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Abstract—This paper addresses the problem of logical topology
design for optical backbone networks subject to stochastic traffic
demands. The network design problem is broken into three tasks:
traffic routing, capacity allocation, and link placement. While the
routing and capacity allocation subproblem can be formulated us-
ing convex optimization, it is prohibitive to add the link placement
component to the nonlinear formulation since the link placement
problem involves integer variables. To address this issue, we de-
velop a linear formulation for the routing and capacity allocation
subproblem by applying tools from robust optimization. We show
that this linear formulation performs comparably to the optimal
nonlinear formulation. Our formulation can then be used to solve
the link-placement subproblem for stochastic traffic. We show that
optimal logical topologies for deterministic traffic demands are
not necessarily optimal for stochastic traffic demands. We develop
algorithms for finding logical topologies optimized for stochastic
traffic.

Index Terms—Demand uncertainty, network design, robust op-
timization, routing and capacity assignment.

I. INTRODUCTION

INTERNET service Pproviders (ISPs) have made optical
wavelength division multiplexing (WDM) technology in-

creasingly available to the network edge in order to meet the
growing demand for high data rates. For instance, in fiber-to-
the-home (FTTH), fiber connection from an ISP’s central office
reaches a home network, offering a very high data rate for the
end users. However, the policy of merely boosting network ca-
pacity leads to a huge rise in operating and capital cost due
to the inefficiencies of the current network architecture, where
the Internet protocol (IP) traffic is transported through multiple
layers of network elements.

Manuscript received March 6, 2013; revised August 5, 2013; accepted
August 6, 2013. Date of publication August 7, 2013; date of current ver-
sion September 10, 2013. This work was supported by NSF grants CNS-
0626781, CNS-0830961, and CNS-1017800 and by DTRA grants HDTRA1-
07-1-0004 and HDTRA-09-1-0050. The work of H.-W. Lee was supported
by Basic Science Research Program through the National Research Founda-
tion of Korea (NRF) funded by the Ministry of Science, ICT & Future Plan-
ning (2012R1A1A1012610). This work was presented in part at the IEEE
GLOBECOM Conference, December 2011 [1]. (Corresponding author:
H.-W. Lee.)

M. Johnston is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: mrj@mit.edu).

H.-W. Lee is with the Department of Internet and Multimedia Engineering,
Konkuk University, Seoul 143–701, Korea (e-mail: leehw@konkuk.ac.kr).

E. Modiano is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
modiano@mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JLT.2013.2277863

IP-over-WDM is considered one of the most promising ar-
chitectures for next-generation networks that can address the
aforementioned issues. In contrast to the conventional multi-
layer architecture, in IP-over-WDM, the IP layer is built di-
rectly on top of the WDM layer. This simple architecture offers
greater flexibility, scalability, power efficiency as well as signif-
icant operating and capital cost savings [2]. An IP-over-WDM
network consists of a logical (IP-layer) topology built on top
of a physical (WDM-layer) topology. The physical topology is
made up of a set of optical cross-connects (OXCs) and a set
of fibers connecting the OXCs. The logical topology is made
up of the interconnection of IP routers using optical lightpaths.
Each logical link connecting a pair of IP routers corresponds to
a lightpath possibly spanning multiple physical fibers. In this
paper, we focus on the problem of designing a robust logical
topology for IP-over-WDM networks under stochastic traffic
demands.

The objective of logical topology design over an existing
physical topology is to place logical links on the physical topol-
ogy, assign capacity to these links, and route the IP traffic over
the logical topology. The physical topology is known a priori,
as is a matrix describing the long-term average traffic flow be-
tween any node-pair in the logical network. Capacity is as-
signed to the logical links such that the traffic routed on each
link will not exceed its capacity. This problem has been studied
extensively in the literature, with various design criteria such
as minimizing the maximum congestion, total capacity, or the
number of hops to route the demands [3]–[7]. All these works
assume that the traffic demand between every node pair is known
a priori.

However, the design problem is typically solved during the
network configuration stage, where the exact traffic information
is unavailable. For this reason, traffic demands must be modeled
as random quantities. Unlike the deterministic case, network
links must be provisioned with sufficient capacity to withstand
possible demand fluctuations. For models with bounded traffic
variability, the most common approach is to allocate sufficient
link capacity to support the worst-case set of demands so that
any demand fluctuations can be handled by the network [8], [9].

On the other hand, a demand is typically an aggregation of
many independent traffic sources, and by the central limit theo-
rem, it can be approximated using a Gaussian random variable.
In this case, allocating capacity to support the worst case set of
demands yields an unacceptable overprovisioning of capacity,
since Gaussian demands have unbounded support. Therefore,
a different capacity provisioning approach is required for un-
bounded demands. The work of Mitra and Wang [10] addresses
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this issue by formulating an optimization problem that incorpo-
rates capacity underutilization into the objective as a penalty, to
detract from overprovisioning.

In this paper, we take a different approach by explicitly tak-
ing into account the probability of traffic exceeding the provi-
sioned capacity on each logical link. A similar approach was
also considered in [11], where the overflow probability is ex-
plicitly derived for Gaussian distributed traffic and used in the
optimization problem for routing and capacity allocation. While
this formulation leads to a convex optimization problem that is
efficiently solvable, its nonlinearity prevents extensions to dis-
crete optimization problems such as logical link placement. For
this reason, Meesublak [12] formulates a linear program (LP) by
changing probabilistic constraints to linear deterministic ones.
This approach suffers from an overprovisioning of capacity,
since it inherently ignores the effect of statistical multiplexing
of many demands. There are other approaches dealing with traf-
fic variability [13], [14]; however, they ignore the distribution
of the random demands, which also results in over-provisioning
of capacity.

In this paper, we formulate and analyze the problem of log-
ical topology design under Gaussian-distributed demands. We
develop a linear formulation for routing traffic and allocating
capacity to support random demands by extending the robust
optimization techniques of [15] to Gaussian random variables.
Our formulation exploits the effect of traffic aggregation to re-
duce the amount of allocated link capacity required, while at
the same time yielding the computational advantages of a linear
approach. This study is an extension of our previous work [1],
in which we first introduce robust optimization for solving the
routing and capacity allocation problems. In this study, we in-
clude a new empirical study to highlight the importance of our
robust optimization approach, and extend the formulation to
consider the complete network design problem, by studying the
logical link placement subproblem. Our contributions can be
summarized as follows:

1) We extend the robust optimization techniques of [15] to
the case of (unbounded) Gaussian random variables.

2) We develop a mixed integer linear program (MILP) for-
mulation for robust routing and capacity allocation under
Gaussian traffic demands, based on the extended robust
optimization framework.

3) We develop a scalable algorithm that finds approximate
solutions to the MILP.

4) We show that logical topologies optimized for determin-
istic traffic may not be optimal for stochastic traffic.

5) We formulate the joint routing, capacity allocation, and
logical topology design problem as an MILP.

6) We develop algorithms for finding optimal logical topolo-
gies for stochastic traffic.

The rest of the paper is organized as follows. In Section II,
we introduce the network model and motivate the development
of a new approach to solving the routing and capacity allocation
problems. In Section III, we introduce robust optimization as a
technique to develop a new formulation for the network design
problem. In Section IV, we discuss how our formulation can be
used to solve the logical link placement subproblem in parallel to

the capacity allocation and routing problems, and we conclude
in Section V.

II. NETWORK MODEL AND MOTIVATION

Let D be a set of demands over the network, where for
(s, d) ∈ D, λsd is the traffic demand from node s to node d.
Each demand λsd represents a long-term average traffic flow
between two nodes. Average traffic demands between node-
pairs are often described using a Gaussian distribution [16];
therefore, we assume that all traffic demands are independent,
and each λsd follows a Gaussian distribution with mean μsd and
variance σ2

sd .
For now, assume that the network is described by a graph

G = (V,E) where V is the set of logical nodes and E is the set
of logical links connecting the logical nodes. In our formulation,
we allow a traffic demand to be split among various paths in the
network G. Let 0 ≤ asd

ij ≤ 1 represent the fraction of the traffic
flow from s to d traversing logical link (i, j) ∈ E. Let Cij

represent the capacity allocated to link1 (i, j). In this paper, we
study the problem of finding a routing (determined by {asd

ij })
and capacity allocation (determined by {Cij}) that can support
the demands inD while minimizing the maximum link capacity.
The chosen objective function has the effect of splitting the
traffic over multiple paths, and thus, balancing the load over the
network.

Note that the routing and capacity allocation problem can be
extended to include the link placement subproblem, by optimiz-
ing over the set E. Let bij be a binary variable which takes on
the value 1 if and only if a directed link is placed from node i
to node j. While this extension captures the complete network
design problem, we will initially focus on the routing and ca-
pacity allocation problems. The network design problem will
be added in Section IV. For now, we assume the design variable
b = [bij ,∀i, j ∈ V ] is fixed and thus the network is described by
a graph G = (V,E) with a set of edges E = {(i, j)|bij = 1}.
Define the overflow probability of link (i, j) to be the prob-
ability that the traffic on link (i, j) exceeds its capacity, i.e.,
Pr[

∑
(s,d) asd

ij λsd > Cij ]. The routing and capacity allocation
problem can be formulated as follows:

min
C,a≥0

max
(i,j )∈E

Cij

subject to: Pr

[
∑

sd

asd
ij λsd > Cij

]

≤ ε, ∀(i, j) ∈ E

FC(s, d, asd), ∀(s, d) ∈ D (1)

The objective is to minimize the maximum link capacity. This
objective results in minimizing the congestion in the network,
or balancing the traffic load through the network. We note that
the objective function can be linearized by replacing it with a
new variable Cmax and introducing new constraints Cmax ≥
Cij ∀(i, j), but for brevity, we will use the nonlinear form
throughout the paper. The function FC(s, d, asd) represents

1In the following, link refers to logical link unless otherwise specified.
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a flow conservation constraint from s to d given as

∑

j :(i,j )∈E

asd
ij −

∑

j :(j,i)∈E

asd
ji =

⎧
⎪⎨

⎪⎩

1, if s = i

−1, if d = i ∀i ∈ V.

0, o.w.
(2)

This constraint describes the routing of each demand.
The constraint in (1) requires sufficient capacity to be al-

located to ensure the overflow probability at each link is no
greater than a design parameter ε > 0. Since the sum of Gaus-
sian random variables is also Gaussian, the left hand side of this
constraint can be rewritten as

P
( ∑

sd

asd
ij λsd > Cij

)

= P

(∑
sd asd

ij λsd −
∑

sd asd
ij μsd

√∑
sd(a

sd
ij σsd)2

>
Cij −

∑
sd asd

ij μsd
√∑

sd(a
sd
ij σsd)2

)

= 1 − Φ

(
Cij −

∑
sd asd

ij μsd
√∑

sd(a
sd
ij σsd)2

)

.

Consequently, the routing and capacity allocation problem can
be reformulated as

min
C,a≥0

max
(i,j )∈E

Cij

s.t.: Cij ≥
∑

sd

asd
ij μsd + Φ−1(1 − ε)

√∑

sd

(asd
ij σsd)2

FC(s, d, asd), ∀(s, d) ∈ D, (3)

where Φ(·) is the CDF of standard normal random variable.
While this optimization problem is solvable, the nonlinearity of
(3) prevents the addition of integer constraints, as required by the
network design problem, since the resulting formulation will be
a nonlinear integer program and effective solution methodolo-
gies are yet unknown for general, nonlinear, integer programs.
Additionally, solving this convex optimization problem may be
impractical for large networks.

To alleviate this problem, one can use the fact that the right
hand side of the constraint in (3) is upper-bounded by

∑

sd

asd
ij μsd + Φ−1(1 − ε)

√
√
√
√

( ∑

sd

asd
ij σsd

)2

.

In particular, consider the following linear constraint:

Cij ≥
∑

sd

asd
ij (μsd + Φ−1(1 − ε)σsd). (4)

This constraint, which allocates dedicated capacity for each
flow sufficient to satisfy (1) without statistical multiplexing
gains, is wasteful in terms of the maximum capacity on any
link in the network. To understand the difference between con-
straints (3) and (4), we study the following example. Consider
the network shown in Fig. 1. Traffic demands exist from s1 to
d1 and from s2 to d2 , and are independently and identically

Fig. 1. Example network, with demands λs1 d1 , λs2 d2 ∼ N (μ, σ).

distributed according to N (μ, σ2). Due to symmetry, both de-
mands have the same fraction of traffic (ρ) routed on the shared
link. Clearly, the optimal solution allocates equal capacity on all
links. Using the linear capacity constraint in (4), we can analyt-
ically show that the optimal routing is ρ = 1

3 . Additionally, this
routing is optimal for any deterministic traffic. Alternatively, for
the nonlinear constraint in (3), it can be shown that the optimal
routing will send more traffic through the middle link (i.e., larger
value of ρ), to take advantage of statistical multiplexing on that
link. In particular, by letting κ = Φ−1(1 − ε), it can be shown
that

ρ =
μ + κσ

3μ + (1 +
√

2)κσ
. (5)

Note that the nonlinear constraint in (3) exploits the statistical
multiplexing gain from combining multiple traffic flows so that
the resulting standard deviation is smaller than the sum of indi-
vidual standard deviations. Consequently, the required capacity
is O(

√
n) less than that with the linear constraint, which simply

adds up individual variances, resulting in an overprovisioning
of capacity, where n is the number of flows sharing a link. In
the next section, we use robust optimization to develop a linear
formulation exploiting the statistical multiplexing gain so that
it can be applied to the network design problem in Section IV
without significant capacity overprovisioning.

III. ROBUST OPTIMIZATION APPROACH

Robust optimization is a method for solving optimization
problems with parameter uncertainty. A novel robust optimiza-
tion approach was presented in [15] based on the idea that it
is unlikely for all of the random parameters to simultaneously
take values far above their means. Therefore, resources are al-
located to protect against scenarios where only a fraction of the
parameters exceed their mean, and the probability of constraint
violation can still be kept small. The technique in [15], how-
ever, applies only to bounded uncertainty, so cannot be directly
applied to our model. In this section, we extend the robust op-
timization approach of [15] to Gaussian random variables by
considering a truncated Gaussian random variable with a large
truncation point.

A. Robust Formulation for Truncated Gaussian Demands

Initially, we assume that demands are drawn from a truncated
Gaussian distribution, i.e., the traffic λsd

B between demand pair
(s, d) satisfies λsd

B ∼ N (z|z ≤ μsd + kσsd ;μsd, σ
2
sd) for some



JOHNSTON et al.: ROBUST NETWORK DESIGN FOR STOCHASTIC TRAFFIC DEMANDS 3107

constant k, and has a PDF

fλs d
B

(z;μsd, σ
2
sd) =

1
σs d

φ( z−μs d

σs d
)

Φ(k)
, z < μsd + kσsd (6)

where φ(·) and Φ(·) are the PDF and CDF of a standard normal
random variable, respectively. We now apply the approach of
[15].

For each link (i, j), a parameter Γij is introduced taking a
value between 0 and nij , where nij is the number of demands
traversing link (i, j). Capacity is assigned to protect against any
scenario where Γij of the demands exceed their means. The
other demands are allocated a capacity equal to their mean. Us-
ing this idea, we formulate a new capacity constraint to replace
those in (3) and (4). Let Sij ⊆ D be a subset of demands of size
	Γij
, and let tij ∈ D \ Sij be another demand. On each link
(i, j), capacity is allocated to support the mean asd

ij μsd for each
demand, as well as the 	Γij
 largest values of asd

ij kσsd to guar-
antee support for the 	Γij
 demands exceeding their mean. In
the case where Γij is not an integer, the fraction (Γij − 	Γij
) of
a

ti j

ij kσti j
is also supported. The constraint is presented below:

Cij ≥
∑

sd∈D
μsda

sd
ij + max

Si j ∪{ti j }:Si j ⊆D,|Si j |=	Γ i j 
,ti j ∈D\Si j

{ ∑

(s,d)∈Si j

kσsda
sd
ij + (Γij − 	Γij
)kσti j

a
ti j

ij

}

. (7)

The first term in the right hand side is the mean of the demands
traversing link (i, j), and the second term is the sum of Γij

largest possible fluctuations from the mean for those demands.
This formulation exploits the statistical multiplexing effect dis-
cussed above by assuming that the demands are unlikely to si-
multaneously require all of the provisioned link capacity. Note
that the solution is feasible for any realization of random de-
mands such that no more than Γij demands exceed their mean.
Hence, the robustness of the formulation is parameterized by
the value of Γij . For example, when Γij = nij , the solution
yields the most conservative allocation, and all the demands are
supported with probability 1. On the other hand, for small Γij ,
a small additional capacity is allocated at the expense of higher
overflow probability.

The link overflow probability can be bounded as a function of
Γij , and the value of Γij that satisfies the probabilistic constraint
in (1) can be characterized. In [15], an upper bound on that
probability is derived for general symmetric, bounded random
variables. We modify this bound for truncated Gaussians to
relate ε to Γij for each link. This bound is shown in the following
theorem.

Theorem 1: Let λsd
B be the traffic from source s to destination

d. Further, let λsd
B be a continuous random variable with den-

sity N (λsd
B |λsd

B ≤ μsd + kσsd ;μsd, σ
2
sd). Let 0 ≤ asd

ij ≤ 1 and
Cij ≥ 0 satisfy (7). Let nij be the number of demands routed
over link (i, j). Then, the probability that link (i, j) overflows
its allocated capacity is bounded by

Pr

[
∑

sd

λsd
B asd

ij > Cij

]

≤ exp

(

−
Γ2

ij k
2

2nij

)

. (8)

Proof: See Appendix A. �
Therefore, given a desired probability ε of overflow on link

(i, j), the value of the parameter Γij required on that link can
be computed by

Γij =

√
−2nij log ε

k
. (9)

Hence, with the value of Γij in (9), the capacity constraint (7)
satisfies the overflow probability requirement in (1). Note that
capacity is assigned to a link as a linear function of Γij , and
grows with

√
nij . This is similar to the optimal convex capacity

constraint in (3). Therefore, our formulation results in routings
in which traffic is multiplexed to reduce capacity.

B. Robust Formulation for Gaussian Demands

So far, we have assumed that demands obey a truncated Gaus-
sian distribution, and thus, the constraint (7) is valid only for
truncated Gaussian demands. In this section, we extend the ro-
bust optimization formulation and associated probability bounds
on constraint violation developed in the previous section to un-
bounded Gaussian demands.

Recall that the demands λsd
B are upper bounded by μsd +

kσsd . In the capacity constraint in (7), Γij corresponds to the
number of demands that require additional capacity, and a ca-
pacity of kσsda

sd
ij must be allocated to account for the worst

case realization for each of those demands. It is easy to see
that if {Xk, k ≥ 0} is an independent sequence of continuous
random variables, with Xk distributed according to a truncated
gaussian described by (6), then the sequence of Xk converges in
distribution to a Gaussian random variable with mean μsd and
variance σ2

sd .
In equation (9), k and Γij are inversely proportional, im-

plying that as k increases, fewer demands are allocated extra
capacity, but more capacity is allocated to those demands. Since
Theorem 1 holds for all finite values of k, Γij eventually satisfies
0 ≤ Γij < 1 as k becomes large so that Sij in (7) is the empty
set and the maximization is taken over one s–d pair representing
tij . Consequently, equation (7) can be rewritten as

Cij ≥
∑

(s,d)∈D
asd

ij μsd + Γij k max
(s,d)∈D

{σsda
sd
ij }

=
∑

(s,d)∈D
asd

ij μsd +
√

−2nij log ε max
(s,d)∈D

{σsda
sd
ij } (10)

where we used the relationship (9). Using this constraint, the
routing and capacity allocation problem can be formulated as
follows:

min
C,a≥0

max
(i,j )∈E

Cij

s.t.: Cij ≥
∑

(k,l)∈D
akl

ij μkl + α
√

nijσsda
sd
ij ,∀(s, d),∀(i, j)

FC(s, d, asd)∀(s, d) ∈ D (11)

where α =
√
−2 log ε. Note that nij is a variable determined

by asd
ij ’s, and therefore, (11) is a nonlinear formulation. While

this can be reformulated as a MILP that exactly computes the



3108 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 18, SEPTEMBER 15, 2013

Fig. 2. 14-node NSFNET backbone network (1991).

exact values of nij and asd
ij in the problem (11), it quickly be-

comes intractable as the network size grows since it introduces
additional integer variables (see Appendix B for more details).
Therefore, we investigate a heuristic approach to solving the
problem in (11) that scales better for large networks. In par-
ticular, our heuristic is an iterative algorithm that estimates the
values nij , computes the routing variables asd

ij based on the esti-
mated nij ’s, and updates the values nij based on the computed
routing variables asd

ij . The details are described as follows.
1) Every nij is initialized to 1.
2) The optimization problem in (11) is solved, and the num-

ber of demands traversing each link is counted.
3) If more than nij demands are routed on link (i, j), then

nij is increased by 1.
4) The algorithm repeats until each link (i, j) has nij higher

than the number of demands routed on it.
5) Link capacities are computed after termination by plug-

ging the obtained solution asd
ij ’s into (3).

This iterative scheme is called the increasing cost algorithm
(ICA), and is guaranteed to converge in at most N 2 iterations,
where N is the number of links. The value of nij can increase
during each iteration, but never decrease. Note that since some
values of nij can become large and cannot be lowered, ICA may
find a suboptimal solution to the problem in (11) since it can end
up searching a restricted space that does not contain an optimal
solution. However, each iteration only requires solving an LP,
and thus, the entire algorithm can be run in polynomial time.

C. Empirical Study

We compare the performance of the optimal nonlinear for-
mulation in (1) (denoted by Optimal), linear formulation with
constraint (4) (denoted by LP), and ICA. The maximum capac-
ity Cmax of linear formulation and ICA is recomputed using (3)
after the routing has been computed. We use the NSFNET in
Fig. 2 where demands are distributed as N (100, 352) and exist
between randomly chosen node pairs. Fig. 3 shows that the op-
timal nonlinear formulation only provides a savings of 5% over
the LP approach. Additionally, the LP approach outperforms the
ICA algorithm by 5%.

An explanation for the good performance of the LP approach
compared to the performance of the ICA algorithm is that the
NSFNET does not provide enough opportunities for traffic from
different sources to share link resources. To test this claim,
we consider another network shown in Fig. 4. Note that this
network allows for ample sharing of resources, allowing for a
clear comparison of the different formulations. We run the same
simulation, with we randomly generated, normally distributed

Fig. 3. Comparison of LP and ICA to the optimal approach for NSFNET. Each
algorithm is given the same set of random demands, each normally distributed
with μ = 100 and σ = 35. Each measurement is an average of six simulations.

Fig. 4. Example network providing ample opportunities for splitting traffic
over multiple paths. Links in this network are bidirectional.

demands with μ = 100, σ = 35, and compare the results of our
different approaches.

Fig. 5 compares the performance of three different ap-
proaches. Fig. 5(a) shows that the maximum link capacity for the
optimal solution offers a 15% savings over that required by the
linear approach. Our ICA approach allocates the same capacity
as in the optimal approach. Fig. 5(b) plots the running time of
each algorithm. Timing results are highly variable, and depend
on the solver and computing hardware available. The purpose
of Fig. 5(b) is to illustrate that the linear approach quickly finds
a solution, whereas the running time of the nonlinear approach
dramatically increases as the number of demands increases.
Note that our algorithm finds a solution much faster than the
nonlinear approach. This shows that even though convex op-
timization problems can be efficiently solved in general, it is
desirable to develop a formulation with better scaling properties
for problems over large networks.

IV. ROBUST LOGICAL TOPOLOGY DESIGN

In this section, we study the logical topology design prob-
lem and develop algorithms for optimal network topologies for
stochastic traffic. The goal here is to find a routing, capacity
allocation, and logical network topology that minimizes the
maximum link capacity. The routing and capacity allocation
problem studied in the previous section provides clear insights
on the network design. Namely, the optimal topology should al-
low for ample sharing of link resources among traffic demands
since each demand is better to be split in order to minimize the
maximum link capacity. This is true for both cases of determin-
istic and stochastic traffic demands, and leads to an interesting
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(a)

(b)

Fig. 5. Maximum link capacity and running time of each approach for the
topology in Fig. 4. (a) Maximum link capacity (Average of ten simulations).
(b) Running time (Average of six simulations, using LOQO for NLP and CPLEX
for LP).

(a) (b)

Fig. 6. Possible designs for a three-node network with four links, when there
are two i.i.d demands from nodes 1 to 2 and 1 to 3. (a) Optimal deterministic
topology. (b) Optimal stochastic topology.

algorithm for finding optimal topologies for stochastic traffic,
as will be discussed later.

A. Motivating Example

We start with the three-node network example shown in Fig. 6.
Suppose we have i.i.d. traffic (N (10, σ)) from node 1 to node 2
and node 1 to node 3. The goal is to design a network and route
the traffic over such a network such that max link capacity is
minimized, and the link placement is restricted to a limit of
four links, allowing no parallel links. If traffic is deterministic
(σ = 0), the optimal link placement only requires a link from 1
to 2 and 1 to 3, while the other two links can be placed arbitrarily

as in Fig. 6(a). With this link placement, each demand is routed
on the one hop path to its destination, with a maximum link
capacity of Cmax = 10.

Now consider the stochastic traffic case, by letting σ = 1.
The optimal topology is shown in Fig. 6(b). On this topology,
half of each demand can be sent on each link, and a lower
Cmax is achievable than on the network in Fig. 6(a). To be
precise, the solution to (1) is Cmax = 10 + Φ−1 (1−ε)√

2
. If the

first topology is used to route the stochastic traffic instead, it
would be sent directly to the destination, and a larger capacity
of Cmax = 10 + Φ−1(1 − ε) would be required. This example
shows that network designs optimized for deterministic traffic
are not necessarily optimal for stochastic traffic, and therefore,
it is desirable to develop algorithms for optimal network design
for stochastic traffic.

In the following, we discuss two approaches to finding opti-
mal topologies for stochastic traffic. We note that the topology
design problem can also be formulated as an MILP by adding
the link-place component to the MILP for routing and capacity
allocation problem in Appendix B. However, the formulation is
intractable even for a network of moderate size and thus it is
only presented in Appendix C for brevity.

B. Enumerate-and-Pick Approach

We have shown that an optimal topology for deterministic
traffic may not be optimal for stochastic traffic. However, the
converse was true in the example in Fig. 6. That is, the topology
in Fig. 6(b) is also optimal for deterministic traffic (σ = 0). This
example suggests that an optimal topology for stochastic traffic
may also be optimal for deterministic traffic. While this claim
will not be rigorously proved, there is strong intuitive evidence
to suggest its validity. Recall from Section II that to minimize
Cmax , it is better to split the traffic. The amount of traffic split
onto each link varies with σ, but the number of demands routed
over a link remains constant whether σ is positive or zero. Hence,
a topology that is optimal for traffic demands with positive
variance is likely to be optimal for deterministic traffic as well.
A weaker version of this claim is proved through the following
theorem.

Theorem 2: Given a set of nodes and a traffic matrix where
the demand between each node pair is normally distributed with
mean μsd and standard deviation σ, ∃σ0 > 0 such that for any
σ satisfying 0 ≤ σ ≤ σ0 , the optimal topology designed for that
σ is also optimal for deterministic traffic.

Proof: See Appendix D. �
The aforementioned theorem can be generalized to the case

where the variance on each link is different with a similar
“small” σ assumption necessary on the vector σ. While this
theorem does not hold for general large values of σ, it gives us
a useful insight on optimal network design. In particular, given
that the theorem is valid for general values of σ, the set Tσ of
optimal topologies for stochastic traffic is contained in the set T
of optimal topologies for deterministic traffic. Hence, once T is
identified, an optimal topology for stochastic traffic can be found
by computing Cmax over each topology in T and choosing the
one with minimum Cmax . In summary, the following procedure
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finds an optimal topology for stochastic traffic (provided that
Theorem 2 holds for general σ ≥ 0).

1) Identify T .
2) Compute Cmax over each T ∈ T for stochastic traffic.
3) Pick the one with minimum Cmax .
For step 2, the convex optimization problem in (3) can be

solved over each topology in T .
Step 1 can be completed as follows. Initially, the optimal

deterministic topology is found for the set of nodes and demands
provided, using existing methods such as the MILP in [5] (It
is equivalent to the special case of the MILP in Appendix C
with the variables xm

ij , ym
ij , and fsd

ij and their related constraints
removed). Once this topology is found, represented by variables
b
(1)
ij , the following constraint is added to the MILP formulation.

∑

{(i,j )|b( 1 )
i j =0}

bij +
∑

{(i,j )|b( 1 )
i j =1}

(1 − bij ) ≥ 1 (12)

This constraint enforces any feasible solution of the current
optimization problem (bij ) to differ from the solution already

obtained (b(1)
ij ) by at least one link. If the solution to the mod-

ified MILP has the same objective function as the solution to
the original problem, then the new topology is also an optimal
topology for deterministic traffic. This is repeated by adding an
additional constraint with every topology found, until the ob-
jective value of the modified program is larger than the optimal
solution, implying that all the optimal deterministic topologies
have been found.

Alternatively, since the formulation in (1) calculates the opti-
mal routing and capacity assignment for any given topology, we
can exhaustively search through every possible topology for that
with the smallest max link capacity. Every possible permutation
of links that meet the design requirements must be enumerated,
and the convex routing formulation in (1) (it is a linear program
for deterministic traffic) is applied to each. This is obviously
inefficient, but returns the optimal topologies.

For example, consider an i.i.d. set of 11 demands over
a five node network, where each demand is normally dis-
tributed with mean 100 and variance σ2 . Numbering the nodes
from 1 to 5, assume traffic demands exists between the fol-
lowing node pairs: D = {(1, 2), (1, 3), (2, 1), (2, 3), (2, 4),
(2, 5), (3, 2), (3, 4), (3, 5), (4, 1), (4, 5)}. The design con-
straint is that no more than ten links may be used, with no
parallel links. As discussed previously, every topology meeting
this requirement is enumerated, and the convex optimization
in (1) is solved over each topology, assuming σ = 0. Table I
summarizes all the topologies that are found to be optimal for
σ = 0. The same technique is used for the traffic when σ = 10
and σ = 30. In both stochastic cases, there is only one optimal
topology, namely topology 4 in Table I. The difference in the
values of Cmax for these topologies grows with the demand
variance. For σ = 30, the optimal topology has Cmax 5% lower
than the others, and for σ = 100 this grows to 10%. This exam-
ple again suggests that the stochastically optimal topology set
Tσ is a subset of the deterministically optimal topology set T .

TABLE I
OPTIMAL TOPOLOGIES FOR DETERMINISTIC TRAFFIC FOR THE DEMANDS IN D:

THE FIRST COLUMN IS THE TOPOLOGY NUMBER

C. Simulated Annealing

The aforementioned approach is limited by the execution time
of the MILP, which can be prohibitively high for large networks.
Additionally, networks can have thousands of optimal topolo-
gies for deterministic traffic. As a more scalable approach, we
consider simulated annealing (SA). Briefly, SA is a random
search heuristic which can be used to find near optimal solu-
tions to optimization problems. The algorithm begins with an
arbitrary feasible solution, and a cost computed with respect to
an objective function. Then, a random perturbation is applied
to the solution, and the cost is reevaluated. The new solution is
probabilistically accepted based on the relationship between the
two costs. A positive probability of moving to a worse solution
avoids the problem of being trapped in a local minima.

Simulated annealing (SA) can be used in this context to com-
pute the link placements. We assume there is a constraint on the
maximum number of links. From any feasible network topology,
the optimization problem in (1) is solved to find Cmax . Then, a
random perturbation is applied to the topology. Specifically, a
link (i, j) in the topology and a link (k, l) not in the topology are
randomly chosen uniformly from all the links in their respective
sets, and link (k, l) is added to the topology while link (i, j) is
removed.

For the new topology, the problem in (1) is solved, where the
value of the objective function at the solution is C ′

max . If C ′
max <

Cmax , the new topology allows for a smaller maximum link
capacity and is accepted unconditionally. If the new topology is
worse, it is accepted with probability q, where

q = exp
(

Cmax − C ′
max

T

)

. (13)

The probability of acceptance is a function of the differ-
ence between solutions so that topologies that are much worse
are less likely to be accepted than topologies which are only
slightly worse. The parameter T is referred to as the temper-
ature, borrowing terminology from the physics literature. Ini-
tially, the temperature of the system is large, such that worse
topologies are still likely to be accepted. As the algorithm pro-
gresses, temperature is lowered slowly, so less “bad” topologies
will be accepted. Specifically, SA iterates for a fixed number of
perturbations to simulate reaching a steady state, and then, tem-
perature is modified according to T ′ = βT for some 0 ≤ β ≤ 1.
The value of β should be close to 1, so that the temperature is
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Fig. 7. Illustration of demands throughout a six-node cluster. A directed edge
represents a demand in that direction. All demands are i.i.d.

(a) (b)

Fig. 8. The two optimal topologies with 15 links for the demand pattern in 7.
(a) Topology 1. (b) Topology 2.

reduced slowly. The algorithm starts with a high value of T , and
it is stopped when the probability of escape from some topology
is small enough that new topologies are no longer considered.

The SA algorithm should not depend on the initial topology
used to begin the search, since SA has measures to protect itself
from local minima. Therefore, M links are randomly chosen
initially, where M corresponds to the design requirement on the
maximum number of links. If the initial links cannot support
the demands, the topology is labeled as infeasible. As long
as the topology is infeasible, a new topology is accepted with
probability 1.

D. Empirical Study

In the previous sections, we have shown that while the optimal
stochastic topology is also an optimal deterministic topology,
some deterministic topologies perform poorly under stochastic
traffic. We would like to quantize this difference.

Consider a six node network with the i.i.d demands between
the set of node pairs shown in Fig. 7. Our goal will be to place up
to 15 links between these six nodes, such that the traffic can be
optimally routed. Traffic demands are normally distributed with
mean 100 and variance σ2 . The optimal topology is found by first
locating the set of optimal topologies for deterministic traffic,
and then, pruning that set for the optimal stochastic topology for
σ = 35. The two optimal stochastic topologies result in Cmax =
123.89. These two topologies were chosen from a set of 264
deterministically optimal topologies. Note that each MILP for
deterministic design takes between 2 and 3 s to solve, whereas
each convex optimization takes between 1.5 and 2 s. The two
optimal topologies are shown in Fig. 8.

By finding the optimal topologies rather than an arbitrary de-
terministically optimal topology, we save on max link capacity.
The stochastically optimal topologies save 8% of the max link
capacity that would be necessary for the worst case choice of
deterministic topology. On average, the stochastic topologies
save 5% of the max link capacity. We can expect to see larger
numbers for bigger networks although this is difficult to verify
due to the difficulty of solving large MILP’s.

Fig. 9. Resulting 32-link network (solid) for i.i.d N (100, 352 ) demands fol-
lowing NSFNET (dotted). The network is designed for ε = 0.01, using Simu-
lated Annealing with β = 0.95 for the link placement, and ICA for the capacity
allocation and routing.

For larger networks, the approach of finding all optimal
topologies for deterministic traffic, then searching through those
topologies for that which is optimal for stochastic traffic is com-
putationally intensive. In order to design networks for these
instances, the SA approach is used to calculate the link place-
ments, and the routing and capacity allocation problems can be
solved using the ICA heuristic developed in Section III-B.

Consider the NSFNET in Fig. 2. Assume each bidirectional
link corresponds to a demand normally distributed with mean
100 and standard deviation 35. The goal of this simulation is to
place 32 links on a 14 node network to best route those demands.
This can be thought of as redesigning the NSFNET backbone
with fewer directed links. The resulting network is shown in
Fig. 9, and requires a maximum link capacity of 456.162. Note
that this network may not be optimal, due to the suboptimalities
of the SA approach and the ICA heuristic.

V. CONCLUSION AND FUTURE WORK

Modern backbone networks must be designed to be robust
to random traffic fluctuations and errors in traffic estimation.
Previous attempts to solve the routing and capacity allocation
problems have either resulted in formulations which are too
conservative in terms of allocated capacity, or formulations
which are nonlinear. By extending results from robust opti-
mization, we have developed a formulation to allocate capac-
ity in a less conservative fashion, while computing near opti-
mal routes for traffic flows. The resulting routing for stochas-
tic traffic takes advantage of multiplexing opportunities in the
network, such that shared capacity is efficiently utilized. We
provide an iterative scheme to solve our robust optimization
problem, and show that our formulation finds near-optimal rout-
ings and capacity allocations, while remaining computationally
tractable.

While our formulation allows an extension to the link-
placement problem, the resulting MILP formulation is still
computationally intractable. Our analysis shows that networks
supporting random traffic should be designed in a manner to
allow link capacity to be shared by many traffic flows. There-
fore, it would be interesting to develop algorithms and heuris-
tics to solve the link placement subproblem exploiting these
strategies.
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APPENDIX A

PROOF OF THEOREM 1

We need the following lemma to prove the theorem.
Lemma 1: Let X be a continuous random variable with PDF

N (x|a ≤ x ≤ b;μ, σ2). Let Y = cX + d for c > 0. Then, the
random variable Y is distributed with density N (x|ac + d ≤
x ≤ bc + d; cμ + d, (cσ)2).

Proof: X has PDF fX (x;μ, σ2 , a, b) =
1
σ φ

(
x −μ

σ

)

Φ
(

b−μ
σ

)
−Φ

(
a −μ

σ

) ,

where φ() and Φ() are the PDF and CDF of a standard
normal random variable, respectively. Since Y is a linear
function of X , we can write the density of Y as fY (y) =
1
|c|fX ( y−d

c ;μ, σ2 , a, b). By plugging in the definition of fX (),

fY (y) =
1
cσ φ

(
y−d−cμ

cσ

)

Φ
(

b−μ
σ

)
− Φ

(
a−μ

σ

) (14)

Define μ′ �
= cμ + d and σ′ �

= cσ

fY (y) =
1
σ ′ φ

(
y−μ ′

σ ′

)

Φ
(

bc+d−μ ′

σ ′

)
− Φ

(
ac+d−μ ′

σ ′

) (15)

= N (x|ac + d ≤ x ≤ bc + d; cμ + d, (cσ)2) (16)

�
Proof of Theorem 1: Define the following two variables

zsd
B

�
=

λsd
B − μsd

σsd
and ηsd �

=
1
k

zsd
B . (17)

By Lemma 1, zsd
B has a PDF given by N (z|z ≤ k; 0, 1), and

ηsd has a PDF given by N (η|η ≤ 1; 0, 1/k2). It follows from
(17) that

P

(∑

sd

asd
ij λsd

B > Cij

)

= P

(∑

sd

asd
ij μsd +

∑

sd

asd
ij σsd zsd

B > Cij

)

= P

(∑

sd

asd
ij μsd +

∑

sd

asd
ij σsd kηsd > Cij

)

Since Cij satisfies (7),

P

(∑

sd

asd
ij λsd

B > Cij

)

≤ P

(∑

sd

asd
ij kσsd ηsd >

∑

(s ,d )∈S i j

asd
ij kσsd + (Γij − 	Γij 
)a

ti j

ij kσti j

)

= P

(∑

sd

asd
ij σsd ηsd >

∑

(s ,d )∈S i j

asd
ij σsd + (Γij − 	Γij 
)a

ti j

ij σt i j

)

= P

( ∑

(s ,d ) �∈S i j

asd
ij σsd ηsd

>
∑

(s ,d )∈S i j

asd
ij σsd (1 − ηsd ) + (Γij − 	Γij 
)a

ti j

ij σt i j

)

Let r = arg minr ′∈Si j

⋃
ti j

ar ′
ij σr ′ . Since ηsd ≤ 1, the aforemen-

tioned probability can be bounded as

≤ P
( ∑

(s,d) �∈Si j

asd
ij σsdη

sd > ar
ij σr

( ∑

(s,d)∈Si j

(1 − ηsd)

+
(

Γij − 	Γij
)
))

= P
( ∑

(s,d) �∈Si j

asd
ij σsdη

sd +
∑

(s,d)∈Si j

ar
ij σrη

sd > ar
ij σrΓij

)

= P
( ∑

(s,d)

γsd
ij ηsd > Γij

)

(18)

where

γsd
ij =

{ 1, if (s, d) ∈ Sij

⋃
tij

as d
i j σs d

ar
i j σr

, if (s, d) �∈ Sij

⋃
tij .

(19)

Since r is chosen to be an element of Sij

⋃
tij , then ar

ij σr ≥
asd

ij σsd ∀(s, d) �∈ Sij . Therefore, γsd
ij defined in (19) is always

less than or equal to 1. An additional Lemma is needed to
complete the proof.

Lemma 2:

E[etη s d

] = Msd(t) = exp
(

t2

2k2

)(
Φ(k − t/k)

Φ(k)

)

. (20)

Proof: Let Y ∼ N (0, 1
k 2 ),

Msd (t) = E[etY |Y ≤ 1]

=
∫ 1

−∞

ety fY (y)dy

Φ(k)

=
1

Φ(k)

∫ 1

−∞
ety k√

2π
e−

y 2 k 2
2 dy

=
k

Φ(k)
√

2π

∫ 1

−∞
exp

(

− k2

2

(
y2 − 2ty

k2

)
)

dy

=
k

Φ(k)
√

2π

∫ 1

−∞
exp

(

− k2

2

(

y2 − 2ty

k2 +
t2

k4

)

+
t2

2k2

)

dy

=
k

Φ(k)
√

2π

∫ 1

−∞
exp

(
t2

2k2

)

exp

(

− k2

2

(

y − t

k2

)2)

dy

=
e

t 2

2 k 2

Φ(k)

∫ 1

−∞

k√
2π

e
− k 2

2 (y− t
k 2 )2

dy.

This can be reduced in terms of the standard normal CDF.

=
e

t 2

2 k 2

Φ(k)

(

Φ
(

1 − t
k 2

1
k

)

− Φ
(−∞− t

k 2

1
k

))

= e
t 2

2 k 2

(
Φ(k − t

k )
Φ(k)

)

.

�



JOHNSTON et al.: ROBUST NETWORK DESIGN FOR STOCHASTIC TRAFFIC DEMANDS 3113

This lemma can be used to complete the proof. Starting with
the bound in (18),

P
( ∑

(s,d)

γsd
ij ηsd > Γij

)

= P
(

t
∑

(s,d)

γsd
ij ηsd > tΓij

)

∀t > 0

= P
(

exp
(

t
∑

(s,d)

γsd
ij ηsd

)

> exp
(
tΓij

)
)

≤ E[et
∑

( s , d ) γ s d
i j η s d

]
etΓ i j

by Markov’s Inequality.

=
∏

sd

E[etη s d γ s d
i j ]

etΓ i j
by independence.

=
∏

sd

Msd(tγsd
ij )

etΓ i j

=
∏

sd

e
( t γ s d

i j
) 2

2 k 2

(
Φ(k−

t γ s d
i j
k )

Φ(k)

)

etΓ i j
by Lemma 2

≤
∏

sd

e
( t γ s d

i j
) 2

2 k 2

etΓ i j

Since Φ(k) ≥ Φ(k − tγ s d
i j

k ) ∀t ≥ 0, γsd
ij ≥ 0.

=
exp

(
t2

2k 2

∑
sd(γ

sd
ij )2

)

etΓ i j

≤ exp
(

nij t
2

2k2 − tΓij

)

since 0 ≤ γsd
ij ≤ 1.

The above bound is minimized when its derivative with respec-
tive to t is 0, i.e.,

d

dt

(
nij t

2

2k2 − tΓij

)

=
nij t

k2 − Γij = 0

⇒ t =
Γij k

2

nij
.

Plugging this t into the bound yields

P
( ∑

(s,d)

γsd
ij ηsd > Γij

)

≤ exp
(

nij

2k2

Γ2
ij k

4

n2
ij

− Γij k
2

nij
Γij

)

= exp
(

−
Γ2

ij k
2

2nij

)

�

APPENDIX B

MILP FORMULATION FOR GAUSSIAN DEMANDS

Let fsd
ij be a binary variable satisfying fsd

ij ≥ asd
ij . Thus, fsd

ij

equals 1 if asd
ij > 0, and 0 otherwise. Let xm

ij = 1 if there are m

demands traversing link (i, j), and 0 otherwise. These variables
satisfy

∑

sd

fsd
ij =

D∑

m=0

mxm
ij ∀(i, j) (21)

where D is the total number of demands in the network.
By combining this constraint with one forcing only one of
{x0

ij , x
1
ij , . . . , x

D
ij } to be equal to one for each link (i, j), the

variables xm
ij specify the number of flows on each link. There-

fore, the capacity constraint of (11) can be rewritten as

Cij ≥
∑

sd∈D
μsda

sd
ij + zijα

D∑

m=0

xm
ij

√
m ∀(i, j). (22)

Equation (22) is nonlinear, since zij and xm
ij are both opti-

mization variables. However, (22) can be linearized by intro-
ducing a variable ym

ij to represent the product zijx
m
ij with the

following constraints.

ym
ij ≥ zij + M(xm

ij − 1) ∀(i, j),m (23)

ym
ij ≤ Mxm

ij ∀(i, j),m (24)

ym
ij ≥ 0 ∀(i, j),m. (25)

In the aforementioned equations, M is a large number such
that M > maxsdσsd . When xm

ij = 0, then xm
ij zij = 0, and con-

straints (24) and (25) force ym
ij to be 0. On the other hand,

if xm
ij = 1, constraint (23) will force ym

ij ≥ zij , which at the
optimal solution will be satisfied with equality. Therefore, the
complete MILP to solve the routing problem is formulated as

Min Cmax

Subject To: Cij ≥
∑

sd∈D
μsda

sd
ij + α

D∑

m=0

√
mym

ij ,∀(i, j)

∑

j

asd
ij −

∑

j

asd
ji =

⎧
⎪⎨

⎪⎩

1, if s = i

−1, if d = i,∀(s, d), i

0, otherwise

Cij ≤ Cmax ∀(i, j)

fsd
ij ≥ asd

ij ∀(i, j), (s, d)

∑

sd

fsd
ij =

D∑

m=0

mxm
ij ∀(i, j)

D∑

m=0

xm
ij = 1 ∀(i, j)

ym
ij ≥ σsda

sd
ij + M(xm

ij − 1) ∀(s, d), (i, j),m

ym
ij ≤ Mxm

ij ∀(i, j),m

ym
ij ≥ 0 ∀(i, j),m

asd
ij ≥ 0 ∀i, j, s, d

fsd
ij , xm

ij ∈ {0, 1} ∀(s, d), (i, j),m.
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APPENDIX C

MILP FOR ROBUST TOPOLOGY DESIGN

Let bij = 1 if a link is placed between nodes i and j, and
bij = 0 otherwise. We add the constraint bij ≥ asd

ij requiring
that link (i, j) cannot be used for routing unless there is a link
between nodes i and j. Let Δ− and Δ+ be the out-degree and in-
degree of each node, respectively. The node degree constraints
are written as

∑
i bij = Δi and

∑
j bij = Δo . Note that these

two constraints can be replaced with a constraint limiting the
maximum number of links, or potentially other design restric-
tions. The complete MILP formulation is presented below. Note
that only the last three constraints have been added to the routing
and capacity allocation MILP in Appendix B.

Minimize Cmax

Subject To: Cij ≥
∑

sd∈D
μsda

sd
ij + α

D∑

m=0

√
mym

ij ∀(i, j)

FC(s, d, asd) ∀(s, d) ∈ D
Cij ≤ C ∀(i, j)

fsd
ij ≥ asd ∀(i, j), (s, d)

∑

sd

fsd
ij =

D∑

m=0

mx ∀(i, j)

D∑

m=0

xm
ij = 1 ∀(i, j)

ym
ij ≥ σsda

sd
ij + M(xm

ij − 1) ∀(s, d), (i, j),m

ym
ij ≤ Mxm ∀(i, j),m

ym
ij ≥ 0 ∀(i, j),m

asd
ij ≥ 0 ∀i, j, s, d

fsd
ij , xm

ij , bij ∈ {0, 1} ∀(s, d), (i, j),m

bij ≥ asd
ij ,∀(i, j) (s, d)

∑

i

bij = Δi ∀j

∑

j

bij = Δo ∀i

APPENDIX D

PROOF OF THEOREM 2

Let T0 and Tσ be the optimal topologies for deterministic traf-
fic and Gaussian traffic with variance σ2 , respectively. Further,
let CT ,σ

max be the optimal maximum link capacity in routing traffic
with demand variance σ2 over topology T . For example, CT0 ,0

max
is the solution for routing deterministic traffic over the topology
that is optimal for deterministic traffic. Throughout this proof,
we will use κ = Φ−1(1 − ε), given a design parameter ε. We
will prove our claim by contradiction.

Suppose Tσ is worse than T0 in terms of routing deterministic
traffic. That is,

CT0 ,0
max < CTσ ,0

max . (26)

The difference between these two solutions Δ is defined as

Δ = CTσ ,0
max − CT0 ,0

max > 0. (27)

Let asd
ij and bsd

ij be the optimal routing for traffic with variance
σ2 and deterministic traffic on topology T0 respectively. Let
(i, j) be a link achieving max capacity when stochastic traffic
is optimally routed over T0 , and (k, l) be a link achieving max
capacity when routing b is used for stochastic traffic over T0 .
Then, by the capacity constraint in (3),

CT0 ,σ
max =

∑

sd

asd
ij μsd + κσ

√∑

sd

(asd
ij )2 (28)

≤
∑

sd

bsd
kl μsd + κσ

√∑

sd

(bsd
kl )2 (29)

≤ CT0 ,0
max + κσ

√∑

sd

(bsd
kl )2 (30)

≤ CT0 ,0
max + κσ

√
D (31)

where D is a constant representing the maximum value of∑
sd(b

sd
kl )

2 for any feasible routing.
Consider the following optimization problem for routing de-

terministic traffic over any fixed topology T .

Minimize: Cmax

Subject To: Cmax ≥
∑

sd

asd
ij μsd ∀(i, j) ∈ L

∑

j

asd
ij −

∑

j

asd
ji =

⎧
⎪⎨

⎪⎩

1, if s = i

−1, if d = i,∀(s, d), i

0, otherwise

asd
ij ≥ 0,∀(s, d), (i, j). (32)

The Lagrangian of problem (32) is

L(ν, θ, Cmax , a) = Cmax +
∑

ij

νij

(
∑

sd

μsda
sd
ij − Cmax

)

+
∑

s,d,i

θsd
i (βsd

i − hsd
i (asd)) (33)

where νij ≥ 0 and θsd
i are dual variables, hsd

i (asd) =
∑

j asd
ij −

∑
j asd

ji and

βsd
i =

⎧
⎪⎨

⎪⎩

1, if s = i

−1, if d = i

0, otherwise.

(34)
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First, we minimize over the primary variables.

g(ν, θ) = inf
Cm a x ,as d

i j ≥0

(

Cmax +
∑

ij

νij

(
∑

sd

μsda
sd
ij − Cmax

)

+
∑

s,d,i

θsd
i

[
βsd

i − hsd
i (asd)

]
)

. (35)

Now, the dual problem can be written as

d∗(0) = Maximize: g(ν, θ)

Subject To:
∑

(i,j )

νij = 1

θsd
i − θsd

j ≤ νij ∀(s, d), (i, j)

νij ≥ 0 ∀(i, j)

θsd
i free ∀i, (s, d).

By the min–max theorem and by strong duality for linear
programs, there is zero duality gap between the dual and primal
problems.

C∗
max(0) = d∗(0) = min

Cm a x ,as d
i j

max
ν,θ

L(ν, θ, Cmax , a)

= min
Cm a x ,as d

i j

(

Cmax +
∑

ij

ν∗
ij (0)

(∑

sd

μsda
sd
ij − Cmax

)

+
∑

s,d,i

θ∗sd
i (0)[βsd

i − hsd
i (asd)]

)

.

Consider the point (C∗
max(σ), a∗(σ)), which is the optimal rout-

ing and max link capacity under traffic with variance σ2 over the
fixed topology T . (C∗

max(σ), a∗(σ)) is obviously feasible and
since it is potentially sub-optimal for the deterministic problem,
it satisfies

C∗
max(0) ≤ C∗

max(σ) +
∑

ij

ν∗
ij (0)

(
∑

sd

μsda∗sd
ij (σ) − C∗

max(σ)

)

+
∑

s,d,i

θ∗sd
i (0)[βsd

i − hsd
i (a∗sd (σ))]. (36)

Since the aforementioned routing is feasible, βsd
i =

hsd
i (a∗sd(σ)) for all i, (s, d). Furthermore, for each link (i, j),

the point (C∗
max(σ), a∗(σ)) satisfies

C∗
max(σ) ≥

∑

sd

μsda
∗sd
ij (σ) + κσ

√∑

sd

(a∗sd
ij (σ))2 (37)

By combining (37) with (36), we get the following inequality.

C∗
max(0) ≤ C∗

max(σ) − κσ
∑

ij

ν∗
ij (0)

√∑

sd

(a∗sd
ij (σ))2 (38)

C∗
max(σ) ≥ C∗

max(0) + κσ
∑

ij

ν∗
ij (0)

√∑

sd

(a∗sd
ij (σ))2 . (39)

The aforemenntioned result holds for all topologies,
so we consider the specific topology Tσ . Let X =

∑
ij ν∗

ij (0)
√∑

sd(a
∗sd
ij (σ))2 , then equation (39) becomes

CTσ ,σ
max ≥ CTσ ,0

max + κσX = CT0 ,0
max + Δ + κσX (40)

where equation (40) results from the assumption in (27). Assume
Δ + κσX ≥ κσ

√
D. If X ≥

√
D, this assumption is valid re-

gardless of the value of σ. On the other hand, if X <
√

D, then
the assumption holds as long as

σ <
Δ

κ(
√

D − X)
= σ0 . (41)

Note that σ0 > 0 since 0 < X <
√

D. Therefore, assuming σ <
σ0 implies

CTσ ,σ
max > CT0 ,0

max + κσ
√

D

≥ CT0 ,σ
max (42)

Equation (42) follows from equation (31), and is a contradic-
tion, since Tσ is optimal for stochastic traffic. Therefore, the
assumption made in (26) is false and CT0 ,0

max ≥ CTσ ,0
max . However,

since T0 is optimal for deterministic traffic,

CT0 ,0
max = CTσ ,0

max . (43)
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