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Abstract We consider scheduling in networks with interference constraints and
reconfiguration delays, which may be incurred when one service schedule is dropped
and a distinct service schedule is adopted. Reconfiguration delays occur in a variety
of communication settings, such as satellite, optical, or delay-tolerant networks. In
the absence of reconfiguration delays it is well known that the celebrated Max-Weight
scheduling algorithm guarantees throughput optimality without requiring any knowl-
edge of arrival rates. As we will show, however, the Max-Weight algorithm may fail
to achieve throughput optimality in case of nonzero reconfiguration delays. Motivated
by the latter issue, we propose a class of adaptive scheduling algorithms which persist
with the current schedule until a certain stopping criterion is reached, before switch-
ing to the next schedule. While earlier proposed Variable Frame-Based Max-Weight
(VFMW) policies belong to this class, we also present Switching-Curve-Based (SCB)
policies that are more adaptive to bursts in arrivals. We develop novel Lyapunov drift
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techniques to prove that this class of algorithms under certain conditions achieves
throughput optimality by dynamically adapting the durations of the interswitching
intervals. Numerical results demonstrate that these algorithms significantly outper-
form the ordinary Max-Weight algorithm, and that SCB policies yield a better delay
performance than VFMW policies.

Keywords Max-Weight algorithm · Scheduling · Reconfiguration · Switching
delay · Stability · Throughput optimality

Mathematics Subject Classification Primary: 68M20 (Performance evaluation;
queueing; scheduling) · Secondary: 60K25 (Queueing theory) · 90B18 (Communica-
tion networks) · 90B22 (Queues and service)

1 Introduction

Dynamic scheduling of servers in stochastic networks with interference constraints has
been a very active field of research for over two decades (for example, [12,19,22,23,27,
30,31,37]). Perhaps the most familiar scenario in which such interference constraints
are manifested is that of traffic light controlled two-way intersections [6,35]. Here,
the interference constraints reflect the necessary switching delays which lead to some
loss of throughput in the case of fixed cycle controls [6], and also for the adaptive
control considered in [35].

In communications, the significant effects of server switchover delays or the time
durations to reconfigure schedules have been largely ignored, even though such recon-
figuration delays commonly arise in a variety of settings [1,4,18,38]. In satellite
networks where multiple mechanically steered antennas are servicing ground sta-
tions, the time to rotate from one station to another can be around 10 ms [4,33], which
is on the same order as the time to transmit multiple packets. Similarly, in optical
communication systems, laser tuning delay for different lightpaths at transceivers can
take from tens of μs to ms, which, at data rates of giga-bits-per-second, corresponds
to the transmission time of hundreds of packets [7,18]. Large switchover delays also
occur in delay-tolerant networks where mobile servers (for example, robots) are used
as data gatherers from sensors in a field [24].

The effects of switchover delays have been extensively analyzed in the literature
on polling systems [5,28,36]. However, in polling systems it is typically assumed
that there is just a single server which can only serve one queue at a time. In contrast,
the above-mentioned stochastic networks with interference constraints usually involve
several servers and various subsets of queues that can be served simultaneously. This
latter scenario was considered in the seminal work of Tassiulas and Ephremides [30,
31] that characterized the stability region and proved throughput optimality of the
Max-Weight scheduling algorithm. These results were later extended to joint power
allocation and routing in wireless networks in [22,23] as well as optimal scheduling for
packet switches in [26,27]. More recently, various distributed scheduling algorithms
have been developed that achieve throughput optimality [12,19]. We refer the reader to
[15,20] for a detailed review of scheduling in wireless networks. However, these papers
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do not consider the server switchover delays and, in fact, the algorithms proposed in
these papers fail to achieve throughput optimality under nonzero switching delays, as
we demonstrate in Lemma 1. The intuition behind this observation is that the Max-
Weight scheduling algorithm tends to switch between configurations often (i.e., as
soon as another schedule has a greater weight); thus, the fraction of time spent on
reconfigurations does not diminish as the total queue length grows large, leading to
instability.

Of particular relevance to our work are the papers [2,7,16,29,32], which consider
perturbations such as switchover delays in a network setting. However, the system
model and the assumptions in [7,29,32] are substantially different from those in the
present paper. In particular, [7] assumes knowledge of the arrival rate vectors which
significantly simplifies the scheduling problem, [29] considers a deterministic setting
where servers do not interfere, and [32] proposes a policy similar to one of the policies
proposed in the present paper, for a system consisting of a single-server serving multi-
ple queues with asynchronous transmission opportunities in the absence of switching
delays. The work in [2] addresses the problem of switchover delays by aggregat-
ing jobs into batches. Batching is driven through a sequence of load estimates; see
[2] Proposition 4.2, page 239. The authors of [16] propose a dynamic cone-based
scheduling algorithm for a network model similar to the one in this paper. While the
proposed algorithm may achieve good throughput performance in practice, the proof
arguments in [16] do not seem entirely sound however, as we discuss in greater detail
in Sect. 5. Finally, for a simple two-queue system, [8] showed that the simultaneous
presence of randomly varying connectivity and switchover delays reduces the system
stability region significantly, whereas in the absence of randomly varying connectivity,
switchover delays do not reduce the stability region [7,9].

The fundamental limitation of the Max-Weight scheduling algorithm and its vari-
ations under nonzero switchover delays suggests that instead of reconfiguring the
system as soon as another schedule with larger weight is found, one should persist
with the current schedule for a certain period of time, in order to avoid spending
too much time on reconfiguration, which is also the main idea behind the dynamic
cone-based policy proposed in [16]. By letting the expected amount of time between
reconfigurations grow with the total queue length, the fraction of time spent on recon-
figuration is reduced when the queues get large, leading to throughput optimality.
Our main theorem, see Sect. 3, establishes conditions on the amount of time between
reconfigurations to guarantee throughput optimality. These conditions include lower
bounds on the expected time to stop (not necessarily a reconfiguration time) and an
upper bound on its second moment. Both of these bounds are expressed in terms of a
sublinear function.

We propose three classes of algorithms and prove their throughput optimality by
showing that they indeed satisfy the sufficient conditions mentioned above. The first
class of algorithms, termed the Variable Frame-Based Max-Weight (VFMW) algo-
rithms, persist with a Max-Weight schedule during a frame whose duration is calculated
at the beginning of the frame, as a sublinear function of the queue sizes. The VFMW
algorithms were first introduced and analyzed in [9]. In this paper we show that the
throughput optimality of the VFMW algorithms follows directly from the sufficient
stability conditions mentioned above. We also consider two classes which are more
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responsive to queue dynamics—the Bias-Based (BB) and Switching-Curve-Based
(SCB) algorithms. BB algorithms make reconfiguration decisions based on the event
that there is a sufficiently large change in queue lengths as compared to the queue
sizes at the time of the previous reconfiguration event. SCB algorithms are a natural
extension of the Max-Weight scheme, and make reconfiguration decisions when the
weight of an alternative schedule exceeds that of the current schedule by an amount
that is a function of the current queue lengths.

The approach we take is to work with a randomly stopped Lyapunov drift function.
This is not straightforward to treat because the stopped sum and the stopping time are
usually dependent and first and second moments of the stopped sum must be consid-
ered. Bounds for stopped queues are also needed in establishing the sufficient criteria
for the BB and SCB algorithms. Additionally, to establish throughput optimality for
SCB we show that if a policy has a negative drift throughout a service interval, and
if another policy with an earlier switching decision is throughput-optimal, then the
former policy is also throughput-optimal. Subsequently, lower bounds for mean delay
are developed which may be of additional interest.

The remainder of the paper is organized as follows. In Sect. 2 we introduce the
system model, provide technical preliminaries, and show the instability of the ordi-
nary Max-Weight algorithm. Section 3 contains our main result, Theorem 1, which
provides conditions on the amount of time between reconfiguration to guarantee sta-
bility. Section 4 shows that the three classes of algorithms described above all meet the
criteria of Theorem 1. In Sect. 5, we discuss performance considerations of the three
proposed algorithms and the analysis of [16]. We present numerical experiments in
Sect. 6, and briefly discuss parameter choices based on delay results for the proposed
algorithms. In Sect. 7 we make concluding remarks and offer suggestions for further
research.

2 Model description and preliminaries

This section provides a model description followed by a brief example, after which
the instability of the ordinary Max-Weight algorithm for scheduled networks with
switching delay is demonstrated. Following this, a class of generalized Max-Weight
policies is defined. These are exemplified and analyzed in the following sections.

2.1 Model description

We consider a discrete-time (slotted) system of N parallel infinite-buffer queues
labeled by the set N = {1, 2, . . . , N }. The time slot indices take values in the set
N0 = N ∪ {0} of nonnegative integers.

The vectorA(t) ∈ N
N
0 denotes the numbers of arriving packets at the various queues

at the end of time slot t . (Here and throughout the paper, we represent vectors by bold
letters.) The sequences of arrivals to the various queues are mutually independent,
and A�(1), A�(2), . . . are i.i.d. copies of a random variable A�, with P {A� = 0} > 0,
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Table 1 State variable updates in slot t

(1) If φ(t) > 0, set Q′
�
(t) = Q�(t), ∀� ∈ N , then proceed to step 3)

(2) A decision is taken whether or not to invoke a reconfiguration, based on the process history

(a) If a reconfiguration takes place to service vector J ∈ I, then set I(t) = J, φ(t) = Tr and
Q′

�
(t) = Q�(t), ∀� ∈ N and proceed to step 3)

(b) If no reconfiguration takes place, then apply the service vector I(t) to the queue length vector
Q(t), i.e., set Q′

�
(t) = [Q�(t) − I�(t)]+ ∀� ∈ N , and proceed to step 3)

(3) Set I(t + 1) = I(t), Q(t + 1) = Q′(t) + A(t), and φ(t + 1) = [φ(t) − 1]+.

P {A� > a} > 0 for all a ∈ N (unbounded support), E [A�] = λ�, and E
[
A2

�

] ≤
A2

max < ∞ (finite second moment) for all � ∈ N .
Let Q(t) = (Q1(t), . . . , QN (t)) ∈ N

N
0 denote the lengths of the various queues

at the beginning of time slot t . The queues are initially all assumed to be empty, i.e.,
Q(0) = 0. Let I(t) = (I1(t), . . . , IN (t)) ∈ I be the applicable service vector in time
slot t , where I ⊆ N

N
0 is the set of all feasible service vectors. For convenience, we

assume that I includes the all-zero vector, and also suppose that I is finite, implying
that there exists a μmax ∈ N0 such that I� ≤ μmax for all I ∈ I, � ∈ N .

During each time slot, the system may either be in service mode or in reconfiguration
mode. A reconfiguration involves a fixed duration of Tr time slots, and allows a switch
from one service vector to another. During reconfiguration, a counter φ(t) is used to
count down the number of slots that remain until service can continue. On the other
hand, if the system is not being reconfigured or switched during time slot t , but is
in service mode, then service proceeds according to the vector I(t), meaning that
min{I�(t), Q�(t)} packets depart from queue � at the end of the time slot. The lengths
of the various queues then evolve according to the usual Lindley recursion

Q�(t + 1) = [Q�(t) − I�(t)]
+ + A�(t), ∀� ∈ N , (1)

where [x]+ .= max{x, 0}.
We now summarize the sequence of events which occur in time slot t . Table 1

indicates the order in which state variables are updated, in chronological order within
slot t .

We now go through the above steps in detail. If it is determined in step (1) that
a reconfiguration period is in progress, no further reconfiguration can take place nor
can any service be rendered. At step (2) if no reconfiguration is in progress, then
a decision is taken whether to invoke a reconfiguration or not based on the process
history. (For some policies, the decision may be based on just the current queue length
vector and current service vector. See Definition 1 for the specification of a general
class of (nonrandom) scheduling policies and Sect. 2.5 for the class of Generalized
Max-Weight policies proposed in the present paper.) If the decision is to reconfigure in
case (a), then a counter is set for the duration Tr of the reconfiguration delay. Otherwise,
in case (b), packets are removed from the various queues in accordance with the current
service vector. Finally, in step (3), the current service vector is propagated as the default
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service vector for the next time slot, arriving packets are added to the queue lengths,
and the reconfiguration counter is decremented by 1, if not already 0. Note that the
service vector I(t) is also defined during a reconfiguration period, even though it does
not take effect until the reconfiguration ends and service may resume.

For convenience, we assume that the process always starts with a reconfiguration in
time slot 0 as in step (2a). The sequence of slots (Sk)k∈N0

in which a reconfiguration is
invoked are referred to as the reconfiguration times (taken to be ∞ if the kth such does
not occur); see also Sect. 2.2. Finally note that it is possible for one reconfiguration to
be followed by another back-to-back. In the case Tr = 1 there can be a reconfiguration
in one slot and in the next slot.

Unless otherwise stated, ||Q|| = ∑N
�=1 Q�, Q ∈ N

N
0 , denotes the L1 norm. The

inner product of two N -dimensional vectors is denoted as u · v = ∑N
�=1 u�v�. We

denote a sequence of scalars or vectors up to time t using a superscript, for example
A(t) = (A(0), . . . ,A(t)).

2.2 Mathematical preliminaries

Only the arrivals are random and the sample points lie in the set of sequences Ω =∏
N0

N
N
0 . A filtration (stochastic basis) is obtained via the cylinder σ -algebras

Ft = σ

({ ∞∏

s=0

Us : ∅ 
= Us ⊆ N
N
0 , 0 ≤ s ≤ t,Us = N

N
0 , s > t

})

, t ∈ N0.

Additionally, define

F .= σ

⎛

⎝
⋃

t∈N0

Ft

⎞

⎠ .

The pre-T σ -algebra for a stopping time S with respect to Ft is by definition

FS
.= {F ∈ F : F ∩ {S ≤ t} ∈ Ft ,∀t ∈ N0} ,

which we denote by FS . Now let S, T be Ft stopping times, then it is readily shown
that

{ω : T (ω) = S(ω)} ∈ FT (and FS). (2)

Moreover, since S+t , t = 0, 1, 2, . . . are themselves a sequence of increasing stopping
times, we obtain the S-filtration,

FS ⊆ FS+1 ⊆ . . . .

A stopping time defined with respect to this filtration is called a FS stopping time. It
is straightforward to show that if S is a Ft stopping time and χ is a FS stopping time,
then S + χ is a Ft stopping time.
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Finally if G is a σ -algebra, X,Y ∈ mG (see [34, p. 29] for definition) and A ∈ G,
then we say that X ≤ Y on occurrence of A almost surely if

X1A ≤ Y1A, a.s.

An important case is when X = E [Z |G] is a version of a conditional expectation of
a random variable Z .

Given a (aperiodic, time-homogeneous) Markov chain on a countable state space
A, a state a ∈ A is ergodic iff Ea [τa] < ∞ where τa is the number of steps to return
(see [13, p. 321]). The chain is said to be a recurrent chain if it enters an ergodic state
almost surely. It can readily be shown that such a chain is a Harris chain; see [11, pp.
325–326] for the definition. In the case where there is a given ergodic state which the
Markov chain enters almost surely, we say the Markov chain is a 1-recurrent Harris
chain. Such chains always have a unique limiting stationary measure which can be
deduced from [11, Theorem 4.7, p. 307].

Definition 1 (Scheduling Policy) A scheduling policy π is any sequence of determin-
istic mappings, π

.= (πt )t∈N,

πt :
(
N

N
0

)t × I t × {0, 1, . . . , Tr } → I × {0, 1, . . . , Tr } , t ∈ N, (3)

determining the current service vector I(t) and reconfiguration state φ(t). As in Table
1, φ(t) = [φ(t − 1) − 1]+ or φ(t) = Tr according to whether a reconfiguration is
invoked in slot t . Given the history up to time t , the mapping πt+1 determines whether
or not a reconfiguration takes place in slot t + 1,

πt+1(A(t), I(t), φ(t)) = (I(t + 1), φ(t + 1)), t ∈ N0,

together with any constant map π0(·) = (I(0), Tr ) for slot 0.
The following consistency conditions must be satisfied, for all t ∈ N0:

(I(t + 1), φ(t + 1)) = (I(t), φ(t) − 1), if φ(t) ≥ 1; (4)

φ(t + 1) = Tr , if φ(t) = 0, I(t) 
= I(t + 1); (5)

φ(t + 1) ∈ {0, Tr } , if φ(t) = 0, (6)

where I(t) is the applicable service vector in slot t .

Note that the above definition does not rule out mappings which reconfigure at time
t ≥ 1 with I(t) = I(t − 1). π0 simply chooses the initial service vector which may be
taken arbitrarily, and Q(0) = 0 as already mentioned.

The above definition follows the rubric given in Table 1. Equation (4) is the case
where the mapping has elected not to (or cannot) reconfigure in slot t+1, so the service
vector must be unchanged. Equation (5) is the case where the mapping has elected
to reconfigure to a distinct service vector, which can only take place if φ(t) = 0.
(6) covers the possibility that the service vector remains the same, with the mapping
electing for reconfiguration iff φ(t + 1) = Tr .
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For any such scheduling policy π , the sequence of reconfiguration times {Sk}k∈N0

satisfy S0 = 0 by definition and obviously (since the scheduling policy is deterministic)
{ω : Sk(ω) ≤ t} ∈ Ft−1, k ≥ 1, 1 ≤ t ≤ ∞, so that {Sk}k∈N0 is a sequence of Ft

stopping times.

Definition 2 (Strong Stability [15,20,23]) The system is strongly stable under a given
scheduling policy π if for any initial state

lim sup
T→∞

1

T

T−1∑

t=0

E
[||Qπ (t)||] < ∞, (7)

where Qπ (t) is the random vector of queue lengths obtained under policy π .

We will show the above starting from the empty state but the result is readily seen to
hold for arbitrary initial states.

Since the arrival and service variables are integer, this stability criterion implies the
existence of a long-run stationary measure with bounded first moments [20].

Definition 3 (Stability Region [20,23]) The stability region � is the closure of the
set of all arrival rate vectors λ = [λ1, λ2, . . . , λN ]′ such that there exists a scheduling
policy that renders the system strongly stable for λ.

Define �0 = conv(I) as the convex hull of the set of all service vectors, with
interior �o

0. Note that the long-term average service rates for the various queues must
be a convex combination of the feasible service vectors, i.e., belong to �0. Thus
stability cannot possibly be achieved for any arrival rate vector outside �0, i.e., λ ∈ �0
is a necessary condition for the system to be strongly stable under any policy, which
implies � ⊆ �0.

Definition 4 (Throughput optimality) A policy is said to be throughput-optimal if it
renders the system strongly stable for all arrival rate vectors in the interior of the
stability region �.

2.3 Example: an optical switch

Figure 1 shows an input-queued optical switch, with 3 input ports and 3 output ports. At
each input port i ∈ {1, 2, 3} packets arrive for the 3 output ports, with the mean number
of packets arriving for output o ∈ {1, 2, 3} per time slot being λi,o. A number of packet
arrivals for each input-output pair are i.i.d. over time and mutually independent, over
all slots. The switch requires the input ports to each be connected to a distinct output
port, in any given time slot, except when it is being reconfigured. For example Fig. 1
shows input ports 1, 2, 3 are currently connected to output ports 3, 1, 2, respectively.
In all there are N = 9 queues, and the set of nontrivial service vectors corresponds to
the set of all possible 6 = 3! matchings between the various input and output ports,
where one packet is transferred per time slot (if one is present). Hence, the above
arrival rates λi,o are in the stability region � (see Sect. 2.2) iff

∑3
o=1 λi,o ≤ 1,∀i ,

∑3
i=1 λi,o ≤ 1, ∀o. A new set of connections requires packet transmission to be

suspended while the switch is being reconfigured [26] for a period of Tr > 0 slots.
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Fig. 1 Optical switch with
input to output matching

Inputs

1

2

3

Outputs       1                      2                     3

2.4 Instability of the ordinary Max-Weight policy

We now show that the ordinary Max-Weight policy fails to be throughput-optimal in the
case of nonzero reconfiguration delays. Consider a single-server system with N = 2
queues and i.i.d. Bernoulli arrivals, i.e., P {A� = 1} = 1 − P {A� = 0} = p < 1/2.
The set of service vectors is I = {(0, 0), (0, 1), (1, 0)}, and the switching delay is
Tr = 1 time slot.

The stability region of this simple system is given by p ∈ [0, 1/2). Indeed, the
policy of serving each queue to exhaustion, and only then switching, can be shown to
render this system stable for any such value of p.

Since the set of service vectors is I = {(0, 0), (0, 1), (1, 0)}, the Max-Weight
service vector simply corresponds to serving the larger of the two queues. Hence, the
ordinary Max-Weight policy reconfigures whenever the queue being served is shorter
than the other at step 2) in Table 1. For example if Q1(t) < Q2(t) and the current
service vector is (1, 0), then (0, 1) is selected which is used in the following slot
(giving one slot where there is no service). Reconfiguration cannot take place in two
subsequent slots except initially because there is at most one arrival in each queue
per slot. Finally, without loss of generality, the Max-Weight policy sets I (0) = (1, 0)

initially. It is readily verified that the queue lengths are confined to stay in the set
D = {(Q1, Q2) : |Q1 − Q2| ≤ 3}. The loss in throughput (defined to be 1−2pMaxWt
where pMaxWt is the supremum of probabilities p for which the above network is
strongly stable for all q ∈ (0, p)) is at least 1/(1 + A) where A is a uniform bound on
the expected time between switches. The following lemma gives a precise statement.

Lemma 1 The ordinary Max-Weight algorithm is not throughput-optimal for the
above-described two-queue system. Specifically, for all arrival rates p > 0.42049
both queues grow to infinity almost surely.

The proof of the above lemma is provided in Appendix 1. As further discussed in
the appendix, the expected time between reconfigurations is uniformly bounded over
the sum queue length. Starting states well away from the main diagonal are irrelevant
since the diagonal will almost surely be crossed at some point, and the queue lengths
must inevitably stay in the set D from then on.
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In order to avoid the above pitfall, a scheduling policy must maintain the current
service vector for an extended period of time. Moreover, the further the queue state
is from the origin, the longer this time should be. In this way the fraction of time
spent on switching is gradually reduced as the queues become longer, which is also
the key driver for the dynamic cone-based policy proposed in [16]. The question that
must be addressed is how to dynamically arrange the durations of the interswitching
intervals. In the next sections we will further address this question, and propose a
class of adaptive scheduling policies which achieve throughput optimality by defining
service intervals based on queue lengths or the evolution of the queues over time.

2.5 Generalized Max-Weight scheduling policies

In the remainder of the paper we consider a particular class of scheduling policies which
we refer to as Generalized Max-Weight scheduling policies. These policies differ only
in the specific definition of the stopping criterion, but at the kth reconfiguration time,
with finite stopping time Sk < ∞, it is always the Max-Weight service vector

I(Sk) = arg max
I∈I

Q(Sk) · I

which is selected. Possible ties between several service vectors are assumed to be
resolved in a deterministic but otherwise arbitrary manner. It follows that reconfig-
uration at queue state Q always results in the same decision under these policies.
Following Tr reconfiguration slots, service vector I(Sk) is invoked unless it is deter-
mined at time Sk +Tr that a new service vector should again be adopted and that there
should therefore be a further period of reconfiguration.

The reconfiguration times (see text below Definition 1) are defined for these policies
according to the following recursion with S0 = 0: if Sk = ∞, then Sk+1 = ∞;
otherwise,

Sk+1 = inf {t ≥ Sk + Tr : fπ (·) ≥ 0} , k ∈ N0,

where fπ (·) is a (nonrandom) mapping involving Sk , Q(Sk), I(Sk), Q(t), and t (only
through s = t − Sk and depending not at all on k). We refer to fπ (·) as the reconfigu-
ration rule—determining when it occurs.

As fπ (·) is deterministic, it follows that the reconfiguration times {Sk}∞k=0 form an
increasing sequence of Ft stopping times. With a slight abuse of notation, define

Sk(t, ω) = inf {Sk : Sk < t} , t ≥ 1,

so that Sk(1, ω) = S0 = 0 for example. The process defined with respect to the
sequence of states with t

(t,Q(t, ω), I(t, ω),Q(Sk(t, ω), ω), Sk(t, ω))
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as the time variable, is, by the definition of fπ (·), a Markov chain. Among these
processes we will only consider those where fπ (·) depends on time only as time
elapsed since the last reconfiguration. Furthermore we will only consider those where
there is an auxiliary state variable �(t) ∈ N0 such that

(Q(t), I(t),Q(Sk(t, ω)), �(t)) (8)

is a Markov chain with time index t and where �(t) ∈ N0 depends only on time
elapsed since the last reconfiguration, or to the next reconfiguration (when known in
advance). Wherever the above is the case, we will refer to this process as a fπ -chain
(defined on (Ω,F) and induced by fπ (·)).

It is easy to see that the above stochastic process determined by fπ (·) and restricted
to the stopping times Sk forms a time-homogeneous Markov chain, with state variable
(Q(Sk), I(Sk)). To deal with the possibility that there are only a finite number of steps,
we will suppose that the current event is absorbing with probability equal to the chance
that the next reconfiguration occurs at Sk+1 = ∞.

It is clear that more general scheduling policies than those described above can be
contemplated. However, constructions involving only the most recent reconfiguration
and independent of both the time slot t and of the number of switches k are natural
to consider. In particular, there are scheduling policies π of this type which achieve
throughput optimality.

3 Throughput-optimal policies and main results

The main purpose of this section is the presentation and proof of Theorem 1. Before
doing so, we describe three policies all of which, as we will show, satisfy the conditions
of Theorem 1, and then some necessary lemmas will be presented. We begin with the
following definition.

Definition 5 A strictly positive increasing function F(·) with a uniformly bounded
continuous derivative is called sublinear if it satisfies the following two conditions:

lim
y→∞ F(y) = ∞,

lim
y→∞

F(y)

y
= 0.

It is easy to see that any strictly positive increasing concave function with continuous
derivatives in (0,∞) such that F ′(y) → 0 as y → ∞ and F(y) ↑ ∞ as y ↑ ∞ is
sublinear, for example, F(y) = 1 + √

y. In the following section the function F(·) is
any sublinear function as just defined.
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3.1 Example policies

3.1.1 Variable Frame-Based Max-Weight (VFMW) policy

In the Variable Frame-Based Max-Weight (VFMW) policy introduced in [9], the next
time to reconfigure following reconfiguration at time Sk is determined in advance as

fπ = t − F (||Q(Sk)||) − Tr − Sk = s − F (||Q(Sk)||) − Tr , t ≥ Sk,

where s
.= t − Sk is the number of slots since the most recent reconfiguration. Recon-

figuration will occur at Sk+1 = �F (||Q(Sk)||)� + Tr + Sk , and the service interval is
referred to as a frame, from whence the name of this policy is derived.

Observe that the process determined at slot t by the state variable

(Q(t), I(t), υ(t), φ(t)) (9)

is a Markov chain. Here �(t) := υ(t) = Sk+1 − Sk − s ∈ N0 is the time-to-go
variable. Clearly υ(t) is decremented as the frame proceeds, and a reconfiguration is
invoked when it becomes 0. The variable φ(t) ∈ {0, . . . , Tr } counts the slots during
a reconfiguration; see Definition 1. It is easy to see that each state (υ, φ) can be
injectively mapped into N0, and so the VFMW policy gives rise to a fπ -chain.

3.1.2 Bias-Based (BB) policy

The Bias-Based (BB) policy makes a reconfiguration decision whenever there is a
sufficiently large change in the queue length, hence the name. Given a constant θBB >

0 and setting s = t − Sk , t ≥ Sk ,

fπ = ||Q(s + Sk) − Q(Sk)|| − θBB F (||Q(Sk)||) .

Unlike the VFMW policy, the next stopping time is not known in advance. How-
ever, it is the case that Sk < ∞ for all k ∈ N0. To see this we may suppose that a
reconfiguration does not occur at Sk + Tr , which implies

||Q(Sk + Tr ) − Q(Sk)|| < θBB F (||Q(Sk)||) .

But then in any slot t ≥ Sk + Tr , with strictly positive probability, there will be a
sufficiently large number of arrivals ||A(t)|| so that

||Q(t + 1)|| ≥ ||A(t)|| > θBB F (||Q(Sk)||) + ||Q(Sk)||, (10)

as the support of the distribution of the number of arrivals is unbounded. But (10)
implies that fπ > 0 in slot t + 1. Hence Sk+1 − Sk < ∞ almost surely for all k ≥ 0.

Under the BB policy, the process with state variable

(Q(t), I(t),Q(Sk(t, ω)), �(t))
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is a Markov chain, where �(t) := φ(t) is the reconfiguration variable as above. Hence
the BB policy again gives rise to a fπ -chain; see (8).

3.1.3 Switching-Curve-Based (SCB) policy

The SCB policy reconfigures whenever the weight of a given service vector I∗, neces-
sarily the current Max-Weight vector, exceeds that of the current service vector, I(t),
by an amount determined by the current queue state

fπ = max
I∈I

I · Q(t) − I(s + Sk) · Q(Sk + s) − F(||Q(Sk + s)||),

where s = t − Sk , t ≥ Sk , as before. If there are only two queues, the second term can
be thought of as a curve which must be crossed in order for the process to reconfigure,
hence the name. Unlike the BB policy, only finitely many reconfigurations may occur.

The process with state variable

(Q(t), I(t), �(t))

is a Markov chain, with �(t) := φ(t) once again indicating a reconfiguration step as
with the VFMW and BB policies. Hence the SCB policy also gives rise to a fπ -chain.

3.2 Main theorem

We now establish sufficient generic conditions for the class of Generalized Max-
Weight policies to achieve throughput optimality.

As already mentioned, the reconfiguration rule fπ (·) depends on time t only as time
elapsed since the previous reconfiguration. It thus gives rise to a time-homogeneous
Markov chain with state as given in (8).

The proof of Theorem 1, to be stated in a moment, relies on drift calculations for
the Lyapunov function

L(Q)
.=

N∑

�=1

Q2
�. (11)

Drift analysis for a quadratic Lyapunov function is a classical approach in establishing
stability of Max-Weight policies. However, in contrast to the usual set-up, we cannot
hope to obtain negative drift on a slot-by-slot basis because of the forced inactivity
during reconfiguration. In order to show negative drift, we therefore need to consider
the evolution of the Lyapunov function over longer random periods defined in terms
of suitably constructed stopping times.

Theorem 1 Fix λ ∈ �o
0 and let π be a Generalized Max-Weight scheduling policy

defined by the reconfiguration rule fπ (·), so that λ, fπ determine a fπ -chain.
Denote the reconfiguration sequence by {Sk}k∈N0 . Suppose that for each k, a FSk

stopping time χk is given, together with a compact set C ⊂ N
N
0 , a sublinear function

F(·), a nonnegative function δ(·) with limx→∞ δ(x) = 0, and positive constants
ε, c1, c2 > 0, so that the following four conditions are satisfied:
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(i) Sk+1 ≥ Sk + χk ∀k ∈ N0,∀ω ∈ F , and on occurrence of Sk < ∞,
(ii) E

[
χk |FSk

] ≥ c1(1 − δ(||Q(Sk)||))F(||Q(Sk)||) a.s.,
(iii) E

[
χ2
k |FSk

] ≤ T 2
r + c2(F(||Q(Sk)||))2 a.s.,

(iv) E
[
L(Q(Sk + t + 1))|FSk+t

] − L(Q(Sk + t)) ≤ −ε||Q(Sk + t)|| a.s. if it also
occurs that Q(Sk + t) /∈ C, for any t, Sk + χk ≤ Sk + t < Sk+1.

Then the system is strongly stable in the sense of Definition 2, and since this holds
for arbitrary λ ∈ �o

0, it follows that the policy π is throughput-optimal.

Condition (ii) simply ensures that the mean time between reconfigurations goes to
infinity as the total queue length grows, which is a necessary condition for stability.
Condition (iii) is more closely connected to the use of a quadratic Lyapunov function.
It has the effect of ensuring that the selected service vector remains “very nearly”
Max-Weight and so there is no loss in quadratic Lyapunov drift. Condition (iv) allows
for policies which do not reconfigure at the stopping time χk . The policy will still be
strongly stable under Theorem 1 provided it is shown that the negative drift condition
stated in (iv) holds for each t ∈ [Sk+χk, Sk+1) wheneverQ is outside a given compact
set. (Later on, we will exhibit such a stopping time χk together with a compact set, to
show that condition (iv) holds for the SCB policy.)

Before presenting the proof of Theorem 1, we first make a few brief comments.
First, recall that � ⊆ �0. The above result shows that � = �0.

Second, observe that if condition (i) holds with equality, so that Sk+1 = Sk + χk ,
k ∈ N0, then condition (iv) is redundant. Moreover, the conditional form of Jensen’s
inequality [34, p. 88] applied to condition (iii) shows that

E
[
χk |FSk

] ≤ Tr + √
c2F (||Q(Sk)||) < ∞, (12)

so that if Sk < ∞ almost surely so is Sk+1. Hence if (i) holds with equality, then the
sequence of reconfiguration epochs satisfies Sk < ∞ for all k ∈ N0 almost surely. (If
condition (i) does not hold with equality, then it may be the case that there are only a
finite number of reconfigurations, so that Sk = ∞,∀k > k0.)

In what follows, we will consider the drift during a service interval, and hence
introduce the shorthand notation

ΔSk = E
[
L(Q(Sk + χk))|FSk

]− L(Q(Sk)), k ∈ N0, (13)

if Sk < ∞, and ΔSk = 0 otherwise.
We now state two auxiliary lemmas which will enable us to obtain upper bounds

for certain expressions which arise in bounding the Lyapunov drift. First we obtain an
upper bound on the drift of the Lyapunov function between reconfiguration at time Sk
and stopping at Sk + χk . The proof of the lemma is deferred to Appendix 2.

Lemma 2 Let π be a Generalized Max-Weight scheduling policy determined by
a reconfiguration rule fπ (·). Also let {Sk}k∈N0 be the associated reconfiguration
sequence and suppose that the fπ -chain satisfies the conditions of Theorem 1.
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Then for any arrival rate vector λ ∈ �o
0, there exist fixed constants c3 < ∞, η > 0,

such that on occurrence of Sk < ∞,

ΔSk ≤ c3 − ηF (||Q(Sk)||) ||Q(Sk)||, k ∈ N0.

The second lemma provides an upper bound on the expectation of the square of
a randomly stopped sum. We omit a detailed proof, since the lemma is only a minor
extension of a result in [25].

Lemma 3 Let {Ft }t∈N be a filtration andYt ∈ N
N
0 , t ∈ N, a sequence of independent

random vectors adapted to {Ft } and such that the components of Yt are mutually
independent. Let E [Yt ] = λt , V [Yt ] = σ 2

t < ∞, where expectations and variances
are obtained componentwise.

Furthermore let T be an almost surely finite Ft stopping time and T̃ be an inde-
pendent copy of T (an independent random variable with the same distribution).

For any given component � ∈ N , let

S(�)
T =

T∑

t=1

Y�,t ,

then

E

[(
S(�)
T

)2
]

≤ 2E

[(
S(�)

T̃

)2
]

= 2E

[
T∑

t=1

σ 2
�,t

]

+ 2E

⎡

⎣

(
T∑

t=1

λ�,t

)2⎤

⎦ ,

where λ�,t and σ 2
�,t are the mean and variance for component � at time t.

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1 It will be convenient to take the sequence of switching epochs
Sk , the following stopping times Sk + χk , and the following slots leading up to the
next switching epoch (if any) as a single infinite sequence, τ0 := 0 < τ1 < τ2 < . . . .
The sequence {τm}m∈N0 is defined recursively as follows. First τ0 = 0 as stated and
is therefore a Ft stopping time. The variable τm+1 is defined recursively as

τm+1 =
{

τm + 1 if τm 
= Sk for all k
Sk + χk if there exists k ≤ m such that τm = Sk

.

From (2) it follows that if τm is a Ft stopping time, then

{ω : τm(ω) 
= Sk(ω),∀k} ∈ Fτm , {ω : τm(ω) = Sk(ω)} ∈ Fτm ,FSk .

Since, also, Sk + χk is a Ft stopping time, it is readily shown that {τm}m∈N0 is an
infinite sequence of Ft stopping times. By assumption, if Sk < ∞, then χk < ∞
almost surely so that it also holds that τm < ∞ for all m ∈ N0 almost surely.
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Define Am,k = {ω : Sk = τm}, k ≤ m, and Vm = (∪m
k=0Am,k

)c as the event that
τm is not equal to any Sk . Let 1(m,k) and 1(m) be the indicator random variables for
the events Am,k and Vm , respectively.

If condition (i) holds with equality, the above is the sequence of reconfigurations
{Sk}k∈N0 . In any case, define

Φm
.=
(
Q(τm), I(τm),1(m)

)
, m ∈ N0, (14)

and note that Φm is not necessarily a Markov chain in m as the state variable � is not
included. (Of course, if (i) holds with equality the sequence is a Markov chain and
1(m) = 0,∀m is redundant.)

Now we define,

Δτm
.= E

[
L(Q(τm+1))|Fτm

]− L(Q(τm)),m ∈ N0. (15)

It follows from Lemma 2 and the definition of τm that there exist constants, 0 < c3 <

∞, η > 0, independent of m, k such that

Δτm ≤ c3 − η||Q(τm)||, a.s.

on occurrence of Am,k . This follows since on occurrence of Am,k, τm = Sk < ∞ and
because τm+1 = Sk + χk ≤ Sk+1, which implies the service vector I (Sk) remains
fixed prior to stopping at τm+1. The constant η is obtained on replacing F (||Q(Sk)||)
with F(1) > 0 from Lemma 2.

Otherwise the event Vm must have occurred, which implies that τm+1 = τm + 1.
Hence

Δτm ≤ c4 − ε||Q(τm)||, a.s.

on occurrence of Vm . This follows from condition (iv) of Theorem 1 where we may
suppose τm < ∞. Vm occurs only if τm = Sk + t , for some (necessarily unique)
stopping time Sk + t satisfying the stated inequality in condition (iv). Since there are
only finitely many points in C, there exists a constant c4 < ∞, independent of m, so
that the inequality holds.

The above inequalities imply

Δτm ≤ (c3 − η||Q(τm)||)
m∑

k=1

1(m,k) + (c4 − ε||Q(τm)||)1(m) (16)

almost surely, for any m ∈ N0.
Set D = max{c3, c4} and θ = min{η, ε}. Taking expectations and using the fact that

the events Vm and ∪m
k=1Am,k are (almost surely) exhaustive and mutually exclusive,

we derive
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1

M

M−1∑

m=0

E [Δm] ≤ D − θ

M

M−1∑

m=0

E [||Q(τm)||] .

Since E [Δm] = E
[
L(Q(τm+1)) − L(Q(τm))

]
, and L(Q(τ0)) = 0, the sum on the

left may be telescoped to obtain

0 ≤ 1

M

M−1∑

m=0

E [Δm] = 1

M
E [L(Q(τM ))] ≤ D − θ

M

M−1∑

m=0

E [||Q(τm)||] .

It thus holds that

lim sup
M→∞

1

M

M−1∑

m=0

E [||Q(τm)||] ≤ D

θ
< ∞. (17)

The following two bounds, which we will use later, are obtained by similar argu-
ments. First substitute the full bound of Lemma 2 into (16). Then after scaling and
taking expectations, the sum may be telescoped as before to deduce

0 ≤ c3 − η

M

M−1∑

m=0

m∑

k=0

E
[
F(||Q(τm)||)||Q(τm)||; Am,k

]

+ c4 − ε

M

M−1∑

m=0

E [||Q(τm)||; Vm] .

Since the terms in the sums are nonnegative, the following two bounds are obtained

lim sup
M→∞

1

M

M−1∑

m=0

m∑

k=0

E
[
F(||Q(τm)||)||Q(τm)||; Am,k

] ≤ c3 + c4

η
< ∞. (18)

lim sup
M→∞

1

M

M−1∑

m=0

E [||Q(τm))||; Vm] ≤ c3 + c4

ε
< ∞.

In a certain sense Eq. (17) shows that the queue length process embedded at the
stopping times τm is strongly stable. We now proceed to prove that the queue length
process at time slots itself is strongly stable.

By construction, τm+1 − τm > 1 only if the event Am,k occurs for some k ≤ m.
Consider only intervals [Sk, Sk + χk), since other steps use only one slot. For all
t ∈ [Sk, Sk + χk) we have

Q�(t) ≤ Q�(Sk) +
t−Sk∑

u=0

A�(Sk + u) ≤ Q�(Sk) +
χk−1∑

u=0

A�(Sk + u).
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Thus,

χk−1∑

s=0

Q�(Sk + s) ≤ χk

⎛

⎝Q�(Sk) +
χk−1∑

u=0

A�(Sk + u)

⎞

⎠

≤ χk Q�(Sk) + χk

χk−1∑

u=0

(1 + A�(Sk + u))

≤ χk Q�(Sk) +
⎛

⎝
χk−1∑

u=0

(1 + A�(Sk + u))

⎞

⎠

2

.

Summing over the queues and taking the conditional expectation, we obtain

E

⎡

⎣
χk−1∑

s=0

||Q(Sk + s)|||FSk

⎤

⎦ ≤ E
[
χk |FSk

] ||Q(Sk)||

+
N∑

�=1

E

⎡

⎢
⎣

⎧
⎨

⎩

χk−1∑

s=0

(1 + A�(Sk + s))

⎫
⎬

⎭

2

|FSk

⎤

⎥
⎦. (19)

The last term inside the square is a sum of i.i.d. random variables which are also
independent of the process up to time Sk .

We proceed to bound the terms on the right-hand side of (19). Since χk is a FSk
stopping time, we may apply Lemma 3 to obtain

E

⎡

⎢
⎣

⎧
⎨

⎩

χk−1∑

s=0

(1 + A�(Sk + s))

⎫
⎬

⎭

2

|FSk

⎤

⎥
⎦ ≤ 2

(
A2

max − λ2
�

)
E
[
χk |FSk

]
(20)

+ 2
(

1 + 2λ� + λ2
�

)
E

[
χ2
k |FSk

]
.

The first term on the right-hand side of (19) and (20) can be upper bounded using (12).
The second term on the right-hand side of (20) can be upper bounded using condition
(iii). Combining these results and using that the function F(·) is sublinear, we deduce
that there exist constants c5, c6 < ∞ such that

E

⎡

⎣
χk−1∑

s=0

||Q(Sk + s)|||FSk

⎤

⎦ ≤ c5 + c6F (||Q(Sk)||) ||Q(Sk)||. (21)

We proceed to obtain a bound for ||Q(t)|| summed over time slots. By construction
of {τm}m∈N0 , T ≤ τT for any T ∈ N0. Thus we may write
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T−1∑

t=0

||Q(t)|| ≤
τT −1∑

t=0

||Q(t)||

=
T−1∑

m=0

τm+1−1∑

u=τm

||Q(u)||

=
T−1∑

m=0

τm+1−1∑

u=τm

||Q(u)||
(

m∑

k=0

1(m,k) + 1(m)

)

=
T−1∑

m=0

⎛

⎝
Sk+χk−1∑

u=Sk

||Q(u)||1(m,k) + ||Q(τm)||1(m)

⎞

⎠

=
T−1∑

m=0

(
χk−1∑

s=0

||Q(Sk + s)||1(m,k) + ||Q(τm)||1(m)

)

.

It is readily seen that the sum on the right-hand side is finite almost surely. Since
1(m,k) ∈ FSk , we may take expectations on both sides and use (21) to obtain

T−1∑

t=0

E [||Q(t)||] ≤
T−1∑

m=0

m∑

k=0

E
[
c5 + c6F(||Q(τm)||)||Q(τm)||; Am,k

]

+
T−1∑

m=0

E [||Q(τm)||; Vm] .

Dividing this expression by T , taking the limsup and using the bounds in (18), we
may deduce

lim sup
T→∞

1

T

T−1∑

t=0

E [||Q(t)||] < ∞,

which completes the proof. ��
Whereas Theorem 1 establishes sufficient conditions for throughput optimality,

this does not by itself show that the processes themselves are ergodic, nor that unique
stationary distributions exist. The following corollaries are concerned with these ques-
tions.

The first corollary establishes ergodic properties for the stochastic sequence Φm

where it is a Markov chain. It will be a Markov chain if condition (i) of Theorem 1
holds as we mentioned earlier.

Corollary 1 Suppose Φm, see (14), is a Markov chain. Then this chain is recurrent.
If the chain is irreducible, then a unique stationary distribution exists, and if Q∞ has
this distribution, then E [||Q∞||] < ∞.

123



106 Queueing Syst (2016) 83:87–129

Recall that a Markov chain is recurrent iff it enters an ergodic state almost surely.
The proof then follows from Eq. (17) in conjunction with the next lemma, the proof
of which is presented in Appendix 3.

Lemma 4 Suppose we have aMarkov chain {(Q(t), J (t))}t∈N0 with state space lying
in X = N

N
0 × J , where J is a finite set. If it holds that

lim sup
T→∞

1

T

T−1∑

t=0

E [||Q(t)||] = Emax < ∞,

then this Markov chain is recurrent.
If the chain is 1-Harris recurrent, then there exists a random variableQ∞ with the

stationary distribution, and in addition, E [||Q∞||] < ∞.

As far as Generalized Max-Weight policies are concerned, we will be able to show
the stronger result that the corresponding Markov chains are 1-Harris recurrent. This
fact alone does not imply that the Markov chain over time slots (8) is itself 1-Harris
recurrent, since the number of time slots between renewals (visits to a given state)
may have infinite expectation. The next result, however, shows that the expectation is
in fact finite; for a proof see Appendix 4.

Corollary 2 Suppose (Q(t), I(t),Q(Sk(t)), �(t)) is a fπ -chain satisfying conditions
(i)–(iv) of Theorem 1. Suppose

(
Q(τm), I(τm),1(m)

)
is a Markov chain. If, in addition,

this chain is 1-Harris recurrent, then the chain (Q(t), I(t),Q(Sk(t)), �(t)) is also 1-
Harris recurrent.

The above corollary shows that if
(
Q(τm), I(τm),1(m)

)
is a 1-Harris chain, then the

chain (Q(t), I(t),Q(Sk(t)), �(t)) has a stationary distribution, moreover,E[||Q∞||] <

∞ as a consequence of strong stability.

4 Stability proofs

In this section we return to the example policies described in Sect. 3.1, and show that
they satisfy the conditions stated in Theorem 1.

4.1 VFMW policy

Theorem 2 TheVFMWpolicy induces a fπ chain satisfying condition (ii), (iii) of The-
orem 1 and condition (i) with equality. Hence VFMW is throughput-optimal.

Proof It was shown in Sect. 3.1.1 that VFMW induces a fπ -chain. Moreover, by
definition of the VFMW policy, we have Sk+1 = Sk + χk , k ∈ N0, i.e., condition (i)
holds with equality. As noted below the statement of Theorem 1, condition (iv) is then
redundant, and therefore only conditions (ii) and (iii) need to be verified.

By definition, χk = �F (||Q(Sk)||)� + Tr ≥ F (||Q(Sk)||) + Tr , so that condition
(ii) holds with δ = 0 and c1 = 1. Also, since χk ≤ F (||Q(Sk)||) + Tr + 1, it follows
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that χ2
k ≤ (F (||Q(Sk)||))2 + 2F (||Q(Sk)||) (Tr + 1) + T 2

r + 2Tr + 1. Now choose
a such that aF(0) ≥ 2(Tr + 1) and b such that b(F(0))2 ≥ 2Tr + 1, then condition
(iii) is satisfied for c2 = 1 + a + b. ��

Since the sequence τm , m ∈ N0 clearly coincides with Sk , k ∈ N0, Corollary 1
shows that the chain (Q(Sk), I(Sk)) as induced by the VFMW policy at reconfiguration
epochs is recurrent.

Now let I0 be the unique Max-Weight service vector selected when reconfiguration
is started with all queues empty. Since F(||Q||) < ∞, provided ||Q|| < ∞, it follows
that the state (0, I0) will be entered with positive probability from any given state
(Q, I). This holds because there is a positive probability all queues will be empty after
a finite number of reconfigurations, R < ∞, starting from the given ergodic state
(Q, I) which has been entered. Indeed, there is positive probability of no arrivals until
(0, I0) as it has been supposed that the arrival processes are independent across queues
and over time and P {A� = 0} > 0 for all � ∈ N . It follows that the chain is irreducible
(confined to those states which communicate with (0, I0)). Corollary 1 implies that
the chain (Q(Sk), I(Sk)) induced by VFMW has a unique stationary distribution.

In addition, Corollary 2 now implies that the chain (Q(t), I(t), υ(t), φ(t)) (see (9))
is 1-Harris recurrent, so that the stationary distribution of the queue lengths over time
slots exists with bounded first moments.

4.2 BB policy

Theorem 3 The BB policy induces a fπ chain satisfying conditions (ii), (iii) of The-
orem 1 and condition (i) with equality. Hence BB is throughput-optimal.

Proof It was shown in Sect. 3.1.2 that BB induces a fπ -chain. Moreover, under the BB
policy, we also have Sk+1 = Sk + χk , k ∈ N0, with χk < ∞ almost surely if Sk < ∞
as shown earlier, so that condition (i) holds with equality. Thus only conditions (ii)
and (iii) need to be verified. This is done in Lemmas 5 and 8, respectively, which are
presented below. ��

Since Theorem 3 holds, Corollary 1 now shows that the chain (Q(Sk), I(Sk)) as
generated by the BB policy at reconfiguration epochs is recurrent. Irreducibility of this
chain can be established by a straightforward but tedious argument which we do not
present. This establishes that there is a queue state Q1 and corresponding Max-Weight
schedule I1 such that entry into (Q1, I1) occurs infinitely often.

Corollary 2 then implies that the chain (Q(t), I(t),Q(Sk), φ(t)) at time slots is
itself 1-Harris recurrent. It follows that the stationary distribution of queue lengths
over time slots exists with bounded first moments.

We now present Lemmas 5 and 8. Lemma 5 provides a lower bound for E
[
χk |FSk

]
,

establishing condition (ii) of Theorem 1, and Lemma 8 an upper bound forE
[
χ2
k |FSk

]
,

establishing condition (iii). The proofs of these two lemmas are given in Appendices 5
and 8, respectively.
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Lemma 5 (Lower bound on conditional first moment of χk) There is a fixed constant
c1 < ∞ such that, on occurrence of Sk < ∞,

E
[
χk |FSk

] ≥ c1(1 − δ(Q(Sk)))F (||Q(Sk)||) , a.s. ∀k ∈ N0,

where δ(·) is a nonnegative decreasing function with limx→∞ δ(x) = 0.

Before establishing a (conditional) upper bound on E
[
χ2
k |FSk

]
, we state two aux-

iliary lemmas which are proved in Appendices 6 and 7, respectively.

Lemma 6 Fix an arrival rate vector λ in the interior of the stability region �, θBB >

0, together with a sublinear function F(·). Given a queue vector Q, let I be any
corresponding Max-Weight vector. Then there exists a compact set C such that for all
Q /∈ C there is an � ∈ N such that

Q� ≥ �θBB F(||Q||)�,

and under theMax-Weight service vector I, Q� has strictly negative drift, i.e., I� > λ�.

Lemma 6 shows that outside a compact set there is always a queue � ∈ N with a
large size compared to F(||Q||)) that has negative drift under the Max-Weight service
vector. Thus, even if all the other queue lengths were to remain unchanged, this queue
will drift toward empty, causing a reconfiguration by itself. Actual changes in any
other queue lengths will only serve to cause this event to occur sooner, rendering the
time for Q� to empty an upper bound on χk .

The following lemma is a general result for a single-server queue with batch service
of a fixed number of customers D per time slot and i.i.d. arrivals A(t) in slot t ∈
N0 with finite second moments, E

[
A2(t)

]
< ∞. Suppose also that the queue has

strictly negative drift, i.e., D > λ = E [A(t)]. With service and arrivals proceeding as
described in Sect. 2 and with the natural filtration Ht

.= σ(A(0), . . . , A(t)), suppose
that Q(0) > D and let T be the number of slots until Q(T ) < Q(0). Then we have
the following lemma.

Lemma 7 Given the above single-server queue with batch service and initial state
Q(0) > D satisfying the recursion

Q(t + 1) = [Q(t) − D]+ + A(t), ∀t ∈ N0,

where A(t) ∈ N0 are i.i.d. with finite second moments and with the natural filtration
Ht as given above. Also, suppose the drift is strictly negative, λ < D, where λ is
defined above. Then T is aHt stopping time with finite first and second moments.

Lemma 7 implies that the amount of time for the length of queue �∗ to reduce by
a given amount M0 ≥ 1 also has finite variance, provided the initial queue length is
sufficiently large.

The next lemma provides an upper bound for E
[
χ2
k |FSk

]
, establishing condition

(iii) of Theorem 1.
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Lemma 8 (Upper bound on conditional second moment of χk) There is a fixed con-
stant c2 < ∞ such that

E

[
χ2
k |FSk

]
≤ T 2

r + c2(F (||Q(Sk)||))2, (22)

for all Q(Sk) ∈ N
N
0 .

4.3 SCB policy

In addressing the SCB policy below, we will suppose without loss of generality that
λ > 0. In addition, we will assume that there is no dominating service vector. A
service vector ID is said to be strictly dominating if it holds that ID > I1 for all
I1 ∈ I, I1 
= ID . The vector ID is said to be dominating if the inequality is not strict,
but ID is always selected where there are ties. By an elementary argument it can then
be shown that SCB will reconfigure infinitely often provided that λ ∈ �o

0.
If there is a dominating service vector, then it is unique and always Max-Weight. It

is straightforward to show that almost surely the system will reconfigure at some step
to adopt and maintain this service vector for such arrival rate vectors in the interior of
�0. It follows that the SCB policy is throughput-optimal in this case.

Theorem 4 Suppose there is no dominating service vector. Then the SCB policy sat-
isfies conditions (i)–(iv) of Theorem 1, and hence is throughput-optimal.

Proof Since there is no dominating service vector, a straightforward argument which
we omit shows that Sk < ∞ for all k ∈ N0. Denote by νk = Sk+1 − Sk ≥ Tr
the duration of the kth service interval. In order to establish conditions (i)–(iii), we
will exhibit a FSk stopping time χk satisfying χk(ω) ≤ νk(ω) for all ω such that
Sk(ω) < ∞. We also will verify conditions (ii) and (iii) for χk .

We first prove that there exists a compact set A such that χ BB
k (ω) ≤ νk(ω) for a

given BB policy, provided Q(Sk) /∈ A, with χ BB
k denoting the stopping time under

the BB policy, i.e., the slot at which it would reconfigure.
To show the above, let ΔQ be the vector change in queue lengths at the time

Sk+1 = Sk + νk < ∞ that the SCB policy reconfigures. Let I∗ and Io be the Max-
Weight service vectors at time slots Sk and Sk+1, respectively, and fix a sample path.
Then

ΔQ · (Io − I∗) ≥ F(||Q(Sk+1)||).

It follows from the Cauchy–Schwarz inequality and Taylor’s theorem that

||ΔQ|| × ||Io − I∗|| ≥ F(||Q(Sk+1)||)
||ΔQ|| ≥ ηF(|||Q(Sk)|| − ||ΔQ|||)

= η
[
F(||Q(Sk)||) − ||ΔQ||F ′(yΔQ)

]
,
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with yΔQ ∈ [||Q(Sk)|| − ΔQ, ||Q(Sk)||]. The first inequality holds with η =
1/(2Nμmax) because 1 > η||Io − I∗|| and the last equality is obtained under the
supposition that ||ΔQ|| ≤ ||Q(Sk)||. Invoking Definition 5, we deduce

||ΔQ|| ≥ η

1 + ηB
F (||Q(Sk)||) ,

with B = maxy≥0 F ′(y) < ∞. If we define θBB = η
1+ηB , then this inequality

implies that the corresponding BB policy must have reconfigured already by time Sk+1,
provided ||Q(Sk)|| > A1 for some constant A1 > 0. Clearly the same conclusion
holds for the same BB policy if it was the case that ||ΔQ|| > ||Q(Sk)||, provided
||Q(Sk)|| > A2 for some constant A2, so that F(y) < y for all y > A2. We have thus
shown that if we take A .= {Q : ||Q|| ≤ max {A1, A2}}, then we obtain the required
compact set.

We now set χk = Tr if Q(Sk) ∈ A and χk = χ BB
k if Q(Sk) /∈ A. The above

property then implies that condition (i) is satisfied. It follows directly from Theorem 3
that conditions (ii) and (iii) are satisfied when Q(Sk) /∈ A for some suitable choice of
constants c1, c2 and function δ(·). Since the set A is compact and therefore finite we
may take δ = 1 on A to meet (ii), and (iii) is satisfied by definition of χk in A.

It remains to be established that condition (iv) is satisfied. First we define the single-
step drift,

Ξk(t) = E
[
L(Q(Sk + t + 1)) − L(Q(Sk + t))|FSk

]
,

which we will investigate only when Sk < ∞. Recalling the definition of χk as given
above, suppose that t ∈ [χk, νk). It follows that if Io is the service vector selected at
time Sk , then for any service vector I ∈ I it holds that

Q(Sk + t) · I < F(||Q(Sk + t)||) + Io · Q(Sk + t). (23)

If this were not the case, then by definition a reconfiguration would occur at time
Sk + t , contradicting the supposition that t ∈ [χk, νk).

However, (23) shows that while Io is no longer necessarily the Max-Weight service
vector at time Sk + t , it is still in some sense close to being so. We will now obtain
an estimate for the drift under Io. For any arrival rate vector λ that is in the interior
of the stability region �, there exist real numbers α1, . . . , α|I| such that α j ≥ 0 for
all j = 1, . . . , |I|, ∑|I|

j=1 α j = 1 − ε for some ε > 0 and λ = ∑|I|
j=1 α j I j . Define

K = N (A2
max + μ2

max) and denote by I∗(Q(t)) the Max-Weight service vector for
Q(t); in the case of ties let it be decided as explained earlier.

Then

Ξk(t) ≤ 2K + 2Q(Sk + t) ·
⎛

⎝
|I|∑

j=1

α j I j

⎞

⎠− 2
(
Q(Sk + t) · I∗(Q(Sk + t))

−F(||Q(Sk + t)||))
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= 2 (K + F(||Q(Sk + t)||)) + 2Q(Sk + t) · I∗(Q(Sk + t))(1 − ε)

−2Q(Sk + t) · I∗(Q(Sk + t))

= 2 (K + F(||Q(Sk + t)||)) − 2εQ(Sk + t) · I∗(Q(Sk + t))

≤ 2 (K + F(||Q(Sk + t)||)) − 2ε

N
||Q(Sk + t)||

≤ − ε

N
||Q(Sk + t)||,

as long as Q(Sk + t) is outside a compact set Cε .
The first inequality follows from taking expectations after squaring both sides and

finally applying (23), choosing I to be I∗ on the left-hand side and substituting for
λ. The second inequality follows by replacing each service vector with the Max-
Weight service vector and then substituting. The third equality is immediate. The
fourth inequality follows from the choice of Cε and the inequality

Q · I∗ ≥ Qmax ≥ ||Q||/N ,

where the first inequality holds since for at least one service vector I ∈ I a queue with
maximum queue length is served, and the second inequality follows immediately.

This shows that condition (iv) is satisfied on taking the compact set Cε and with ε

determined by the arrival rate vector. ��
It is readily seen that Φ(SCB) is a Markov chain, and Corollary 1 implies that

the chain is recurrent. (As already mentioned, we neglect the case where there are
only finitely many reconfigurations, as this implies that there is a unique Max-Weight
service vector over all queue lengths.)

As with the BB policy, it can be shown that there is a given state (Q, I, 0) which is
both ergodic and which is entered almost surely. It follows that Φ is 1-Harris recurrent
and therefore by Corollary 2 the full chain (Q(t), I(t), �(t)) over time slots is also
1-Harris recurrent.

5 Performance considerations

As indicated by Theorems 1-4, the VFMW, SCB, and BB policies achieve throughput
optimality for any sublinear function F(·). The question thus naturally arises whether
some candidate functions F(·) may provide better performance than others in terms
of mean delays or mean queue lengths for example. While a detailed investigation is
beyond the scope of the present paper, we now briefly examine this question. First of
all, define

ρ = inf{γ : λ ∈ γ�0}

as the ‘load’ of the system, so that the condition that the arrival rate vector λ lies in
the interior of �0 may be equivalently written as ρ < 1.

Now observe that in order for the system to be stable, at least a fraction of the time
ρ one of the service vectors must be invoked, and hence at most a fraction of the time
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1 − ρ can be spent on reconfiguration. This can be expressed in terms of the expected
length of a service interval as

Tr
E [χ ]

≤ 1 − ρ,

with χ ≥ Tr a random variable with the limiting distribution of χk as k → ∞, yielding

E [χ ] ≥ Tr
1 − ρ

.

By definition of the VFMW policy, and by the fact that the BB and SCB policies
satisfy condition (ii) of Theorem 1, the expected length of a service period can in turn
be related to the queue lengths at the beginning of a service period by

E [χ ] ≤ Tr + βE [�F(||Q||)�] ≤ Tr + βE [F(||Q||)] + 1,

with β = 1 for the VFMW policy, β = √
c2 for the BB and SCB policies, and Q

denoting a random vector with the limiting distribution of Q(Sk) as k → ∞. In the
case where F(·) is concave, so that the inverse F−1(·) is convex, Jensen’s inequality
yields

E [||Q||] ≥ F−1(E [F(||Q||)]).

Combining the above inequalities, we obtain

N∑

l=1

E [Ql ] ≥ F−1
(

1

β

(
ρTr

1 − ρ
− 1

))
. (24)

In particular, in the case F(s) = sα , α ∈ (0, 1),

N∑

l=1

E [Ql ] ≥
(

1

β

(
ρTr

1 − ρ
− 1

))1/α

. (25)

The above lower bound suggests that the higher the value of α, i.e., the closer to 1,
the smaller the total expected queue length at the beginning of a service interval. This
may further suggest that setting the value of α equal to 1 may yield an even smaller
total expected queue length. Observe, however, that Lemma 2 does not cover that
case, and in fact the proof of that lemma no longer applies then. This is not just an
artifact of the proof, nor does it imply that such a choice would necessarily fail to
achieve maximum stability, but it does reflect a fundamental issue associated with the
quadratic Lyapunov function.

In order to illustrate that, let us briefly revisit the two-queue scenario described in
Sect. 2.4, and assume that the VFMW policy is used with F(s) = θs. Suppose that the
queue lengths at the beginning of a service interval are (Q1, Q2) = (M, M + 1), so
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that the activity vector (0, 1) is selected, and invoked for a period of time θ(2M + 1).
At the end of the service interval, the expected queue lengths are

E
[
Q′

1

] = M + λ1χ = M + λ1(Tr + θ(2M + 1)) = (1 + 2λ1θ)M + λ1(Tr + θ),

and

E
[
Q′

2

] ≥ M + 1 + λ2χ − (χ − Tr ) = M + 1 + λ2Tr + (λ2 − 1)(χ − Tr )

= M + 1 + λ2Tr + (λ2 − 1)θ(2M + 1)

= (1 − 2(1 − λ2)θ)M + λ2(Tr + θ) − θ + 1.

Thus, at the end of the service interval, the expected value of the Lyapunov function
is

E

[
(Q′

1)
2
]

+ E

[
(Q′

2)
2
]

≥ (E
[
Q′

1

]
)2 + (E

[
Q′

2

]
)2

≥ [(1 + 2λ1θ)2 + (1 − 2(1 − λ2)θ)2]M2 − o(M2)

= (2 + 4θ
[
λ1 + λ2 − 1 + θ

(
λ2

1 + (1 − λ2
)2)])

M2 − o(M2).

Note that for any given value of θ > 0, the latter expression is larger than M2 +
(M + 1)2 for M sufficiently large and λ1 + λ2 sufficiently close to 1. This implies
that a quadratic Lyapunov function cannot have negative drift, unless the value of θ

is sufficiently small compared to 1 − λ1 − λ2.

Remark 1 The above issue is also illuminated when we consider fluid limits where
the system dynamics are scaled both in space and time. Under mild assumptions, a
Markov chain is positive-recurrent when its fluid limit reaches zero in finite time for
any initial state. We claim (without proof) that for linear F(·) functions, the fluid limits
will follow piecewise linear trajectories. For ρ sufficiently close to 1, theL2 norm may
increase along some of the segments, so that a quadratic Lyapunov function cannot be
used to show that the fluid limit will reach zero in finite time.

Remark 2 The fact that quadratic Lyapunov functions do not allow for linear functions
F(·) also points to an issue in the work of Hung and Chang [16] who consider a so-
called dynamic cone policy. The latter policy causes the system to use a service vector
for a linear amount of time (with respect to the current queue lengths). The paper relies
on a quadratic Lyapunov function in order to claim that the dynamic cone policy pro-
vides maximum stability for suitably constructed cones. The negative drift is, however,
argued by assuming a uniform constant G in the proof of Theorem 2 in [16], which
is based on Lemma 1, where the upper bound B for the duration of an interswitching
interval in fact does not hold uniformly, but depends on the arrival rate vector λ as well
as the initial queue length vector. Indeed, B ≥ c/Δ, where c depends linearly on the
initial queue length vector and Δ = minI∈I:max�∈N (I�−λ�)>0 min�∈N :I�>λ�

(I� − λ�),
which could be arbitrarily close to zero for arrival rate vectors close to one of the max-
imal feasible service vectors. (Note that if the interswitching interval were uniformly
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bounded by B, this would in fact mean that the fraction of time spent on reconfigura-
tion would be uniformly bounded away from zero by Tr/(B + Tr ). This in turn would
preclude stability when the load is sufficiently close to unity, and hence directly rule
out maximum stability.)

Since the upper bound B does not hold uniformly, the coefficient G in the proof of
Theorem 2 in [16] is not a uniform bound either. Indeed, the coefficient G includes
the term in Eq. (26) in [16] which grows quadratically with B and hence quadratically
with the initial queue length vector. As a result, the coefficient G cannot possibly be
offset by the negative linear term in Eq. (34) in [16]. The claim that the quadratic
Lyapunov function has negative drift therefore lacks basis (and in fact cannot be valid
as we observed above without further assumptions on the load vector). The dynamic
cone policy may still provide maximum stability, but a different proof method with a
nonquadratic Lyapunov function is required to establish that.

In order to further illuminate the above issue, it is useful to revisit the two-queue
example considered in Sect. 2.4. Under the dynamic cone policy we then switch from
serving queue i to serving queue 3 − i when Q3−i exceeds r3−i Qi , with ri > 1,
i = 1, 2. When λ1 + λ2 is sufficiently close to unity, the queue lengths (Q1, Q2) will
essentially move between the rays Q1 = r1Q2 and Q2 = r2Q1 along trajectories
that are virtually perpendicular to the diagonal Q1 = Q2. Clearly, when r1 
= r2, a
quadratic Lyaponov function can then only generate negative drift in one direction, but
not in the other. When r1 = r2 = r , a quadratic Lyapunov function will have negative
drift in both directions. (Note that the dynamic cone policy then corresponds to the SCB
policy with F(x) = f x and r = (1+ f )/(1− f ).) However, even when the Lyapunov
function does have negative drift, substantially sharper bounds than Eqs. (26) and (33)
in [16] are necessary to show that. Of course, there is certainly no reason in this two-
queue scenario to doubt that the dynamic cone policy achieves maximum stability, but
the proof technique in [16] is fundamentally ill-suited to prove that.

6 Simulation results

The first simulation results are for a two-queue network with mean number of arriving
packets per slot (0.6, 0.2) and both distributed as a Pareto random variable A so that

P {A ≥ k} = ηβ−1

kβ−1 , k ≥ 1

and β = 4 so that the first two moments exist. The function F(·) was chosen to be
yα (which is 0 at y = 0 but this does not affect what follows). Our results are for the
mean total number of packets in queue QT , and are presented for the VFMW policy
and the SCB policy with Tr = 3 and a range of choices of the parameter α (Fig. 2).

The results indicate that the mean total number in queue gets smaller as α

approaches 1 from below. In other words, the number in queue is smallest for the
least amount of switching. Our results also show that the mean total queue length
under the VFMW policy is larger than the lower bound (25), as it should be. SCB
outperforms this bound, particularly at lower values of α.
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Figure 3 shows results for QT as a function of T slots elapsed. The values of the
Pareto parameters η1, η2, η3 were chosen so as to obtain a mean number of arrivals
per slot equal to (0.2, 0.7, 0.6).

Results were obtained for the VFMW and SCB policies, and show that the mean
total queue length under the SCB policy is significantly smaller than that for the
VFMW policy.

Additional results were obtained for the BB policy, and showed that the performance
of the BB policy is highly sensitive to the choice of θBB . Small queue lengths were
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found with θBB = 5. However, both θBB = 1 and θBB = 25 produced much poorer
results. In the case of θBB = 1 this is because of too much switching, whereas it
appears that θBB = 25 does not switch enough.

The following results, depicted in Fig. 4, were obtained for functions F(Q)

= (||Q||)α for various values of α. The results show that intermediate values of α

yield significantly better performance. The average delays for α = 0.3, 0.9 are about
five times longer than for α = 0.5, 0.7.

7 Conclusions

We investigated scheduling in networks with interference constraints and reconfigu-
ration delays, and showed that the ordinary Max-Weight policy may fail to achieve
throughput optimality in the case of nonzero reconfiguration delays. Motivated by the
latter issue, we proposed a class of adaptive scheduling policies which persist with the
current service vector until a certain stopping criterion is reached, before switching to
the next service vector.

While earlier proposed VFMW policies belong to this class of policies, we also
presented BB and SCB policies that are more responsive to bursty arrivals and queue
dynamics. We developed novel Lyapunov drift techniques to prove that this class
of policies under certain conditions achieve throughput optimality by dynamically
adapting the durations of the service intervals. In particular, we proved that if a policy
has a negative drift throughout a service interval, and if another policy with an earlier
switching decision is throughput-optimal, then the former policy is also throughput-
optimal.
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The VFMW policies persist with a service vector for an amount of time that depends
on the initial queue lengths, and thus dynamically adapt the service interval to changing
queue lengths. The BB and SCB policies are more responsive to sudden changes in
queue states than the VFMW policy, as they do not fix the service interval in advance,
but make switching decisions based on the evolution of the queues. As a result, the BB
and in particular the SCB policy make infrequent reconfiguration decisions for large
queue lengths, while enabling frequent reconfiguration for small queue lengths, thus
producing better delay performance than the VFMW policy.

Since the proposed scheduling algorithms always select the Max-Weight service
vector when a reconfiguration takes place, the complexity is similar, except that the
computation is only required once per service interval, rather than in each time slot as
in the ordinary Max-Weight algorithm. In other words, the computational burden can
be amortized over a much longer time period, especially in high-load regimes where
the queue lengths are large and the service intervals are correspondingly long. It is
worth observing that even in standard scenarios without any reconfiguration delays,
the above observation can be exploited to significantly reduce the frequency of the
computation of the Max-Weight service vector.

In future work, we intend to develop low-complexity distributed policies for systems
with nonzero reconfiguration delay that additionally achieve asymptotically optimal
delay performance. The problem of joint scheduling and routing in multihop networks
with interference constraints and reconfiguration delays provides a further relevant
direction for future research.

Acknowledgments Philip Whiting would like to acknowledge the generous funding provided by Mac-
Quarie University in respect of the Vice-Chancellor’s Innovation Fellowship Fund which partially supported
this research.

Appendix 1: Proof of Lemma 1

Let the state of the process be given by (Q(t), I (t), �(t)) where Q(t) is the queue
length vector at the start of the slot t , I (t) indicates which queue is being served, and
�(t) denotes the number of reconfiguration slots to go (if any). Under the ordinary
Max-Weight policy, if Q1(t) > Q2(t) and I (t) = 2, then reconfiguration is invoked
so that I (t + 1) = 1, �(t + 1) = 1, and service is not applied in slot t . The opposite
is done if Q2(t) > Q1(t). Otherwise the current service vector is applied, followed
by any queue arrivals, as explained in Sect. 2.1. (Note that the state variable �(t) is
redundant.) With the state (Q(t), I (t), �(t)) the process forms a time-homogeneous
Markov chain with time index t ∈ N0.

LetD .= {Q : |Q1 − Q2| ≤ 3}; elementary considerations show that the main diag-
onal Q1 = Q2 is reached with probability 1 for p ∈ (0, 1/2). Once the main diagonal
is reached the process will be confined to D. Restricting to slots where reconfigura-
tion is not invoked, a slot t is said to be a freeze slot if Q(t) = Q(t + 1) and is said
to be progressive otherwise. Finally, further consideration shows that reconfiguration
occurs infinitely often a.s. with at most four progressive slots occurring between two
slots where reconfiguration is invoked, again once the main diagonal is reached.
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To show the Markov chain is transient (instability), let Sk be the slot in which the
kth reconfiguration takes place and let Mk = Q1(tk)+Q2(tk) be the total queue length
at time Sk , k = 0, 1, 2, . . . . Consider the interval between one reconfiguration and
the next, where we will examine the mean drift of Mk . Since a freeze slot occurs with
probability p(1 − p), the number of freeze slots until the occurrence of a progressive
one is geometrically distributed with mean p(1−p)

1−p+p2 . Furthermore, the total drift along
the main diagonal per service slot is −(1 − 2p), which is negative (toward the origin)
for p < 1/2.

From the above it follows that the accumulated drift during a service interval is no
less than

−4(1 − 2p) ×
(

1 + p(1 − p)

1 − p + p2

)
= −4(1 − 2p)

1 − p + p2 .

During a reconfiguration slot, the positive drift (away from the origin) is 2p. Thus,
the total accumulated drift along the main diagonal must be positive when

2p − 4(1 − 2p)

1 − p + p2 > 0,

which amounts to p > 0.42049.
We have thus shown that there is a p < 1/2 such that the sequence Mk satisfies

E
[
Mk+1|Mk

] ≥ Mk + θ,

where θ > 0 is a fixed constant. We now show that Mk → ∞ as k → ∞ almost surely,
which in turn implies Q�(t) → ∞ as t → ∞, � = 1, 2. Introduce Zk = Mk+1 − Mk ,
k = 0, 1, 2, . . . , and observe that Zk ≤ 6. Additionally, define Rk = 1

Mk+1 , and
observe

E

[
1

Mk+1 + 1
|Fk

]
= 1

Mk + 1
− E

[
Zk

(Mk + 1)(Mk + 1 + Zk)

]

≤ 1

Mk + 1
− θ

(Mk + 1)(Mk + 1 + 6)
,

from which it follows that Rk is a nonnegative supermartingale where Fk is an appro-
priate sigma algebra at time slot tk . Hence limk→∞ Rk ≤ 1 exists almost surely, and
so does limk→∞ Mk . Finally,

E [R∞] ≤ lim inf
k→∞ E [Rk] ≤ 1 −

∞∑

k=0

E

[
θ

(Mk + 1)(Mk + 7)

]
,

which implies

lim inf
k→∞ E

[(
θ

(Mk + 7)

)2
]

≤ lim inf
k→∞ E

[
θ

(Mk + 1)(Mk + 7)

]
= 0.
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This shows that lim infk→∞(Mk + 7)−2 = 0 almost surely by Fatou’s lemma, and
since actually there is a limit, we have limk→∞ Mk = ∞ almost surely. This then
implies limk→∞ Q�(tk) = ∞ almost surely, since |Q1 − Q2| ≤ 3. Moreover, if
t ∈ [tk, tk+1), then |Q�(t) − Q�(tk)| ≤ 4, � = 1, 2, so that Q�(t) → ∞ as t → ∞
almost surely. Since lim inf t→∞ E [Q�(t)] ≥ E [limt→∞ Q�(t)] = ∞, the system is
not strongly stable. ��

Appendix 2: Proof of Lemma 2

On occurrence of Sk < ∞, condition (iii) in Theorem 1 implies that E
[
χk |FSk

] ≤
Tr +√

c2F(Q(Sk)) < ∞, so that χk is finite almost surely. Using the Lindley recursion
in (1) for time slots t = Sk, . . . , Sk + χk − 1, we obtain

Q�(Sk + χk) ≤ max

⎧
⎨

⎩
Q�(Sk) −

χk−1∑

s=Tr−1

I�(Sk + s), 0

⎫
⎬

⎭
+

χk−1∑

s=0

A�(Sk + s). (26)

Note that if
∑χk−1

s=Tr−1 I�(Sk + s), representing the total service opportunity given to

queue � during the kth service interval, is smaller than Q�(Sk), then the inequality
in (26) in fact holds with equality. Otherwise, the first term is 0 and (26) holds with
inequality, because some of the arrivals during the service interval might depart before
the end of the service interval.

Squaring both sides of (26), using max{0, x}2 ≤ x2 and I�(t) ≤ μmax for all
� = 1, . . . , N , t = Sk + Tr − 1, . . . , Sk + χk − 1, we obtain

Q�(Sk + χk)
2 − Q�(Sk)

2 ≤ χ2
k μ2

max +
⎛

⎝
χk−1∑

s=0

A�(Sk + s)

⎞

⎠

2

− 2Q�(Sk)

⎛

⎝
χk−1∑

s=Tr−1

I�(Sk + s) −
χk−1∑

s=0

A�(Sk + s)

⎞

⎠ . (27)

Summing (27) over the queues, taking conditional expectations, and then using
Wald’s equality (or optional stopping), we derive

ΔSk ≤ Nμ2
maxE

[
χ2
k |FSk

]
+

N∑

�=1

E

⎡

⎢
⎣

⎛

⎝
χk−1∑

s=0

A�(Sk + s)

⎞

⎠

2

|FSk

⎤

⎥
⎦ (28)

+ 2E
[
χk |FSk

] N∑

�=1

λ�Q�(Sk) − 2
N∑

�=1

Q�(Sk)E

⎡

⎣
χk−1∑

s=Tr−1

I�(Sk + s)|FSk

⎤

⎦ ,
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where we used the fact that the arrival processes are i.i.d. over time and independent
of the queue lengths.

Now observe that for any arrival rate vector λ ∈ �0
0, there exist real numbers

β1, . . . , β |I| such that β j ≥ 0 for all j = 1, . . . , |I|, ∑|I|
j=1 β j = 1 − ε for some

ε > 0 and λ =∑|I|
j=1 β j I j .

Substituting the latter expression in (28) and using conditions (ii) and (iii) of The-
orem 1, we obtain

ΔSk ≤ Nμ2
max(T

2
r + c2(F (||Q(Sk)||))2) +

N∑

�=1

E

⎡

⎢
⎣

⎛

⎝
χk−1∑

s=0

A�(Sk + s)

⎞

⎠

2

|FSk

⎤

⎥
⎦

+ 2E
[
χk |FSk

]
Q(Sk) ·

|I|∑

j=1

β j I j − 2E
[
χk − Tr |FSk

]
Q(Sk) · I∗(Sk)

≤ Nμ2
max(T

2
r + c2(F (||Q(Sk)||))2) +

N∑

�=1

E

⎡

⎢
⎣

⎛

⎝
χk−1∑

τ=0

A�(Sk + τ)

⎞

⎠

2

|FSk

⎤

⎥
⎦

−2c1ε(1 − δ(||Q(Sk)||))F (||Q(Sk)||)Q(Sk) · I∗(Sk) + 2TrQ(Sk) · I∗(Sk),
(29)

where in the last inequality we used the fact that Q(Sk) · I∗(Sk) ≥ Q(Sk) · I for all
I ∈ I by definition of the Max-Weight service vector.

Applying Lemma 3 to the second term in (29), we derive

E

⎡

⎢
⎣

⎛

⎝
χk−1∑

s=0

A�(Sk + s)

⎞

⎠

2

|FSk

⎤

⎥
⎦

≤ 2E

⎡

⎣
χk−1∑

s=0

A2
max − λ2

�|FSk

⎤

⎦+ 2E

⎡

⎢
⎣

⎛

⎝
χk−1∑

s=0

λ�

⎞

⎠

2

|FSk

⎤

⎥
⎦

= 2
(
A2

max − λ2
�

)
E [χk |Q(Sk)] + 2λ2

�E

[
χ2
k |FSk

]
.

Using conditions (ii) and (iii) of Theorem 1, we obtain

E

⎡

⎢
⎣

⎛

⎝
χk−1∑

s=0

A�(Sk + s)

⎞

⎠

2

|FSk

⎤

⎥
⎦ ≤ d1(F (||Q(Sk)||))2,

for some constant d1 < ∞. Substituting the latter inequality in (29), we derive
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ΔSk ≤ Nμ2
maxT

2
r + F (||Q(Sk)||)

×
(

(c2Nμ2
max + d1)F (||Q(Sk)||) − 2

(
c1(1 − δ(||Q(Sk)||))ε − Tr

F (||Q(Sk)||)
)

×Q(Sk) · I∗(Sk)
)

.

Since F (||Q(Sk)||) is a monotonically increasing function of ||Q(Sk)||, and δ

(||Q(Sk)||) is a monotonically decreasing function of ||Q(Sk)||, there exists a con-
stant d2 such that if ||Q(Sk)|| > d2, then c1(1−δ(||Q(Sk)||))ε− Tr

F(||Q(Sk)||) > δ1 > 0,
yielding

ΔSk ≤ Nμ2
maxT

2
r + (c2Nμ2

max + d1)(F (||Q(Sk)||))2

−2δ1F (||Q(Sk)||)Q(Sk) · I∗(Sk).

Hence, for ||Q(Sk)|| > d2, we use Q(Sk) · I∗(Sk) ≥ 1
N

∑N
�=1 Q�(tk) to arrive at

ΔSk ≤ Nμ2
maxTr + (c2Nμ2

max + d1)(F (||Q(Sk)||))2 − 2δ1

N
F (||Q(Sk)||) ||Q(Sk)||.

Since F(·) is a sublinear function, it follows that there exist fixed constants c3 < ∞,
η = δ1/N such that

ΔSk ≤ c3 − ηF (||Q(Sk)||) ||Q(Sk)||.

This completes the proof. ��

Appendix 3: Proof of Lemma 4

Divide the state space into the set E containing the ergodic states and its complement T
consisting of the null and transient states. By Markov’s inequality, given ε > 0, there
exists Cε such that

P {||Q(t)|| ≤ Cε} ≥ 1 − ε for all t ∈ N0.

Let Et be the event that (Q(t), J (t)) ∈ E . Since there are only finitely many states
in T ∩ {||Q|| ≤ Cε}, we may apply Theorem 5 in [13] on page 389, and the reverse
Fatou lemma to obtain

P {Et i.o.} ≥ lim sup
t→∞

P {||Q(t)|| ≤ Cε} ≥ 1 − ε.

Since ε > 0 is arbitrary, the above implies that an ergodic state is entered with
probability 1.
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The existence of a random variable Q∞ with the stationary distribution follows
directly from irreducibility and [14, Sect. XI.8, Theorem 1, p. 379]. Finally,

E [||Q∞||] ≤ lim inf E [||Q(t)||] ≤ Emax < ∞

as in Theorem 5.3 in [3, p. 32], as the distribution ofQ(t) converges weakly to a unique
stationary distribution. ��

Appendix 4: Proof of Corollary 2

For the sake of the proof, we may as well suppose that the sequence Sk < ∞ almost
surely. Otherwise, the system reconfigures only finitely many times as it is 1-Harris
recurrent, so that the bound given in (31) holds with KT = 1. Hence we may suppose
that there is a reconfiguration state s = (Q, I,Q, �0) which occurs i.o. almost surely,
by assumption. Call an occurrence of s a renewal. Now define TM to be the number of
slots used in taking M steps of the process

(
Q(τm), I(τm),1(m)

)
starting from m = 0,

TM =
M−1∑

m=0

m∑

k=0

χk1
(m,k) +

M−1∑

m=0

1(m) ≥ M,

because multiple slots are used after each reconfiguration.
It is obvious that

m∑

k=0

χk1
(m,k) ≤

m∑

k=0

χk ||Q(Sk)||1(m,k) +
m∑

k=0

χk1
(m,k)

I [Q(τm) = 0] . (30)

Taking expectations and bounding the last term in (30), we obtain

m∑

k=0

E
[
χk; Am,k,Q(τm) = 0

] =
m∑

k=0

E
[
χk; Am,k,Q(Sk) = 0

]

≤
m∑

k=0

E
[
Tr + √

c2F(0); Am,k
]

≤ Tr + √
c2F(0) =: μ0.

The equality holds since Am,k ∈ FSk and since Q(Sk) = 0 must have occurred. The
first inequality follows on applying (12). The last inequality holds since the events
Am,k are disjoint.

Taking expectations and turning to the first term in the right-hand side of (30), we
may again apply (12), as the event Am,k ∈ FSk , to obtain

E
[||Q(Sk)||χk; Am,k

] ≤ cE
[
F(||Q(τm)||)||Q(τm)||; Am,k

]
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for some finite positive constant c < ∞. Combining the above two inequalities, it
follows that

lim sup
M→∞

1

M
E [TM ] ≤ 1 + μ0 + lim sup

M→∞
c

M

M−1∑

m=0

m∑

k=0

E
[
F(||Q(τm))||)||Q(τm)||; Am,k

]
.

Equation (18) now shows that

lim sup
M→∞

1

M
E [TM ] = KT < ∞. (31)

Now let Ur be the number of slots between renewal r and renewal r + 1 with a
delay of V slots until the first renewal. The assumption of 1-Harris recurrence implies
V < ∞. Let μR = E [U1] ≤ ∞ be the expected number of slots between renewals.

Let R(M) be the number of renewals over the first M steps, so that

R(M)−1∑

r=1

Ur ≤ TM . (32)

Since s is an ergodic state,

lim
M→∞

R(M)

M
= φs,

with φs ∈ (0, 1] by the renewal theorem. Moreover, by the extended Strong Law of
Large Numbers,

lim
M→∞

1

R(M)

R(M)∑

r=1

Ur = μR almost surely.

Rewriting (32), we obtain

R(M)

M
× 1

R(M)

R(M)∑

r=1

Ur ≤ TM
M

.

Now let M → ∞ along any sequence so that the term on the right-hand side converges
to lim infM→∞ TM

M ≥ 1, then

φsμR ≤ lim inf
M→∞

TM
M

.

Using Fatou’s lemma, we deduce

E

[
lim inf
M→∞

TM
M

]
≤ lim inf

M→∞ E

[
TM
M

]
≤ lim sup

M→∞
E

[
TM
M

]
= KT < ∞.

It follows that lim infM→∞ TM
M is almost surely finite, and therefore μR < ∞.
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The 1-Harris recurrence of the chain (Q(t), I(t),Q(Sk(t)), �(t)) follows immedi-
ately as s has been shown to be an ergodic state within that chain. This completes the
proof. ��

Appendix 5: Proof of Lemma 5

To obtain a lower bound for χk , we consider the arrivals and departures separately,
since the triangle inequality shows that the change in queue length cannot exceed their
sum, at any stage. (Thus the sum can only exceed the BB threshold at χk or an earlier
slot.) Moreover, we may count virtual departures (when queues are empty) because
we are only concerned with a lower bound.

Define TE to be the first time slot when the sum of arrivals and virtual departures,
� j , j ≥ Tr ,

� j
.=

j−1∑

s=0

||A(Sk + s)|| +
j∑

s=Tr

||I(Sk + s)||

reaches the threshold level θBB F (||Q(Sk)||) after reconfiguration at Sk . TE ≥ Tr
is therefore a FSk stopping time. Let Mj

.= � j − E
[
� j |FSk+ j−1

]
, j ≥ 1, with

M0 = 0, so that Mj is a FSk+ j martingale, null at 0, and bounded in L1. Clearly TE is
almost surely finite and has finite expectation, since all the summands are positive and
have strictly positive expectation. It follows that condition (16) of Corollary 5 in [10,
p. 243], holds. By the definition of TE , at stopping it holds that

TE−1∑

s=0

||A(Sk + s)|| +
TE∑

s=Tr

||I(Sk + s)|| ≥ θBB F (||Q(Sk)||) ,

and from optional stopping we obtain

E

⎡

⎣
TE−1∑

s=0

||A(Sk + s)|| +
TE∑

s=Tr

||I(Sk + s)||
⎤

⎦

= E [TE ]
N∑

�=1

λ� + (E [TE ] − Tr + 1)

N∑

�=1

I�.

Therefore,

E
[
χk |FSk

] ≥ E
[
TE |FSk

] ≥ θBB F (||Q(Sk)||)
∑N

�=1(λ� + I�)
,
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which yields the stated lower bound on E
[
χk |FSk

]
with δ = 0 and

c1 = θBB

||λ|| + Nμmax
.

��

Appendix 6: Proof of Lemma 6

For any arrival rate vector λ in the interior of the stability region �, there exists an ε > 0
such that λ+ε1 ∈ �. Therefore, the Max-Weight service vector I∗(Sk) = [I∗1, . . . , I∗N ]
satisfies

N∑

�=1

Q�(Sk)I∗� ≥ Q(Sk) · λ + ε||Q(Sk)||,

yielding

N∑

�=1

Q�(Sk)(I∗� − λ�) ≥ ε

N∑

�=1

Q�(Sk).

Since some queues might have negative contributions to the sum on the left-hand side,
we have

∑

�:I∗�>λ�

Q�(Sk)(I∗� − λ�) ≥ ε

N∑

�=1

Q�(Sk).

Let �0 be the queue with the maximum contribution to the sum on the left-hand side.
We have

Q�0(Sk) ≥ ε||Q(Sk)||
N
(
I ∗
�0

− λ�0

) .

Since there are only finitely many possibilities for the strictly positive denominator,
there is an Aε > 0 and an �0 such that

Q�0(Sk) ≥ Aε ||Q(Sk)||

for every Q(Sk) ∈ N
N
0 . Since the function F(·) is sublinear, it follows that we may

take

C = {||Q|| ≤ D}

for some finite positive constant D, so that Q�0 ≥ �θBB F(||Q||)�. Since it is also the
case that the drift of queue �0 is strictly negative, the proof is complete. ��

123



126 Queueing Syst (2016) 83:87–129

Appendix 7: Proof of Lemma 7

Let D = I�∗ > λ�∗ = a be the number of packets that can be served at queue �∗
under the Max-Weight service vector in each time slot. (For compactness, we drop
the queue index �∗ from the notation in the remainder of the proof.) Thus the queue
length evolves according to the usual Lindley recursion

Q(t + 1) = max{Q(t) − D + A(t), 0}.

Let T1 be the random amount of time for the queue length to reduce by at least one
packet, assuming that the initial number of packets is D or larger. Thus T1 is the so-
called descending ladder index of the associated random walk. It is well known [14],
pages 396–397, that E [T1] < ∞, since the random walk has strictly negative drift. If
the number of arrivals per slot has finite variance σ 2

A < ∞, it is reasonable to suppose
that this implies σ 2

T1
= V [T1] < ∞, and we now proceed to show that this is indeed

the case.
Suppose we start a busy period with the service of Q(1) = D packets. Arrivals

may take place during this time slot, and so the busy period will continue under the
recursion

Q(n + 1) = [Q(n) − D + A(n)]+, n = 1, 2, . . . ,

and we stop at step T1 = n ∈ N as soon as [Q(n)− D+ A(n)]+ ∈ {0, 1, . . . , D− 1},
which is the first time the number of packets falls by at least one. Further define
S(n) =∑n

k=1 A(k) and U (n) = S(n) − na, which we may take as null for n = 0. By
construction, U (n) is a L2 martingale. At the stopping time T1, the following equality
holds:

S(T1) = DT1 − εT1 ,

where εT1 ∈ {1, . . . , D}. This holds since full use has been made of the service in
each time slot except for the slot following T1.

Although not needed, it is the case that optional stopping holds for the martingale
U (n) with respect to T1. This follows since E [|A(1) − a|] = M < ∞ and the
sequence is independent. Finally, since E [T1] < ∞, we find that

E

[
T1∑

k=1

E
[|A(k) − a||Fk−1

]
]

= ME [T1] < ∞.

Hence, from [10, Chapter 7.4, Corollary 5, p. 243], we have E [U (T1)] = 0 which
shows that

(D − a)E [T1] = E
[
εT1

]
,

yielding E [T1] = 1/(1 − a) in the special case D = 1.
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We also obtain from Theorem 7 of [10, p. 245], that

E

[
U 2(T1)

]
≤ σ 2

AE [T1] = E

[
T1∑

k=1

(A(k) − a)2

]

,

since the A(k) are independent. Substituting, we find

(D − a)2
E

[
T 2

1

]
− 2(D − a)E

[
T1εT1

]+ E

[
ε2
T1

]
≤ σ 2

AE [T1] ,

which shows that V [T1] < ∞. ��

Appendix 8: Proof of Lemma 8

For compactness, define M = θBB F (||Q(Sk)||), where we suppose that M > 0. Next
suppose that we are outside the compact set C shown to exist in Lemma 6, but where
the inequality on the right is multiplied by 3. Denote by �∗ the index of the queue as
given in the lemma. It follows that Q�∗ ≥ 3M . Let Y be the amount of time for Q�∗
to decrease by 2M , and as we have seen in Lemma 7 such a decrease is possible. The
value 2M is considered, since Q�∗ may increase by up to M packets without causing
an immediate reconfiguration after Tr time slots. The behavior of Q�∗ now follows a
discrete-time random walk on N0. Clearly, χk ≤ Y + Tr , and Y is finite almost surely
since Q�∗ has strictly negative drift.

Let T�∗ be the amount of time for Q�∗ to reduce by at least one packet. Lemma 7
gives E

[
T 2

�∗
]

< ∞.
The random variable Y is stochastically smaller than the sum of 2M i.i.d. copies

τ1, . . . , τ2M of T�∗ , since each descent is by at least one. The Cauchy–Schwarz inequal-
ity [34, p. 62], then implies

E

[
Y 2
]

≤ E

⎡

⎣

(
2M∑

k=1

τk

)2⎤

⎦ ≤ 4M2
E

[
T 2

�∗
]

< ∞.

Since F(y) ↑ ∞ as y → ∞ and given the definition of M , it follows that there is
a constant c2 such that (22) holds for all Q(Sk) /∈ C.

If Q(Sk) ∈ C, then there exists a finite constant A ≥ maxQ∈C F(||Q||). Moreover,
the set CA of points which are within A of some point in C is also compact. Let
B = supQ∈CA

||Q||. Then if there are more than B arrivals in a given time slot, the
stopping criterion must be triggered, if it has not been reached already. The time
until B arrivals have occurred has a geometric distribution with finite first and second
moments, since the distribution of the number of arrivals has unbounded support. It
follows that (22) holds for all Q ∈ N

N
0 for c2 sufficiently large. ��
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