
TCP-Aware Backpressure
Routing and Scheduling

Hulya Seferoglu,Member, IEEE and Eytan Modiano, Fellow, IEEE

Abstract—In this work, we explore the performance of backpressure routing and scheduling for TCP flows over wireless networks.

TCP and backpressure are not compatible due to a mismatch between the congestion control mechanism of TCP and the queue size

based routing and scheduling of the backpressure framework. We propose a TCP-aware backpressure routing and scheduling

mechanism that takes into account the behavior of TCP flows. TCP-aware backpressure provides throughput optimality guarantees in

the Lyapunov optimization framework, and gracefully combines TCP and backpressure without making any changes to the TCP

protocol. The simulation results show that TCP-aware backpressure (i) improves the throughput of TCP flows significantly, (ii) provides

fairness across competing TCP flows, and (iii) accommodates both TCP and non-TCP flows in a wireless network, and improves

throughput of these flows without hurting fairness.

Index Terms—Transmission Control Protocol (TCP), backpressure routing and scheduling, wireless networks

Ç

1 INTRODUCTION

THE backpressure routing and scheduling paradigm has
emerged from the pioneering work [1], [2], which

showed that, in wireless networks where nodes route and
schedule packets based on queue backlog differences, one
can stabilize the queues for any feasible traffic. This seminal
idea has generated a lot of research interest. Moreover, it
has been shown that backpressure can be combined with
flow control to provide utility-optimal operation [3].

The strengths of these techniques have recently increased
the interest in practical implementation of the backpressure
framework over wireless networks as summarized in Sec-
tion 6. One important practical problem that remains open,
and is the focus of this paper, is the performance of back-
pressure with Transmission Control Protocol (TCP) flows.

TCP is the dominant transport protocol in the Internet
today and is likely to remain so for the foreseeable future.
Therefore, it is crucial to exploit throughput improvement
potential of backpressure routing and scheduling for TCP
flows. However, TCP flows are not compatible with back-
pressure. Their joint behavior is so detrimental that some
flows may never get a chance to transmit. To better illustrate
this point, we first discuss the operation of backpressure in
the following example.

Example 1. Let us consider Fig. 1, which shows an example
one-hop downlink topology consisting of a transmitter
node I, and two receiver nodes; R1 and R2. The two
flows; 1 and 2 are destined to R1 and R2, respectively.

U1
I ðtÞ and U2

I ðtÞ are per-flow queue sizes at time t. Let us

focus on Fig. 1a. At time t, packets from the two flows
arrive according to random arrival rates; A1ðtÞ and A2ðtÞ,
respectively. The packets are stored in per-flow queues.
The backpressure scheduling algorithm, also known as
max-weight scheduling, determines the queue (hence the
flow) from which packets should be transmitted at time
t. The decision is based on queue backlog differences,

i.e. U1
I ðtÞ � U1

R1
ðtÞ and U2

I ðtÞ � U2
R2
ðtÞ, where U1

R1
ðtÞ and

U2
R2
ðtÞ are per-flow queue sizes at R1 and R2, respec-

tively. Since R1 and R2 are the destination nodes, the
received packets are immediately passed to the higher

layers, so U1
R1
ðtÞ ¼ U2

R2
ðtÞ ¼ 0, 8t. Therefore, the schedul-

ing algorithm makes the scheduling decision based on

U1
I ðtÞ and U2

I ðtÞ. In particular, the scheduling decision is

s� ¼ argmaxs�2f1;2gfU1
I ðtÞ; U2

I ðtÞg. Note that a packet(s)

from flow s� is transmitted at time t. It was shown in [1],
[2] that if the arrivals rates A1ðtÞ and A2ðtÞ are inside the
stability region, the scheduling algorithm stabilizes
the queues. Note that the arrival rates A1ðtÞ and A2ðtÞ are
independent from the scheduling decisions, i.e. the
scheduling decisions do not affect A1ðtÞ and A2ðtÞ. How-
ever, this is not true if the flows are regulated by TCP as
explained next.

The fundamental goal of TCP, which applies to all TCP
variants, is to achieve as much bandwidth as possible while
maintaining some level of long-term rate fairness across
competing flows. By their very design, all TCP algorithms
(both the widely employed loss-based versions and the
delay-based ones) have their own “clock”, which relies on
end-to-end acknowledgement (ACK) packets. Based on the
received ACKs, TCP determines whether and how many
packets should be injected into the network by updating its
window size.

Example 1—continued. Let us consider Fig. 1b to illustrate
the interaction of backpressure and TCP. In Fig. 1b, packet
arrivals are controlled by TCP. Let us consider that
loss-based TCP flavor, e.g., TCP-Reno or TCP-SACK, is

� H. Seferoglu is with the Electrical and Computer Engineering Department,
University of Illinois at Chicago, Chicago, IL 60607. E-mail: hulya@uic.edu.

� E. Modiano is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139.
E-mail: modiano@mit.edu.

Manuscript received 14 Dec. 2014; revised 25 Aug. 2015; accepted 27 Aug.
2015. Date of publication 14 Sept. 2015; date of current version 1 June 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2015.2478456

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016 1783

1536-1233� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

employed. Assume that at time t, the TCP congestion win-
dow size of the first flow, i.e. W1ðtÞ, is small, e.g.,
W1ðtÞ ¼ 1 segment, (note that 1-segment window size
may be seen at the beginning of a connection or after a
re-transmit timeout), while the TCP congestion window
size of the second flow is W2ðtÞ > 1 (e.g., it may be the
case that flow 2 has been transmitting for some time until
t, and it has already increased its window size). As
depicted in the figure, the example queue occupancies at

time t are U1
I ðtÞ ¼ 1 and U2

I ðtÞ ¼ 3. Since, U2
I ðtÞ > U1

I ðtÞ, a
packet(s) from the second flow is transmitted. R2 receives
the transmitted packet, and passes it to TCP, which gen-
erates an ACK, and transmits it back to node I. The TCP
source of flow 2 at node I increases its window size after
receiving an ACK. Therefore, more packets are passed to

U2
I ðtÞ. On the other hand, since U1

I ðtÞ < U2
I ðtÞ, no packets

are transmitted from flow 1. Thus, TCP does not receive
any ACKs for the 1st flow, does not increase its window
size, and no (or sporadic) new packets are passed to

U1
I ðtÞ. Ultimately, the size of U1

I ðtÞ almost never increases,
so no packets are transmitted from flow 1. Possible sam-
ple paths showing the evolution of W1 and W2 as well as

U1
I and U2

I over time are shown in Fig. 2. As can be seen,
the joint behavior of TCP and backpressure is so detri-
mental that flow 1 does not get any chance to transmit.
We confirm this observation via simulations in Section 5.

The incompatibility of backpressure is not limited to the
loss-based versions of TCP. The delay-based TCP, i.e., TCP
Vegas is also incompatible with backpressure, as TCP-Vegas
has its own clock, which relies on end-to-end ACK packets
to calculate round-trip-times (RTTs). If some packets are
trapped in buffers due to backpressure as in the above
example, sporadic or no ACK packets are received. This
increases RTTs, and reduces end-to-end rate of TCP Vegas
as there is inverse relationship between RTT and rate. Fur-
thermore, backpressure leads to timeouts which reduce the
end-to-end rate in both loss-based and delay-based TCP
versions, including new TCP versions; TCP-Compound [4]
and TCP-Cubic [5].

In this paper, we propose “TCP-aware backpressure”
that helps TCP and backpressure operate in harmony. In
particular, TCP-aware backpressure takes into account
the behavior of TCP flows, and gives transmission

opportunity to flows with short queues. This makes all
TCP flows transmit their packets, so the TCP clock, which
relies on packet transmissions and end-to-end ACKs, con-
tinues to operate. Furthermore, the throughput of TCP
flows improves by exploiting the performance of the
backpressure routing and scheduling. We note that back-
pressure introduces additional challenges when combined
with TCP such as out of order delivery, high jitter in
RTTs, and packet losses due to corruption over wireless
links. However, these challenges are not specific to back-
pressure, and exist when a multiple path routing scheme
over wireless networks is combined with TCP. We
address these challenges by employing network coding as
a rateless code (in Section 4). Yet, the main focus of this
paper is the incompatibility of TCP and backpressure and
developing a TCP-aware backpressure framework. The
following are the key contributions of this work:

� We identify the mismatch between TCP and the
backpressure framework; i.e. their joint behavior is
so detrimental that some flows may never get a
chance to transmit. In order to address the mismatch
between TCP and backpressure, we develop “TCP-
aware backpressure routing and scheduling”.

� We show that (i) TCP-aware backpressure routing
and scheduling stabilizes queues for any feasible
traffic as the classical backpressure [1], [2], (ii) TCP-
aware backpressure routing and scheduling pro-
vides the same utility-optimal operation guarantee
when combined with a flow control algorithm as the
classical backpressure [3].

� We provide implementation details and explain how
to tune TCP-aware backpressure so that it complies
with TCP. Moreover, we combine network coding
and TCP-aware backpressure to address the addi-
tional challenges such as out of order delivery,
packet loss, and jitter. Thanks to employing network
coding, which makes TCP flows sequence agnostic
(with respect to packet IDs), TCP-aware backpres-
sure fully complies with TCP.

� We develop a TCP-friendly flow control mecha-
nism, which when combined with TCP-aware
backpressure, accommodates both TCP and non-
TCP flows in a wireless network. In this setup,
TCP-aware backpressure improves throughput of
both TCP and non-TCP flows and provides fair-
ness across competing flows.

Fig. 1. Example one-hop downlink topology consisting of a transmitter
node I, and two receiver nodes; R1 and R2. The two flows; 1 and 2 are
destined to R1 and R2, respectively. U

1
I ðtÞ and U2

I ðtÞ are per-flow queue
sizes at time t.

Fig. 2. Sample paths that show the evolution of W1,W2 and U1
I , U

2
I over

time. Note that W1,W2 are the congestion window size of the TCP flows,
and U1

I , U
2
I are the corresponding queue sizes for the example pre-

sented in Fig. 1b. Due to backpressure, W1 does not increase and U1
I

does not receive or transmit any packets, and its size stays the same;
U1
I ðtÞ ¼ 1;8t.

1784 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

� We evaluate our schemes in a multi-hop setting,
using ns-2 [6]. The simulation results (i) confirm
the mismatch of TCP and backpressure, (ii) show
that TCP-aware backpressure is compatible with
TCP, and significantly improves throughput as
compared to existing adaptive routing schemes,
(iii) demonstrate that TCP-aware backpressure
provides fairness across competing TCP flows, (iv)
show that both TCP and non-TCP flows can be
accommodated in wireless network with TCP-
aware backpressure, and throughput is improved
without hurting fairness.

The structure of the rest of the paper is as follows.
Section 2 gives an overview of the system model. Section 3
presents TCP-aware backpressure design and analysis.
Section 4 presents the implementation details of TCP-aware
backpressure as well as its interaction with TCP and non-
TCP flows. Section 5 presents simulation results. Section 6
presents related work. Section 7 concludes the paper.

2 SYSTEM MODEL

We consider a general network model presented in Fig. 3,
where flows may originate from a source in the Internet and
traverse multiple hops to reach their destination in a wire-
less network. An end-to-end TCP connection is set up for
each flow. Our goal in this paper is to develop TCP-aware
backpressure routing and scheduling algorithms that oper-
ate in the wireless network. In this direction, we first
develop our algorithms using the Lyapunov optimization
framework (which is presented in Section 3) by taking into
account the incompatibility of TCP and classical backpres-
sure. In this section, we provide an overview of the system
model and assumptions that we use to develop the TCP-
aware backpressure. Note that the interaction and imple-
mentation of TCP-aware backpressure routing and schedul-
ing with actual TCP flows are presented in Section 4.

Wireless network setup. The wireless network consists ofN
nodes and L links, where N is the set of nodes and L is the
set of links in the network. In this setup, each wireless node
is able to perform routing and scheduling. Let S be the set
of unicast flows between source-destination pairs in the net-
work. We consider in our formulation and analysis that
time is slotted, and t refers to the beginning of slot t.

Channel model. At slot t, CCðtÞ ¼ fC1ðtÞ; . . . ; ClðtÞ; . . . ;
CLðtÞg is the channel state vector, where l represents the
edges such that l ¼ ði; jÞ, ði; jÞ 2 L and i 6¼ j. For the sake of
analysis, we assume that ClðtÞ is the state of link l at time t

and takes values from the set fON;OFFg according to a
probability distribution which is i.i.d. over time slots. If
ClðtÞ ¼ ON , packets can be transmitted with rate Rl. Other-
wise; (i.e., if ClðtÞ ¼ OFF), no packets are transmitted. Note
that our analysis can be extended to more general channel
state models [7]. We also consider a Rayleigh fading model
in our simulations.

Let GCCðtÞ denote the set of the link transmission rates fea-
sible at time slot t with channel state CCðtÞ, accounting for
interference among wireless links. In particular, at every
time slot t, the link transmission vector ffðtÞ ¼ ff1ðtÞ; . . . ;
flðtÞ; . . . fLðtÞg should be constrained such that ffðtÞ 2 GCCðtÞ.
Hence, flðtÞ takes a value from the set fRl; 0g depending
on the channel state and interference among multiple wire-
less nodes. Also note that ffðtÞ is determined by the schedul-
ing algorithm.

Stability region. Let ð�sÞ be the vector of arrival rates
8s 2 S. The network stability region L is defined as the clo-
sure of all arrival rate vectors that can be stably transmitted
in the network, considering all possible routing and sched-
uling policies [1], [2], [3]. L is fixed and depends only on
channel statistics and interference.

Flow rates and queue evolution. Each flow s 2 S is gener-
ated at its source node according to an arrival process AsðtÞ,
8s 2 S at time slot t. The arrivals are i.i.d. over the slots
and �s ¼ E½AsðtÞ�, 8s 2 S. We assume that E½AsðtÞ� and

E½AsðtÞ2� are finite. Note that we make i.i.d. arrivals
assumption for the purpose of designing and analyzing our
algorithms in the Lyapunov optimization framework. This
assumption is relaxed in the practical setup when we com-
bine our algorithms with TCP flows in Section 4.

Each node i constructs a per-flow queue Us
i for each flow

s 2 S. The size of the per-flow queue Us
i at time t is Us

i ðtÞ.
Let oðsÞ be the source node of flow s. The packets generated
according to the arrival process AsðtÞ are inserted in the
per-flow queue at node oðsÞ, i.e., in Us

oðsÞ. These queues only
store packets from flow s 2 S. Each node i such that i 2 N
and i 6¼ oðsÞ, may receive packets from its neighboring
nodes and insert them in Us

i . The transmission rate of flow s

from node i to node j is fsi;jðtÞ. Since the link transmission

rate over link ði; jÞ is fi;jðtÞ at time t, multiple flows could
share the available rate, i.e.,

P
s2S f

s
i;jðtÞ � fi;jðtÞ. Accord-

ingly, at every time slot t, the size of per-flow queues, i.e.,
Us
i ðtÞ evolves according to the following dynamics.

Us
i ðtþ 1Þ � max Us

i ðtÞ �
X
j2N

fs
i;jðtÞ; 0

2
4

3
5þ

X
j2N

fsj;iðtÞ

þAsðtÞ1½i¼oðsÞ�;

(1)

where 1½i¼oðsÞ� is an indicator function, which is 1 if i ¼ oðsÞ,
and 0, otherwise. Note that (1) is inequality, because the
number of packets in the queue Us

j ðtÞ may be less than

fsj;iðtÞ.

3 TCP-AWARE BACKPRESSURE: DESIGN AND

ANALYSIS FOR AN IDEALIZED SCENARIO

In this section, we design and analyze the TCP-aware back-
pressure scheme for an idealized scenario. In particular, we

Fig. 3. A general network model that we consider in this paper. A flow
may originate from a source in the Internet and traverse multiple hops to
reach its destination in a wireless network. An end-to-end TCP connec-
tion is set up for each flow. We explore the performance of backpressure
for TCP flows in the wireless network.

SEFEROGLU AND MODIANO: TCP-AWARE BACKPRESSURE ROUTING AND SCHEDULING 1785

provide a stochastic control strategy including routing and
scheduling to address the incompatibility between TCP and
classical backpressure for an ideal scenario, where arrival
rates are i.i.d. Then in Section 4, we will fine-tune our algo-
rithms so that they operate in harmony with real TCP flows,
and provide performance analysis of our algorithms with
real TCP flows.

TCP-Aware Backpressure:

� Routing & intra-node scheduling: The routing & intra-
node scheduling part of TCP-aware backpressure
determines a flow s from which packets should be
transmitted at slot t from node i, as well as the next
hop node j to which packets from flow s should be
forwarded. The algorithm works as follows.

Node i observes per-flow queue backlogs in all
neighboring nodes at time t, and determines queue
backlog difference according to:

Ds
i;jðtÞ ¼ maxfK;Us

i ðtÞg � Us
j ðtÞ; (2)

where K is a non-negative finite constant. Let
l ¼ ði; jÞ s.t. j 2 N and j 6¼ i. The maximum queue
backlog difference among all flows over link l 2 L is;

D�
l ðtÞ ¼ max

½s2Sjl2L�
fDs

l ðtÞg: (3)

The flow that maximizes the queue backlog differen-
ces over link l is s�l ðtÞ, which is calculated as

s�l ðtÞ ¼ argmax
½s2Sjl2L�

fDs
l ðtÞg: (4)

At time slot t, one or more packets are selected from

the queue Us�
l
ðtÞ

i if D�
l ðtÞ > 0 and Us�

l
ðtÞ

i has enough
packets for transmission. The transmission of the
selected packets depends on the channel conditions
and interference constraints, and determined by
inter-node scheduling.

Note that TCP-aware backpressure uses queue
backlog difference maxfK;Us

i ðtÞg � Us
j ðtÞ in (2)

instead of Us
i ðtÞ � Us

j ðtÞ as in classical backpressure.

The advantage of using (2) in TCP-aware backpres-
sure is that node i may select packets from flow s
even if the queue size Us

i ðtÞ is small.1 This advantage
is clarified through an illustrative example later in
this section.

� Inter-node scheduling: The inter-node scheduling part
of TCP-aware backpressure determines link trans-
mission rates considering the link state information
and interference constraints.

Each node i observes the channel state CCðtÞ at
time t, and determines a transmission vector ffðtÞ ¼
ff1ðtÞ; . . . ; flðtÞ; . . . fLðtÞg by maximizing

P
l2L D

�
l ðtÞ

flðtÞ. Note that ffðtÞ should be constrained such that
ffðtÞ 2 GCCðtÞ, i.e., interference among multiple nodes

should be taken into account. The resulting transmis-
sion rate flðtÞ is used to transmit packets of flow s�l ðtÞ
over link l.

Theorem 1. If channel states are i.i.d. over time slots, the arrival
rates �s, 8s 2 S are interior to the stability region L, and K is
a non-negative finite constant, then TCP-aware backpressure
stabilizes the network and the total average queue size is
bounded.

Proof. The proof is provided in Appendix A. tu
Example 2. Let us consider again Fig. 1b for the operation of

TCP-aware backpressure. The example queue occupan-
cies at time t are U1

I ðtÞ ¼ 1 and U2
I ðtÞ ¼ 3. Assume that K

in (2) is chosen asK ¼ 10. According to TCP-aware back-
pressure, the scheduling algorithm makes a decision

based on the rule s� ¼ argmaxs�2f1;2g fmaxfK;U1
I ðtÞg;

max fK;U2
I ðtÞgg. Since maxs2f1;2g fK;Us

I ðtÞg ¼ 10, both

flows get equal chance for transmission. Thus, congestion
window sizes of both TCP flows evolve in time, and the
TCP flows can transmit their packets. We note that one

can extend this example for the case; U1
I ðtÞ ¼ 7 and

U2
I ðtÞ ¼ 12. In this case, as K ¼ 10, packets from the first

flow may not get any chance for transmission. Therefore,
it is crucial to determine K in practice, which we explain
in Section 4.

Note that we propose TCP-aware backpressure; its
routing, intra-node scheduling, and inter-node scheduling
parts to work with TCP and TCP’s end-to-end flow con-
trol mechanism. In the next section, we provide imple-
mentation details. However, TCP-aware backpressure can
also be combined with flow control schemes other than
TCP’s, which is important for two reasons: (i) it may be
possible or preferable to use customized flow control
mechanisms instead of TCP’s in some systems, (ii) there
may be both TCP and non-TCP flows in some systems,
where a TCP-friendly flow control mechanism combined
with non-TCP flows is crucial to accommodate both TCP
and non-TCP flows. We consider the following flow con-
trol algorithm, developed in [3], to complement TCP-
aware backpressure for non-TCP flows.

The flow control algorithm at node i determines the
number of packets from flow s that should be passed to the
per-flow queues; Us

i at every time slot t according to;

max
xx

X
½s2Sji¼oðsÞ�

½MgsðxsðtÞÞ � Us
i ðtÞxsðtÞ�

s.t.
X

½s2Sji¼oðsÞ�
xsðtÞ � Rmax

i ;
(5)

where Rmax
i is a constant larger than the maximum outgoing

rate from node i, M is a positive constant, xsðtÞ is the rate of
packets that will be inserted to the per-flow queue Us

i , and
gsð:Þ is the utility function of flow s.

Theorem 2. If all flows employ the flow control algorithm in (5)
and TCP-aware backpressure (with non-negative finite value
of K in (2)), then the admitted flow rates converges to the util-
ity optimal operating point (as the classical backpressure) in
the stability region L with increasingM.

1. Note that place-holder backlogs, such as using Us
i ðtÞ þK instead

of Us
i ðtÞ has been considered in the literature [7]. Although place-holder

algorithms are beneficial to improve end-to-end delay, they do not
solve the problem we consider in this paper as they do not give trans-
mission opportunity to small queues.

1786 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

Proof. The proof of Theorem 2 directly follows when
Appendix A and drif+penalty approach [3] are com-
bined. We omit the details in this paper. tu

4 TCP-AWARE BACKPRESSURE:
IMPLEMENTATION AND ANALYSIS FOR REAL

TCP FLOWS

In this section, we first present practical implementation
details of TCP-aware backpressure as well as its interaction
with different layers in the protocol stack (summarized in
Fig. 4). We then discuss how TCP-aware backpressure inter-
acts and performs with real TCP flows, and provide the
requirements for TCP-friendly flow control for non-TCP
flows when backpressure is employed.

4.1 Implementation

4.1.1 Inter-Node Scheduling

The inter-node scheduling part of TCP-aware backpressure
determines which links should be activated at time t. The
inter-node scheduling is a hard problem, [9], [10], so its
practical implementation is challenging. Therefore, we
implement its low complexity version in our system on top
of IEEE 802.11 MAC as seen in Fig. 4. The implementation
details are as follows.

Each node uses 802.11 MAC to access the wireless
medium. When a node i is assigned a channel by the MAC
protocol, inter-node scheduling determines the neighboring
node that a selected packet should be forwarded to. Let us
assume that a packet is selected from flow s�i;jðtÞ to be for-

warded to node j by the routing and intra-node scheduling
algorithm, which we explain later in this section. The next
hop that the selected packet should be forwarded is j� and

determined by j� ¼ argmaxj2N fD�
i;j

~Ri;jð1� ~pi;jÞg, where ~pl

and ~Rl are the estimated values of pl (loss probability) andRl

(link transmission rate) over link l ¼ ði; jÞ, respectively.2

Then, a packet from flow s�i;j�ðtÞ, i.e., from the network layer

queue U
s�
i;j� ðtÞ

i , is removed and passed to the MAC layer for
transmission. TheMAC layer transmits the packet to node j�.

4.1.2 Routing and Intra-Node Scheduling

This algorithm determines the next hop(s) to which packets
should be forwarded, and the packets that should be
transmitted.

We construct per-flow queues, i.e., Us
i , at the network

layer,3 where the routing and intra-node scheduling algo-
rithm operates as seen in Fig. 4. The algorithm requires each
node to know the queue size of their neighbors. To achieve
this, each node i transmits a message containing the size of
its per-flow queue sizes; Us

i at time t. These messages are
piggy-backed to data packets. If there is no data transmis-
sion for some time duration, our algorithm uses indepen-
dent control packets to exchange the queue size
information. The transmitted message is overheard by all
nodes in the neighborhood. The queue size information is
extracted from the overheard messages and recorded for
future decisions.

At node i at time t, the queue backlog difference is calcu-
lated according to (2). Note that, although the algorithm
exactly knows Us

i ðtÞ at time t, it is difficult to exactly know
Us
j ðtÞ at time t. Therefore, the most recent report (until time

t) of the size of Us
j is used instead of Us

j ðtÞ. When a transmis-

sion opportunity for link ði; jÞ arises using inter-node sched-
uling algorithm, a packet from flow s�i;jðtÞ is selected and

passed to the MAC layer for transmission.

4.1.3 Network Coding

Out of order delivery, high jitter in RTTs, and packet
losses over wireless links are among the challenges when
backpressure and TCP are combined. We address these
challenges by employing network coding in the form of
rateless codes [13], [14], [15]. This is an effective solution
thanks to the properties of network coding such as mask-
ing wireless losses and making packets sequence agnostic
in terms of packet IDs. We summarize our implementa-
tion in the following.

We implement the generation based network coding
[16] at the edge points of the wireless network (e.g.,
access point, base station, proxy, or TCP source itself) as
a slim network coding layer (NC layer) above the net-
work layer as shown in Fig. 4. Note that we do not make
any updates to TCP, which makes our approach amena-
ble to practical deployment.

The NC layer at the edge point receives and packetizes
the data stream into packets hs1; h

s
2; . . . of flow s 2 S. The

stream of packets are divided into blocks of size Hs, which
is set to TCP congestion window size (or its average). The
packets within the same block are linearly combined
(assuming large enough field size) to generate Hs network
coded packets; as1 ¼ a1;1h

s
1, as2 ¼ a2;1h

s
1 þ a2;2h

s
2; . . . ; a

s
Hs

¼
aHs;1h

s
1 þ � � � þ aHs;Hsh

s
Hs
, where ai;j, 8i; j are network coding

coefficients from a finite field. Note that network coded
packets are generated incrementally to avoid coding delay
[16], [15]. The NC layer adds network coding header

Fig. 4. TCP-aware backpressure operations at edge-points and interme-
diate nodes. The inter-node scheduling and routing and intra-node
scheduling parts of TCP are implemented on top of 802.11 MAC and in
network layers, respectively. The NC layer is implemented as a slim layer
above the network layer at the edge points. Transport layer, i.e., TCP,
only exists if the edge point is a TCP source.

2. ~pl is calculated as one minus the ratio of successfully transmitted
packets over all transmitted packets during a time interval T on link l.
~Rl is calculated as the average of the recent (over an interval) link rates
over link l.

3. Note that constructing per-flow queues at each node may not be
feasible in some systems. However, this aspect is orthogonal to the
focus of this paper, and the techniques developed in the literature [11],
[12] to address this problem is complementary to our TCP-aware back-
pressure framework.

SEFEROGLU AND MODIANO: TCP-AWARE BACKPRESSURE ROUTING AND SCHEDULING 1787

including block ID, packet ID, block size, and coding coeffi-
cients. The network coded packets are routed and sched-
uled by TCP-aware backpressure.

At the receiver node, when the NC layer receives a
packet from a new block, it considers the received packet as
the first packet in the block. It generates an ACK, sends the
ACK back to the NC layer at the edge point, which matches
this ACK to packet h1, converts this ACK to h1’s ACK, and
transmits the ACK information to the TCP source. Similarly,
ACKs are generated at the receiver side for the second,
third, etc. received packets. As long as the NC layer at the
receiver transmits ACKs, the TCP clock moves, and the win-
dow continues to advance.

The NC layer stores the received network coded packets
in a buffer. When the last packet from a block is received,
packets are decoded and passed to the application layer. If
some packets are lost in the wireless network, the receiver
side NC layer makes a request with the block ID and the
number of missing packets, and the edge point side NC
layer generates additional network coded packets from the
requested block, and sends to the receiver. Note that the
missing packet IDs are not mentioned in the request, since
the network coding makes the packets sequence agnostic in
terms of packet IDs.

Network coding makes packets sequence agnostic, which
solves out of order delivery problem and eliminates jitter.
Network coding also corrects packet losses in the wireless
network as explained above. We explain how our system
and NC layer reacts to congestion-based losses later in
Section 4.2.1.

4.1.4 Selection ofK

TCP-aware backpressure uses queue backlog difference in
(2), which depends on K, to make routing and scheduling
decisions. As noted in Section 3, the selection of K is crucial
in practice to make TCP and backpressure fully comply.

In particular, if K is selected too small, the number of
packets that are trapped in the buffers, i.e., the number of
packets that do not get transmission opportunity, increases.
This reduces TCP throughput. On the other hand, if K is
too large, TCP-aware backpressure may not exploit the
throughput improvement benefit of backpressure routing
and scheduling as the ability of identifying good routing
and scheduling policies reduces with largeK values.

Our intuition is that flows passing through node i, i.e.,
s 2 Si, should share the available buffer fairly. Assume that
Bi is the available buffer size at node i. In order to give
transmission opportunity to all TCP flows and provide
some level of fairness across the competing TCP flows, we
set K ¼ Bi=jSij at node i. In this setting, if per-flow queue
sizes are smaller than K, it is likely that packets from all
TCP flows are transmitted. On the other hand, if some per-
flow queue sizes are larger than K, packets from the flows
with smaller queue sizes may still be trapped in the buffers.
However, in this case, since the total buffer occupancy is
large, buffer overflow probability at the source/edge node
increases. Upon buffer overflow, the TCP flow with larger
queue size reduces its rate (since upon congestion a packet
from the largest per-flow queue is dropped). This reduces
the queue sizes, and packets from all flows could be trans-
mitted again.

Example 2—continued: Let us consider again Fig. 1b. If
the queue occupancies are U1

I ðtÞ ¼ 7, U2
I ðtÞ ¼ 12, and

K ¼ 10, packets only from the second flow are transmit-
ted. Since K ¼ 10 and we set K ¼ BI=jSI j, and jSI j ¼ 2,
the buffer size is BI ¼ 20. The total queue occupancy is

U1
I ðtÞ þ U2

I ðtÞ ¼ 19. This means that the buffer at node I is
about to overflow, which will lead to back-off for the sec-
ond flow (since a packet from the largest queue will be
dropped). Thus, the TCP rate and queue size of the sec-
ond flow will reduce, and the first flow will get transmis-
sion opportunity.

We have observed through simulations that TCP-aware
backpressure, when K is set to Bi=jSij, significantly reduces
the number of the trapped packets in the buffers. Yet, a few
packets may still be trapped. Such packets are easily
masked thanks to error correction capabilities of network
coding. Note that network coding does not help if large
number of packets are trapped in the buffers (e.g., when K
is selected too small), as large number of trapped packets
increases end-to-end delay too much, which leads to multi-
ple timeouts and reduces TCP throughput.

4.2 Interaction with TCP Flows

4.2.1 Congestion Control

Now, let us consider the interaction of TCP congestion con-
trol and TCP-aware backpressure. When TCP-aware back-
pressure is employed, using the similar approach in [17],
[18], we find the steady state TCP throughput for flow s as;

x2s ¼
ð1�qs

oðsÞÞ
T3
s q

s
oðsÞ

, where qsoðsÞ is the buffer overflow probability at

the TCP source/edge node oðsÞ, and Ts is constant RTT.4

(The details of our analysis is provided in Appendix B.)
Note that the steady state TCP throughput depends on the
buffer overflow probability only at the source/edge node5

which is different from [17], [18] where TCP throughput
depends on the buffer overflow probability over all nodes
over the path of TCP flow. Thus, in our implementation, if
the buffer at the source/edge node is congested, a packet
from the flow which has the largest queue size is dropped.
This congestion-based loss information is passed to the NC
layer. The NC layer creates a loss event by not masking the
dropped packet so that TCP can detect the congestion-based
loss event and back-off.

4.2.2 Performance of TCP-Aware Backpressure with

Real TCP Flows

In Section 3, we showed that our TCP-aware backpressure
algorithm provides stability and optimality guarantees
when arrival rates are i.i.d. In this section, our goal is to ana-
lyze the performance of TCP-aware backpressure with real
TCP flows using a fluid-based approach as in [18].

4. The constant RTT is a common assumption in classical TCP analy-
sis [17], [18], and also valid in our setup thanks to employing network
coding, which reduces jitter in RTT and makes constant RTT assump-
tion valid. A detailed discussion is provided in Appendix B.

5. Note that buffer overflows only occurs at the source node, not in
the other (intermediate) nodes in TCP-aware backpressure. The reason
is that our algorithm makes transmission decisions based on queue
sizes. I.e., a node does not transmit packets to a next hop if there is pos-
sibility of overflow in the next hop.

1788 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

In particular, when TCP-aware backpressure for routing
and scheduling and a TCP source (specifically TCP-Reno)
are used together, the equilibrium point approaches the
solution of the optimization problem: maxxx;ff

P
s2S gsðxsÞ

when gsðxsÞ ¼ 1
Ts

ffiffi
b

p tan �1ð ffiffiffi
b

p
TsÞxs subject to

P
j2N fs

i;j�P
j2N fs

j;i ¼ xs1½i¼oðsÞ�; 8i 2 N ; s 2 S and ff 2 G, where G is

the stability region of the network. The details of the analy-
sis is provided in Appendix C.

4.3 Interaction with Non-TCP Flows
and TCP-Friendly Flow Control

As mentioned in Section 3, there may be both TCP and non-
TCP flows in a network, and non-TCP flows should be con-
trolled in a TCP-friendly manner so that TCP flows could
survive when non-TCP flows are active. Therefore, we pre-
sented a flow control algorithm in (5) to control non-TCP
flows. Yet, the parameters of the flow control algorithm, in
particular M, should be selected so that these non-TCP
flows could be TCP-friendly. This is the focus of this section.

In this section, we consider (5) in a fluid from. In this
case, (5) is expressed as; maxxx

P
½s2Sji¼oðsÞ� ½MgsðxsÞ � Us

i xs�.
Let us first consider that the utility function is gsðxsÞ ¼
logðxsÞ. In this case, as maxxx

P
½s2Sji¼oðsÞ� ½MlogðxsÞ � Us

i xs� is
an unconstrained convex optimization problem, the steady
state non-TCP flow rate is calculated as xs ¼ M=Us

oðsÞ. To
provide TCP friendliness, non-TCP flow rate should be

equal to TCP flow rate (which is calculated as x2
s ¼

ð1�qs
oðsÞÞ

T3
s bq

s
oðsÞ

in

Appendix B) [33]. From this equality we can findM as

M ¼
Us
oðsÞffiffiffiffiffiffiffiffiffi
T 3
s b

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qoðsÞ
qoðsÞ

s
: (6)

Now, let us consider the general utility function gsðxsÞ ¼
x1�a
s
1�a

, for a > 0, which provides different levels of fairness

for different a values [34]; e.g., when a ! 1, the utility func-
tion becomes gsðxsÞ ! logðxsÞ and provides proportional
rate fairness, and when a ! 1, the utility function gsðxsÞ
provides max-min fairness. For this general utility function,
we can calculate M as M ¼ Us

oðsÞx
a
s . To provide TCP-friend-

liness,M should be

M ¼ Us
oðsÞ

1� qoðsÞ
T 3
s bqoðsÞ

� �a=2
: (7)

Using the similar approach, we can develop rules for M for
any convex utility function.

5 PERFORMANCE EVALUATION

We simulate our scheme, TCP-aware backpressure (TCP-
aware BP) as well as classical backpressure (classical BP), in
ns-2 [6]. The simulation results; (i) confirm the mismatch of
TCP and classical BP, (ii) show that TCP-aware BP is com-
patible with TCP, and significantly improves throughput as
compared to existing routing schemes such as Ad-hoc On-
Demand Distance Vector (AODV) [19], (iii) demonstrate
that TCP-aware BP provides fairness across competing TCP
flows. Next, we present the simulator setup and results
in detail.

5.1 Simulation Setup

We consider three topologies: a tree topology, a diamond
topology, and a grid topology shown in Fig. 5. The nodes
are placed over 500� 500m terrain, and S1, S2 and R1, R2

are possible source-receiver pairs in the tree and diamond
topologies. In the grid topology, 4� 3 cells are placed over
a 800� 600m terrain. A gateway, which is connected to the
Internet, passes flows to nodes. Each node communicates
with other nodes in its cell or neighboring cells, and there
are 12 nodes randomly placed in the cells.

We consider FTP/TCP traffic, and employ TCP-SACK
and TCP-Vegas in our simulations. TCP flows start at ran-
dom times within the first 5 sec of the simulation and are on
until the end of the simulation which is 200 sec. IEEE
802.11b is used in the MAC layer. In terms of wireless
channel, we simulated the two-ray path loss model and a
Rayleigh fading channel with average loss rates 0; 20;
30; 40; 50 percent. Channel capacity is 2 Mbps, the buffer
size at each node is set to 100 packets, packet sizes are set to
1; 000B. We have repeated each 200 sec simulation for
10 seeds.

The following is the summary of our evaluation results
we present in the next section. (i) We present the perfor-
mance of TCP-aware BP as compared to the classical BP,
and demonstrate that TCP-aware BP supports all TCP flows
in the system while some TCP flows do not survive in the
classical BP. (ii) We present the performance of TCP-aware
BP as compared to AODV, and demonstrate that TCP-aware
BP improves throughput significantly as compared to
AODV thanks to exploiting better routes. (iii) We present
the performance of TCP-aware BP while accommodating
both TCP and non-TCP flows, and demonstrate that TCP-
aware BP can accommodate both TCP and non-TCP flows,
which is not possible in AODV. Note that for fair compari-
son, we employ the network coding mechanism explained
in Section 4 in the classical BP as well as in AODV. The com-
parisons are in terms of per-flow and total transport level

Fig. 5. Topologies used in simulations.

SEFEROGLU AND MODIANO: TCP-AWARE BACKPRESSURE ROUTING AND SCHEDULING 1789

throughput (added over all flows) as well as fairness. For
the fairness calculation, we use Jain’s fairness index [20]:

F ¼ ð
P

s2S �xsÞ2
jSjð

P
s2Sð�xsÞ

2Þ, where S is the set of flows and �xs is the

average throughput of flow s.

5.2 Simulation Results

Performance of TCP-aware BP as compared to BP: Fig. 6 shows
throughput versus time for TCP-aware BP and classical BP
for the tree topology shown in Fig. 5a. There are two flows;
Flow 1 is transmitted from node A to node B, and Flow 2 is
transmitted from node A to node D. The links are not lossy.
Figs. 6a and 6b are the results for TCP-SACK, while Figs. 6c
and 6d are for TCP-Vegas. Fig. 6b shows that while Flow 1
is able to transmit, Flow 2 does not get any chance for

transmission in classical BP due to the mismatch between
congestion window size update mechanism of TCP and
queue size-based routing and scheduling of backpressure.
On the other hand, in TCP-aware BP, both flows get chance
for transmission. In particular, Flow 1 and Flow 2 achieves
average throughput of 205:76 and 203:36 kbps in Fig. 6,
respectively. Figs. 6c and 6d show throughput versus time
graphs of TCP-aware BP and classical BP for TCP-Vegas.
Although classical BP performs better in TCP-Vegas than in
TCP-SACK due to the delay-based mechanism of TCP-
Vegas, its performance is still quite poor as the throughput
of Flow 2 frequently goes to 0 as seen in Fig. 6d. On the
other hand, TCP-aware BP improves throughput of both
flows as seen in Fig. 6c, where Flow 1 and Flow 2 achieve
469:36 and 324:64 kbps, respectively. Similar results are pre-
sented in Fig. 7 for the diamond topology in Fig. 5b.

Let us consider the grid topology shown in Fig. 5c. Four
flows are transmitted from the gateway to four distinct
nodes, which are randomly chosen. Half of the links, chosen
at random, are lossy with loss probability ranging between
0�0:5. Fig. 8 shows throughput versus time graphs for TCP-
aware BP and classical BP. It is seen that all four flows could
survive in TCP-aware BP for both TCP-SACK and TCP-
Vegas,while one ormore flows do not survive in classical BP.

Performance of TCP-aware BP as compared to AODV: Fig. 9
demonstrates throughput and fairness versus average loss

Fig. 6. Throughput versus time in the tree topology for TCP-SACK and
TCP-Vegas. There are two flows; Flow 1 is transmitted from node A to
node B, and Flow 2 is transmitted from node A to node D. The links are
not lossy.

Fig. 7. Throughput versus time in the diamond topology for TCP-SACK
and TCP-Vegas. There are two flows; Flow 1 is transmitted from node A
to node B, and Flow 2 is transmitted from node A to node D. The links
are not lossy.

Fig. 8. Throughput versus time in the grid topology for TCP-SACK and
TCP-Vegas. There are four flows and the links are not lossy.

Fig. 9. Throughput and fairness versus average packet loss rate for TCP-
aware BP and AODV in the diamond topology. There are two TCP flows
transmitted from node A to B (Flow 1) and A to D (Flow 2). The link
A�B is a lossy link. The version of TCP is TCP-SACK.

1790 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

rate results of TCP-aware BP and AODV in the diamond
topology shown in Fig. 5b. There are two flows transmitted
from node A to B (Flow 1) and A to D (Flow 2). The link
A�B is a lossy link. The version of TCP is TCP-SACK.
Fig. 9a shows that TCP-aware BP improves throughput sig-
nificantly as compared to AODV thanks to adaptive routing
and scheduling. The throughput improvement of TCP-
aware BP as compared to AODV increases as loss probabil-
ity increases thanks to loss-aware routing and scheduling
mechanism of TCP-aware BP. Moreover, Fig. 9b shows that
the fairness index is close to F ¼ 1 (note that F ¼ 1 is the
highest possible fairness index) when TCP-aware BP is
employed. This means that both TCP flows are able to sur-
vive in TCP-aware BP. Note that the fairness index of TCP-
aware BP is 0.94, while the fairness index of AODV is 0.98
when the packet loss probability is 0.5. This is due to the
fact that TCP-aware BP exploits loss-free links better, and
slightly favors the flows transmitted over such links. How-
ever, the throughput improvement of both flows as com-
pared to AODV is higher. In particular, TCP-aware BP
improves throughput as compared to AODV by 10 and 40
percent for the first and second flows, respectively. These
results confirm the compatibility of TCP and TCP-aware BP.

Fig. 10 shows throughput and fairness versus average
loss probability results for TCP-aware BP and AODV for
TCP-SACK for the grid topology shown in Fig. 5c. In this
topology, four flows are transmitted from the gateway to
four distinct nodes, which are randomly chosen. Half of the
links, chosen at random, are lossy with loss probability
ranging between 0�0:5. TCP-aware BP improves through-
put significantly as compared to AODV without violating

fairness. Fig. 11 shows that TCP-aware BP improves
throughput significantly as compared to AODV when TCP-
Vegas is employed. This shows the effectiveness of our
scheme in delay-based TCP versions.

Performance of TCP-aware BP while accommodating both
TCP and non-TCP flows. As mentioned in Sections 3 and 4.3,
there may be both TCP and non-TCP flows in the system,
and non-TCP flows should be controlled in a TCP-friendly
manner so that TCP flows could survive when non-TCP
flows are on. Therefore, a flow control algorithm is pre-
sented in (5) for non-TCP flows. Now, we evaluate this sce-
nario in the diamond topology with two flows. Flow 1 is a
TCP flow (TCP-SACK) transmitted from node A to node B,
and Flow 2 is a non-TCP flow transmitted from node A to
node D. In our TCP-aware BP framework, the non-TCP
flow is regulated by (5). We consider log utility function,
i.e., gðxsðtÞÞ ¼ logðxsðtÞÞ, 8t; s 2 S. The implementation
details including TCP-friendly parameter selection are pro-
vided in Section 4.3. Fig. 12 shows throughput versus time
graph of TCP-aware BP, classical BP, and AODV. The TCP
flow does not survive in classical BP as packets are trapped
in the buffers. It does not survive with AODV as well,
because uncontrolled non-TCP flows (i.e., UDP flows)
occupy buffers and TCP packets are constantly dropped
from the buffers, which reduces TCP throughput. Yet, both
TCP and non-TCP flows survive together in TCP-aware BP
thanks to TCP-aware routing and scheduling, and TCP-
friendly flow control for non-TCP flows. Fig. 13 shows the
throughput improvement performance of TCP-aware BP as
compared to AODV in the same setup for different packet
loss probabilities. At low loss probabilities, although the

Fig. 10. Throughput and fairness versus average packet loss rate for
TCP-aware BP and AODV in the grid topology. There are four TCP flows
transmitted from the gateway to four distinct nodes. Half of the links are
lossy. The version of TCP is TCP-SACK.

Fig. 11. Throughput and fairness versus average packet loss rate for
TCP-aware BP and AODV in the grid topology. There are four TCP flows
transmitted from the gateway to four distinct nodes. Half of the links are
lossy. The version of TCP is TCP-Vegas.

Fig. 12. Throughput versus time in the diamond topology for TCP-SACK. There are two flows; Flow 1 is a TCP flow, transmitted from node A to node
B, and Flow 2 is a non-TCP flow, transmitted from node A to nodeD. The links are not lossy.

SEFEROGLU AND MODIANO: TCP-AWARE BACKPRESSURE ROUTING AND SCHEDULING 1791

throughput of AODV is better than TCP-aware BP, the fair-
ness graph (and Fig. 12 for no-loss) shows that the fairness
of AODV is very low, which means that the TCP flow does
not survive. At higher loss probabilities, TCP-aware BP is
better than AODV thanks to choosing better routes and
schedules as compared to AODV.

6 RELATED WORK

Backpressure, a routing and scheduling framework over
communication networks [1], [2] has generated a lot of
research interest [7], mainly in wireless ad-hoc networks. It
has also been shown that backpressure can be combined
with flow control to provide utility-optimal operation guar-
antee [3], [21].

The strengths of backpressure have recently increased
the interest on practical implementation of backpressure
over wireless networks. Backpressure has been imple-
mented over sensor networks [22] and wireless multi-hop
networks [23]. The multi-receiver diversity has been
explored in wireless networks using backpressure in [24].
The 802.11 compliant version of enhanced backpressure is
evaluated in [25]. Backpressure routing and rate control for
intermittently connected networks was developed in [26].

Backpressure routing and (max-weight) scheduling with
TCP over wireless has been considered in the literature. At
the link layer, [27], [28], propose, analyze, and evaluate link
layer backpressure-based implementations with queue pri-
oritization and congestion window size adjustment. The
interaction of TCP with backpressure in [27] and [28] is han-
dled by updating the TCP congestion window evolution
mechanism. In particular, if the queue size (at the TCP
source) increases, the window size is reduced, otherwise,
the window size is increased. Multi-path TCP scheme is
implemented over wireless mesh networks [29] for routing
and scheduling packets using a backpressure based heuris-
tic, which avoids incompatibility with TCP. Max-weight
scheduling is updated in [30] to make decisions based only
on MAC level queue size information. Although [30] con-
siders window based flow control mechanism similar to
TCP, it does not consider existing TCP flavors. The main
differences in our work are: (i) we consider the incompati-
bility of TCP with backpressure, and develop TCP-aware
backpressure framework to address the incompatibilities,
(ii) TCP-aware backpressure provides the same stability
and utility-optimal operation guarantees as classical

backpressure, (iii) we do not make any changes at the TCP
source, (iv) we employ network coding to gracefully com-
bine TCP and TCP-aware backpressure.

Maximum weight matching (MWM) is a switch schedul-
ing algorithm and has similar properties as the max-weight
scheduling algorithm and backpressure. Similar to the back-
pressure, there is incompatibility between TCP and MWM
[31], [32]. Yet, we consider backpressure routing and sched-
uling over wireless networks rather than switch scheduling,
and we take a holistic approach to address this problem;
i.e., we propose TCP-aware backpressure to make TCP and
backpressure compatible.

The delay-based routing and scheduling algorithms can
be also be utilized with TCP flows. However, the delay-
based solutions have two disadvantages in this setup. First,
providing performance guarantees for delay-based algo-
rithms are quite involved and is an open problem for
general networks [35]. Furthermore, they require clock syn-
chronization, which is quite difficult in practice. As com-
pared to this line of work, we propose TCP-aware
backpressure with provable performance guarantees. Also,
since TCP-aware backpressure does not introduce compli-
cations such as clock synchronization, or updating TCP, it is
very suitable for practical deployment.

7 CONCLUSION

We proposed TCP-aware backpressure routing and sched-
uling to address the incompatibility of TCP and backpres-
sure while exploiting the performance of backpressure
routing and scheduling over wireless networks. TCP-aware
backpressure is developed by taking into account the
behavior of TCP flows, and gracefully combines TCP and
backpressure without making any changes to the TCP pro-
tocol. Simulations in ns-2 demonstrate that TCP-aware
backpressure improves throughput of TCP flows signifi-
cantly and provides fairness across competing TCP flows.
Furthermore, the simulation results show that TCP-aware
backpressure accommodates both TCP and non-TCP flows
in a wireless network, and improves throughput of these
flows without hurting fairness.

APPENDIX A
PROOF OF THEOREM 1

The proof of Theorem 1 directly follows from ðg; �Þ (or C-)
approximation in [8], [7]. We provide the proof in this sec-
tion for completeness. Let f�

i;j
sðtÞ be the optimal decision

when Ds
i;jðtÞ ¼ Us

i ðtÞ � Us
j ðtÞ in (2) (note that this is the clas-

sical backpressure), while fsi;jðtÞ be the decision when

Ds
i;jðtÞ ¼ maxfK;Us

i ðtÞg � Us
j ðtÞ. If the following inequality

holds, the policy that makes decision based on Ds
i;jðtÞ ¼

maxfK;Us
i ðtÞg � Us

j ðtÞ stabilizes the queues:
X

ði;jÞ2L

X
s2S

fsi;jðtÞðUs
i ðtÞ � Us

j ðtÞÞ 	
X

ði;jÞ2L

X
s2S

f�i;j
sðtÞðUs

i ðtÞ;

� Us
j ðtÞÞ � Z;

(8)

where Z is a finite constant. Let us first show that (8) holds.
Consider the inequality;

P
ði;jÞ2L

P
s2SðUs

i ðtÞ � Us
j ðtÞÞ f�i;j sðtÞ �

Fig. 13. Throughput and fairness versus average packet loss rate for
TCP-aware BP and AODV in the diamond topology. There are two flows
transmitted from node A to B (Flow 1, i.e., TCP flow) and A toD (Flow 2,
i.e., non-TCP flow). The link A�B is a lossy link. The version of TCP is
TCP-SACK.

1792 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

P
ði;jÞ2L

P
s2S maxfK;Us

i ðtÞg f�
i;j

sðtÞ. This inequality holds,

because maxfK;Us
i ðtÞg 	 Us

i ðtÞ. Also, considering that fs
i;jðtÞ

is the optimal decision when the backlog difference is
maxfK;Us

i ðtÞg � Us
j ðtÞ, the term ðmaxfK; Us

i ðtÞg�Us
j ðtÞÞ

fs
i;jðtÞ should be greater than ðmaxfK;Us

i ðtÞg�Us
j ðtÞÞ f�

i;j
sðtÞ.

Therefore, the inequality is expressed as;
P

ði;jÞ2LP
s2SðUs

i ðtÞ � Us
j ðtÞÞ f�

i;j
sðtÞ � P

ði;jÞ2L
P

s2S maxfK;Us
i ðtÞg

fs
i;jðtÞ. By adding and removing terms, and noting that

maxfK;Us
i ðtÞg � Us

i ðtÞ � K and fsi;jðtÞ � Fmax such that

Fmax 	 Ri;j, the following holds;

X
ði;jÞ2L

X
s2S

ðUs
i ðtÞ � Us

j ðtÞÞfs
i;jðtÞ

	
X

ði;jÞ2L

X
s2S

ðUs
i ðtÞ � Us

j ðtÞÞf�i;jsðtÞ � jLjjSjKFmax;
(9)

(9) verifies that (8) holds considering that Z ¼ jLj jSjK Fmax.
Note that (9) is equivalent to;

X
i2N

X
s2S

Us
i ðtÞ

X
j2N

fs
i;jðtÞ �

X
j2N

fs
j;iðtÞ

0
@

1
A

	
X
i2N

X
s2S

Us
i ðtÞ

X
j2N

f�
i;j

sðtÞ �
X
j2N

f�j;i
sðtÞ

0
@

1
A� jLjjSjKFmax:

(10)

Now, let us define the Lyapunov function as; LðUUðtÞÞ ¼P
i2N

P
s2S U

s
i ðtÞ2, where UUðtÞ ¼ fUs

i ðtÞgi2N ;s2S and Us
i ðtÞ

evolves according to (1). Let the Lyapunov drift be
DðUUðtÞÞ ¼ E½LðUUðtþ 1ÞÞ � LðUUðtÞÞjUUðtÞ�, which is equal to

DðUUðtÞÞ � E½Pi2N
P

s2SðUs
i ðtþ 1ÞÞ2 �P

i2N
P

s2S ðUs
i ðtÞÞ2j

UUðtÞ�. Using the fact that ðmaxðQ� b; 0Þ þAÞ2 � Q2 þA2þ
b2 þ 2QðA� bÞ, we have; DðUUðtÞÞ � E½Pi2N

P
s2S ðPj2N

fs
i;jðtÞÞ2 þ

P
i2N

P
s2Sð

P
j2N fs

i;jðtÞ þAsðtÞ1½i¼oðsÞ�Þ2 þ
P

i2NP
s2S 2U

s
i ðtÞð

P
j2N fsj;iðtÞ �

P
j2N fsi;jðtÞÞ þ

P
i2N

P
s2S 2U

s
i ðtÞ

AsðtÞ1½i¼oðsÞ�jUUðtÞ�. Noting that there always exist a finite

constant B such that B 	 E½Pi2N
P

s2Sð
P

j2N fs
i;jðtÞÞ2þP

i2N
P

s2Sð
P

j2N fs
i;jðtÞ þAsðtÞ1½i¼oðsÞ�Þ2jUUðtÞ�, we have;

DðUUðtÞÞ � B� 2E

�X
i2N

X
j2N

X
s2S

Us
i ðtÞðfs

i;jðtÞ � fsj;iðtÞÞ

þ 2
X
i2N

X
s2S

Us
i ðtÞAsðtÞ1½i¼oðsÞ�jUUðtÞ

�
:

(11)

When we insert (10) in (11), we have

DðUUðtÞÞ � Bþ 2
X
i2N

X
s2S

Us
i ðtÞ�s

i

� 2E

�X
i2N

X
s2S

Us
i ðtÞ

X
j2N

f�
i;j

sðtÞ �
X
j2N

f�
j;i

sðtÞ
0
@

1
AjUUðtÞ�

þ 2jLjjSjKFmax:

(12)

If the vector of arrival rates are interior to the stability
region, there always exist � > 0 such that E½Pi2N

P
s2S

ðPj2N f�
j;i

sðtÞ �P
j2N f�

i;j
sðtÞÞjUUðtÞ� � �ð�s1½i¼oðsÞ� þ �Þ.

Substituting this into (12);

DðUUðtÞÞ � Bþ 2jLjjSjKFmax � 2
X
i2N

X
s2S

Us
i ðtÞ�: (13)

The time average of (13) yields;

limsup
t!1

1

t

Xt�1

t¼0

X
s2S

Us
i ðtÞ �

Bþ 2jLjjSjKFmax

2�
; (14)

which shows that the time average of the sum of Us
i ðtÞ over

all flows is bounded. This conclude that TCP-aware back-
pressure stabilizes the network and the total average back-
log is bounded.

APPENDIX B
STEADY STATE THROUGHPUT OF TCP WITH

TCP-AWARE BACKPRESSURE

We consider the interaction of TCP-aware backpressure
with TCP, assuming that TCP-Reno is employed.

Let the TCP congestion window size of flow s at its
source node oðsÞ and at time t is WoðsÞðtÞ. We assume that

the RTT of each packet is constant, and Ts. This is a com-
mon assumption in classical TCP analysis [17], [18]. It is
also a valid assumption in our system thanks to employ-
ing network coding. Since network coding makes packets
sequence agnostic, we do not look at the RTT of each
individual packet, rather the RTT of stream of packets. In
particular, even if a packet takes a longer path, it does
not increase RTT of this packet, because the ACK of this
packet will be mapped to packet which is transmitted
later. This reduces the jitter of RTT, and makes constant
RTT assumption valid.

Let qsi ðtÞ be the probability that packets are dropped from
buffers due to overflow. Thanks to employing backpressure
for scheduling packets, we do not expect buffer overflow in
the nodes except at the edge/source node. I.e., qsi ðtÞ ¼ 0,

8i 2 N � foðsÞg. Let rsi ðtÞ is the probability that packets

from flow s could be transmitted from node i according to
the underlying scheduling algorithm, i.e., rsi ðtÞ is the proba-
bility that packets are not trapped at node i.

At time t� Ts, WoðsÞðt� TsÞ packets are transmitted from
TCP source oðsÞ. The ACKs corresponding to these packets,
received between t and tþ Ts, determine window size
update. In particular, for each transmitted and ACKed

packets, window size is increased by 1
WoðsÞðtÞ according to

TCP-Reno. Therefore, the total increase in window size

from time t to tþ Ts is; WoðsÞðt� TsÞ 1
WoðsÞðtÞ ð1� qsoðsÞðtÞÞQ

i2N s
rsi ðtÞ, where successful ACKs are received if packets

are not dropped due to buffer overflow (with probability
ð1� qsoðsÞðtÞÞ) and if each node in the network could forward

packets using the underlying routing and scheduling algo-
rithm (with probability rsi ðtÞ). (Note that N s is the set of

nodes that are able to forward packets from flow s towards

SEFEROGLU AND MODIANO: TCP-AWARE BACKPRESSURE ROUTING AND SCHEDULING 1793

their destination, and we assume that packets from flow s

are routed to node i only if i 2 N s).
For each dropped packet due to buffer overflow or for

trapped packets in the buffers, window size is reduced in
TCP-Reno by WoðsÞðtÞb, where 0 < b < 1. The total
decrease from time t to tþ Ts is; WoðsÞðt� TsÞbWoðsÞðtÞ
f1� ð1� qsoðsÞðtÞÞ

Q
i2N s

rsi ðtÞg. Thus, the window size evolu-

tion is expressed as

WoðsÞðtþ TsÞ ¼ WoðsÞðtÞ þWoðsÞðt� TsÞ 1

WoðsÞðtÞ
ð1� qsoðsÞðtÞÞY

i2N s

rsi ðtÞ �WoðsÞðt� TsÞbWoðsÞðtÞ

1� ð1� qsoðsÞðtÞÞ
Y
i2N s

rsi ðtÞ
()

:

(15)

Noting that _WoðsÞðtÞ ¼ WoðsÞðtþTsÞ�WoðsÞðtÞ
Ts

and xsðtÞ ¼ WoðsÞðtÞ
Ts

as

well as considering that _WoðsÞ ¼ 0 in the steady state, xs is

expressed as

x2
s ¼

ð1� qsoðsÞÞ
Q

i2N s
rsi

T 3
s bð1� ð1� qsoðsÞÞ

Q
i2N s

rsi ðtÞÞ
: (16)

As it is seen from (16), TCP rate xs depends on buffer over-
flow probability at the source node, i.e., qsoðsÞ, and transmis-

sion probability at each intermediate node i 2 N s, i.e., r
s
i .

Thus, in the classical backpressure either rsi information

should be known by the source node to arrange the window
size (and rate), which is not practical, or neglect this infor-
mation, which is detrimental as rsi may receive very small

values in classical backpressure, which reduces xs. TCP-
aware backpressure, on the other hand, increases rsi thanks

to giving transmission opportunity to small flows according
to (2). In practice, K is selected as K ¼ Qi=jSij as explained
in Section 4.1.4. This significantly increases rsi . We have

observed through our simulations in Section 5 that, very
few packets are trapped in the buffers in TCP-aware back-
pressure. Such packets are easily masked thanks to error
correcting capabilities of network coding. Therefore, in
TCP-aware backpressure, rsi
 1. Note that rsi is the proba-

bility of not trapping packets at node i from flow s in a
fluid-based model. Since TCP-aware backpressure almost
eliminates the packet trapping probability, rsi is close to 1.

Thus, (16) is expressed as

x2
s ¼

ð1� qsoðsÞÞ
T 3
s bq

s
oðsÞ

; (17)

where xs only depends only on the buffer overflow proba-
bility at the source/edge node.

APPENDIX C
OPTIMALITY ANALYSIS OF TCP-AWARE

BACKPRESSURE WITH REAL TCP FLOWS

The Karush-Kuhn-Tucker (KKT) optimality conditions of
the optimization problem:

max
xx;ff

X
s2S

gsðxsÞ

s.t.
X
j2N

fs
i;j �

X
j2N

fs
j;i ¼ xs1½i¼oðsÞ�; 8i 2 N ; s 2 S

ff 2 G;

(18)

are

qsi
X
j2N

fsi;j �
X
j2N

fsj;i � xs1½i¼oðsÞ� ¼ 0

0
@

1
A; 8i 2 N ; s 2 S

g0sðxsÞ � qsoðsÞ ¼ 0; 8s 2 S;
(19)

where qsi are KKT multipliers and they correspond to packet
dropping probability from flow s due to buffer overflow at
node i. Next, we show that our TCP-aware backpressure
algorithm with TCP-Reno sources satisfy the KKT optimal-
ity conditions in (19).

Let us consider the first KKT condition in (19). In our
algorithm, if

P
j2N fsi;j �

P
j2N fs

j;i � xs1½i¼oðsÞ� > 0, then the
arrival rate is smaller than the departure rate, and qsi ¼ 0 in

the equilibrium since we are using the fluid model. Thus,
the first KKT condition is satisfied in this case.

On the other hand, we cannot possibly have
P

j2N fs
i;j�P

j2N fsj;i � xs1½i¼oðsÞ� < 0 if ff 2 G in the equilibrium,

because TCP-Reno sources do not introduce inadmissible
rates. Thus, we cannot have

P
j2N fs

i;j �
P

j2N fs
j;i�

xs1½i¼oðsÞ� < 0, and if qsi 6¼ 0, we should have
P

j2N fs
i;j�P

j2N fsj;i � xs1½i¼oðsÞ� ¼ 0. Thus, the first KKT condition is

always satisfied.

Now, let us consider the second KKT condition in (19). In

this step, we use the equilibrium analysis of TCP provided

in Appendix B. In particular, in Appendix B, we have

shown that the window size evolution is expressed as in

(15). Noting that the window size and TCP rates are related

to each other according to xsðtÞ ¼ WoðsÞðtÞ
Ts

, we have

xsðtþ TsÞ � xsðtÞ
Ts

¼ xsðt� TsÞ
T 2
s xsðtÞ ð1� qsoðsÞðtÞÞY

i2N s

rsi ðtÞ � bxsðt� TsÞxsðtÞ

1� ð1� qsoðsÞðtÞÞ
Y
i2N s

rsi ðtÞ
()

:

(20)

In the equilibrium, (20) is expressed as

_xs ¼
ð1� qsoðsÞÞ

Q
i2N s

rsi

T 2
s

� bx2
s 1� ð1� qsoðsÞÞ

Y
i2N s

rsi

()
: (21)

Since packet trapping probability is very low in our algo-

rithm,
Q

i2N s
rsi is very close to 1. Thus, we have

_xs ¼
ð1� qsoðsÞÞ

T 2
s

� bx2
sq

s
oðsÞ

¼ bx2
s þ

1

T 2
s

� �
1

bx2s þ 1=T 2
s

1

T 2
s

� qsoðsÞ

� �
: (22)

1794 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

On the other hand, the second KKT condition, i.e.,
g0sðxsÞ� qsoðsÞ ¼ 0 gives the same set of solutions as

_xs ¼ ksðxsÞ ðg0sðxsÞ � qsoðsÞÞ by setting _xs ¼ 0 if (i) ksðxsÞ is a

step size parameter and (ii) ksðxsÞ > 0. Thus, according to
TCP rate analysis in (22), the second KKT condition is satis-

fied for ksðxsÞ ¼ bx2
s þ 1=T 2

s and g0sðxsÞ ¼ 1
T2
s

1
bx2sþ1=T2

s
, where

gsðxsÞ can be expressed as gsðxsÞ ¼ 1
Ts

ffiffi
b

p tan �1ð ffiffiffi
b

p
TsxsÞ.

Now that we showed that TCP-aware backpressure with
TCP-Reno sources satisfy the KKT optimality conditions in
the equilibrium, we can conclude that our TCP-aware back-
pressure algorithm with real TCP-Reno sources approaches
to the solution of (18) in the equilibrium.

ACKNOWLEDGMENTS

This work was supported by the US National Science Foun-
dation (NSF) grant CNS-1217048, ONR grant N00014-12-1-
0064, and ARO Muri grant number W911NF-08-1-0238. The
preliminary results of this paper were presented in part at
the IEEE Information Theory and Applications Workshop,
San Diego, CA, Feb. 2014.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of con-
strained queueing systems and scheduling policies for maximum
throughput in multihop radio networks,” IEEE Trans. Automat.
Control, vol. 37, no. 12, pp. 1936–1948, Dec. 1992.

[2] L. Tassiulas and A. Ephremides, “Dynamic server allocation to
parallel queues with randomly varying connectivity,” IEEE Trans.
Inf. Theory, vol. 39, no. 2, pp. 466–478, Mar. 1993.

[3] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochas-
tic control for heterogeneous networks,” IEEE/ACM Trans. Netw.,
vol. 16, no. 2, pp. 396–409, Apr. 2008.

[4] K. Tan, J. Song, Q. Zhang, and M. Sridharan,“A compound TCP
approach for high-speed and long distance networks,” in Proc.
25th IEEE Int. Conf. Comput. Commun. INFOCOM, Barcelona,
Spain, Apr. 2006, pp. 1–12.

[5] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-
speed TCP variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5,
pp. 64–74, Jul. 2008.

[6] The Network Simulator - ns-2, Version 2.35 [Online]. Available:
www.isi.edu/nsnam/ns/, Nov. 2005.

[7] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems, San Rafael, CA, USA: Mor-
gan & Claypool, 2010.

[8] Y. Yi, A. Proutiere, and M. Chiang, “Complexity in wireless
scheduling: Impact and tradeoffs,” in Proc. 9th ACM Int. Symp.
Mobile Ad Hoc Netw. Comput., Hong Kong, China, May 2008,
pp. 33–42.

[9] M. Chiang, S. T. Low, A. R. Calderbank, and J. C. Doyle,
“Layering as optimization decomposition: A mathematical theory
of network architectures,” Proc. IEEE, vol. 95, no. 1, pp. 255–312,
Jan. 2007.

[10] X. Lin, N. B. Schroff, and R. Srikant, “A tutorial on cross-layer
optimization in wireless networks,” IEEE J. Sel. Areas Commun.,
vol. 24, no. 8, pp. 1452–1463, Aug. 2006.

[11] H. Seferoglu and E. Modiano, “Diff-Max: Separation of routing
and scheduling in backpressure-based wireless networks,” in
Proc. IEEE INFOFOCM, Turin, Italy, Apr. 2013, pp. 1555–1563.

[12] L. X. Bui, R. Srikant, and A. Stolyar, “A novel architecture for
reduction of delay and queueing structure complexity in the back-
pressure algorithm,” IEEE/ACM Trans. Netw., vol. 19, no. 6,
pp. 1597–1609, Dec. 2011.

[13] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and J.
Barros, “Network coding meets TCP,” in Proc. IEEE INFOCOM,
Rio de Janeiro, Brazil, Apr. 2009, pp. 280–288.

[14] S. Gheorghiu, A. L. Toledo, and P. Rodriguez, “Multi-path TCP
with network coding for wireless mesh networks,” in Proc. IEEE
Int. Conf. Commun., Cape Town, South Africa, May 2010, pp. 1–5.

[15] H. Seferoglu, A. Markopoulou, and K. K. Ramakrishnan, “I2NC:
Intra- and inter-session network coding for unicast flows in wire-
less networks,” in Proc. IEEE INFOCOM, Shanghai, China, Apr.
2011, pp. 1035–1043.

[16] P. A. Chou and Y. Wu, “Network coding for the internet and wire-
less networks,” IEEE Signal Proc. Mag., vol. 24, no. 5, pp. 75–85,
Sep. 2007.

[17] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in
Proc. ACM SIGCOMM, Vancouver, BC, Canada, Sep. 1998,
pp. 303–314.

[18] S. Low, “A duality model of TCP and queue management algo-
rithms,” IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 525–536, Aug.
2003.

[19] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand dis-
tance vector (AODV) routing,” RFC 3561, IETF, Jul. 2003.

[20] R. K. Jain, The Art of Computer Systems Performance Analysis: Techni-
ques for Experimental Design, Measurement, Simulation, and Model-
ing, Hoboken, NJ, USA: Wiley, Apr. 1991.

[21] A. L. Stolyar, “Greedy primal dual algorithm for dynamic
resource allocation in complex networks,” Queuing Syst., vol. 54,
no. 3, pp. 203–220, 2006.

[22] S. Moeller, A. Sridharan, B. Krishnamachari, and O. Gnawali,
“Routing without routes: The backpressure collection protocol,”
in Proc. 9th ACM/IEEE Int. Process. Sensor Netw., Stockholm, Swe-
den, Apr. 2010, pp. 279–290.

[23] R. Laufer, T. Salonidis, H. Lundgren, and P. L. Guyadec,
“XPRESS: A cross-layer backpressure architecture for wireless
multi-hop networks,” in Proc. 17th Annu. Int. Conf. Mobile Comput.
Netw., Las Vegas, NV, USA, Sep. 2011, pp. 49–60.

[24] A. A. Bhorkar, T. Javidi, and A. C. Snoereny, “Achieving conges-
tion diversity in wireless ad-hoc networks,” in Proc. IEEE INFO-
COM, Shanghai, China, Apr. 2011, pp. 521–525.

[25] K. Choumas, T. Korakis, I. Koutsopoulos, and L. Tassiulas,
“Implementation and end-to-end throughput evaluation of an
IEEE 802.11 compliant version of the enhanced-backpressure
algorithm,” in Proc. 8th Int. ICST Conf. Testbeds Res. Infrastructure.
Development of Networks and Communities, Thessaloniki, Greece,
Jun. 2012, pp. 64–80.

[26] J. Ryu, V. Bhargava, N. Paine, and S. Shakkottai, “Backpressure
routing and rate control for ICNs,” in Proc. ACM 16th Annu. Int.
Conf. Mobile Comput. Netw., Chicago, IL, Sep. 2010, pp. 365–376.

[27] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “DiffQ: Practical
differential backlog congestion control for wireless networks,” in
Proc. IEEE INFOCOM, Rio de Janerio, Brazil, Apr. 2009, pp. 262–
270.

[28] U. Akyol, M. Andrews, P. Gupta, J. Hobby, I. Saniee, and A. Sto-
lyar, “Joint scheduling and congestion control in mobile ad-hoc
networks,” presented at the IEEE 27th Conf. Comput. Commun.,
Phoenix, AZ, USA, Apr. 2008.

[29] B. Radunovic, C. Gkantsidis, D. Gunawardena, and P. Key,
“Horizon: Balancing TCP over multiple paths in wireless mesh
network,” in Proc. 14th ACM Int. Conf. Mobile Comput. Netw., San
Francisco, CA, Sep. 2008, pp. 247–258.

[30] J. Ghaderi, T. Ji, and R. Srikant,, “Connection-level scheduling
in wireless networks using only MAC-layer information,” in
Proc. IEEE INFOCOM, Orlando, FL, USA, Mar. 2012, pp. 2696–
2700.

[31] A. Shpiner and I. Keslassy, “Modeling the interactions of conges-
tion control and switch scheduling,” Comput. Netw., vol. 55, no. 6,
pp. 1–9, Apr. 2011.

[32] P. Giaccone, E. Leonardi, and F. Neri, “On the interaction between
TCP-like sources and throughput-efficient scheduling policies,”
J. Perform. Eval., vol. 70, no. 4, pp. 251–270, 2013.

[33] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-
based congestion control for unicast applications,” in Proc.
Conf. Applicat, Tech., Archit., Protocol Comput. Commun., Aug.
2000, pp. 43–56.

[34] R. Srikant and L. Ying, Communication Networks: An Optimization,
Control, and Stochastic Networks Perspective. Cambridge, U.K. Aca-
demic Press, Feb. 2014.

[35] B. Ji, C. Joo, and N. B. Shroff, “Delay-based back-pressure sched-
uling in multihop wireless networks,” IEEE/ACM Trans. Netw.,
vol. 21, no. 5, pp. 1539–1552, Oct. 2013.

SEFEROGLU AND MODIANO: TCP-AWARE BACKPRESSURE ROUTING AND SCHEDULING 1795

Hulya Seferoglu (S’04-M’11) received the BS
degree in electrical engineering from Istanbul
University, Turkey, in 2003, the MS degree in elec-
trical engineering and computer science from
Sabanci University, Turkey, in 2005, and the PhD
degree in electrical and computer engineering
from the University of California, Irvine, in 2010.
She is an assistant professor in the Electrical and
Computer Engineering Department, University of
Illinois at Chicago. She was a postdoctoral asso-
ciate in the Laboratory of Information and Deci-

sion Systems (LIDS), Massachusetts Institute of Technology during
2011-2013. She was a summer intern at AT&T Labs Research, Docomo
USA Labs, and Microsoft Research Cambridge in 2010, 2008, and
2007, respectively. Her research interests are in the area of networking:
design, analysis, and optimization of network protocols and algorithms.
She is particularly interested in network optimization, network coding,
and multimedia streaming. She is a member of the IEEE.

Eytan Modiano (F’12) received the BS degree in
electrical engineering and computer science from
the University of Connecticut at Storrs in 1986
and the MS and PhD degrees, both in electrical
engineering, from the University of Maryland, Col-
lege Park, MD, in 1989 and 1992, respectively. He
was a naval research laboratory fellow between
1987 and 1992, and a national research council
post doctoral fellow during 1992-1993. Between
1993 and 1999, he was with MIT Lincoln Labora-
tory, where he was a project leader for MIT Lin-

coln Laboratory’s Next Generation Internet (NGI) project. Since 1999,
he has been on the faculty at MIT, where he is a professor in the Depart-
ment of Aeronautics and Astronautics and the Laboratory for Information
and Decision Systems (LIDS). His research is on communication net-
works and protocols with emphasis on satellite, wireless, and optical net-
works. He is an editor-at-large for the IEEE/ACM Transactions on
Networking, and served as an associate editor for the IEEE Transac-
tions on Information Theory and IEEE/ACM Transactions on Network-
ing. He was the technical program co-chair for IEEE Wiopt 2006, IEEE
Infocom 2007, and ACM MobiHoc 2007. He is a fellow of the IEEE and
an associate fellow of the AIAA.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1796 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 15, NO. 7, JULY 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

