at some overhead cost. Channel probing could
also be used as a defense against a jammer. The transmitter has
the option of guessing that the selected channel is not being
interfered with by the jammer, or probing the channel to be
absolutely sure. Sensing may not be required in this case, but
can be used to improve throughput and reliability. Therefore,
the option of transmitting without probing is included in our
work to capture the tradeoff between explicitly acquiring CSI,
and using previously acquired CSI (or guessing) to transmit
and cut down on the overhead costs.

A. Notation

Let Si (t) be the state of channel i at time t , where Si (t) = 1
corresponds to a channel that is ON at time t , and Si (t) = 0
corresponds to channel in the OFF state. The transmitter has
an estimate of this state based on previous probes and the
channel state distribution. Define the belief of a channel to
be the probability that a channel is ON given the history of
channel probes. For any channel i that was last probed k slots
ago and was in state si , the belief xi is given by

xi (t) = P
(
Channel i is ON|probing history

)

= P
(
Si (t) = 1|Si (t − k) = si ) (1)

where the second equality follows from the Markov prop-
erty of the channel state process. The above probability
is computed using the k-step transition probabilities of the
Markov chain in Figure 2:

pk
00 = q + p(1 − p − q)k

p + q
, pk

01 = p − p(1 − p − q)k

p + q

pk
10 = q − q(1 − p − q)k

p + q
, pk

11 = p + q(1 − p − q)k

p + q
. (2)

Throughout this work, we assume that 1 − p − q ≥ 0, cor-
responding to channels with “positive memory.” The positive
memory property ensures that a channel that was ON k slots
ago is more likely to be ON at the current time, than a channel
that was OFF k slots ago. This allows the transmitter to make
efficient scheduling decisions without explicitly obtaining CSI

at each time slot. Mathematically, this property is described
by the set of inequalities:

pi
01 ≤ p j

01 ≤ pk
11 ≤ pl

11 ∀i ≤ j ∀l ≤ k. (3)

As the CSI of a channel grows stale, the probability that
the channel is in the ON state approaches π , the stationary
distribution of the chain in Figure 2.

lim
k→∞ pk

01 = lim
k→∞ pk

11 = π = p

p + q
. (4)

Lastly, let τ k(·) be the function representing the change in
belief of a channel over k time-slots when no new information
regarding that channel is obtained.

τ k(xi ) = xi pk
11 + (1 − xi )pk

01 (5)

This function will be used throughout this paper when ana-
lyzing the state transition properties of the system.

B. Optimal Scheduling

Since the objective is to maximize the expected sum-rate
throughput, the optimal transmission decision at each time slot
is given by the maximum likelihood (ML) rule, which is to
transmit over the channel that is most likely to be ON, i.e. the
channel with the highest belief. The expected throughput in a
time slot is therefore given by

max
i

xi(t). (6)

where xi (t) is the belief of channel i at time t . Following the
linearity of the state transition function τ k(xi ) in (5), and the
positive memory assumption, the optimal scheduling decision
remains the same in between channel probes, as no additional
CSI is obtained.

III. TWO-CHANNEL SYSTEM

To begin, we consider a two-channel system, and formulate
the problem of deciding which channel to probe using dynamic
programming (DP), over a finite horizon of length N . Each
index n corresponds to a time slot at which a probing decision
is made. Assume there are k time slots between channel
probes; thus, index n corresponds to time slot t = kn. The
system state at each probing index n is equal to the vector
(x1(n), x2(n)), the belief of channel 1 and channel 2 as defined
in (1). Let f k(x1, x2) be the accumulated throughput over the
k slots between channel probes, when channel 1 is probed. The
function f k(x1, x2) is computed by conditioning on the result
of the state of channel 1. If channel 1 is ON, which occurs
with probability x1, then the transmitter uses that channel for k
slots, resulting in throughput

∑k−1
i=0 pi

11. If the probed channel
is OFF, then the other channel is used for transmission over
those k slots, yielding throughput

∑k−1
i=0 τ i (x2). Consequently,

the expected accumulated throughput is given by

f k(x1, x2) = x1

k−1∑

i=0

pi
11 + (1 − x1)

k−1∑

i=0

τ i (x2) (7)

Similarly, given the above definition, f k(x2, x1) is the accu-
mulated throughput over the k slots between channel probes
when channel 2 is probed.
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We proceed by developing the DP value function for each
probing decision. Let J i

n be the expected reward after the nth
probe if the choice is made to probe channel i at the current
probing instance, and then follow the optimal probing policy
for all subsequent probes. The expected reward after the last
probe is given by:

JN
(
x1, x2

) = max

(
J 1

N

(
x1, x2

)
, J 2

N

(
x1, x2

)
)

(8)

J 1
N

(
x1, x2

) = f k(x1, x2) (9)

J 2
N

(
x1, x2

) = f k(x2, x1) (10)

Equations (9) and (10) follow since N is the final channel
probe (in a time horizon of length N), and thus the only reward
is the immediate reward, which is given by (7). At probing
time 0 ≤ n < N , the expected reward function is defined
recursively. If the decision at probe n is to probe channel 1,
then an expected throughput of f k(x1, x2) is accumulated
between probes, and at the next probe, the belief of channel 1

will be pk
11 (pk

01) if the probed channel was ON (OFF), and the
belief of channel two, which was not probed, will be τ k(x2).
Thus, Jn(x1, x2) is defined recursively as:

Jn
(
x1, x2

) = max

(
J 1

n

(
x1, x2

)
, J 2

n

(
x1, x2

)
)

(11)

J 1
n

(
x1, x2

) = f k(x1, x2) + x1 Jn+1(pk
11, τ

k(x2))

+ (1 − x1)Jn+1(pk
01, τ

k(x2)) (12)

J 2
n

(
x1, x2

) = f k(x2, x1) + x2 Jn+1(τ
k(x1), pk

11)

+ (1 − x2)Jn+1(τ
k(x1), pk

01) (13)

The dynamic program in (8)-(13) can be solved to compute the
optimal probing policy for the two channel system. To begin
with, we prove the following property of the immediate reward
after probing, f k(x1, x2).

Lemma 1: f k(x1, x2) = f k(x2, x1)
The proof of Lemma 1 is given in the Appendix. Lemma 1

states that the immediate reward for probing channel 1 is the
same as that for probing channel 2, for all probing inter-
vals k. This is a consequence of the ability of the transmitter
to choose over which channel to transmit after a channel
probe, and accounts for the key difference between the model
considered in this paper, and models considered in previous
works [11], [12]. Using this result, we present the main result
of this section.

Theorem 1: For a two-user system with independent chan-
nels evolving over time according to an ON/OFF Markov
chain with transition probabilities p and q, and probing
epochs fixed at intervals of k slots, then for each channel
probe, the total reward from probing channel 1 is equal to
that of probing channel 2.

Corollary 1: The channel probing policy which always
probes channel 1 (2) is optimal in a two-channel system.

The proof of Theorem 1 is given in the Appendix, and
follows using induction based on Lemma 1, and the affinity of
the expected reward function in (8)-(13). Corollary 1 follows
directly from Theorem 1. Intuitively, when a channel is probed,
the transmitter receives information about the optimal channel
to use until the next probe. For example, if the probed channel
is ON, it is optimal to transmit over that channel until the next

Fig. 3. Optimal fixed probing interval for a two channel system as a function
of state transition probability p = q. In this example, c = 0.5.

probe occurs. On the other hand, if the probed channel is OFF,
it is optimal to transmit over the un-probed channel, because
the belief of that channel will always be higher than that of the
OFF channel, based on the inequalities in (3). Thus, the only
information required from the channel probe is which channel
to transmit over until the subsequent channel probe, and this
information can be obtained through probing either channel.

This result is in contrast to the result in [12], which proves
that the optimal decision is to probe the channel with the high-
est belief. However, their model assumed that a transmission
must occur on the probed channel, whereas our model allows
the transmitter to choose the channel over which to transmit
based on the result of the probe. Consequently, the myopic
policy of [12] is not a uniquely optimal policy in this setting.

Theorem 1 is used to determine the optimal fixed prob-
ing interval. Clearly, probing more frequently yields higher
throughput, but requires more resources as well. To capture
this, we associate a fixed cost c with each probe. The goal is to
determine the probing interval k that maximizes the difference
between throughput earned and cost accumulated.

Theorem 2: Assume a fixed-interval probing scheme with
probing cost c. The optimal probing interval is given by

k∗ = arg maxk
πpk

10 − c(p + q)

k(p + q)
. (14)

Proof: From Corollary 1, the optimal probing policy
is that which always probes channel 1. Under this policy,
the belief of channel 2 equals the steady state probability of
being in the ON state (π) given in (4). Channel 1 is probed
every time, and will be on a fraction π of the time. When
channel 1 is ON, a throughput of

∑k−1
i=0 pk

11 is obtained, and
when it is OFF, the throughput is simply πk, the expected
throughput yielded by channel 2 over an interval of duration k.
Consequently, the expected per-slot throughput accounting for
the cost of probing is given by

1

k

(
−c+π

k−1∑

i=0

pi
11+(1−π)πk

)
= −c

k
+π+ πpk

10

k(p + q)
. (15)

The proof follows by maximizing the above expression with
respect to k. �

Figure 3 shows the optimal probing interval as a function
of the state transition probability. As the state transition
probability increases, each probe gives less information for the
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Fig. 4. Throughput under the optimal fixed-interval probing policy for a
two-channel system as a function of the state transition probability p = q .

Fig. 5. Two asymmetric Markov Chains, where 1 − p1 − q1 ≥ 0,
1 − p2 − q2 ≥ 0. (a) Channel 1. (b) Channel 2.

same cost. Thus, as the transition probability starts to increase,
the optimal probing interval decreases, since information needs
to be obtained more frequently to account for the reduced
information in each probe. As p continues to grow, the reward
from probing becomes so small that the cost does not justify
it, and eventually it becomes optimal to not probe.

Figure 4 shows the throughput under the optimal probing
interval from Theorem 2 for various transition probabili-
ties. At the state transition probability increases, throughput
decreases. Note the optimal throughput does not drop below
the steady state probability π , because at that point, it is
optimal not to probe due to the high probing cost, and guess
which channel to use.

Theorems 1 and 2 combine to characterize the optimal
fixed-interval probing-policy for a two channel system. How-
ever, when the two channels are not identically distributed,
the optimal probing decision depends on the channel statistics,
as shown in Section III-A. Furthermore, if the probing epochs
are not fixed, the decision to probe depends on the results
of the previous probe, yielding an advantage to probing one
channel over the other, as shown in Section VI.

A. Heterogeneous Channels

In this section, we extend the results of the previous section
to the case where the two channels differ statistically, i.e.
channel 1 evolves in time according to the Markov chain
in Figure 5a, and channel 2 evolves according to the chain
in Figure 5b. Denote the k-step transition probability of

channel 1 as ak
i, j and the k-step transition probability of

channel 2 as bk
i, j . Additionally, let π1 and π2 be the steady

state ON probability of channel 1 and channel 2 respectively.
Intuitively, it is optimal to probe the channel with more

memory, as that probe yields more information. For example,
consider a channel that varies rapidly, with p1 = q1 = 1

2 − ε,
and a channel which rarely changes state, with p2 = q2 = ε.
Probing the low-memory channel provides accurate informa-
tion for a few time slots, but that information quickly becomes
stale, and the transmitter effectively guesses which channel is
ON until the next probe. On the other hand, probing the high-
memory channel yields information that remains accurate for
many time slots after the probe. This intuition is confirmed in
the following result.

Theorem 3: For a two-user system with channel states
evolving as described above, and probing instances fixed to
intervals of k slots, if p1, p2, q1, q2 satisfy

bi
11 ≥ ai

11 ∀i, (16)

then, the optimal probing policy is to probe channel 2 at all
probing instances.

The proof of Theorem 3 is given in the Appendix, and fol-
lows by reverse induction over the channel probing instances.
To highlight its significance, we present the following
corollaries.

Corollary 2: Assume the two channels satisfy π1 = π2, and
that p1 + q1 ≥ p2 + q2. Then, the optimal policy is to always
probe channel 2.

Proof: We can rewrite the k-step transition probability of
the second chain from (2) as follows.

bi
11 = p2 + q2(1 − p2 − q2)

i

p2 + q2

= π1 + (1 − π1)(1 − p2 − q2)
i (17)

≥ π1 + (1 − π1)(1 − p1 − q1)
i (18)

= ai
11 (19)

where (17) follows from the assumption that π1 = π2, and (18)
follows from the assumption that p1+q1 ≥ p2+q2. Therefore,
bi

11 ≥ ai
11, and applying Theorem 3 concludes the proof. �

Corollary 3: Assume the two channels satisfy p1 + q1 =
p2 + q2, and that π1 ≤ π2. Then, the optimal policy is to
always probe channel 2.

Proof: We can rewrite the k-step transition probability of
the second chain from (2) as follows.

bi
10 = q2(1 − (1 − p2 − q2)

i )

p2 + q2

= (1 − π2)(1 − (1 − p1 − q1)
i ) (20)

≤ (1 − π1)(1 − (1 − p1 − q1)
i ) (21)

= ai
10 (22)

where (20) follows from the assumption that p1+q1 = p2+q2,
and the inequality in follows from the assumption that
π1 ≤ π2. Since bi

10 ≤ ai
10, then bi

11 ≥ ai
11, and Theorem 3

can be applied to complete the proof. �
The above two corollaries describe scenarios where asym-

metries in the channel statistics result in the optimal policy of
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Fig. 6. Throughput of ‘Probe Channel 1’ policy and ‘Probe Channel 2’
policy. In this example, p1 is varied from 0 to 1

2 , and q1 is chosen so π = 3
4 .

The second channel satisfies p2 = 1
4 and q2 = 1

12 , resulting in π2 = π1.

always probing one of the two channels. This is in contrast to
Theorem 1 where the channels are homogeneous, and probing
either channel yields the same throughput. Corollary 2 states
that if the channels are equally likely to be ON in steady
state, the optimal decision is to probe the channel with the
smaller pi +qi . In this context, pi +qi is related to the rate at
which the channel approaches the steady state. In particular,
the Markov channel state approaches its stationary distribution
exponentially at a rate equal to the second eigenvalue of the
transition probability matrix, which for a two-state chain is
1 − p − q . The channel which approaches steady state more
slowly is the channel with more memory, thus confirming our
intuition that probing the channel with more memory is always
optimal. Corollary 3 applies to a system in which the rate at
which the steady state is reached is the same for both channels,
but channel 2 is more likely to be ON in steady state than
channel 1. In this case, it is optimal to probe the channel with
the highest steady state probability of being ON at all probing
instances.

Figure 6 plots the throughput obtained by the policy which
always probes channel 1 versus the policy that always probes
channel 2 for a sample set of parameters, measured through
simulation. For the second channel, p2 = 1

4 and q2 = 1
12 ,

so that π2 = 3
4 . Then π1 is fixed at 3

4 , but p1 is varied from
0 to 1

2 . When channel 1 has less memory than channel 2,
probing channel 1 yields much higher throughput than the
alternative. In this example, when p1 is very small, probing
channel 1 results in a 15% throughput improvement over
probing channel 2.

Theorem 1 and Theorem 3 describe scenarios in which
probing one of the two channels at all probing instances is
optimal. The simplicity of the optimal probing policy in these
cases is an artifact of the transmitter only having two-channels
from which to choose. Theorem 1 does not hold for systems
with more than two channels. As the number of channels
increases, a policy always probing one of the channels is
suboptimal. Therefore, additional analysis is required for a
system with more than two channels.

IV. OPTIMAL CHANNEL PROBING OVER

FINITELY MANY CHANNELS

As mentioned above, for systems with more channels,
i.e. M > 2, the policy of always probing one of the channels

is suboptimal. In particular, the optimal probing policy is a
function of the beliefs of the channels. In this section, we show
that the policy which probes the channel with the second
highest belief is optimal for a system of three channels, and
conjecture an extension to a general system of finitely many
channels.

A. Three Channel System

To begin, consider a system of three channels, with channel
states identically distributed according to the Markov chain
in Figure 2. The following result characterizes the optimal
channel probing policy as a function of the beliefs of the three
channels.

Theorem 4: In a system of three channels, where a single
channel is probed every k slots, the optimal probing policy is
to probe the channel with the second-highest belief.

Denote by xi the belief of the channel with the i th largest
belief. Thus, x1 ≥ x2 ≥ x3. The probe second-best policy
probes the channel with belief x2. If that channel is ON,
the transmitter uses that channel to transmit over for the next
k slots. After these k slots, the best channel is the channel that
was last probed, with belief τ k(1), where τ k is the information-
decay function defined in (5). If on the other hand, the probed
channel is OFF, the transmitter will use the channel with the
highest belief among the remaining channels, x1. After k slots,
that channel will have belief τ k(x1), and the belief of the
probed channel will be the smallest, at τ k(0).

Define a function Wn as follows:

Wn(x1, x2, x3) � f k(x1, x2)+x2 Wn+1
(
τ k(1), τ k(x1), τ

k(x3)
)

+ (1 − x2)Wn+1
(
τ k(x1), τ

k(x3), τ
k(0)

)

for all 0 ≤ n ≤ N , where f k(·) is the immediate reward
function defined in (7). Let WN+1(x1, x2, x3) = 0 by con-
vention. Note that Wn(x1, x2, x3) is the expected throughput
of the probe second-best policy from time n onwards if and
only if x1 ≥ x2 ≥ x3. Additionally, if x2 ≥ x1 ≥ x3, then
Wn(x1, x2, x3) is the expected reward of the policy which
probes the channel with the highest belief at index n, and
then probes the channel with the second highest belief at all
subsequent times. The following results hold for this definition
of Wn , and is used to prove Theorem 4.

Lemma 2: If x1 ≥ x2 ≥ x3, then for all 0 ≤ n ≤ N,

Wn(x1, x2, x3) ≥ Wn(x2, x1, x3) (23)
Lemma 3: If x1 ≥ x2 ≥ x3, then for all 0 ≤ n ≤ N,

Wn(x1, x2, x3) ≥ Wn(x1, x3, x2) (24)
The proofs of Lemmas 2 and 3 are given in the Appendix.

Proof of Theorem 4: Without loss of generality, assume the
beliefs of the three channels x1, x2, x3 satisfy x1 ≥ x2 ≥ x3.
The proof follows using reverse induction on the probing
index n. For n = N , probing the best channel yields through-
put WN (x2, x1, x3), while probing the second and third best
channels yields throughput WN (x1, x2, x3) and WN (x1, x3, x2)
respectively. By Lemma 2, WN (x1, x2, x3) ≥ WN (x2, x1, x3),
and by Lemma 3, WN (x1, x2, x3) ≥ WN (x1, x3, x2); therefore,
probing the second-best channel is optimal at n = N .
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TABLE I

COMPARISON OF DIFFERENT PROBING POLICIES FOR A FIXED
PROBING INTERVAL (6) AND TIME HORIZON 2,000,000.

STATE TRANSITION PROBABILITY p = q = 0.05

Now assume it is optimal to probe the second-best channel
at probes n + 1, . . . , N . At probing instance n, the through-
put of the three potential choices of channels are given by
Wn(x2, x1, x3), Wn(x1, x2, x3), and Wn(x1, x3, x2) for probing
the best, second-best, and third best channels respectively.
By Lemma 2, Wn(x1, x2, x3) ≥ Wn(x2, x1, x3), and by
Lemma 3, Wn(x1, x2, x3) ≥ Wn(x1, x3, x2); therefore, probing
the second-best channel is optimal at n as well. By induction,
probing the second-best channel is optimal at all probing
times. �

This result is exciting as it differs from the previous result
in [11] which stated that the policy which probes the best
channel is optimal for the model in which the transmit-
ter must use the channel that was probed for transmission.
In our model, the transmitter can collect CSI separately from
the transmission decision, and therefore probing the second-
best channel yields a higher throughput. Further intuition as
to why the probe second-best policy is optimal is presented in
Section V-B.

B. Arbitrary Number of Channels

Theorem 4 shows that the probe second-best policy is
optimal for a system of three channels. In general, for M > 3,
we conjecture that the probe second-best policy remains
optimal.

Conjecture 1: The probe second-best policy is optimal
among all channel probing policies for fixed probing
intervals k.

The proof used for the M = 3 channel case does not extend
to M ≥ 4. Ahmad et al. [11] used a coupling argument to
circumvent this issue and prove the optimality of the myopic
policy for their setting for general networks. However, due
to the additional complexity of the probe second-best policy,
this coupling argument does not hold in our setting. Instead,
we believe the general case can be proven by bounding the
maximum difference in expected reward from being in a better
state after probing the kth best channel for k ≥ 2, and
proving that this extra reward must be less than the gain in
the immediate expected reward that probing the second-best
channel offers.

We have performed numerous simulations which support
Conjecture 1. As an example, Table I presents the throughput
obtained by different probing policies over varying numbers
of channels. Observe that the probe second-best policy outper-
forms the other probing policies. However, the advantage of
using the probe second-best policy over similar policies, such
as probe best and probe third best, is relatively small.

Fig. 7. Comparison of the probe best policy, the probe second-best policy,
and the probe third best policy as a function of the number of channels in
the system. This simulation was run over 2 million probes, with each probe
being at an interval of 4 time slots.

In Figure 7, we compare the performance of the probe-
best policy, the probe second-best policy, and probe third-best
policy as a function of the number of channels in the system,
for a fixed probing interval. We see that as the number
of channels grows, the gap in performance between the
probe best policy and the probe second-best policy increases.
Furthermore, the probe third best policy becomes more effi-
cient as the number of channels increase, but does not reach
the level of throughput of the probe second-best policy.

V. INFINITE-CHANNEL SYSTEM

As the number of channels increases, the state space grows
large and the probing formulation becomes more difficult
to analyze. However, as the number of channels grows to
infinity, we can introduce an assumption which affords various
simplifications to the state space of the system. Whenever a
probed channel is OFF, it is effectively removed from the
system. This is because there always exists a channel which
has not been probed in the previous N slots, for any finite N ,
and thus its belief is equal to the steady state ON probability π ,
and pk

01 ≤ π for all k. Therefore, since an OFF channel has
belief pk

01 ≤ π for any finite k, it will never be optimal to
transmit over that channel under the policies considered in
this paper.

In this section, we use the infinite channel assumption
to characterize the average throughput under several probing
policies. We consider the myopic policy which is shown to be
optimal for the model in [11] and [12], as well as a round
robin policy which probes channels sequentially. In addition,
we characterize the throughput of the probe second-best policy,
which is conjectured to be the optimal probing policy for a
finite number of channels in Section IV, and prove that it
outperforms the other two policies in this setting.

A. Probe-Best Policy

To begin, consider the probe-best policy, which probes the
channel with the highest belief. This policy is commonly
referred to as a myopic or greedy policy, as it maximizes the
immediate reward without regard to future rewards. Intuitively,
such a policy is advantageous as the channel with the highest
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belief is the most likely to be ON at the current time, yielding
the highest expected throughput. Recall that this policy is
shown to be optimal for the model in [11] and [12]. For our
model, we have the following results.

Theorem 5: The state of the system is given by an infinite
vector of beliefs for each channel. Without loss of generality,
assume this vector is sorted as x = {x1, x2, . . .} such that
x1 ≥ x2 ≥ x3 . . .. The class of recurrent states under the
probe-best policy satisfy x1 ≥ π , and xi = π for all other
channels i �= 1.

Proof: The probe best policy probes the channel with
belief x1. If this channel is ON, its belief becomes p1

11 in the
next slot, and it remains the channel with the highest belief by
the equality in 3. If that channel is OFF, it is removed from
the system as per the infinite channel assumption. Therefore,
the vector consisting of xi = π for all i is reachable from
any state. This state corresponds to the transmitter having no
information about the network. The only other state reachable
from this state is reached when an ON channel is found,
at which point, the state returns to a state satisfying x1 ≥ π ,
and xi = π ∀i �= 1. �

Theorem 6: Assume the transmitter makes probing deci-
sions every k slots according to the probe best policy. The
expected per-slot throughput is given by

E[Thpt] = π + πpk
10

k(p + q)(pk
10t + π)

(25)

Proof: We use renewal theory to compute the average
throughput. Under the probe best policy, Theorem 5 states
that only one channel can have belief greater than π . Define a
renewal to occur immediately prior to probing a channel with
belief π . Therefore, if a channel is probed and if it is OFF,
it is removed from the system and a renewal occurs k slots
later (before the next probe). If the channel is ON, that channel
is probed at all future probing instances until it is found to be
OFF. The expected inter-renewal time X̄ B is given by

X̄ B = (1 − π)k + π (kE(N) + k) (26)

= k + kπE(N) (27)

where N is a random variable denoting the number of times
an ON channel is probed before it is OFF, and is geometrically
distributed with parameter pk

10. Equation (27) reduces to

X̄ B = k + πk

pk
10

. (28)

The expected reward R̄B incurred over a renewal interval is
πk for the interval immediately after the OFF probe, and∑k−1

i=0 pi
11 for each subsequent ON probe. If the first probe

is ON, then there will be N probes until the final OFF probe.
Thus, the expected accumulated reward over a renewal interval
is expressed as

R̄B = (1 − π)πk + π (πk + E[N]
k∑

i=1

pi
11) (29)

= πk + πE
[
N

] k−1∑

i=0

pi
11 = πk + π

∑k−1
i=0 pi

11

pk
10

(30)

Using results from renewal-reward theory [19], the average
per-slot reward is given by the ratio of the expected reward
over the renewal interval divided by the expected length of
that interval.

R̄B

X̄ B
= πkpk

10 + π
∑k−1

i=0 pi
11

kpk
10 + πk

= π + πpk
10

k(p + q)(pk
10 + π)

(31)

�
Observe that the per-slot throughput is always larger than π ,

and decreases toward π as k increases. The probe best policy
maximizes the immediate reward; however, the drawback of
this policy is that when the probed channel is OFF, the trans-
mitter has no knowledge of the state of the other channels as
it searches for an ON channel, as described by Theorem 5.
Consequently, transmitter probes channels with belief π until
an ON channel is found, resulting in a low expected reward.

B. Probe Second-Best Policy

Now, consider a simple alternative policy, the probe
second-best policy, which at each time slot probes the channel
with the second-highest belief, and transmits on the channel
with the highest belief after the channel probe. Consider
channel state beliefs x1, x2, x3, . . . where x1 ≥ x2 . . . ≥
xi . . . ≥ π . The probe-best policy of the Section V-A probes
the channel with belief x1. If it is ON, the transmitter uses
that channel (resulting in throughput equal to 1 for the next
slot) and if it is OFF, the transmitter uses the channel with the
next highest belief x2. Thus, the expected immediate reward
of probing the best channel is given by

x1 + (1 − x1)x2 = x1 + x2 − x1x2, (32)

The probe second-best policy instead probes the channel
with belief equal to x2. If this channel is ON, it transmits
over that channel (resulting in throughput equal to 1) and
otherwise transmits over the channel with highest belief, x1.
The expected immediate reward of probing the second-best
channel is therefore equal to

x2 + (1 − x2)x1 = x1 + x2 − x1x2. (33)

Hence, the probe second-best policy has the same immediate
reward as the probe best policy. To understand how the probe
second-best policy outperforms the probe-best policy, consider
the following result, analogous to Theorem 5 for the probe best
policy.

Theorem 7: The state of the system is given by an infinite
vector of beliefs for each channel. Without loss of generality,
assume this vector is sorted as x = {x1, x2, . . .} such that
x1 ≥ x2 ≥ x3 . . .. The class of recurrent states under the
probe second-best policy satisfy x1 ≥ x2 ≥ π , and xi = π for
all other channels i �= 1, 2.

Proof: The probe second-best policy probes the channel
with belief x2. If this channel is ON, its belief becomes
pk

11 iat the next probe, and it becomes the channel with the
highest belief, while x1 becomes the second highest belief.
If the channel is OFF instead, it is removed from the system
as per the infintie channel assumption. Therefore, the vector
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Fig. 8. Illustration of renewal process. Points represent probing instances,
and labels represent probing results. Each renewal interval consists of phase 1,
and phase 2.

TABLE II

EXAMPLE RENEWAL INTERVAL STARTING AT TIME 0 AND

RENEWING AT TIME 6k . AT EACH PROBING INTERVAL,
THE SECOND-BEST CHANNEL IS PROBED

consisting of x1 ≥ π and xi = π for all i �= 1 is reachable
from any state. This state corresponds to the transmitter having
information of only one channel. From this state, by probing
an ON channel, the system transitions into a state with two
channels having belief greater than π ; however, the system
can never have more than two channels with xi > π . �

By Theorem 7, since two channels can have belief greater
than π under the probe second-best policy, when the probe
second-best policy probes an OFF channel, the transmitter
uses the channel with the next highest belief, while probing
new channels to find another ON channel. This approach
results in a higher expected throughput over that interval than
under the probe best policy, which transmits on a channel
with belief equal to the steady state probability π . It is this
intuition that leads us to consider the probe second-best policy.
The following theorem confirms our intuition, by showing
that the probe second-best policy yields a higher throughput
than the probe best policy.

Theorem 8: The average reward of the probe second-best
policy is greater than that of the probe best policy, for all fixed
probing intervals k.

Proof: Theorem 8 is proved using renewal theory to
compute the average throughput of the probe second-best
policy, and comparing it to that of the probe best policy.
The key to the proof is in the definition of the renewal
interval. We define a renewal to occur when the best channel
has belief p2k

11, and the second-best channel (and every other
channel) has belief π . A renewal interval is divided into two
phases: Phase 1 includes all the channel probes until a probe
results in an ON channel, and phase 2 the subsequent probes
until an OFF channel is probed. The division of renewal
intervals into phases is illustrated in Figure 8. In Phase 1,
the transmitter probes channels with belief π until an ON
channel is probed, and in phase 2, the transmitter probes
the second-best channel with belief greater than π until an
OFF channel is probed. This definition ensures that the inter-
renewal periods are i.i.d. The state evolution during an sample
renewal interval is shown in Table II.

The expected inter-renewal time is given by kE(N1 + N2),
where N1 is the number of probes required to find an ON
channel in phase 1, and is geometrically distributed with
parameter π , and N2 is the number of probes required until the
next OFF probe in phase 2. The distribution of N2 is dependent
on N1, and has the following distribution function.

N2 =
{

1 w.p. p(N1+2)k
10

i w.p. p(N1+2)k
11 p2k

10(p2k
11)

i−2 i ≥ 2
(34)

Therefore,

X̄ S B = kE(N1 + N2) = k

(
1

π
+ 1 + E[p(2+N1)k

11 ]
p2k

10

)
(35)

During phase 1 of a renewal, the expected reward accumulated
is given by

R̄1
S B = E

[ (N1−1)k−1∑

i=0

pi+2k
11 +

k−1∑

i=0

pi
11

]
. (36)

The first term is the throughput obtained from transmitting
over the best channel while looking for an ON channel, which
starts with belief p2k

11 and decays until an ON channel is found,
as shown in Table II. In phase 2, the expected reward is
given by

R̄2
S B = E

[
(N2 − 1)

k−1∑

i=0

pi
11 +

k−1∑

i=0

pk+i
11

]
. (37)

For N2 − 1 intervals of length k, the transmitter will transmit
over a channel that was ON, yielding throughput

∑k
i=0 pi

11.
Then, for the last interval prior to the renewal, the best channel
has belief pk

11, and the expected accumulated throughput over
that interval is

∑k
i=0 pk+i

11 . The average reward per time slot
is given by

R̄1
S B + R̄2

S B

X̄ S B

= π + πpk
10(π + p2k

10)

(p + q)k[π2 + p2k
10(1 − (1 − p − q)k + π)] (38)

We can compute the difference between (38) and (25) from
Theorem 6 as

R̄1
S B + R̄2

S B

X̄ S B
− R̄B

X̄ B

= ((1 − p − q)kπpk
10)

2

k(p + q)(π + pk
10)(π

2 + p2k
10(π + 1 − (1 − p − q)k))

(39)

Since p ≤ 1
2 and q ≤ 1

2 , we have 0 ≤ (1 − p − q)k ≤ 1 for
all k. Therefore, the expression in (39) is positive, completing
the proof. �

Theorem 8 asserts that probing the channel with the second
highest belief is a better policy than probing the channel
with the highest belief under fixed-interval probing policies.
A numerical comparison between these two policies is shown
in Figure 9. This result is in sharp contrast to the result
in [11] that shows that probing the channel with the highest
belief is optimal. In our model, when a probed channel
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Fig. 9. Comparison of the probe best policy and the probe 2nd best policy
for varying probing intervals k. In this example, p = q = 0.05.

Fig. 10. Comparison of the probe best policy and the probe 2nd best policy
for varying state transition probabilities p = q.. In this example, k = 1.

is OFF, the transmitter uses its knowledge of the system to
transmit over another channel believed to be ON. In the model
of [11], when an OFF channel is probed, the transmitter cannot
schedule a packet in that slot. This difference in reward after
probing leads to significantly different probing policies. This
result also supports Conjecture 1, claiming that the probe
second-best policy is optimal among all policies.

C. Round Robin Policy

It is of additional interest to consider a min-max policy,
the round robin policy, which probes the channel for which
the transmitter has the least knowledge. In a system with
finitely many channels, the round robin policy probes all of
the channels sequentially, always probing the channel which
was probed longest ago. When the number of channels grows
to infinity, the transmitter always probes a channel that has
previously never been probed. Consider channel state beliefs
x1, x2, x3, . . . where x1 ≥ x2 . . . ≥ xi . . . ≥ π . Under the
round robin policy, a channel with belief π is probed; if that
channel is ON it will be used by the transmitter (earning
throughput 1) and otherwise the channel with the highest
belief will be used (earning throughput x1, the belief of the
best channel). Thus, the immediate reward of round robin is
given by:

π + (1 − π)x1 = π + x1 − πx1. (40)

By comparing (40) to (32), it is clear the immediate reward
of the round robin policy is less than that of the probe best
and the probe second-best policy. Interestingly, the following
Theorem shows that the average per-slot throughput is the
same for the round robin policy as the myopic probe best
policy.

Theorem 9: For all fixed k, the round robin policy has a
per-slot average throughput of

E[Thpt] = π + πpk
10

k(p + q)(pk
10 + π)

, (41)

the same as the probe best policy.
Proof: Let a renewal occur every time a new channel is

probed and found to be ON. Since the result of each probe is
an i.i.d. random variable with parameter π , the inter-renewal
intervals are i.i.d.. The inter-renewal time X R R = k · N , where
k is the time between probes, and N is a geometric random
variable with parameter π , as defined in (4). Over that interval,
the transmitter transmits over the last channel known to be ON,
until a new ON channel is found. The expected reward earned
over each renewal period is given by

R̄R R = E

[ N∗k−1∑

i=0

pi
11

]
(42)

= E

[
π Nk + pNk

10

p + q

]
(43)

= k + pk
10

p + q − q(1 − p − q)k . (44)

Thus, the time-average reward is given by

R̄R R

X̄ R R
= π + πpk

10

k(p + q)(π + pk
10)

, (45)

which is the same as the reward of the probe best policy
in Theorem 6. �

Recall from Theorem 5, that under the probe best policy,
at most one channel can have belief greater than π . In contrast,
under the round robin policy many channels can have belief
greater than π . Thus, Theorem 9 is surprising, since the
round robin policy trades off immediate reward for increasing
knowledge of the channel states, but yields the same average
throughput as the probe best policy.

VI. DYNAMIC OPTIMIZATION OF PROBING INTERVALS

Until this point, we’ve assumed the transmitter chooses
channels to probe at predetermined probing intervals. How-
ever, an alternate approach is to optimize the time until the next
channel probe dynamically, as a function of the collected CSI.
For example, after an ON probe, the transmitter has knowledge
of a channel which yields high throughput, and therefore
may not need to probe a new channel immediately. On the
other hand, if that probed channel is OFF, the transmitter may
benefit from probing a new channel in the near future to make
up for lost throughput. In this section, the optimal dynamic
probing policy is modeled as a stochastic control problem,
where at each time slot, a decision is made whether to probe
a channel or not, and if so, which channel to probe.
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A. Two-Channel System

To begin with, consider a system with only two channels.
The optimal channel probing problem is formulated as a
Markov Decision Process (MDP) or a Dynamic Programming
problem (DP) over a finite horizon of length T . At each time
slot, the system state is the vector consisting of the belief of
each channel’s state. After observing the system state at time t ,
the transmitter selects an action from a set of possible actions:
probe channel 1, probe channel 2, probe neither channel. Thus,
the expected reward function at time slot t is given by

Jt (x1, x2) = max{J 0
t (x1, x2), J 1

t (x1, x2), J 2
t (x1, x2)}, (46)

where J 0
t is the expected reward given that neither channel

is probed at the current slot, and J 1
t and J 2

t are the expected
reward functions given that channel 1 or channel 2 is probed
respectively. When the transmitter chooses to not probe either
channel, the throughput obtained is given by the maximum
of the channel beliefs, since the transmitter will transmit on
the better of the two channels. Assume channel probes incur
a cost of c, representing for example the time or bandwidth
required to execute a channel probe. When a channel is
probed and is ON, the transmitter uses that channel and a
reward (throughput) of 1 is earned. On the other hand, if the
probed channel is OFF, a unit throughput is earned only if
the second channel is ON. Therefore, the terminal cost at time
t = T is given by

J 0
T (x1, x2) = max(x1, x2), (47)

J 1
T (x1, x2) = −c + x1 + (1 − x1)x2, (48)

J 2
T (x1, x2) = −c + x2 + (1 − x2)x1 (49)

For t < T , the reward function includes the expected future
reward, based on the result of the channel probe. If the
transmitter does not probe a channel, the state at the next
slot is given by (τ (x1), τ (x2)), where τ (·) = τ 1(·) is the
information decay function in (5). If a channel is probed,
then the belief of that channel in the following slot is either
p or 1 − q depending on whether the probe results in an OFF
channel or an ON channel respectively. Thus, the recursive
expected reward DP equations are given by

J 0
t (x1, x2) = max(x1, x2) + Jt+1

(
τ (x1), τ (x2)

)
(50)

J 1
t (x1, x2) = −c + x1 + x2 − x1x2 + x1 Jt+1

(
1 − q, τ (x2)

)

+ (1 − x1)Jt+1
(

p, τ (x2)
)

(51)

J 2
t (x1, x2) = −c + x1 + x2 − x1x2 + x2 Jt+1

(
τ (x1), 1 − q

)

+ (1 − x2)Jt+1
(
τ (x1), p

)
(52)

The maximizer of (46) is the optimal probing policy at time
slot t as a function of the current state. Note that the state
space is countably infinite, as each belief xi has a one-to-one
mapping to an (S, k) pair, where S is the state at the last
channel probe, and k is the time since the last probe.

The following result states that this expected reward func-
tion is convex, which is used to characterize the region in
which probing is optimal.

Theorem 10 (Convexity): For all t , Jt (x1, x2) is convex in
x1 for fixed x2, and is convex in x2 for fixed x1.

The proof of Theorem 10 is given in the appendix.

Using the convexity of the expected reward function, we can
find sufficient conditions for probing optimality for a given
state.

Theorem 11: If for any time slot t, the system state
(x1(t), x2(t)) satisfies

c ≤ min(x1(t), x2(t))
(
1 − max(x1(t), x2(t))

)
(53)

Then it is optimal to probe at slot t.
Proof:

J 0
t (x1, x2) = max(x1, x2) + Jt+1

(
τ (x1), τ (x2)

)
(54)

≤ max(x1, x2) + x1 Jt+1
(
1 − q, τ (x2)

)

+ (1 − x1)Jt+1
(

p, τ (x2)
)

(55)

= max(x1, x2) + J 1
t (x1, x2)

+ c − x1 − x2 + x1x2 (56)

Where (55) follows from Theorem 10. Therefore, J 0
t (x1, x2)−

J 1
t (x1, x2) ≤ 0 if

c − x1 − x2 + x1x2 + max(x1, x2) ≤ 0 (57)

c ≤ min(x1, x2)
(
1 − max(x1, x2)

)
(58)

�
Theorem 11 can be interpreted as when the belief of the

two channels are sufficiently close together, it is optimal to
probe (subject to probing cost). While the convexity bound
yields sufficient conditions for probing optimality, neces-
sary conditions do not follow directly from this analysis.
Additionally, the convexity bound used in (55) is loose, and
thus probing is often optimal even in states which do not
satisfy the conditions of Theorem 11.

An alternate approach is to model the channel probing
MDP as an infinite horizon, average cost problem, and can
be formulated as a linear program (LP) in terms of state
action frequencies (SAFs). A vector of SAFs corresponds to a
random policy, in which the probability that a specific action
is taken from each state is given by the SAF corresponding
to that state-action pair. In [2], we showed that there exists
a solution to the state action frequency LP that corresponds
to a deterministic stationary policy, and used that solution to
illustrate the structure of the optimal probing policy.

B. Infinite-Channel System

For a system with more than two channels, a similar
approach can be used to formulate the problem of finding
the optimal probing intervals. The drawback of the above
approaches is that the state space grows exponentially with
the number of channels, and it becomes impractical to solve
the MDP. However, in the asymptotic limit of the number
of channels, the infinite channel assumption in Section V
can be applied to greatly simplify the state space, and new
approaches can be developed to characterize the optimal
probing intervals. Clearly, these intervals are related to the
underlying probing policy used to select the channels to probe.
In this section, we consider two of the channel probing policies
from Section V: the probe best policy and the round robin
policy, and characterize the optimal intervals at which to probe.
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Fig. 11. Comparison of the expected throughput of the probe best policy
and the round robin policy under fixed intervals and under dynamic intervals.
The x-axis plots k, the length of the interval. The maxima of each graph
represents the optimal policy in each regime. In this example, p = q = 0.05
and c = 0.5. (a) Probe Best Probing Policy. (b) Round Robin Probing Policy.

To begin, assume the decision of which channel to probe
is given by the probe-best policy. The optimal decision as to
whether to probe is a function of the state, and is described
by the following Theorem.

Theorem 12: For a system in which the transmitter only
probes the channel with the highest belief, the optimal probing
decision is to probe immediately after probing an OFF chan-
nel, and to probe k∗ slots after probing an ON channel, where
k∗ is given by

k∗ = arg maxk
1

kπ + pk
10

(
πpk

10

(p + q)
− c(π + pk

10)

)
(59)

Theorem 12 characterizes the optimal probing interval under
the probe best policy. If the probing policy changes, the opti-
mal interval changes as well. However, the following result
shows that under the round-robin policy, the optimal probing
interval has a similar structure.

Theorem 13: For a system in which the transmitter probes
channels according to the round robin policy, the optimal

Fig. 12. Comparison of the probe best policy and round robin for
varying values of k, the minimum interval between probes. In this example,
p = q = 0.1, and c = 0.5.

decision is to probe a new channel immediately after probing
an OFF channel, and to probe k′ slots after probing an ON
channel, where k ′ is given by

k ′ = arg maxk
−c(p + q) + pEN [∑k+N−2

i=0 pi
11]

p(k − 1) + p + q
(60)

where N is a geometrically distributed random variable with
parameter π .

Note that the optimal time to wait to probe after an ON
probe under round robin (k ′) in (60) differs from the optimal k∗
under the probe best policy in (59). Figure 12 plots the average
reward of round robin and probe best for different values of k.
Recall that under fixed probing intervals, Theorem 9 states that
both policies have the same average reward. However, under
dynamic probing intervals, the probe best policy outperforms
the round robin policy. Figure 11 shows a comparison between
expected throughput of the optimal fixed-interval probing
policy and the optimal dynamic-interval policy under probe
best and round robin. By looking at the maxima in these
graphs, we observe that for the chosen parameters, introducing
a dynamic probing-interval optimization yields an 8% gain in
throughput under probe best, and a 5% gain in throughput
under probe best.

A natural extension to the above analysis is to consider
the probe second-best policy, which was conjectured to be
the optimal probing policy under fixed probing intervals.
In contrast to probe best and round robin, the optimal time
until the next probe under the probe second-best policy
depends on the belief of the best channel after an ON channel
is probed, and consequently, probe second-best does not have
a single solution for the optimal probing interval after an ON
channel has been probed. Thus, characterizing the optimal
probing intervals is a more challenging problem in this context.
It is an interesting and open problem to determine if the probe
second-best policy is still optimal under dynamic probing
intervals.

VII. CONCLUSION

This paper focuses on channel probing as a means of acquir-
ing network state information, and optimizes the acquisition
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of this information in terms of which channels to probe and
how often to probe these channels. In contrast to the work
in [11] and [12] that established the optimality of the myopic
probe best policy, we showed that for a slightly modified
model, these results no longer hold. Under a two channel
system, we proved that probing either channel results in
the same throughput, and under an infinite channel system,
we proved that a simple alternative, the probe second-best
policy, outperforms the probe best policy in terms of average
throughput. We proved the optimality of the probe second-best
policy in three channel systems, and conjecture that probing
the second-best channel is the optimal decision in a general
multi-channel system. Proving this conjecture is interesting,
and remains an open problem.

Additionally, we showed that dynamically optimizing the
probing intervals based on the results of the channel probe
can additionally increase system throughput. We characterized
the optimal probing intervals in a two channel system by
formulating a markov decision problem, and using a state
action frequency approach to solve the dynamic program. For
the infinite channel case, we characterized the optimal probing
intervals subject to a fixed probing policy, namely the probe
best policy and the round robin probing policy. An extension
to general probing polices, as well as a joint optimization over
the probing decisions and the probing intervals is an interesting
extension to this work.

APPENDIX

A. Proof of Lemma 1

Lemma 1: f k(x1, x2) = f k(x2, x1)
Proof of Lemma 1:

f k(x1, x2) = x2

k−1∑

i=0

pi
11 + (1 − x2)

k−1∑

i=0

τ i (x1) (61)

=
k−1∑

i=0

(
x2 pi

11 + (1 − x2)τ
i (x1)

)
(62)

=
k−1∑

i=0

(
x2 pi

11 + (1 − x2)(τ
k(x1)

= xi pi
11 + (1 − x1)pi

01)
)

(63)

=
k−1∑

i=0

(
x1 pi

11 + (1 − x1)(τ
k(x2)

= xi pi
11 + (1 − x2)pi

01)
)

(64)

=
k−1∑

i=0

(
x1 pi

11 + (1 − x1)τ
i (x2)

) = f k(x2, x1)

(65)

�

B. Proof of Theorem 1

Proof of Theorem 1: This proof uses reverse induction on
the probing index n. As a base case, consider n = N − 1.

J 1
N−1(x1, x2) = f k(x1, x2) = f k(x2, x1) = J 2

N−1(x1, x2)

(66)

Now assume J 1
n+1(x1, x2) = J 2

n+1(x1, x2), and we prove this
holds for index n.

First, we note that the function f (x1, x2) is affine in
both x1 and x2. To see this, consider 0 ≤ λ ≤ 1.

λ f k(a, x2) + (1 − λ) f k(b, x2)

=
k−1∑

i=0

(
λapi

11 + λ(1 − a)τ j (x2)

+ (1 − λ)bpi
11 + (1 − λ)(1 − b)τ i(x2)

)
(67)

=
k−1∑

i=0

(
pi

11(λa + (1 − λ)b) + τ j (τ k(x2))
(
λ(1 − a)

+ (1 − λ)(1 − b)
)
)

(68)

= f k(λa + (1 − λ)b, x2) (69)

As a consequence of Lemma 1, it also follows that

λ f k(x2, a)+(1−λ) f k(x1, b) = f k(x1, λa+(1−λ)b) (70)

Using the above fact, we can show that both J 1
n+1 and J 2

n+1
are affine as well.

λJ 1
n+1(a, x2) + (1 − λ)J 1

n+1(b, x2)

= λ f k(a, x2) + λ

(
a Jn+2(pk

11, τ
k(x2))

+ (1 − a)Jn+2(pk
01, τ

k(x2))

)

+ (1 − λ) f k(b, x2) + (1 − λ)

(
b Jn+2(pk

11, τ
k(x2))

+ (1 − b)Jn+2(pk
01, τ

k(x2))

)
(71)

= f k(λa + (1 − λ)b, x2)

+ (λa + (1 − λ)b)Jn+2(pk
11, τ

k(x2))

+ (1 − λa − (1 − λ)b)(pk
01, τ

k(x2)) (72)

= J 1
n+1(λa + (1 − λ)b, x2) (73)

Similarly, since J 1
n (x1, x2) = J 2

n (x2, x1), it is easy to show
that J 2

n+1 is affine in x2 as well.
Using the results above, J 1

n (x1, x2) is written as

J 1
n (x1, x2) = f k(x1, x2) + x1 Jn+1(pk

11, τ
k(x2))

+ (1 − x1)Jn+1(pk
01, τ

k(x2)) (74)

= f k(x1, x2) + x1 J 1
n+1(pk

11, τ
k(x2))

+(1 − x1)J 1
n+1(pk

01, τ
k(x2)) (75)

= f k(x1, x2) + J 1
n+1(τ

k(x1), τ
k(x2)) (76)

= f k(x1, x2) + J 2
n+1(τ

k(x1), τ
k(x2)) (77)

= f k(x2, x1) + x2 J 2
n+1(τ

k(x1), pk
11)

+ (1 − x2)J 2
n+1(τ

k(x1), pk
01) (78)

= f k(x2, x1) + x2 Jn+1(τ
k(x1), pk

11)

+ (1 − x2)Jn+1(τ
k(x1), pk

01) (79)

= J 2
n (x1, x2) (80)
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where equations (75), (77), and (79) follow from the induc-
tion hypothesis, and equations (76) and (78) use the affinity
of J i

n+1, and Lemma 1. �

C. Proof of Theorem 3

Theorem 3: For a two-user system with channel states
evolving as described above, and probing instances fixed to
intervals of k slots, if p1, p2, q1, q2 satisfy

bi
11 ≥ ai

11 ∀i, (81)

then, the optimal probing strategy is to probe channel 2 at all
probing instances.

Proof of Theorem 3: This proof will use induction on the
horizon length of the corresponding DP problem.

Define state transition functions

τ i
1(x) = ai

11x + (1 − x)ai
01 (82)

τ i
2(x) = bi

11x + (1 − x)bi
01 (83)

Base Case: Assume n = N . For this immediate-reward prob-
lem, the expected reward functions simplify to the following:

J 1
N (x1, x2) =

k−1∑

i=0

(
x1 max(ai

11, τ
i
2(x2))

+ (1 − x1) max(ai
01, τ

i
2(x2))

)
(84)

J 2
N (x1, x2) =

k−1∑

i=0

(
x2 max(bi

11, τ
i
1(x1))

+ (1 − x2) max(bi
01, τ

i
1(x1))

)
(85)

Since we have assumed that bi
11 ≥ ai

11, the following
inequalities hold:

bi
1,1 ≥ ai

1,1 ≥ τ i
1(x1)

bi
0,1 ≤ ai

0,1 ≤ τ i
1(x1) (86)

Consequently, we can rewrite (85) as

J 2
n (s1, k1, s2, k2)

=
k−1∑

i=0

(
x2bi

11 + (1 − x2)τ
i
1(x1)

)

=
k−1∑

i=0

(
x2bi

11 + (1 − x2)x1ai
11 + (1 − x2)(1 − x1)a

i
01

)
(87)

The proof of the base case differs slightly depending on
the realization of s2, so we will present two cases for each
realization.

Case 1: x2 ≥ π2. Equation (84) simplifies to

J 1
N (x1, x2)

=
k−1∑

i=0

(
x1 max(ai

11, τ
i
2(x2)) + (1 − x1)τ

i
2(x2)

)

=
k−1∑

i=0

(
x1 max(ai

11, τ
i
2(x2))

+ (1 − x1)x2bi
1,1 + (1 − x1)x2bi

0,1

)
(88)

=
k−1∑

i=0

(
x1 max(ai

11, τ
i
2(x2)) + x2bi

1,1 − x1x2bi
1,1

+ (1 − x1)(1 − x2)b
i
0,1

)
(89)

= J 2
N (x1, x2) +

k−1∑

i=0

(
x1 max(ai

11, τ
i
2(x2)) − x1x2bi

1,1

+ (1 − x1)(1 − x2)b
i
0,1

− (1 − x2)x1ai
11 − (1 − x2)(1 − x1)a

i
01

)
(90)

≤ J 2
N (x1, x2) +

k−1∑

i=0

(
x1 max(ai

11, τ
i
2(x2)) − x1x2bi

1,1

− x1(1 − x2)a
i
11

)
(91)

= J 2
N (x1, x2) +

k−1∑

i=0

max

(
x1ai

11 − (1 − x2)x1ai
11,

x1τ
i
2(x2) − (1 − x2)x1ai

11

)
− x1x2bi

11 (92)

= J 2
N (x1, x2) +

k−1∑

i=0

max

(
x1x2(a

i
11 − bi

1,1),

x1(1 − x2)(b
i
01 − ai

11)

)
(93)

≤ J 2
N (x1, x2) (94)

In the above, (91) and (94) follow from bi
11 ≥ ai

11. Case 2:
x2 ≤ π2. Equation (84) simplifies to

J 1
N (x1, x2)

=
k−1∑

i=0

(
x1ai

11 + (1 − x1) max(ai
01, τ

i
2(x2))

)

=
k−1∑

i=0

(
x1ai

11 + (1 − x1) max(ai
01, τ

i
2(x2))

+ (1 − x2)x1ai
11 − (1 − x2)x1ai

11

)
(95)

=
k−1∑

i=0

(
x1x2ai

11 + (1 − x1) max(ai
01, τ

i
2(x2))

+ (1 − x2)x1ai
11

)
(96)

= J 2
N (x1, x2) +

k−1∑

i=0

(
(1 − x1) max(ai

01, τ
i
2(x2))

+ x1ai
11x2 − x2bi

11 − (1 − x2)(1 − x1)pi
01

)
(97)

= J 2
N (x1, x2)

+
k−1∑

i=0

max

(
x2(x1ai

11 + (1 − x1)a
i
01) − x2bi

11,

x1x2(a
i
11 − bi

11) + (1 − x1)(1 − x2)(b
i
01 − ai

01)

)
(98)

≤ J 2
N (x1, x2) (99)
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Where (97) results from applying (87), and (99) comes from
the assumption that ai

11 ≤ bi
11.

Inductive Step: Assume that J 1
l (x1, x2) ≤ J 2

l (x1, x2), for all
n + 1 ≤ l ≤ N , we now prove that J 1

n (x1, x2) ≤ J 2
n (x1, x2).

Therefore, the optimal cost to go Jn+1(x1, x2) = J 2
n+1(x1, x2).

By looking at expressions (84) and (85) from the analysis in
the base case portion of the proof, we know that

k−1∑

i=0

(
x1 max(ai

11, τ
i
2(x2)) + (1 − x1) max(ai

01, τ
i
2(x2))

)

≤
k−1∑

i=0

(
x2 max(bi

11, τ
i
1(x1)) + (1 − x2) max(bi

01, τ
i
1(x1))

)

(100)

To conclude the proof:

x1 J 2
n+1(a

k
11, τ

k
2 (x2)) + (1 − x1)J 2

n+1(a
k
01, τ

k
2 (x2)) (101)

= J 2
n+1(τ

k
1 (x1), τ

k
2 (x2)) (102)

= x2 J 2
n+1(τ

k
1 (x1), ak

11) + (1 − x2)J 2
n+1(τ

k
1 (x1), ak

01) (103)

Where the above comes from the affinity of the function
Jn(x1, x2), shown in (71)-(71). �

D. Proof of Lemmas 2 and 3

Lemma 4: Let g(x, y) be any function satisfying g(x, y) =
ax + by + cxy + d for some constants a, b, c, d. Then,

g(x, y) − g(y, x) = (x − y)(g(1, 0) − g(0, 1)) (104)
Proof:

g(x, y) − g(y, x) = ax + by+cxy+d−ay−bx −cyx −d
= (x − y)(a − b)

= (x − y)(g(1, 0) − g(0, 1))

�
Lemma 2: If x1 ≥ x2 ≥ x3, then for all 0 ≤ n ≤ N ,

Wn(x1, x2, x3) ≥ Wn(x2, x1, x3)

Proof of Lemma 2: The proof follows by reverse induction
on the probing index n. For time n = N ,

WN (x1, x2, x3) − WN (x2, x1, x3)

= f k(x1, x2) − f k(x2, x1) = 0 (105)

The last equality follows from Lemma 1. Assume the inductive
hypothesis holds for n + 1:

Wn(x1, x2, x3) − Wn(x2, x1, x3)

= (x1 − x2)(Wn(1, 0, x3) − Wn(0, 1, x3)) (106)
= (x1 − x2)( f k(1, 0) + Wn+1

(
τ k(1), τ k(x3), τ

k(0)
)

− f k(0, 1) − Wn+1
(
τ k(1), τ k(0), τ k(x3)

)
(107)

= (x1 − x2)(Wn+1
(
τ k(1), τ k(x3), τ

k(0)
)

− Wn+1
(
τ k(1), τ k(0), τ k(x3)

)
(108)

≥ (x1 − x2)(Wn+1
(
τ k(1), τ k(0), τ k(x3)

)

− Wn+1
(
τ k(1), τ k(0), τ k(x3)

) = 0 (109)

The inequality in (109) holds by the induction hypothesis of
Lemma 3. �

Lemma 3: If x1 ≥ x2 ≥ x3, then for all 0 ≤ n ≤ N ,

Wn(x1, x2, x3) ≥ Wn(x1, x3, x2)

Proof of Lemma 3: The proof follows by reverse induction
on the probing index n. For time n = N ,

WN (x1, x2, x3)

≥ WN (x1, x3, x2) = f k(x1, x2) − f k(x1, x3) (110)

= (x2 − x3)

k−1∑

i=0

(
pi

11 − τ i (x1)
)

(111)

= (x2 − x3)(1 − x1)

k−1∑

i=0

(pi
11 − pi

01) ≥ 0 (112)

where the inequality follows from the positive memory
assumption on the channel. Now we assume the inductive
hypothesis for Lemmas 2 and 3 hold for times at and after n.

Wn(x1, x2, x3) − Wn(x1, x3, x2)

= (x2 − x3)
(
Wn(x1, 1, 0) − Wn(x1, 0, 1)

)
(113)

= (x2 − x3)( f j (x1, 1) + Wn+1
(
τ k(1), τ k(x1), τ

k(0)
)

− r(x1, 0) − Wn+1
(
τ k(x1), τ

k(1), τ k(0)
)

(114)

≥ (x2 − x3)

(
Wn+1

(
τ k(1), τ k(x1), τ

k(0)
)

− Wn+1
(
τ k(x1), τ

k(1), τ k(0)
)
)

(115)

≥ (x2 − x3)

(
Wn+1

(
τ k(1), τ k(x1), τ

k(0)
)

− Wn+1
(
τ k(1), τ k(x1), τ

k(0)
)
)

= 0 (116)

The inequality in (115) follows from (110) - (112). The
inequality in (116) follows from the inductive hypothesis of
Lemma 2. �

E. Proof of Theorem 10

Theorem 10: For all t , Jt (x1, x2) is convex in x1 for fixed
x2, and is convex in x2 for fixed x1.

Proof: In order to prove convexity, a number of supporting
results are required.

Lemma 5 (Linearity): J 1
t (x1, x2) is linear in x1 for fixed

x2, and similarly, J 2
t (x1, x2) is linear in x2 for fixed x1.

Proof: We will prove the first half of this lemma here,
and the other half follows using exactly the same steps but
switching channel 1 and 2. Let 0 ≤ λ ≤ 1.

J 1
t (λx1+(1 − λ)y1, x2)

= −c+λx1+(1 − λ)y1 + x2−(λx1+(1 − λ)y1)x2

+ (λx1 + (1 − λ)y1)Jt+1
(
1 − q, τ (x2)

)

+ (1 − (λx1 + (1 − λ)y1))Jt+1
(

p, τ (x2)
)

(117)
= λ(−c + x1 − x1x2) + (1 − λ)(−c + y1 − y1x2)

+ λ

(
x1 Jt+1

(
1 − q, τ (x2)

) + (1 − x1)Jt+1
(

p, τ (x2)
)
)

+ (1 − λ)

(
y1 Jt+1

(
1−q, τ (x2)

)+(1−y1)Jt+1
(

p, τ (x2)
)
)

(118)
= λJ 1

t (x1, x2) + (1 − λ)J 1
t (y1, x2) (119)

�
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Lemma 6 (Commutativity):

Jt (x1, x2) = Jt (x2, x1) (120)
Proof: This proof is by reverse induction on t . For T ,

we have

JT (x1, x2) = max

{
max(x1, x2),−c + x1

+ x2 − x1x2,−c + x2 + x1 − x2x1

}
(121)

= max

{
max(x2, x1),−c + x2

+ x1 − x2x1,−c + x1 + x2 − x1x2

}
(122)

= JT (x2, x1) (123)

Now assume (120) holds for time t + 1. Then we have

J 1
t (x1, x2) = −c + x1 + x2 − x1x2 + x1 Jt+1

(
1 − q, τ (x2)

)

+(1 − x1)Jt+1
(

p, τ (x2)
)

(124)
= −c + x2 + x1 − x2x1 + x1 Jt+1

(
τ (x2), 1 − q

)

+(1 − x1)Jt+1
(
τ (x2), p

)
(125)

= J 2
t (x2, x1) (126)

J 0
t (x1, x2) = max(x1, x2) + Jt+1

(
τ (x1), τ (x2)

)
(127)

= max(x2, x1) + Jt+1
(
τ (x2), τ (x1)

)
(128)

= J 0
t (x2, x1) (129)

Finally, we can use these two results to show that

Jt (x1, x2) = max
{

J 0
t (x1, x2), J 1

t (x1, x2), J 2
t (x1, x2)

}
(130)

= max
{

J 0
t (x2, x1), J 2

t (x2, x1), J 1
t (x2, x1)

}
(131)

= Jt (x2, x1) (132)

The proof follows by induction. �
Let �t (0), �t (1), �t (2) be the sets of (x1, x2) such that it

is optimal to not probe, probe channel 1, and probe channel
2 respectively at time t .

Lemma 7 (Probe Symmetry): If (x1, x2) ∈ �t (1), then
(x2, x1) ∈ �t (2).

Proof: If (x1, x2) ∈ �(1)t , then J 1
t (x1, x2) ≥ J 2

t (x1, x2)
and J 1

t (x1, x2) ≥ J 0
t (x1, x2). Using Lemma 6, we can then

say that J 2
t (x2, x1) ≥ J 1

t (x2, x1) and J 2
t (x2, x1) ≥ J 0

t (x2, x1)
which implies (x2, x1) ∈ �t (2). �

Lemma 8 (No-Probe Symmetry): If (x1, x2) ∈ �t (0), then
(x2, x1) ∈ �t (0).

Proof: If (x1, x2) ∈ �t (0), then J 0
t (x1, x2) ≥ J 1

t (x1, x2)
and J 0

t (x1, x2) ≥ J 2
t (x1, x2). It follows from Lemma 6

that J 0
t (x1, x2) = J 0

t (x2, x1) and J 1
t (x1, x2) = J 1

t (x2, x1)
which implies J 0

t (x2, x1) ≥ J 1
t (x2, x1). By a similar argu-

ment, we can show J 0
t (x2, x1) ≥ J 2

t (x2, x1), and therefore
(x2, x1) ∈ �t (0). �

Lemmas (5)-(8) combine to prove a convexity result on
the expected reward function. The proof follows by reverse
induction over t . For t = T ,

JT (x1, x2) = max

{
max(x1, x2),−c + x1 + x2 − x1x2,

−c + x2 + x1 − x2x1

}
(133)

is convex in each element since each argument to the max-
imum is convex (or affine) and the maximum of convex
functions is also convex. Now consider t < T , and we assume
that Jt+1(x1, x2) is convex in x1 for fixed x2. To begin with,
we note that

τ (λx1 + (1 − λ)y1)

= (1 − q)(λx1 + (1 − λ)y1)

+ p(1 − λx1 − (1 − λ)y1) (134)

= (1 − q)λx1 + pλ(1 − x1)

+ (1 − q)(1 − λ)y1 + p(1 − λ)(1 − y1) (135)

= λτ(x1) + (1 − λ)τ(y1) (136)

First we consider the expected throughput after not probing.

J 0
t (λx1 + (1 − λ)y1, x2)

= max(λx1 + (1 − λ)y1, x2)

+ Jt+1
(
τ (λx1 + (1 − λ)y1), τ (x2)

)
(137)

≤ λ(max(x1, x2)) + (1 − λ)(max(y1, x2))

+ Jt+1
(
λτ(x1) + (1 − λ)τ(y1), τ (x2)

)
(138)

≤ λ(max(x1, x2)) + (1 − λ)(max(y1, x2))

+ λJt+1
(
τ (x1), τ (x2)

)

+ (1 − λ)Jt+1
(
τ (y1), τ (x2)

)
(139)

= λ(J 0
t (x1, x2)) + (1 − λ)(J 0

t (y1, x2)) (140)

where (138) holds by the convexity of max(x, ·) and linear-
ity of τ (·), and (139) holds from the induction hypothesis.
Additionally, J 1

t (x1, x2) is convex in x1 by lemma 5. For
J 2

t (x1, x2), we have:

J 2
t (λx1 + (1 − λ)y1, x2)

= −c + λx1 + (1 − λ)y1 + x2 − (λx1 + (1 − λ)y1)x2

+ x2 Jt+1
(
τ (λx1 + (1 − λ)y1), 1 − q

)

+ (1 − x2)Jt+1
(
τ (λx1 + (1 − λ)y1), p

)
(141)

= λ(−c + x1 + x2 − x1x2)

+ (1 − λ)(−c + y1 + x2 − y1x2)

+ x2 Jt+1
(
λτ(x1) + (1 − λ)τ(y1), 1 − q

)

+ (1 − x2)Jt+1
(
λτ(x1) + (1 − λ)τ(y1), p

)
(142)

≤ λ(−c + x1 + x2 − x1x2)

+ (1 − λ)(−c + y1 + x2 − y1x2)

+ λ

(
x2 Jt+1

(
τ (x1), 1 − q

) + (1 − x2)Jt+1
(
τ (x1), p

)
)

+ (1 − λ)

(
x2 Jt+1

(
τ (y1), 1 − q

)

+ (1 − x2)Jt+1
(
τ (y1), p

)
)

(143)

= λ(J 2
t (x1, x2)) + (1 − λ)(J 2

t (y1, x2)) (144)

Each of J 0
t (x1, x2), J 1

t (x1, x2), and J 2
t (x1, x2) is convex in x1

for fixed x2, and Jt (x1, x2) is convex in x1 as well. The second
half of the proof statement holds by symmetry. �

F. Proof of Theorem 12

Theorem 12: For a system in which the transmitter
only probes the channel with the highest belief, the opti-
mal probing decision is to probe immediately after probing
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an OFF channel, and to probe k∗ slots after probing an ON
channel, where k∗ is given by

k∗ = arg maxk
1

kπ + pk
10

(
πpk

10

(p + q)
− c(π + pk

10)

)
(145)

Proof: As a result of Theorem 5, under the probe best
policy, the belief of the best channel x1 at every slot satisfies
x1 ≥ π , and the belief of every other channel equals π . When
a probed channel is OFF, it is removed from the system, and
the belief of every channel is π , representing a state in which
the transmitter has no knowledge of the system. The system
remains in this state until an ON channel is found, as each
OFF channel which is probed is removed from the system
by the infinite channel assumption. If the optimal decision in
this state is to not probe, then the transmitter never probes,
since the state never changes. Thus, if it is optimal to probe
in the state where the transmitter has no knowledge, then it is
optimal to probe immediately after an OFF channel is probed.
When a probed channel is ON, the highest belief is always
1 − q in the next slot, and decays until that channel is probed
again, as it will always remain the channel with the highest
belief. Hence, there exists a threshold k∗ after an ON probe
such that after that time, it becomes optimal to probe.

Assume a probe occurs in the slot immediately after probing
an OFF channel, and let k denote the number of slots after
probing an ON channel until the best channel is probed again.
Define a renewal to occur when the transmitter probes an
OFF channel. It follows that the inter-renewal time is one slot
if the next probed channel is OFF, and 1 + k N if the probed
channel is ON, where N is a random variable equal to the
number of times the ON channel is probed until it turns OFF.
Thus, the expected inter-renewal time is given by

X̄ B = (1 − π) + π(1 + kE[N]) (146)

= 1 + πkE[N], (147)

The random variable N is is geometrically distributed with
parameter pk

10. The reward accumulated over this interval is
π if the probed channel is OFF, and N times

∑k−1
i=0 pi

11 if
the channel is ON, plus an additional π after the final OFF
probe. A cost of c is incurred for each channel probe within
this interval. The expected reward is given by

R̄B = (1 − π)(π − c) + π

(
E[N](

i∑

i=0

−c) + π − c

)
(148)

= (π − c) + πE[N](
k−1∑

i=0

pi
11 − c). (149)

Therefore, the average per-time slot reward is given by the
ratio of expected reward over a renewal interval to the expected
length of the renewal interval:

R̄B

X̄ B
= pk

10(π − c) + π(
∑k−1

i=0 pi
11 − c)

pk
10 + kπ

(150)

= π − c

(
π + pk

10

kπ + pk
10

)
+ πpk

10

(p + q)(kπ + pk
10)

(151)

The maximizing value of k in equation (151) is the optimal
time k∗ to wait after an ON probe. �

G. Proof of Theorem 13

Theorem 13: For a system in which the transmitter probes
channels according to the round robin policy, the optimal
decision is to probe a new channel immediately after probing
an OFF channel, and to probe k ′ slots after probing an ON
channel, where k ′ is given by

k ′ = arg maxk
−c(p + q) + pEN [∑k+N−2

i=0 pi
11]

p(k − 1) + p + q
(152)

where N is a geometrically distributed random variable with
parameter π .

Proof: In contrast to Theorem 12, there is no analog to
Theorem 5 for round robin probing. Thus, we first prove the
optimal form of the policy is a threshold policy, by proving
the monotonicity of the expected reward function. Given the
structure of the optimal policy, renewal theory is applied to
characterize the optimal interval. To begin, we can write the
expected reward as a function of k over a finite horizon.

JT (k) = max

(
pk

11,−c + π + (1 − π)pk
11

)
(153)

Jt (k) = max

(
pk

11 + Jt+1(k + 1),−c + π
(
1 + Jt+1(1)

)

+ (1 − π)
(

pk
11 + Jt+1(k + 1)

)
)

(154)

where the left argument to the max(·, ·) function represents
the expected reward from not probing, and the right argument
represents the expected reward from probing an unknown
channel.

Under round robin probing, Jt is monotonically decreasing
in k for all t . To see this, assume t = T , then assume k satisfies
πpk

10 ≥ c, then

JT (k) = max

(
pk

11,−c + π + (1 − π)pk
11

)

= pk
11 + max(0,−c + πpk

10) (155)

= pk
11 − c + π(1 − pk

11) = pk
11(1 − π) + π − c (156)

which is monotonically decreasing in k, since pk
11 is a

monotonically decreasing function of k. If on the other hand
πpk

10 ≤ c, then JT (k) = pk
11 which is monotonically decreas-

ing in k.
Now assume t ≤ T , and the hypothesis holds for

t + 1, . . . , T , we will show using induction that it holds
for t . Let g(k) = pk

11 + Jt+1(k + 1). By induction, g(k) is
monotonically decreasing in k, and using the analysis from
the base case, the expression

Jn(k) = max

(
g(k),−c + π

(
1 + Jn+1(1)

) + (1 − π)g(k)

)

(157)

is also monotonically decreasing in k.
The remaining proof of Theorem 13 follows by reverse

induction over the time horizon. Assume there is a k′ such
that it is optimal to probe at time T . Consider k ≥ k ′. It is
optimal to probe if c ≤ πpk

10. However, c ≤ πpk′
10 since it is
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optimal to probe at k ′, and pk
10 ≥ pk′

10. Therefore, it is also
optimal to probe at k.

Now consider t ≤ T , and assume our induction hypothesis
holds for t + 1. The difference in the arguments to max(·, ·)
in (154) can be bounded as follows

−c + π(1 + Jt+1(1)) + (1 − π)(pk
11 + Jt+1(k + 1))

− pk
11 − Jt+1(k + 1) (158)

= −c + π(1 + Jt+1(1)) + −π(pk
11 + Jt+1(k + 1)) (159)

≥ −c + π(1 + Jt+1(1)) + −π(pk∗
11 + Jt+1(k

∗ + 1)) (160)

≥ 0. (161)

where the first inequality holds from the monotonic property
of the J function, and the second inequality holds from the
assumption that it is optimal to probe for k ′. Therefore, it is
optimal to probe at t , and by induction, it is optimal to probe
k ′ slots after an ON probe for some value of k ′.

To characterize the optimal value of k ′, we introduce
renewal theory using the renewals defined in Section V-C.
Recall, a renewal occurs upon probing a channel which is
ON. The expected time until the next renewal is the k ′ slots
until the next probe, plus the number of slots it takes to find
a new ON channel. Let N be the number of probes until an
ON channel is found, which is geometrically distributed with
parameter π . The expected inter-renewal time is given by

X̄ R = EN [k + N − 1]. (162)

Over this interval, a cost of c is incurred for each of the N
channel probes, and at each time slot the transmitter uses the
last known ON channel for transmission. Thus, the expected
reward is given by

R̄R = EN

[
1 − Nc +

k+N−2∑

i=0

pi
11

]
. (163)

To determine the optimal k ′, we maximize the ratio of the
expected reward to the expected length of the renewal interval,
thus concluding the proof. �
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