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Abstract—This paper presents a scheme in which a dedicated
backup network is designed to provide protection from random
link failures. Upon a link failure in the primary network, traffic is
rerouted through a preplanned path in the backup network. We
introduce a novel approach for dealing with random link failures,
in which probabilistic survivability guarantees are provided to
limit capacity overprovisioning. We show that the optimal backup
routing strategy in this respect depends on the reliability of the
primary network. Specifically, as primary links become less
likely to fail, the optimal backup networks employ more resource
sharing among backup paths. We apply results from the field of
robust optimization to formulate an ILP for the design and ca-
pacity provisioning of these backup networks. We then propose a
simulated annealing heuristic to solve this problem for large-scale
networks and present simulation results that verify our analysis
and approach.
Index Terms—Backup network design, random failures, robust

optimization.

I. INTRODUCTION

T ODAY'S backbone networks are designed to operate at
very high data rates, now exceeding 10 Gb/s [1]. Conse-

quently, any link failure can lead to catastrophic data loss. In
order to ensure fast recovery from failures, protection resources
must be allocated prior to any network failures. This paper deals
with providing protection in networks from multiple random
link failures.
A widely used approach for recovery from a link failure is

preplanned link restoration [2], where a backup path between
the end nodes of a link is chosen for every link during the
network configuration stage. In the event of a link failure,
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the disrupted traffic can be rerouted onto its backup path.
Preplanned methods of link restoration offer benefits over other
methods in terms of speed and simplicity of failure recovery,
as no additional dynamic routing is necessary at the time of a
failure [3]. In addition to designing a backup path for each link,
preplanned link restoration requires provisioning of sufficient
spare capacity along each backup path to carry the load of
failed links. Backup paths can share spare capacity and network
resources to reduce the total cost of protection.
Communication networks can suffer from multiple simul-

taneous failures, for example, if a second link fails before a
first failed link is repaired. Furthermore, natural disasters or
large-scale attacks can destroy several links in the vicinity of
such events. Preplanning backup paths for combinations of mul-
tiple failures can be complex and impractical and can lead to
significant capacity overprovisioning. Consequently, new ap-
proaches must be considered to offer protection against multiple
failures.
Spare capacity allocation for link-based protection has

been studied extensively in the context of single-link fail-
ures [1], [4]–[6]. The objective of these works is to allocate
sufficient protection resources to recover from any single-link
failure. Recently, the authors in [7] proposed the use of a
dedicated backup network to protect against a single failure
on the primary network. Upon such a failure, the load on the
failed link is routed on a predetermined path on the backup
network. The authors provide an integer linear program (ILP)
to design an optimal backup network with minimal cost. They
show that the cost of the optimal backup network is small
relative to that of a large primary network. Specifically, they
show that the ratio between the total backup capacity and the
total primary capacity tends to zero as the network size grows
large for certain classes of networks.
For many applications, it is insufficient to protect against only

single-link failure events. Several authors have extended the re-
sults of survivability for single-link failures to dual-link fail-
ures [2], [8], [9]. The work in [10] considers protecting against
up to three link failures. Most of these works require the pri-
mary network to havemultiple disjoint paths between node pairs
to survive multiple failures. This assumption is too restrictive
when considering a large number of failures. Additionally, [11]
provides a spare capacity allocation approach based on a spe-
cific set of failure events and restricted backup path lengths.
However, in all of these works, large amounts of spare capacity
are required if many links can fail simultaneously. The work in
[12] addresses this problem by providing incremental surviv-
ability improvements for a fixed amount of additional capacity
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and shows that a substantial degree of protection can be pro-
vided for limited excess capacity.
Survivability amid multiple failures has also been addressed

in the form of a shared risk link group (SRLG) [13]. An SRLG
is a set of links sharing a common network resource, such that
a failure of that resource could lead to a failure of all links in
the SRLG. Many authors have proposed routing strategies for
path-based protection against SRLG failures [14]–[17]. These
works assume that links in an SRLG all fail simultaneously and
deterministically. However, this line of work does not extend to
uncorrelated, nondeterministic failures.
In this paper, we introduce a new framework for providing

protection from multiple random link failures involving prob-
abilistic survivability guarantees. Since large-scale attacks and
natural disasters can result in multiple links failing randomly,
providing protection from any single failure is insufficient, and
networks designed for protection against single-link failures
often cannot protect against multiple failures. The straightfor-
ward approach of offering guaranteed protection against any
random failure scenario is to allocate capacity such that every
failure event is protected. However, this approach is impractical
as it requires enormous amounts of capacity to protect against
potentially unlikely events. To address this issue, we take an
alternative approach that provides a probabilistic protection
guarantee. This approach significantly reduces the cost of
protection by guaranteeing recovery from failures with high
probability.
Motivated by the results of [7] and the simplicity of their ap-

proach, we extend the use of a dedicated backup network to
deal with multiple random link failures. We show that a dedi-
cated backup network is a low-cost method of providing pro-
tection against random failures, relative to large primary net-
works. Specifically, we show a dedicated backup network can
often be constructed to provide protection with high probability
using roughly half of the capacity needed to provide full pro-
tection guarantees. Additionally, we show that the structure of
the minimum-cost backup network changes with the reliability
of the primary network. Specifically, optimal backup networks
for primary networks with a low link-failure probability em-
ploy a high level of link sharing among backup paths. On the
other hand, optimal backup networks for primary networks with
a high link-failure probability emphasize shorter backup paths
and less capacity sharing.
Throughout this paper, we assume that links on the primary

network fail with some probability, and links on the backup
network are free from failure. Often, the links making up the
backup network can be made robust via hardening or shielding,
thus making them more resistant to failure. This is particularly
relevant for failures due to physical link cuts. Yet, it is possible
to extend this work to the case of unreliable backup links, as
discussed in Section VI.
To design a backup network under random link failures,

we develop a robust optimization approach to backup ca-
pacity provisioning. Robust optimization finds a solution to
a problem that is robust to uncertainty in the optimization
parameters [18]–[20]. In [20], Bertsimas and Sim propose a
novel linear formulation with an adjustable level of robustness.
These techniques have previously been successfully applied to

Fig. 1. Example backup network shown as solid directed links over dotted bidi-
rectional primary network.

network flow problems [21]. We apply these results to design
backup networks that are robust to the uncertainty in link
failures. This leads to an ILP formulation for backup capacity
provisioning. We also present a simulated annealing approach
to solve the ILP for large-scale networks.
The remainder of this paper is organized as follows. In

Section II, we present the network model and formulate the
problem of backup network design. In Section III, we consider
protection for uniform-load primary networks to investigate
the impact of link failure probability on backup network design
and the cost of protection. Robust optimization is introduced in
Section IV to formulate an ILP for general primary link loads,
and a heuristic based on simulated annealing is presented to
solve it for large networks. We present simulation results in
Section V. In Section VI, we consider several extensions to
the survivability model, and we present concluding remarks in
Section VII.

II. NETWORK MODEL

Consider a primary network made up of a set of nodes and
a set of directed links connecting these nodes. We assume
throughout that the links are directed, as the undirected case is
a specific instance of the directed link case.
Each link has a given primary link capacity
, and a positive probability of failure , independent of

all other links. Let the random variables equal 1 if link
fails, and 0 otherwise. This probabilistic failure model

represents a snapshot of a network where links fail and are
repaired according to some Markovian process. Hence, rep-
resents the steady-state probability that a physical link is in a
failed state. This model has been adopted by several previous
works [6], [22]–[24]. A backup network is to be constructed
over the same set of nodes and a new set of links , by
routing a backup path for each primary link over the backup
network and allocating capacity to every backup link. We
assume that can consist only of links if there is a
primary link connecting nodes and . An example backup
network is shown in Fig. 1. Note that not all links in will
be used as backup links. Backup paths are routed over the
links in , and thus the resulting backup network topology
consists of the links in that are used by the backup routing

. Furthermore, the backup links
are designed such that failures can only occur in the primary
network. For each primary link , a path on the backup
network is chosen such that in the event that fails, the
traffic load on is rerouted over the backup path. Let

if link uses backup link in its
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TABLE I
LIST OF COMMONLY USED NOTATIONS

backup path. Hence, represents the
backup path for the primary link .
A capacity is allocated to each backup link

such that can support the increased load due to a random
failure scenario with probability , where is a design
parameter. Naturally, as becomes smaller, more capacity is re-
quired on the backup network. Throughout this work, we only
consider the case where since no backup capacity is re-
quired for . A summary of the notations throughput this
paper is provided in Table I.
Each primary link has exactly one path in the backup network

for protection, and the links in this path can be shared among
backup paths for multiple primary links. The goal is to construct
a minimal cost dedicated backup network. The problem can be
formulated as follows:

Minimize:

(1)

Subject To:

(2)

if
if
o.w.

(3)
(4)

The constraint in (3) is a standard flow conservation con-
straint for the routing of a single backup path for each primary
link. The probabilistic constraint (2) is the capacity constraint,
from which the backup capacities are computed. Backup link

must carry the load of each failed primary link that it pro-
tects. Constraint (2) restricts the probability that the load on

due to failures exceeds the backup capacity provisioned
on . This survivability metric, which considers the relia-
bility of each backup link independently, is referred to as the
backup-link survivability metric. There are a number of possible

survivability metrics that can be considered in this setting, the
choice of which will impact the network design. One can con-
sider survivability from a primary link perspective. In this case,
one constrains the joint probability that a primary link fails and
its backup path has insufficient capacity. Alternatively, one can
consider a survivability constraint on the entire backup network,
rather than on each backup link independently. The backup-net-
work constraint restricts the probability that any of the backup
links have insufficient capacity. It is straightforward to show
that the primary-link and backup-network constraints can be
written in the form of the backup-link constraint in (2) using a
union-bound argument. Therefore, we will use the backup-link
constraint of (2) throughout this paper.
We start by considering the backup network design problem

for networks with uniform primary link loads. In Section IV,
this is generalized to primary networks with arbitrary primary
link capacities.

III. UNIFORM-LOAD NETWORKS

Any primary network can be represented by a fully connected
graph, with for links that are not in the primary net-
work. However, in order to form an intuitive understanding of
the general problem, we first explore the backup-network design
problem for the special case where each primary link has unit
capacity, i.e., . The capacity required on
each backup link is dictated by the reliability constraint in (2).
Let be the number of primary links for which backup link

is part of the backup path. In other words

(5)

Let be a random variable representing the number of
failed primary links using as part of their backup paths,
i.e.,

(6)

Since each is an i.i.d. Bernoulli random variable with pa-
rameter , is a binomial random variable with parameters

and . Furthermore, as all the primary links have unit ca-
pacity, (2) can be rewritten as

(7)

(8)

Equation (8) uses the cumulative distribution function (CDF) of
the binomial distribution. For each link , let be
the minimum value of satisfying (8). Clearly, the capacity
required on a backup link increases with the number of primary
links it protects, and it decreases as the probability of failure de-
creases. Additionally, as decreases, more capacity is required
on each backup link.
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Fig. 2. Sample backup network link placement to protect a 6-node, fully con-
nected primary network. The dotted lines represent the primary network, and the
solid lines represent the backup links. (a) Cycle protection. (b) Two-hop protec-
tion. (c) One-hop protection.

A. Impact of Link Failure Probability

To gain intuition about the optimal backup network design,
we compare three backup routing schemes, shown in Fig. 2,
and show that backup network performance depends on the link
failure probability. In the cycle protection scheme of Fig. 2(a),
each primary link has a backup path lying in a single
Hamiltonian cycle through the network. This is the minimum-
cost backup network providing protection against a single-link
failure [7]. Each backup link in this cycle requires unit capacity
to protect against a single-link failure, resulting in a total cost
of for an -node network. Due to network symmetry, each
backup link protects half of the primary links. Therefore, in
order to use this scheme to provide protection from a random
number of failures with high probability, a total backup capacity
of is required, where
is the smallest value of satisfying (8).
For small values of , only a small number of links will

likely fail, and in this case, it is sufficient to provide protec-
tion against a small number of failures. Therefore, it is con-
ceivable that for sufficiently small , the optimal backup net-
work topology is the same as the optimal topology for protecting
against single-link failures [such as the one in Fig. 2(a)]. Specif-
ically, a backup topology protecting against single-link failures,
as designed in [7], is sufficient for our problem if the probability
of having more than one link failure is less than . The following
proposition characterizes the region over which it is sufficient
to provide protection against only a single failure.
Proposition 1: Let be the total number of primary links.

Then, protecting against single-link failures is sufficient if

(9)

Proof: Assume that a link is used as a backup by
primary links. Protecting against a single failure is sufficient if

(10)
(11)

The left-hand side of the above inequality can be upper-bounded
as follows:

(12)
(13)
(14)
(15)
(16)

where the inequality in (13) follows from Bernoulli's Inequality,
and the inequality in (16) follows since the number of primary
links protected by each backup link is necessarily smaller than
, the total number of primary links. Therefore, for values of

satisfying (9), protecting against single link failures is sufficient.

Note that in order to require protection to begin with, we must
have . Therefore, if , then a backup network
designed for single link failures is optimal for

(17)

Therefore, in the scenario of Fig. 2, the cycle protection
scheme yields the optimal backup network when

(18)

since the total number of primary links is . As dis-
cussed above, the total backup capacity of cycle protection is
given by , which equals when (18) is
satisfied.
For sufficiently large values of , the backup capacity re-

quired by this topology is since
for close to 1. This capacity can be reduced by considering the
scheme in Fig. 2(c), where the backup network is a mirror of the
primary network, and the backup path for is the one-hop
path from to . Since each backup link offers protection to a
single primary link, the total capacity required is

. For all values of , .
Thus, the mirror scheme requires a factor of less capacity
than the cycle scheme for primary networks with a high proba-
bility of link failure.
It is clear that for values of close to 1, each link requires

dedicated backup capacity to protect against its probable failure.
Consequently, a shortest-path backup routing scheme, as pro-
vided by the one-hop protection scheme, minimizes the total
backup capacity. For example, if the probability that every link
fails is greater than , then every primary link requires dedicated
backup capacity, and therefore the one-hop topology is optimal.
While the one-hop protection scheme is preferred in the high-
regime, other schemes are more capacity-efficient for smaller
values of . Consider the two-hop scheme in Fig. 2(b), where
node 1 serves as a relay node for every backup path. The pri-
mary links from node 2 to every other node share the backup
link (2, 1) and, similarly, the primary links from all nodes to
node 2 share the backup link (1, 2). Extending this to an -node
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Fig. 3. Comparison of three protection schemes for an fully connected
network with unit load and .

network, each backup link protects primaries, and there
are backup links. Thus,

.
The three aforementioned routing schemes are compared in

Fig. 3 for a fully connected network with 50 nodes and varying
probability of link failure. The cycle-protection scheme, which
is optimal in the single-failure scenario, is optimal for very small
values of ( ), but requires excessive capacity for
larger . For small values of beyond that region, the two-hop
routing strategy outperforms the other two strategies. Once ex-
ceeds roughly 0.25, there is no longer a benefit to sharing backup
resources, and the one-hop starts to outperform the two-hop
schemes. Hence, it is clear that the optimal backup network
topology depends on the reliability of the primary network. This
is further analyzed in Section IV where the problem is formu-
lated for general primary link capacities.

B. Scaling Properties of Backup Network Capacity

Consider the cost of the backup network with respect to that
of the primary network. Let be defined as

(19)

That is, is the ratio of the total capacity of the optimal backup
network to that of the primary network. In [7], the authors show
that this ratio tends to 0 asymptotically as the network size gets
very large for specific networks and single-failure protection.
For fully connected, uniform-load networks, the optimal backup
network under single-failure protection is shown in Fig. 2(a),
and for this topology

(20)

Conversely, for protection against random failures, the ratio
in (19) can be upper-bounded using the following proposition.
Proposition 2: Assuming a fully connected primary network

with unit-capacity on each link and probability of link failure ,

the ratio between the total capacity of the optimal backup net-
work and that of the primary network can be upper-bounded as
the primary network size grows large by the following:

(21)

Proof: The optimal total backup capacity is bounded by
that of the two-hop scheme considered in Fig. 2(b)

(22)

Consider the behavior of when is large. Recall that
is the required number of primary links out of that

need to be protected to ensure a probability of error of . Fix a
, and by the weak law of large numbers (WLLN)

(23)

(24)Therefore, as gets large, is sufficient
to meet the probability requirements (for any positive ). In the
limit of large , the inequality in (22) reduces to

(25)

Therefore, the size of the backup network is a small frac-
tion of the size of the primary network since is usually small.
Consequently, a backup network designed using the backup-link
survivability constraint is a low-cost method of providing pro-
tection against random failures in addition to single-link fail-
ures. This result is consistent with [7], in that as the primary
network size grows large, approaches zero under the single-
failure model. Additionally, there has been work in [12] inves-
tigating the relationship between capacity and expected traffic
loss.

IV. GENERAL-LOAD NETWORKS

Next, we develop a formulation for general primary link
loads. First, we apply the robust optimization results from [20]
to formulate a nonlinear program for backup capacity provi-
sioning and develop an equivalent integer linear formulation in
terms of new parameters . We show that the choice of these
parameters affects the amount of capacity provisioned, and
hence the probability of insufficient backup capacity. Then, we
add constraints to directly compute these parameters, yielding
a solution satisfying the probabilistic constraint in (2).

A. Robust Optimization Formulation
In the case of uniform link loads, capacity is allocated to the

backup network by computing for each link .
The backup capacity provisioned is the number of primary link
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failures protected against, as a function of , , and . How-
ever, this approach does not apply directly to nonuniform pri-
mary link loads, as different links will require different capaci-
ties to provide protection. In order to mathematically formulate
the problem for general link loads, we will use techniques from
the field of robust optimization.
Robust optimization finds a solution to a problem that best

fits all possible realizations of the data, when that data is sub-
ject to uncertainty. In [20], the authors propose a novel formula-
tion with an adjustable level of conservatism for such problems.
Their approach is to introduce an optimization parameter and
provide sufficient capacity to support all scenarios in which any
of the demands exceeds their mean. The solution is guaran-

teed to be robust for those scenarios and is shown to be robust
for all other scenarios with high probability, determined by .
Robust optimization techniques have been successfully

applied to different network design problems previously
[25]–[28]. The work in [27] applies the robust optimization
results of [20] to solve the problem of allocating capacity to
support traffic uncertainty. Given an average traffic demand and
a peak power demand, the authors formulate the robust network
design problem to support some of the demands reaching their
peak intensity, using the fact that not all demands will reach
their peak simultaneously. In [27], the demand uncertainty
arises due to traffic intensity variation, whereas in our paper,
the demand uncertainty on the backup network arises due to
the uncertainty in which links will fail. The work in [26] uses
this approach to compute the realized robustness of networks
designed with a certain degree of robustness, exploring the
sensitivity the traffic parameters. The work in [25] elaborates
on this problem, determining the correct amount on peak traffic
intensities to support to provide robustness guarantees.
A similar approach can be applied to the problem of backup

network design for general link loads, where the uncertainty is
in the number of primary links that fail. Consider allocating ca-
pacity on link to protect against any scenario where up to

of the primary links utilizing for protection
fail. Clearly, for the specific case of uniform loads, the required
backup capacity is just , and as shown in Section III,

is given by under the constraint in (2). For gen-
eral loads, is not the bandwidth that needs to be
allocated, as in Section III, but rather the number of primary
links for which to provide protection. To extend this idea, let
be the set of primary links protected by backup link , i.e.,

. Let be a set of primary links in
with the largest capacities. Thus, for any , we

have

(26)

The backup capacity required to protect against any pri-
mary link failures is given by

(27)

In a complete form, this constraint can be expressed as

(28)

The value of determines the probability of protection.
While should be chosen such that (2) is satisfied, for now
we fix the value of for each link. The capacity constraint in
(28) replaces the probabilistic constraint in (2), leading to the
following nonlinear optimization problem.

Minimize:

Subject To:

if
if
o.w.

(29)

The above is nonlinear due to the backup capacity constraint
in (28), but it can be reformulated as an ILP using duality tech-
niques similar to [20], detailed in the Appendix. The following
is an equivalent formulation to (29):

Minimize:

Subject To:

if
if
o.w.

(30)

Clearly, if fewer than links in fail, the capacity al-
located in (28) will be sufficient. Therefore, the probability of
insufficient backup capacity can be upper-bounded using the tail
probability of a binomial random variable

(31)

The capacity allocated in (27) is sufficient to meet the relia-
bility constraint in (31) with probability if .
However, is an optimization variable, on which depends.
Thus, the remaining task is to modify (30) to directly compute
the value of for each link using an ILP formulation.

B. Complete Formulation

Since cannot be computed analytically, we create a
table a priori in which the th entry equals ,
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computed numerically. We develop an ILP that leads to the
direct computation of in order to index the table.
To compute , let if , and 0 otherwise.

The following constraints are introduced:

(32)

Constraint (32) enforces to be equal to 1 for only one value
of for each backup link

(33)

Constraint (33) ensures that the number of primary links uti-
lizing a backup link is equal to the value of for which

. Consequently, can be represented by the following:

(34)

The capacity constraint of (30) is rewritten as

(35)

Since the product is nonlinear, another set of opti-
mization variables is added to represent this product in linear
form. Let be a nonnegative variable satisfying the following
constraints:

(36)
(37)
(38)

In the above equations, is a large number such that
. When , then , and constraints

(37) and (38) force to 0. On the other hand, if , con-
straint (36) will force , which at the optimal solution
will be satisfied with equality. These constraints lead to an ILP
formulation for backup network design, given in (39).
The following is an ILP formulation for the design of a ded-

icated backup network to protect against random failures:

Minimize:

Subject To:

if
if
o.w.

(39)

This formulation calculates the backup paths and capacity al-
location for a dedicated backup network satisfying the surviv-
ability constraint in (2).

C. Simulated Annealing

The ILP in (39) can be directly solved for small instances,
but becomes intractable for large networks. There are a number
of heuristic approaches to solving ILPs, such as randomized
rounding, tabu search, and simulated annealing. Here, we em-
ploy a simulated annealing approach to estimate the backup path
routing in (39).
Simulated annealing (SA) is a random search heuristic that

can be used to find near-optimal solutions to optimization prob-
lems [29]. The algorithm begins with an arbitrary feasible solu-
tion, with a cost computed with respect to an objective func-
tion. Then, a random perturbation is applied to the solution,
and the cost is reevaluated. The new solution is probabilisti-
cally accepted based on the relationship between the two costs.
A positive probability of moving to a worse solution avoids the
problem of being trapped in a local minima. SA has been used
previously on network survivability problems [30].
For a fixed backup path routing, the computation of the op-

timal backup capacity is straightforward. Therefore, we use
simulated annealing to estimate the backup path routing. For the
problem in (39), the solution at each SA iteration is the backup
path for each primary link, and the cost is the total backup ca-
pacity, computed using (28). Perturbations are applied to this so-
lution by randomly recomputing the backup path for a randomly
chosen primary link. This recomputation is done by choosing
random links starting from the source node and ending at the
destination node. The current network with cost is mod-
ified by changing a single backup path, and the network cost

is recomputed. The new backup network is accepted with
probability , where

(40)

Hence, better solutions are unconditionally accepted, and
worse solutions are accepted with probability . The parameter
in (40) represents the ”temperature” of the system. At high

temperatures, there is a high probability of accepting a solution
with a larger cost than the current solution. This prevents the
algorithm from getting trapped in a local minima. The temper-
ature decreases after a number of iterations depending on the
network size by , for . SA cannot escape
local minima if is too small, but high values of result in
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Fig. 4. Optimal backup networks shown as solid links over dotted primary net-
works for different probabilities of link failure. Designed using . (a)

. (b) . (c) .

TABLE II
BACKUP NETWORK CAPACITY REQUIRED FOR TOPOLOGIES DESIGNED USING

DIFFERENT STRATEGIES. IN EACH DESIGN

long computation times. Eventually, becomes small enough
that the probability of accepting a worse solution approaches
zero. At this point, the algorithm terminates and returns the
resulting backup network.
There are only limited theoretical results on the convergence

time of SA, which is known to be highly problem-dependent.
Regardless, SA approaches are widely used in practice [29]. The
choice of parameters leads to an inherent tradeoff between the
accuracy of SA and its convergence time. As the number of it-
erations before a temperature reduction increases, the accuracy
of the SA approach improves at the expense of increased con-
vergence time.

V. NUMERICAL RESULTS

To begin with, consider a 5-node, fully connected topology
where each primary link has unit-capacity. Due to the small size
of this network, the ILP in (39) can be solved to compute the op-
timal backup topologies for different values of . These backup
networks are shown in Fig. 4. For small values of , the backup
topology consists of few links, whereas for large values of , the
backup network resembles the primary network. Table II sum-
marizes the results of the backup networks for different values of
, using all of the design heuristics discussed. Cycle protection,
two-hop protection, and one-hop protection refer to the strate-
gies analyzed in Section III. The optimal column refers to the
solution returned by solving the ILP in (39) using CPLEX, and
the SA column refers to an approach where simulated annealing
is used to solve the ILP.

Fig. 5. 14-node NSFNET backbone network (1991).

Fig. 6. Backup network (solid) shown for the NSFNET (dotted) with the re-
striction that the backup network must be a subgraph of the primary network.
The primary network here assumes a probability of link failure of 0.075, and
the backup network is designed for .

Fig. 7. Backup network (solid) shown for the NSFNET (dotted) with the re-
striction that the backup network must be a subgraph of the primary network.
The primary network here assumes a probability of link failure of 0.1, and the
backup network is designed for .

The table shows that for , the two-hop protection
scheme is optimal, and for , the one-hop protection
scheme is optimal. Furthermore, the simulated annealing
heuristic performs very close to optimal for different values
of . Clearly, the optimal topology depends on the probability
of link failure, and it is therefore necessary to use a different
backup routing scheme depending on the link failure probabil-
ities.

A. Simulated Annealing on Unit-Load Networks

The heuristics can be extended to larger networks, but the ILP
in (39) cannot be solved directly for large networks. Thus, we
use the SA approach to solve the ILP for backup network design
for large primary networks.
Consider the NSFNET primary network shown in Fig. 5.

Each link is bidirectional, with unit capacity in each direction.
Our goal is to construct a backup network consisting of links

, where and are connected by a link in the
NSFNET. The survivability constraint in (2) must be satisfied
with probability . The SA algorithm, shown to be near-
optimal for smaller networks, is used to compute the backup net-
work for this larger example. The resulting backup networks for
probability of link failure and are shown in
Figs. 6 and 7, respectively.
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TABLE III
COMPARISON OF BACKUP NETWORKS FOR NSFNET WITH DIFFERENT

PROBABILITIES OF PRIMARY LINK FAILURE. NETWORKS WERE DESIGNED
USING . AVERAGE REFERS TO THE AVERAGE NUMBER OF

PRIMARY LINKS BEING PROTECTED BY A BACKUP LINK

TABLE IV
COMPARISON OF BACKUP NETWORKS FOR NSFNET WITH DIFFERENT

PROBABILITIES OF PRIMARY LINK FAILURE. NETWORKS WERE DESIGNED
USING . AVERAGE REFERS TO THE AVERAGE NUMBER

OF PRIMARY LINKS BEING PROTECTED BY A BACKUP LINK

TABLE V
COMPARISON OF BACKUP NETWORKS FOR NSFNET WITH DIFFERENT
ROBUSTNESS CONSTRAINTS. NETWORKS WERE DESIGNED ASSUMING

PROBABILITY OF LINK FAILURE . AVERAGE REFERS TO THE
AVERAGE NUMBER OF PRIMARY LINKS BEING PROTECTED BY A BACKUP LINK

In the backup network of Fig. 6, a total capacity of 24 is re-
quired. Most backup links protect up to five primary links. In the
case of Fig. 7, where the probability of link failure is higher, a
total capacity of 28 is needed. The backup links in this example
protect an average of three primary links. If the probability of
link failure increases to , the resulting backup topology
is a mirror of the primary topology, requiring a capacity of 42.
As increases, the number of backup links needed rises, and
similarly the number of primary links being protected by each
backup link falls, until the network follows the one-hop pro-
tection scheme. These results are summarized in Table III. In
this table, we also see that by providing probabilistic protec-
tion, we only need to allocate roughly half the capacity needed
for 100% protection. In Table IV, we show numerical results
for smaller values of and , modeling scenarios where fail-
ures are less common. Additionally, in Table V, we show the
effect of varying the probabilistic constraint on the resulting
backup network. As grows, the constraint becomes more le-
nient, and more failures can be tolerated. Thus, we would expect
less backup capacity to be required, as confirmed by the results
in Table V.

Fig. 8. 36-node Sprint backbone network.

Fig. 9. Backup network (solid) shown for the Sprint backbone network (dotted)
with the restriction that the backup network must be a subgraph of the primary
network. The primary network assumes a probability of link failure of

and is designed for a survivability constraint of .

Fig. 10. Backup network (solid) shown for the Sprint backbone network
(dotted) with the restriction that the backup network must be a subgraph of the
primary network. The primary network assumes a probability of link failure of

and is designed for a survivability constraint of .

The simulated annealing approach can be used to solve large-
scale networks as well, such as the 36-node Sprint backbone
network, shown in Fig. 8. Due to the large size of the network,
the simulated annealing algorithm requires a prohibitively large
number of iterations to find an optimal solution. However, the
numberof iterations canbe reduced inexchange for a lessoptimal
solution. Assume the bidirectional links in Fig. 8 represent a unit
of primary capacity in each direction. Again, the goal is to con-
struct a backup network consisting of links , where
and are connectedbya link in theprimarynetwork, to satisfy the
survivabilityconstraint in (2)withprobability .
The backup networks returned by the simulated annealing al-

gorithm for a probability of primary link failure of
and are shown in Figs. 9 and 10, respectively. For a
small probability of primary link failure (Fig. 9), the optimal
backup network is made up of many cycles, where backup paths
are potentially many hops. However, as the probability of link
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Fig. 11. 14-node NSFNET backbone network with nonuniform link loads.
Bold links represent demands of 10, and dashed links represent demands of 1.

TABLE VI
COMPARISON OF BACKUP NETWORKS FOR THE SPRINT BACKBONE WITH
DIFFERENT PROBABILITIES OF PRIMARY LINK FAILURE. NETWORKS WERE
DESIGNED USING . AVERAGE REFERS TO THE AVERAGE
NUMBER OF PRIMARY LINKS BEING PROTECTED BY A BACKUP LINK

failure increases, long backup paths become more inefficient,
and the optimal backup topology consists of more links and
more direct paths. To see this clearly, Table VI summarizes the
resulting backup topologies for varying probabilities of primary
link failure. Similar to the results for the NSFNET, as the prob-
ability of link failure increases, the backup links protect fewer
primary links, and the optimal topology resembles a mirror of
the primary network. However, for small probabilities of link
failure, it is more efficient for primary links to share backup re-
sources, hence the higher average number of primary links pro-
tected by each backup link.
B. Simulated Annealing on General-Load Networks
The previous simulation results were for primary networks

where each link had a unit capacity. Our simulated annealing
approach can also be applied to networks with nonuniform pri-
mary capacities. The presence of these nonuniformities greatly
affects the backup topology necessary to sufficiently protect the
primary network. To illustrate, we consider two distributions
of primary link capacities on the NSFNET in Fig. 5. The first,
shown in Fig. 11, assumes 10 directional (five bidirectional)
links on the east side of the network have a high primary ca-
pacity of 10, while the rest of the links have a low primary ca-
pacity of 1. As an alternative, we consider 10 directional links
mixed throughout the network to have a high capacity, while the
remainder of the network has a low primary capacity, as shown
in Fig. 12.
The simulated annealing algorithm is applied to each of

these primary link capacity distributions in order to find a
(near-)optimal backup topology. For the primary capacities in

Fig. 12. 14-node NSFNET backbone network with nonuniform link loads. Di-
rected bold links represent a primary capacity of 10 in one direction, and of 1 in
the other direction, while dashed links represent primary capacity of 1 in both
directions.

Fig. 13. Backup network (solid) shown for the NSFNET (dotted). The backup
network must be a subgraph of the primary network. The primary network here
assumes a probability of link failure of 0.075, and the backup network is de-
signed for . Primary link capacities are distributed according to Fig. 11.

Fig. 14. Backup network (solid) shown for the NSFNET (dotted). The backup
network must be a subgraph of the primary network. The primary network here
assumes a probability of link failure of 0.1, and the backup network is designed
for . Primary link capacities are distributed according to Fig. 11.

Fig. 11, Figs. 13 and 14 show the backup topologies when the
probability of primary link failure is and ,
respectively. For the lower probability of link failure, a total
backup capacity of 98 is required, while the less reliable net-
work requires a backup capacity of 119. On the other hand,
Figs. 15 and 16 show the backup topologies when the proba-
bility of primary link failure is and for the
demand structure in Fig. 12. In this case, the backup topologies
require a total capacity of 141 and 148, respectively. Despite
the fact that the total primary capacity is the same in both
scenarios, the backup capacity is much higher in the case where
the high-capacity primary links are distributed throughout the
network. This is due to the fact that at low probabilities of
link failure, a few high-capacity backup links are sufficient
to protect many local high-capacity primary links. However,
when the high-capacity primary links are spread throughout
the network, they cannot share these high-capacity backup
resources, and consequently more high-capacity backup links
are required.

VI. MODEL EXTENSIONS
The framework developed in this paper can be extended to

include variations to the model. In this section, we highlight
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Fig. 15. Backup network (solid) shown for the NSFNET (dotted) with the re-
striction that the backup network must be a subgraph of the primary network.
The primary network here assumes a probability of link failure of 0.075, and
the backup network is designed for . Primary link capacities are dis-
tributed according to Fig. 12.

Fig. 16. Backup network (solid) shown for the NSFNET (dotted). The primary
network here assumes a probability of link failure of 0.1, and the backup network
is designed for . Primary link capacities are distributed according to
Fig. 12.

several extensions to our problem to more appropriately model
certain real-world scenarios.

A. Nonuniform Link Failures

To begin, we can assume that link in the primary
network has a link failure probability , allowing for primary
links to fail with different probabilities. To adapt our framework
to this new model, we can consider a link with probability of
failure as links in series with the same probability of
link failure , where is calculated as

(41)

The number of links is calculated such that the probability that
at least one of the links fails (and the total demand over all the
links needs to be rerouted over the backup network) is equal to
the probability of link failure . Applying our formulation to
the modified network results in an upper bound on the required
capacity since our formulation allocates capacity to account for
multiple links in series failing. However, this bound becomes
tight for small , where it is unlikely that multiples of those links
to fail.
The difference between the original link failure probability
and the failure probability of the new links in series can be

written as

(42)

(43)

(44)

Therefore, by choosing a small value of , one can construct a
network with uniform link failure probability that approximates
the original network with nonuniform link failure probabilities,
at the expense of additional links.

B. Unreliable Backup Links
In practical networks, backup links may also experience some

probability of failure. Throughout this work, we have assumed
that this probability is negligible compared to that of a primary
link failure. However, when this assumption is relaxed, a backup
link “overflow” can also occur when the backup link fails and
any primary link needs to use the failed backup link. Clearly,
our formulation provides an upper bound on reliability (a lower
bound on the required backup capacity) on the case with unreli-
able backup links. Additionally, our approach can be applied to
this case, given a probability of backup-link failure . Let be
a random variable equal to 1 if backup link fails, and 0 oth-
erwise. Assume that every primary link has nonzero traffic, i.e.,

. Let be the number of primary links
whose backup paths use backup link . Then, new backup
link overflow constraint is

(45)

(46)

Designing to satisfy (46) is equivalent to satisfying

(47)
Therefore, incorporating backup-link failures into the formula-
tion is equivalent to solving the formulation with a modified
probability constraint ( ), as long as .
As an illustration, for the backup network design problem for
the NSFNET in Table III, if , then for backup link
failure probability , , and for backup failure
probability , which is the same order as the primary link
failure probability , . Thus, for a reliability require-
ment , one can solve our formulation with a slightly smaller
value of .

C. Correlated Link Failures
As a final extension, we consider augmenting our framework

to account for correlated failures. For example, consider the
Probabilistic Shared Risk Link Group (PSRLG) model in [31],
where once an SRLG failure event occurs, the links contained in
the SRLG fail independently with probability . For simplicity
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of exposition, assume mutually exclusive SRLGs such that each
SRLG fails with probability and . Then,
the overflow probability at backup link can be written as

(48)

(49)
where is the number of primary links that belong to
SRLG and use as backup links. We assume an empty
summation to be zero. Similar to the argument in Section IV-B,
we can create a priori a table containing the values of and
use it in the MILP formulation. Note that in this case, a much
larger table is needed since the value of is determined by
the number of links in each SRLG that use link as backup.

VII. CONCLUSION
Dedicated backup networks are a low-cost and efficient

method for providing protection against multiple (random)
failures. In the event of a failure, the load on the failed link
can be automatically rerouted over a predetermined path in
the backup network, providing fast recovery from network
failures. We formulated the backup network design problem as
an ILP for primary networks with general link capacities and
independent, identically distributed probabilities of link failure.
For primary networks with rare failures, backup networks are
shown to use fewer links, with more resource sharing among
backup paths. Conversely, when the primary network has a
high probability of link failure, the backup network consists
of shorter backup paths. For larger primary networks, a sim-
ulated annealing approach was presented to solve the backup
network design ILP. This approach has been shown to perform
near-optimally in designing dedicated backup networks. The
SA algorithm can be adjusted to trade off between computation
time and accuracy. Additionally, we demonstrated our capacity
allocation approach on real-world networks and have shown
that, practically, protecting against failures with high proba-
bility can lead to a capacity savings of up to 50% compared to
approaches providing 100% protection guarantees.

APPENDIX

The following steps are used to convert formulation (29) to
formulation (30) using a duality approach. For a fixed and

, the backup capacity of link

(50)

can be written as the solution to the following LP:

(51)

Assuming the number of primary links satisfying
is larger than or equal to , the LPwill choose the of them

with the largest capacities by setting for those links
. This corresponds to choosing the set in (27). If there

are fewer than primary links satisfying , then
for each of these links, , and the other satisfying

are chosen arbitrarily. Note, however, that this does not
affect the correctness of (51).
Let be the dual variable for the first constraint in (51), and

let be the dual variables for the second set of constraints.
The dual problem of (51) is formulated as follows:

minimize

subject to

(52)

Since there is zero duality gap between problem (51) and its
dual (52), the optimal value of the objective function in (52) is
equal to . Additionally, since problem (29) mini-
mizes for each , problem (52) can be substi-
tuted into (29) to arrive at the formulation in (30).
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