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Abstract—We consider a dynamic server allocation problem
over parallel queues with randomly varying connectivity and server
switchover delay between the queues. At each time slot, the server
decides either to stay with the current queue or switch to another
queue based on the current connectivity and the queue length
information. Switchover delay occurs in many telecommunications
applications and is a new modeling component of this problem that
has not been previously addressed. We show that the simultaneous
presence of randomly varying connectivity and switchover delay
changes the system stability region and the structure of optimal
policies. In the first part of this paper, we consider a system of two
parallel queues, and develop a novel approach to explicitly charac-
terize the stability region of the system using state-action frequencies
which are stationary solutions to a Markov decision process formu-
lation. We then develop a frame-based dynamic control (FBDC)
policy, based on the state-action frequencies, and show that it is
throughput optimal asymptotically in the frame length. The FBDC
policy is applicable to a broad class of network control systems
and provides a new framework for developing throughput-optimal
network control policies using state-action frequencies. Further-
more, we develop simple myopic policies that provably achieve more
than 90% of the stability region. In the second part of this paper,
we extend our results to systems with an arbitrary finite number
of queues. In particular, we show that the stability region charac-
terization in terms of state-action frequencies and the throughput
optimality of the FBDC policy follows for the general case. Fur-
thermore, we characterize an outer bound on the stability region
and an upper bound on sum throughput and show that a simple
myopic policy can achieve this sum-throughput upper bound in the
corresponding saturated system. Finally, simulation results show
that the myopic policies may achieve the full stability region and
are more delay efficient than the FBDC policy in most cases.

Index Terms—Downlink, Markov decision process (MDP),
queuing, randomly varying connectivity, scheduling, switching
delay, switchover delay, uplink, wireless networks.

I. INTRODUCTION

S CHEDULING a dynamic server over time-varying wireless
channels is an important and well-studied research problem

which provides useful mathematical modeling for many prac-
tical applications [7], [17], [24], [28], [31], [32], [37]–[39], [43],
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Fig. 1. System model. Parallel queues with randomly varying connectivity pro-
cesses � ���� � ���� � � � � � ��� and � � � ���	 switchover time.

[44]. However, to the best of our knowledge, the joint effects of
randomly varying connectivity and server switchover delay have
not been considered previously. In fact, switchover delay is a
widespread phenomenon that can be observed in many practical
network systems. In satellite systems where a mechanically
steered antenna is providing service to ground stations, the time
to switch from one station to another can be around 10 ms [9],
[40]. Similarly, the delay for electronic beamforming can be
more than in wireless radio systems [3], [9], [40], and
in optical communication systems tuning delay for transceivers
can take significant time (microsecond to millisecond) [11], [27].

We consider a dynamic server control problem for parallel
queues with time-varying channels and server switchover delay
as shown in Fig. 1. We consider a slotted system where the slot
length is equal to a single packet transmission time and it takes
one slot for the server to switch from one queue to another.1 One
packet is successfully received from queue if the server is cur-
rently at queue , it decides to stay at queue , and queue is con-
nected, where and is the total number of
queues. The server dynamically decides to stay with the current
queue or switch to another queue based on the connectivity and
the queue length information. Our goal is to study the impact of
the simultaneous presence of switchover delays and randomly
varying connectivity on system stability and to develop optimal
control algorithms. We show that the stability region changes as
a function of the memory in the channel processes, and it is sig-
nificantly reduced as compared to systems without switchover
delay. Furthermore, we show that throughput-optimal policies
take a very different structure from the celebrated max-weight
(MW) algorithm or its variants.

A. Main Results

In the first part of this paper, we consider a two-queue system
and develop fundamental insights for the problem. We first con-
sider the case of memoryless (i.i.d.) channels where we charac-

1In a slotted system, even a minimal switchover delay will lead to a loss of a
slot due to synchronization issues.
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terize the stability region explicitly and show that simple ex-
haustive-type policies that ignore the current queue size and
channel state information are throughput optimal. Next, we con-
sider the Gilbert–Elliot channel model [1], [19] which is a com-
monly used model to abstract physical channels with memory.
We develop a novel methodology to characterize the stability
region of the system using state-action frequencies which are
steady-state solutions to an Markov decision process (MDP) for-
mulation for the corresponding saturated system, and charac-
terize the stability region explicitly in terms of the connectivity
parameters. Using this state-action frequency approach, we de-
velop a novel frame-based dynamic control (FBDC) policy and
show that it is throughput optimal asymptotically in the frame
length. Our FBDC policy is the only known policy to stabi-
lize systems with randomly varying connectivity and switchover
delay and it is novel in that it utilizes the state-action frequencies
of the MDP formulation in a dynamic queuing system. More-
over, we develop a simple 1-lookahead myopic (OLM) policy
that provably achieves at least 90% of the stability region, and
myopic policies with 2 and 3 lookahead that achieve more than
94% and 96% of the stability region, respectively. Finally, we
present simulation results suggesting that the myopic policies
may be throughput optimal and more delay efficient than the
FBDC policy.

In the second part of this paper, we consider the general
model with arbitrary finite number of parallel queues. For mem-
oryless (i.i.d.) channel processes, we explicitly characterize the
stability region and the throughput-optimal policy. For channels
with memory, we show that the stability region characterization
in terms of state-action frequencies extends to the general case
and establishes a tight outer bound on the stability region and
an upper bound on the sum throughput explicitly in terms of
the connectivity parameters. We quantify the switching loss in
sum throughput as compared to the system with no switchover
delays and show that simple myopic policies achieve the
sum-throughput upper bound in the corresponding saturated
system. We also show that the throughput optimality of the
FBDC policy extend to the general case. In fact, the FBDC
policy provides a new framework for achieving throughput-op-
timal network control by applying the state-action frequencies
of the corresponding saturated system over frames in the
dynamic queuing system. The FBDC policy is applicable to a
broad class of systems whose corresponding saturated model
is Markovian with a weakly communicating and finite state
space, for example, systems with arbitrary switchover delays
(i.e., systems that take a fixed, finite number of time slots for
switching the server from a given queue to another queue)
and general Markov modulated channel processes. Moreover,
the framework of the FBDC policy can be utilized to achieve
throughput optimality in systems without switchover delay, for
instance, in classical network control problems such as those
considered in [32], [35], [39], and [44].

B. Related Work

Optimal control of queuing systems and communication net-
works has been a very active research topic over the past two
decades [17], [24], [28], [31], [32], [37]–[39], [43], [44]. In

the seminal paper [38], Tassiulas and Ephremides characterized
the stability region of multihop wireless networks and proposed
the throughput-optimal MW scheduling algorithm. In [39], the
same authors considered a parallel queuing system with ran-
domly varying connectivity where they characterized the sta-
bility region of the system explicitly and proved the throughput
optimality of the longest connected queue scheduling policy.
These results were later extended to joint power allocation and
routing in wireless networks in [31] and [32] and optimal sched-
uling for switches in [35] and [37]. More recently, suboptimal
distributed scheduling algorithms with throughput guarantees
have been studied in [12], [21], [24] and [43], while the authors
in [17] and [28] developed distributed algorithms that achieve
throughput optimality (see [18] and[29] for a detailed review).
The effect of delayed channel state information was considered
in [20], [36] and [44] which showed that the stability region
is reduced and that a policy similar to the MW algorithm is
throughput optimal.

Perhaps, the closest problem to ours is that of dynamic server
allocation over parallel channels with randomly varying connec-
tivity and limited channel sensing that has been investigated in
[1], [23] and [45] under the Gilbert–Elliot channel model. The
saturated system was considered and the optimality of a myopic
policy was established for a single server and two channels in
[45], for arbitrary number of channels in [1], and for arbitrary
number of channels and servers in [2]. The problem of maxi-
mizing throughput in the network while meeting average delay
constraints for a small subset of users was considered in [30].
The average delay constraints were turned into penalty func-
tions and the theory of stochastic shortest path problems, which
is used for solving dynamic programs with certain special struc-
tures, was utilized to minimize the resulting drift+penalty terms.
Finally, a partially observable MDP model was used in [16] to
analyze dynamic multichannel access in cognitive radio sys-
tems. However, none of these existing works consider the server
switchover delays.

Switchover delay has been considered in Polling models in
queuing theory community (e.g., [6], [22], [25], and [41]); how-
ever, randomly varying connectivity was not considered since
it may not arise in classical Polling applications. Similarly,
scheduling in optical networks under reconfiguration delay was
considered in [11] and [15], again in the absence of randomly
varying connectivity, where the transmitters and receivers were
assumed to be unavailable during reconfiguration. A detailed
survey of the work in this field can be found in [41]. To the
best of our knowledge, this paper is the first to simultaneously
consider random connectivity and server switchover times.

C. Main Contribution and Organization

The main contribution of this paper is to solve the sched-
uling problem in parallel queues with randomly varying con-
nectivity and server switchover delays for the first time. For this,
the paper provides a novel framework for solving network con-
trol problems via characterizing the stability region in terms of
state-action frequencies and achieving throughput optimality by
utilizing the state-action frequencies over frames.

This paper is organized as follows. We consider the two-
queue system in Section II where we characterize the stability
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Fig. 2. Markov modulated ON/OFF channel process. We have � � � �

� �� � ���� for positive correlation.

region together with the throughput-optimal policy for memo-
ryless channels. We develop the state-action frequency frame-
work in Section II-C for channels with memory and use it to
explicitly characterize the system stability region. We prove the
throughput optimality of the FBDC policy in Section II-D and
analyze simple myopic policies in Section II-E. We extend our
results to the general case in Section III where we also develop
outer bounds on the stability region and an upper bound on
the sum throughput achieved by a simple myopic policy. We
present simulation results in Section IV and conclude this paper
in Section V.

II. TWO-QUEUE SYSTEM

A. System Model

Consider two parallel queues with time-varying channels
and one server receiving data packets from the queues. Time
is slotted into unit-length time slots equal to one packet trans-
mission time; . It takes one slot for the server
to switch from one queue to the other, and denotes the
queue at which the server is present at slot . Let the i.i.d.
stochastic process with average arrival rate denote
the number of packets arriving to queue at time slot , where

. Let
be the channel (connectivity) process at time slot , where

for the OFF state (disconnected) and for
the ON state (connected). We assume that the processes ,

, , and are independent.
The process , is assumed to form the

two-state Markov chain with transition probabilities
and as shown in Fig. 2, i.e., the Gilbert–Elliot channel
model [1], [19], [23], [45], [46]. The Gilbert–Elliot channel
model has been commonly used in modeling and analysis
of wireless channels with memory [1], [23], [42], [45], [46].
For ease of exposition, we present the analysis in this sec-
tion for the symmetric Gilbert–Elliot channel model, i.e.,

, and we state the corresponding results
for the nonsymmetric case in Appendix B. The steady-state
probability of each channel state is equal to 0.5 in the sym-
metric Gilbert–Elliot channel model. Moreover, for ,

, independently and
identically distributed (i.i.d.) at each time slot. We refer to this
case as the memoryless channels case.

Let be the queue lengths at time slot
. We assume that and are known to the server at the

beginning of each time slot. Let denote the action
taken at the beginning of slot , where if the server stays
with the current queue and if it switches to the other
queue. One packet is successfully received from queue at time
slot , if , , and .

Definition 1 (Stability [29], [31]): The system is stable if

For the case of integer-valued arrival processes, this stability cri-
terion implies the existence of a long run stationary distribution
for the queue sizes with bounded first moments [29].

Definition 2 (Stability Region [29], [31]): The stability re-
gion is the set of all arrival rate vectors such
that there exists a control algorithm that stabilizes the system.
The -stripped stability region is defined for some as

. A policy is said to
achieve -fraction of , if it stabilizes the system for all input
rates inside , where for a throughput-optimal policy.

In the following, we start by explicitly characterizing the sta-
bility region for both memoryless channels and channels with
memory and show that channel memory can be exploited to en-
large the stability region significantly.

B. Motivation: Channels Without Memory

In this section, we assume that so that the channel
processes are i.i.d. over time. The stability region of the cor-
responding system with no switchover time was established in
[39]: and . Note that when
the switchover time is zero, the stability region is the same
for both i.i.d. and Markovian channels, which is a special case
of the results in [31]. However, when the switchover time is
nonzero, the stability region is reduced considerably. Moreover,
simple exhaustive-type policies perform well. Specifically, the
gated policy under which the server serves all the packets that
are present at a queue upon arrival at the queue is throughput
optimal.

Theorem 1: The stability region of the system with i.i.d. chan-
nels and one-slot switchover delay is given by

(1)

In addition, the simple exhaustive (Gated) policy is throughput
optimal.

The proof is omitted for brevity but it can be found in our tech-
nical report [14]. The basic idea behind the proof is that as soon
as the server switches to queue under some policy, the time to
the ON state is a geometric random variable with mean 2 slots,
independent of the policy. Therefore, a necessary condition for
stability is given by the stability condition for a system without
switchover times and i.i.d. service times with geometric distri-
bution of mean 2 slots as given by (1). The fact that the simple
gated policy is throughput optimal follows from the observation
that as the arrival rates are close to the boundary of the stability
region, the fraction of time the server spends receiving packets
dominates the fraction of time spent on switching [14], [41].

As depicted in Fig. 3, the stability region of the system is con-
siderably reduced for nonzero switchover delay. Note that for
systems in which channels are always connected, the stability
region is given by , and is not affected
by the switchover delay [41]. Therefore, it is the combination of
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Fig. 3. Stability region under memoryless (i.i.d.) channels and channels with
memory (Markovian with � � ���) with and without switchover delay.

switchover delay and random connectivity that result in funda-
mental changes in system stability.

Remark 1: The results in this section can easily be general-
ized to the case of nonsymmetric Gilbert–Elliot channels with
arbitrary switchover delays. For a system of two queues with ar-
bitrary switchover delays and i.i.d. channels with probabilities

, is the set of all such that
[14]. Moreover, simple exhaustive (gated) policy is

throughput optimal.

C. Channels With Memory—Stability Region

When switchover times are nonzero, the memory in the
channel can be exploited to improve the stability region con-
siderably. Moreover, as , the stability region tends to
that achieved by the system with no switchover time and for

it lies between the stability regions corresponding
to the two extreme cases and as shown in Fig. 3.

We start by analyzing the corresponding system with satu-
rated queues, i.e., both queues are always nonempty. Let
denote the set of all time-average expected departure rates that
can be obtained from the two queues in the saturated system
under all possible policies that are possibly history dependent,
randomized, and nonstationary. We will show that . We
prove the necessary stability conditions in the following Lemma
and establish sufficiency in the next section.

Lemma 1: We have that

The proof is omitted here for brevity and it can be found in [14].
An intuitive explanation is as follows. Given a policy for the
dynamic queuing system, consider the saturated system with the
same sample path of channel realizations and the same set of
actions as policy . It is clear that the total number of departures
from each queue in the saturated system is no less than that in
the dynamic queuing system.

Now, we establish the region by formulating the system dy-
namics as an MDP. Let denote
the system state at time where is the set of all states. Also, let

denote the action taken at time slot where is
the set of all actions at each state. Let
denote the full history of the system state until time and let

denote the set of all probability distributions on . For
the saturated system, a policy is a mapping from the set of all
possible past histories to [5], [26]. A policy is said to be
stationary if, given a particular state, it applies the same deci-
sion rule in all stages and under a stationary policy, the process

forms a Markov chain. In each time slot ,
the server observes the current state and chooses an action .
Then, the next state is realized according to the transition prob-
abilities , which depend on the random channel pro-
cesses. Now, we define the reward functions as follows:

(2)

(3)

and otherwise. That is, a reward is ob-
tained when the server stays at an ON channel. We are interested
in the set of all possible time-average expected departure rates;
therefore, given some , , we define the
system reward at time by .
The average reward of policy is defined as follows:

Given some , we are interested in the policy
that achieves the maximum time-average expected reward

. This optimization problem is a discrete
time MDP characterized by the state transition probabilities

with eight states and two actions per state. Fur-
thermore, any given pair of states are accessible from each
other (i.e., there exists a positive probability path between
the states) under some stationary-deterministic policy. There-
fore, this MDP belongs to the class of weakly communicating
MDPs2[34].

State-Action Frequency Approach: For weakly communi-
cating MDPs with finite state and action spaces and bounded
rewards, there exists an optimal stationary-deterministic policy,
given as a solution to standard Bellman’s equation, with optimal
average reward independent of the initial state [34, Th. 8.4.5].
This is because if a stationary policy has a nonconstant gain
over initial states, one can construct another stationary policy
with constant gain which dominates the former policy, which is
possible since there exists a positive probability path between
any two recurrent states under some stationary policy [26]. The
state-action frequency approach, or the dual linear program
(LP) approach, given in the following provides a systematic and
intuitive framework to solve such average cost MDPs, and it
can be derived using Bellman’s equation and the monotonicity
property of dynamic programs [34, Sec 8.8]

(4)

subject to the balance equations

(5)

the normalization condition

(6)

2In fact, other than the trivial suboptimal policy � that decides to stay with
the current queue in all states, all stationary-deterministic policies are unichain,
namely, they have a single recurrent class regardless of the initial state. Hence,
when � is excluded, we have a unichain MDP.
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and the nonnegativity constraints

(7)

The feasible region of this LP constitutes a polytope called
the state-action polytope and the elements of this polytope

are called state-action frequency vectors. Clearly,
is a convex, bounded, and closed set. Note that can
be interpreted as the stationary probability that action stay is
taken at state . More precisely, a point corresponds to
a stationary-randomized policy that takes action at
state w.p.

(8)
where is the set of recurrent states given by

, and actions are arbitrary for transient
states [26], [34].

Next, we argue that the empirical state-action frequencies cor-
responding to any given policy (possibly randomized, nonsta-
tionary, or non-Markovian) lie in the state-action polytope .
This ensures us that the optimal solution to the dual LP in (4) is
over possibly nonstationary and history-dependent policies. In
the following, we give the precise definition and the properties
of the set of empirical state-action frequencies. We define the
empirical state-action frequencies as

(9)

where is the indicator function of an event , i.e., if
occurs and otherwise. Given a policy , let be the

state transition probabilities under the policy and an
initial state distribution with . We let be
the expected empirical state-action frequencies under policy
and initial state distribution

We let (as in [26] and [34]) be the limiting
expected state-action frequency vector, if it exists, starting from
an initial state distribution , under a general policy (possibly
randomized, nonstationary, or non-Markovian):

(10)

Let the set of all limit points be defined by

Similarly, let denote the set of all limit points of a partic-
ular class of policies , starting from an initial state distribu-
tion . We let denote the set of all stationary-deterministic
policies and we let denote the closed convex hull of set

. The following theorem establishes the equivalency between

the set of all achievable limiting state-action frequencies and the
state-action polytope.

Theorem 2: [26, Th. 3.1], [34, Th. 8.9.3]: For any initial state
distribution

We have since convex combinations of vec-
tors in correspond to limiting expected state-action fre-
quencies for stationary-randomized policies, which can also be
obtained by time sharing between stationary-deterministic poli-
cies. The inverse relation holds since for
weakly communicating MDPs, there exists a stationary-deter-
ministic optimal policy independent of the initial state distri-
bution. Next, for any stationary-deterministic policy, the under-
lying Markov chain is stationary, and therefore, the limits
exists and satisfies the constraints (5)–(7) of the polytope .
Using and the convexity of establishes

. Furthermore, via (8), every corresponds to a
stationary-randomized policy for which the limits exists,
establishing .

Letting denote the set of extreme (corner) points of
, an immediate corollary to Theorem 2 is as follows.

Corollary 1: [26], [34]: For any initial state distribution

The intuition behind this corollary is that if is a corner point of
, it cannot be expressed as a convex combination of any two

other elements in ; therefore, for each state , only one action
has a nonzero probability.

Finally, we have that under any policy, the probability of a
large distance between the empirical expected state-action fre-
quency vectors and the state-action polytope decays expo-
nentially fast in time. This result is similar to the mixing time
of an underlying Markov chain to its steady state and we utilize
such convergence results within the Lyapunov drift analysis for
the dynamic queuing system in Section II-D.

Rate Polytope : Using the theory on state-action polytopes
in the previous section, we characterize the set of all achievable
time-average expected rates in the saturated system, . The
following linear transformation of the state-action polytope
defines the 2-D rate polytope [26]

where and are the reward functions defined in
(2) and (3). This polytope is the set of all time-average expected
departure rate pairs that can be obtained in the saturated system,
i.e., it is the rate region . An explicit way of characterizing

is given in Algorithm 1.
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Algorithm 1 Stability Region Characterization

1:Given , solve the following Linear
Program (LP)

(11)

2:For a given ratio, there exists an optimal solution
of the LP in (11) at a corner point of . Find all

possible corner points and take their convex combination.

The fundamental theorem of linear programming guar-
antees that an optimal solution of the LP in (11) lies at a
corner (extreme) point of the polytope [8]. Furthermore,
the one-to-one correspondence between the extreme points of
the polytope and stationary-deterministic polices stated in
Corollary 1 is useful for finding the solutions of the earlier LP
for all possible ratios. Namely, there are a total of
stationary-deterministic policies since we have eight states and
two actions per state and finding the rate pairs corresponding
to these 256 stationary-deterministic policies and taking their
convex combination gives . Fortunately, we do not have to
go through this tedious procedure. The fact that at a vertex of
(11) either or has to be zero for each
provides a useful guideline for analytically solving this LP. The
following theorem characterizes the stability region explicitly.
It shows that the stability region enlarges as the channel has
more memory and that there is a critical value of the channel
correlation parameter given by at which the
structure of the stability region changes.

Theorem 3: The rate region is the set of all rates ,
that for satisfy

and for satisfy

Observation 1: The maximum achievable sum rate in the sat-
urated system is given by

Fig. 4. Stability region under channels with memory, with and without
switchover delay for (a) � � ���� � � and (b) � � ���� � � .

The proof of the theorem is lengthy and it is omitted here
for brevity; however, it can be found in [14]. Observation 1 is
proved in Appendix A and it constitutes an example of how to
solve the LP in (11) for the case of, , i.e., the sum-rate
maximization. The proof of Theorem 3 is based on solving the
LP in (11) for all weights and to find the corner points
of , and then applying Algorithm 1. This derivation can be
found in [14].

Note that is the boundary of the stability re-
gion for the system without switchover delay analyzed in [39],
where the probability that at least one channel is in ON state
is 3/4. Therefore, is the throughput loss due to the one slot
switchover delay. This throughput loss corresponds to the prob-
ability that the server is at a queue with an OFF state when the
other queue is in an ON state.

The stability regions for the two ranges of are displayed in
Fig. 4(a) and 4(b). As , the stability region converges to
that of the i.i.d. channels with ON probability equal to 0.5. In this
regime, knowledge of the current channel state is of no value. As

the stability region converges to that for the system with
no switchover time in [39]. In this regime, the channels are likely
to stay the same for many consecutive time slots; therefore, the
effect of switching delay is negligible.

The rate region for the case of nonsymmetric Gilbert–El-
liot channels is given in Appendix B.

Remark 2: The stability region characterization in terms of
state-action frequencies is general. For instance, this technique
can be used to establish the stability regions of systems with
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more than two queues, arbitrary switchover times, and more
complicated Markovian channel processes. Of course, explicit
characterization as in Theorem 3 may not always be possible.

D. FBDC Policy

We propose an FBDC policy inspired by the characterization
of the stability region in terms of state-action frequencies and
prove that it is throughput optimal asymptotically in the frame
length. The motivation behind the FBDC policy is that a policy

that achieves the optimization in (11) for given weights
and for the saturated system should achieve a good perfor-
mance in the original system when the queue sizes and
are used as weights. This is because first, the policy will
lead to similar average departure rates in both systems for suffi-
ciently high queue sizes, and second, the usage of queue sizes as
weights creates self-adjusting policies that capture the dynamic
changes due to stochastic arrivals similar to MW scheduling in
[38]. Specifically, we divide the time into equal-size intervals of

slots and let and be the queue lengths at the
beginning of the interval. We find the deterministic policy
that optimally solves (11) when and are used
as weights and then apply this policy in each time slot of the
frame. The FBDC policy is described in Algorithm 2 in details.

Algorithm 2 FBDC Policy

1:Find the policy that optimally solves the following LP:

(12)

where is the rate polytope derived in Section II-C.

2:Apply in each time slot of the frame.

There exists an optimal solution of the LP in (12)
that is a corner point of [8] and the policy that corresponds
to this point is a stationary-deterministic policy by Corollary 1.

Theorem 4: For any , there exists a large enough frame
length such that the FBDC policy stabilizes the system for all
arrival rates within the -stripped stability region .

An immediate corollary to this theorem is as follows.

Corollary 2: The FBDC policy is throughput optimal asymp-
totically in the frame length.

The proof of Theorem 4 is given in Appendix C. It performs
a drift analysis using the standard quadratic Lyapunov func-
tion. However, it is novel in utilizing the state-action frequency
framework of MDP theory within the Lyapunov drift arguments.
The basic idea is that, for sufficiently large queue lengths, when
the optimal policy solving (12), , is applied over a sufficiently
long frame of slots, the average output rates of both the ac-
tual system and the corresponding saturated system converge to

. For the saturated system, the probability of a large differ-
ence between empirical and steady-state rates decreases expo-
nentially fast in [26], similar to the convergence of a posi-
tive recurrent Markov chain to its steady state. Therefore, for
sufficiently large queue lengths, the difference between the em-
pirical rates in the actual system and also decreases with .

TABLE I
FBDC POLICY MAPPING FROM THE QUEUE SIZES TO THE CORNERS OF

, � � � � � � � � � � � SHOWN IN FIG. 4(A), FOR � � � . FOR EACH

STATE � � ������ � ���� � ����, THE OPTIMAL ACTION IS SPECIFIED. THE

THRESHOLDS ON� 	� ARE �� 
 � �	����� ,
 � �����	������ �,
�� 
 � �� � �� � �	��� ��, 
 � ��� �� 	�

TABLE II
FBDC POLICY MAPPING FROM THE QUEUE SIZES TO THE CORNERS

OF , � � � � � � � SHOWN IN FIG. 4(B), FOR � � � . FOR EACH

STATE � � ������ � ���� � ����� THE OPTIMAL ACTION IS SPECIFIED.
THE THRESHOLDS ON � 	� ARE �� 
 � �	���� ���� � ����,

�� 
 � ��� ����� ���

This ultimately results in a negative Lyapunov drift when is in-
side the -stripped stability region since from (12), we have

.
The FBDC policy is easy to implement since it does not re-

quire the arrival rate information for stabilizing the system for
arrival rates in , and it does not require the solution
of the LP (12) for each frame. Instead, one can solve the LP
(12) for all possible pairs only once in advance and
create a mapping from pairs to the corners of the sta-
bility region. Then, this mapping can be used to find the corre-
sponding optimal saturated-system policy to be applied during
each frame. Solving the LP in (12) for all possible
pairs is possible because first, the solution of the LP will be one
of the corner points of the stability region in Fig. 4, and second,
the weights , which are the inputs to the LP, determine
which corner point is optimal. The theory of linear programming
suggests that the solution to the LP in (12) depends only on the
relative value of the weights with respect to each other.
Namely, changing the queue size ratio varies the slope
of the objective function of the LP in (12), and the value of this
slope with respect to the slopes of the lines in the sta-
bility region in Fig. 4 determines which corner point the FBDC
policy operates on. These mappings from the queue size ratios
to the corners of the stability region are shown in Table I for the
case of and in Table II for the case of . The cor-
responding mappings for the FBDC policy for the case of non-
symmetric Gilbert–Elliot channels are shown in Appendix B.
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Given these tables, one no longer needs to solve the LP (12) for
each frame, but just has to perform a simple table lookup to de-
termine the optimal policy to use in each frame.

In the next section, we provide an upper bound to the average
packet delay under the FBDC policy, which is linear in . This
suggest that the packet delay increases with increasing frame
lengths as expected. However, such increases are at most linear
in . Note that the FBDC policy can also be implemented
without any frames by setting , i.e., by solving the LP
in Algorithm 2 in each time slot. The simulation results in
Section IV suggest that the FBDC policy implemented without
frames has a similar throughput performance to the original
FBDC policy. This is because for large queue lengths, the
optimal solution of the LP in (12) depends on the queue length
ratios, and hence, the policy that solves the LP optimally
does not change fast when the queue lengths get large. When
the policy is implemented without the use of frames, it be-
comes more adaptive to dynamic changes in the queue lengths,
which results in better delay performance than the frame-based
implementations. We discuss more properties of the FBDC
policy, such as its complexity and implementation tradeoffs in
Section III-D1.

Delay Upper Bound: The delay upper bound in this section
is easily derived once the stability of the FBDC algorithm is
established. The stability proof utilizes the following quadratic
Lyapunov function:

which represents a quadratic measure of the total load in the
system at time slot . Let denote the time slots at the frame
boundaries, , and define the -step conditional drift

The following drift expression follows from the stability anal-
ysis in Appendix C:

where , is strictly inside the -stripped stability
region , and represents a measure of the distance of

to the boundary of . Taking expectations with respect to
, writing a similar expression over the frame boundaries

, summing them, and telescoping these
expressions lead to

Using and , we have

For , we have .
Upon taking expectations, we have

. Therefore, for , we have

Dividing by the total arrival rate into the system and ap-
plying Little’s law, the average delay is upper bounded by an
expression that is linear in the frame length .

In the next section, we consider myopic policies that do not
require the solution of an LP and that are able to stabilize the
network for arrival rates within over 90% of the stability region.
Simulation results in Section IV suggest that the myopic poli-
cies may in fact achieve the full stability region while providing
better delay performance than the FBDC policy for most arrival
rates.

E. Myopic Control Policies

We investigate the performance of simple myopic policies that
make scheduling/switching decisions according to weight func-
tions that are products of the queue lengths and the channel pre-
dictions for a small number of slots into the future. We refer to
a myopic policy considering future time slots as the -looka-
head myopic policy. We implement these policies over frames
of length time slots where during the frame, the queue
lengths at the beginning of the frame, and , are
used for weight calculations during the frame. Specifically, in
the OLM policy, assuming that the server is with queue 1 at
some , the weight of queue 1 is
the product of and the summation of the current state
of the channel process and the probability that will be in
the ON state at . The weight of queue 2 is calculated sim-
ilarly; however, the current state of the channel process is
not included in the weight since queue 2 is not available to the
server in the current time slot. The detailed description of the
OLM policy is given in Algorithm 3 as follows.

Algorithm 3 OLM Policy

1:Assuming that the server is currently with queue 1 and the
system is at the frame, calculate the following weights in
each time slot of the current frame

(13)

2:If stay with queue 1; otherwise, switch to
the other queue. A similar rule applies for queue 2.

Next, we establish a lower bound on the stability region of
the OLM policy by comparing its drift over a frame to the drift
of the FBDC policy.
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TABLE III
OLM POLICY MAPPING FROM THE QUEUE SIZES TO THE CORNERS OF

,� � � � � � � � � � � SHOWN IN FIG. 4(A), FOR � � � . FOR EACH

STATE � � ������ � ���� � ���� THE OPTIMAL ACTION IS SPECIFIED. THE

THRESHOLDS ON � 	� ARE �� 
 � �	��� ��, 
 � ��� ��	��� ��,
�� 
 � ��� ��	��� ��,
 � ��� ��	�. THE CORRESPONDING THRESHOLDS

FOR THE FBDC POLICY ARE �� 
 � 
 � �� 
 � 
 . FOR EXAMPLE, CORNER

� IS CHOSEN IN THE FBDC POLICY IF � � � 	� � 
 , WHEREAS IN THE

OLM POLICY IF � � � 	� � 


TABLE IV
OLM POLICY MAPPING FROM THE QUEUE SIZES TO THE CORNERS OF

, � � � � � � � SHOWN IN FIG. 4(B), FOR � � � . FOR EACH STATE

� � ������ � ���� � ����� THE OPTIMAL ACTION IS SPECIFIED. THE

THRESHOLDS ON � 	� ARE �� 
 � �	��� ��, �� 
 � ��� ��	�. THE

CORRESPONDING THRESHOLDS FOR THE FBDC POLICY ARE �� 
 � �� 
 . FOR

EXAMPLE, CORNER � IS CHOSEN IN THE FBDC POLICY IF � � � 	� � 
 ,
WHEREAS IN THE OLM POLICY IF � � � 	� � 


Theorem 5: The OLM policy achieves at least -fraction of
the stability region asymptotically in where .

The proof is constructive and it is establish in various steps in
Appendix D. The basic idea behind the proof is that the OLM
policy produces mappings from the set of queue sizes to the
stationary-deterministic policies corresponding to the corners
of the stability region. These mappings are similar to those of
the FBDC policy; however, the thresholds on the queue size
ratios are determined according to (13). Tables III and
IV show these mappings for and , respectively.
These mappings are in general different from the corresponding
mappings of the FBDC policy in Tables I and II.

Therefore, for a given ratio of the queue sizes , the
FBDC and the OLM policies may apply different stationary-de-
terministic policies corresponding to different corner points of

, denoted by and , respectively. The shaded intervals
of in Tables III and IV are the intervals in which the
OLM and the FBDC policies apply different policies. The
corresponding mapping for the OLM policy for the case of
nonsymmetric Gilbert–Elliot channels is given in Appendix B.
The proof of Theorem 5 is then completed by first establishing
the bound on the weighted average departure rate of the OLM
policy with respect to that of the FBDC policy in (14), and then

showing that this is a sufficient condition for the OLM policy
to achieve at least 90% of asymptotically in

(14)

A similar analysis shows that the 2-lookahead myopic
policy achieves at least 94% of , while the 3-lookahead
myopic policy achieves at least 96% of . The -looka-
head myopic policy is the same as earlier except that the
following weight functions are used for scheduling deci-
sions: Assuming the server is with queue 1 at time slot ,

and
.

III. GENERAL SYSTEM

In this section, we extend the results developed in the previous
section to the general case of an arbitrary number of queues in
the system.

A. Model

Consider the same model as in Section II-A with
queues for some as shown in Fig. 1. Let the i.i.d. process

with arrival rate denote the number of arrivals to queue
at time slot , where .

Let be the channel (connectivity) process of queue
, that forms the two-state Markov chain with tran-

sition probabilities and as shown in Fig. 2. We assume
that the processes and

are independent. It takes one slot for the server to
switch from one queue to the other, and
denotes the queue at which the server is present at slot . Let

denote the state of the cor-
responding saturated system at time where is the set of all
states. The action in each time slot is to choose the queue
at which the server will be present in the next time slot, i.e.,

where is the set of all actions at each
state.

B. Stability Region

In this section, we characterize the stability region of the gen-
eral system under nonsymmetric channel models.3 For the case
of i.i.d. channel processes, we explicitly characterize the sta-
bility region and the throughput-optimal policy. For Markovian
channel models, we extend the stability region characterization
in terms of state-action frequencies to the general system. Fur-
thermore, we develop a tight outer bound on the stability region
using an upper bound on the sum throughput and show that a
simple myopic policy achieves this upper bound for the corre-
sponding saturated system.

A dynamic server allocation problem over parallel channels
with randomly varying connectivity and limited channel sensing
has been investigated in [1], [2] and [45] under the Gilbert–El-
liot channel model. The goal in [1], [2] and [45] is to maximize
the sum rate for the saturated system, where it is proved that a

3For Markovian (Gilbert–Elliot) channels, we preserve the symmetry of the
channel processes across the queues.
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myopic policy is optimal. In this section, we prove that a my-
opic policy is sum-rate optimal under the Gilbert–Elliot channel
model and one-slot server switchover delay. Furthermore, our
goal is to characterize the set of all achievable rates, i.e., the
stability region, together with a throughput-optimal scheduling
algorithm for the dynamic queuing system.

Memoryless Channels: The results established in
Section II-B for the case of i.i.d. connectivity processes
can easily be extended to the system of queues with non-
symmetric i.i.d. channels as the same intuition applies for the
general case. We state this result in the following theorem
whose proof can be found in [14].

Theorem 6: For a system of queues with arbitrary
switchover delays and i.i.d. channels with probabilities

, the stability region is given by

In addition, the simple exhaustive (gated) policy is throughput
optimal.

As for the case of two queues, the simultaneous presence of
randomly varying connectivity and the switchover delay sig-
nificantly reduces the stability region as compared to the cor-
responding system without switchover delay analyzed in [39].
Furthermore, when the channel processes are memoryless, no
policy can take advantage of the channel diversity as the simple
queue-blind exhaustive-type policies are throughput optimal.

In the next section, we show that, similar to the case of two
queues, the memory in the channel improves the stability region
of the general system.

Channels With Memory: Similar to Section II-C, we start by
establishing the rate region by formulating an MDP for rate
maximization in the corresponding saturated system. The re-
ward functions in this case are given as follows:

(15)

and otherwise, where denotes the queue at which
the server is present. That is, one reward is obtained when the
server stays at a queue with an ON channel. Given some

, , we define the system reward at
time as

The average reward of policy is defined as

Therefore, the problem of maximizing the time-average ex-
pected reward over all policies, , is a discrete
time MDP characterized by the state transition probabilities

with states and possible actions per state.
Furthermore, similar to the two-queue system, there exists a

positive probability path between any given pair of states under
some stationary-deterministic policy. Therefore, this MDP
belongs to the class of weakly communicating MDPs [34] for
which there exists a stationary-deterministic optimal policy
independent of the initial state [34]. The state-action polytope,

is the set of state-action frequency vectors that satisfy the
balance equations

(16)

the normalization condition

and the nonnegativity constraints

where the transition probabilities are functions of the
channel parameters and . The following linear transfor-
mation of the state-action polytope defines the rate polytope

, namely, the set of all time-average expected rate pairs that
can be obtained in the saturated system

where the reward functions , are de-
fined in (15). Algorithm 4 gives an alternative characterization
of the rate region .

Algorithm 4 Stability Region Characterization

1:Given , , solve the following LP

(17)

2:There exists an optimal solution of this LP that
lies at a corner point of . Find all possible corner points and
take their convex combination.

Similar to the two-queue case, the fundamental theorem of
linear programming guarantees existence of an optimal solution
to (17) at a corner point of the polytope [8]. We will establish
in the next section that the rate region is in fact achievable
in the dynamic queuing system, which will imply that .
For the case of three queues, Fig. 5 shows the stability region

. As expected, the stability region is significantly reduced as
compared to the corresponding system with zero switchover de-
lays analyzed in [39].

Analytical Outer Bound for the Stability Region: In this sec-
tion, we first derive an upper bound to the sum throughput in the
saturated system and then use it to characterize an outer bound
to the rate region . Let denote the prob-
ability that all channels are in OFF state in steady state.
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Fig. 5. Stability region for three parallel queues for � � � � ���.

Lemma 2: An upper bound on the sum rate in the saturated
system is given by

(18)

The proof is given in Appendix E. In the next section, we
propose a simple myopic policy for the saturated system that
achieves this upper bound. Similar to the case of two queues,
the surface is one of the boundaries
of the stability region for the system without switchover
delay analyzed in [39], where the probability that at least 1
channel is in ON state in steady state is . Therefore,

is the throughput loss due to one
slot switchover delay in our system. The analysis of the myopic
policy in the next section shows that this throughput loss due to
switchover delay corresponds to the probability that the server
is at a queue with OFF state when at least one other queue is in
ON state. For the case of queues, the sum throughput
upper bound in Lemma 2 is the hexagonal region at the center
of the plot in Fig. 5.

Because any convex combination of ,
must lie under the sum-rate surface, (18) is in fact an outer bound
on the whole rate region . Furthermore, no queue can achieve
a time-average expected rate that is greater than the steady-state
probability that the corresponding queue is in ON state, i.e.,

. Therefore, the intersection of these sur-
faces in the -dimensional space constitutes an outer bound for
the rate region . Note that this outer bound is tight in that the
sum-rate surface of the maximum rate region as well as the
corner points coincide with the outer bound.
This outer bound with respect to the rate region are displayed in
Fig. 6 for the case of nodes.

C. Myopic Policy for the Saturated System

We show in this section that a simple and intuitive policy,
termed the greedy myopic (GM) policy, achieves the sum-rate
maximization for the saturated system. This policy is a greedy
policy in that under the policy, if the current queue is available
to serve, the server serves it. Otherwise, the server switches to a
queue with ON channel state, if such a queue exists. The policy
is described in Algorithm 5. Recall that denotes the queue
the server is present at time slot .

Fig. 6. Stability region outer bound for three parallel queues for � � � �

���.

Algorithm 5 GM Policy

1:For all time slots , if , serve queue .

2:Otherwise, if , such that
, among the queues that have ON channel state,

switch to the queue with the smallest index in a cyclic order
starting from queue .

The cyclic switching order under the GM policy is as
follows: If the server is at queue and the decision is to
switch, then the server switches to queue , where for

, and for
if , such that , we

have , if not, then
.

Theorem 7: The GM policy achieves the sum-rate upper
bound.

Proof: Given a fixed decision rule at each state, the system
state forms a finite state space, irreducible and positive recurrent
Markov chain. Therefore, under the GM policy, the system state
converges to a steady-state distribution. We partition the total
probability space into three disjoint events.

: the event that all the channels are in OFF state.
: the event that at least one channel is in ON state and

the server is at a queue with ON state.
: the event that at least one channel is in ON state and

the server is at a queue with OFF state.
Since these events are disjoint and cover the whole sample
space, we have

We have by definition. Since the GM policy
decides to serve the current queue if it is in ON state,
gives the sum throughput for the GM policy. Therefore,
we have that under the GM policy

We show that . Consider a
time slot in steady state and let be the number of channels
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with ON state at time slot and let be the event that the
server is at a queue with OFF state at time slot . We have

Since is a time slot in steady state, we have that
. Therefore, is given by

We have because the GM policy
chooses a queue with ON state if there is such a queue. Similarly,

is the probability that the queue chosen
by the GM policy keeps its OFF channel state, given by

Using Bayes’ rule on the event , we have that
is given by

which is equivalent to .
Therefore, is given by

As mentioned in the previous section, is the throughput
loss due to switching as it represents the fraction of time the
server is at a queue with OFF state when there are queues with
ON state in the system.

D. FBDC Policy

In this section, we generalize the FBDC policy to the gen-
eral system and show that it is throughput optimal asymptoti-

cally in the frame length for the general case. The FBDC al-
gorithm for the general system is very similar to the FBDC al-
gorithm described for two queues in Section II-D. Specifically,
the time is divided into equal-size intervals of slots. We find
the stationary-deterministic policy that optimally solves (17) for
the saturated system when are used as
weights and then apply this policy in each time slot of the frame
in the actual system. The FBDC policy is described in Algo-
rithm 6 in details.

Algorithm 6 FBDC Policy

1:Find the optimal solution to the following LP:

(19)

where is the rate region for the saturated system.

2:The optimal solution in step 1 is a corner point
of that corresponds to a stationary-deterministic policy
denoted by . Apply in each time slot of the frame.

Theorem 8: For any , there exists a large enough frame
length such that the FBDC policy stabilizes the system for all
arrival rates within the -stripped stability region .

The proof is very similar to the proof of Theorem 4 and
it can be found in [14]. The theorem establishes the asymp-
totic throughput optimality of the FBDC policy for the general
system.

Remark 3: The FBDC policy provides a new framework for
developing throughput-optimal policies for network control.
Namely, given any queuing system whose corresponding satu-
rated system is Markovian with finite state and action spaces,
throughput optimality is achieved by solving an LP in order to
find the stationary MDP solution of the corresponding saturated
system and applying this solution over a frame in the actual
system. In particular, the FBDC policy can stabilize systems
with arbitrary switchover times and more complicated Markov
modulated channel structures. The FBDC policy can also be
used to achieve throughput optimality for classical network
control problems such as the parallel queuing systems in [32]
and [39], scheduling in switches in [35], or scheduling under
delayed channel state information [44].

Similar to the delay analysis in Section II-D1 for the two-
queue system, a delay upper bound that is linear in the frame
length can be obtained for the FBDC policy for the general
system. Moreover, the FBDC policy for the general system can
also be implemented without any frames by setting ,
i.e., by solving the LP in Algorithm 6 in each time slot. The
simulation results regarding such implementations suggest that
the FBDC policy implemented without frames has a similar
throughput performance and an improved delay performance as
compared to the original FBDC policy.

Discussion: For systems with switchover delay, it is well
known that the celebrated MW scheduling policy is not
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throughput optimal [11]. In the absence of randomly varying
connectivity, variable frame-based generalizations of the
MW policy are throughput optimal [15]. However, when
the switchover delay and randomly varying connectivity are
simultaneously present in the system, the FBDC policy is
the only policy to achieve throughput optimality and it has a
significantly different structure from the MW policy.

The FBDC policy for a fixed frame length does not require
the arrival rate information for stabilizing the system for arrival
rates in ; however, it requires the knowledge of the
channel connectivity parameters and . To deal with this
problem, one can estimate the channel parameters periodically
and use these estimates to solve the LP in (19). This approach,
of course, incurs a throughput loss depending on how large the
estimation error is.

As mentioned in Remark 3, the FBDC policy can stabilize a
large class of network control problems whose corresponding
saturated system is weakly communicating Markovian with a
finite state and action spaces. However, one caveat of the FBDC
policy is that the state space of the LP that needs to be solved
increases exponentially with the number of links in the system.
The celebrated MW policy (which is not stabilizing for the
system considered here) has linear complexity for the single
server system considered in this paper. However, for a general
multiserver system or a single hop network with interfering
links, the MW policy has to solve a maximum-independent set
problem over all links at each time slot, which is a hard problem
whose state space is exponential in the number of links . The
FBDC policy on the other hand, only has to solve an LP, for
which there are standard solvers available such as CPLEX. Fur-
thermore, the FBDC policy has to solve the LP once per frame,
whereas the MW policy performs maximum-independent set
computation each time slot. If the frame length for the FBDC
policy is chosen to be bigger than the computational complexity
of the LP in (19), then the per-slot computational complexity
of the algorithm is reduced to [33]. Such a frame-based
implementation is also possible for the MW policy to reduce
its complexity to per time slot [33]. On the other hand,
the shortcoming of such an approach for both policies is the
increase in delay as a result of the larger frame length. This
outlines a tradeoff between complexity and delay, whereby a
reduction in complexity by adjusting the frame length comes at
the expense of delay.

The MW policy was first introduced in [38] for multihop
networks and despite its exponential complexity in number of
links, it provided a useful structure for designing queue length-
based scheduling algorithms. Later, the structure suggested by
the MW policy lead to suboptimal but low-complexity algo-
rithms, as well as distributed implementations of the policy for
certain systems (see, e.g., greedy-maximal network scheduling
in [43]). Our aim in proposing the FBDC policy and the state-ac-
tion frequency framework for network scheduling is to give a
structure for throughput-optimal algorithms for systems with
time-varying channels and switchover delays, and hopefully to
provide insight into designing scalable algorithms that can sta-
bilize such systems. The myopic control policies we discuss in
the next section constitute a first attempt toward characterizing
the structure of more scalable algorithms.

E. Myopic Control Policies

In this section, we generalize myopic policies that we intro-
duced for the two-queue system in Section II to the general
system. Myopic policies make scheduling decisions based on
queue lengths and simple channel predictions into the future.
We present an implementation of these policies over frames
of length time slots where during the frame, the queue
lengths at the beginning of the frame, ,
are used for weight calculations during the frame. We describe
the OLM policy for the general system in Algorithm 7.

Algorithm 7 OLM Policy

1:Assuming that the server is currently with queue 1 and the
system is at the frame, calculate the following weights in
each time slot of the current frame

(20)

2:If , then stay with queue 1.
Otherwise, switch to a queue that achieves

A similar rule applies when the server is at other queues.

The technique used for the case of two queues for analyzing
the stability region achieved by the OLM policy is extremely
cumbersome to generalize to the system with queues. There-
fore, for the general system, we have investigated the perfor-
mance of the OLM policy in simulations. The simulation results
in Section IV suggest that the OLM policy may achieve the full
stability region while providing a better delay performance as
compared to the FBDC policy.

Similar to the FBDC policy, the myopic policies can be imple-
mented without the use of frames by setting , i.e., by uti-
lizing the current queue lengths for updating the decision rules
every time slot. This could potentially lead to more delay-ef-
ficient policies that are more adaptive to dynamic changes in
queue lengths. We elaborate on this through the numerical re-
sults in the next section.

Similar to the system with two queues, the -looka-
head myopic policy is the same as earlier except that the
following weight functions are used for scheduling deci-
sions: Assuming the server is with queue 1 at time slot ,

and
.

These policies have very low complexity and they are simpler
to implement as compared to the FBDC policy.

IV. NUMERICAL RESULTS

We performed simulation experiments that present average
queue occupancy results for the FBDC, the OLM, and the MW
policies for systems with or queues. We first ver-
ified that in the simulation results for the FBDC policy, queue
sizes grow unbounded only for arrival rates outside the stability
region, and then performed experiments for the OLM policy. In
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Fig. 7. Total average queue size for (a) the FBDC policy and (b) the myopic
policy for � � �� and � � ����.

all the reported results, we have with 0.01 increments.
For each point at the boundary of , we simulated one point out-
side the stability region. Furthermore, for each data point, the
arrival processes were i.i.d., the channel processes were Mar-
kovian as in Fig. 2, and the simulation length was
slots.

Fig. 7(a) presents the total average queue size,
, under the FBDC policy for

queues, , and a frame size of slots.
The boundary of the stability region is shown by (red) lines
on the 2-D plane. We observe that the average queue
sizes are small for all and the big jumps in
queue sizes occur for points outside . Fig. 7(b) presents the
performance of the OLM policy with slot frames for
the same system. The simulation results suggest that there is
no appreciable difference between the stability regions of the
FBDC and the OLM policies. Note that the total average queue
size is proportional to long-run packet-average delay in the
system through Little’s law. For these two figures, the average
delay under the OLM policy is less than that under the FBDC
policy for 81% of all arrival rates considered.

Next, we implemented the FBDC and the OLM policies
without the use of any frames (i.e., for ). When there are
no frames, the FBDC policy solves the LP in Algorithm 2 in
each time slot, and the OLM policy utilizes the queue length
information in the current time slot for the weight calculations
in (13). Fig. 8(a) and 8(b) presents the total average queue size

Fig. 8. Total average queue size for (a) the FBDC policy and (b) the myopic
policy implemented without the use of frames (i.e., for � � �) and � � ����.

under the FBDC and the OLM policies for queues,
, and . Similar to the frame-based imple-

mentations, we observe that the average queue sizes are small
for all for both policies and the big jumps in
queue sizes occur for points outside , which suggests that the
nonframe-based implementation of the FBDC and the OLM
policies may achieve the full stability region. The reason the
FBDC and the OLM policies provide stability without the use
of frames is that for large queue lengths, the corner point that
these policies choose to apply depends completely on the queue
length ratios, and hence, the choice of corner points and the
associated saturated-system policies utilized in the FBDC and
the OLM policies do not change fast when the queue lengths
get large. Furthermore, for smaller queue lengths, the no-frame
implementations of these policies are more adaptive to dynamic
changes in the queue sizes as compared to implementations
with large frames.

For the same system (i.e., queues and ),
Fig. 9 presents the long-run packet average delay as a func-
tion of the sum throughput along the main diagonal
line (i.e., ). We compare the delay performance of
the FBDC and the OLM policies with , and the MW
policy which, in each time slot , chooses the queue that
achieves . The maximum sum throughput is

as suggested by Theorem 3. Fig. 9 shows
that while FBDC and the OLM policies stabilize the system for
all , the system becomes unstable under the
MW policy around . This result also confirms
that the OLM policy has a much better delay performance than
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Fig. 9. Delay versus sum throughput for the FBDC, the OLM, and the MW
policies implemented without the use of frames (i.e., for � � �) for � � �

queues and � � ����.

Fig. 10. Delay versus sum throughput for the FBDC, the OLM, and the MW
policies implemented without the use of frames (i.e., for � � �) for � � �

queues and � � ����.

the FBDC and the MW policies. Finally, we observed that for
some small arrival rates for which the system can be stabilized
under the MW policy, the FBDC and the myopic policies
implemented using large frame lengths can have a worse delay
performance than the MW policy. This is expected because
the analysis in Section II-D1 suggests that the average delay
increases with the frame length.

For queues and , Fig. 10 presents the average
packet delay as a function of the sum throughput along
the main diagonal line (i.e., ). The maximum sum
throughput is 0.65 as suggested by Lemma 2. Similar to the pre-
vious case, Fig. 10 shows that the FBDC and the OLM policies
stabilize the system for all , and the system be-
comes unstable under the MW policy around .
This result also confirms that the OLM policy has a better delay
performance than the other two policies.

The delay results in this section show that the OLM policy is
not only simpler to implement as compared to the FBDC policy,
but it can also be more delay efficient.

V. CONCLUSION

We investigated the dynamic server allocation problem with
randomly varying connectivity and server switchover time. For
the case of two queues, we analytically characterized the sta-
bility region of the system using state-action frequencies that
are stationary solutions to an MDP formulation for the corre-
sponding saturated system. We developed the throughput-op-
timal FBDC policy. We also developed simple myopic policies
that achieve a large fraction of the stability region. We extended
the stability region characterization in terms of state-action fre-
quencies and the throughput optimality of the FBDC policy to
the general system with arbitrary number of queues. We charac-
terized tight analytical outer bounds on the stability region using
an upper bound on the sum rate and showed that a simple GM
policy achieves this sum-rate bound. The stability region char-
acterization in terms of the state-action frequencies of the satu-
rated system and the throughput optimality of the FBDC policy
holds for systems with arbitrary switchover times and general
Markovian channels. Furthermore, the FBDC policy provides a
new framework for developing throughput-optimal policies for
network control as this policy can be used to stabilize a large
class of other network control problems.

In the future, we intend to explicitly characterize the stability
region of systems with multiple-slot switchover times with
general Markov modulated channels. We intend to develop
throughput-optimal myopic policies for general system models.
Finally, joint scheduling and routing in multihop networks with
dynamically changing channels and server switchover times is
a challenging future direction.

APPENDIX A
PROOF OF OBSERVATION 1

In the following, we enumerate the states
where denotes the queue the server is at, and and
denote the states of the channel processes at each queue

Recall that and denote the state-action frequen-
cies of being in state and choosing action stay and switch,
respectively. We rewrite four of the eight balance equations of
the state-action polytope in open form in (21), shown at the
bottom of this page. The time-average expected rates from the

(21)



ÇELIK et al.: DYNAMIC SERVER ALLOCATION OVER TIME-VARYING CHANNELS WITH SWITCHOVER DELAY 5871

two queues and are given by
and . Therefore, summing the

expressions in (21), we obtain

For the last term in this expression, we use the normalization
condition in (6) to obtain

(22)

From Corollary 1, there exists a stationary-deterministic policy
that solves this LP of maximizing over the

state-action polytope . Therefore, under this policy , at
each state, at least one of the actions must have 0 state-ac-
tion frequency. From (22), we see that in order to maximize

, need to be mini-
mized ( need to be maximized),
and need to be maximized (
need to be minimized). Therefore, we have

in order to maxi-
mize . The state-action frequencies corresponding
to , i.e., , do
not affect the maximum achievable sum rate; however, dif-
ferent values of these frequencies correspond to moving
on the maximum achievable sum-rate line (see Fig. 4). For
instance, choosing queue 2 whenever the channel state is

, i.e., having , gives the
stationary-deterministic policy that corresponds to the upper
corner of the sum-rate line in Fig. 4. Using these results in (22),
we have

(23)

Under the symmetric Gilbert–Elliot channel model, the
steady-state probability of each channel state pair is
1/4. Therefore, we have

Summing these expressions, we obtain

Combining this expression with (23) proves the result.

APPENDIX B
GENERALIZATION TO NONSYMMETRIC GILBERT–ELLIOT

CHANNELS

In the following, we state results analogous to the results es-
tablished in Section II for symmetric Gilbert–Elliot channels to
the case of nonsymmetric Gilbert–Elliot channel model as given
in Fig. 2.

Theorem 9: When the connectivity processes follow the
nonsymmetric Gilbert–Elliot channel model, the rate region
is the set of all rates , that for
satisfy

where , , and for
satisfy

where .
The proof is lengthy and it is omitted here for brevity. It can

be found in [14]. Closely examining the upper bound on sum
rate , the term is the steady-state
probability that at least one channel is in ON state. This is the
maximum achievable sum-rate value for the system with zero
switchover delay studied in [39]. Therefore, the term is
exactly the loss due to switchover delay. It can be shown that,
under a sum-rate-optimal policy, this term is equal to the steady-
state probability that server is at a queue with an OFF channel
state when the other queue is at an ON channel state.

The FBDC policy is asymptotically throughput optimal
under the nonsymmetric Gilbert–Elliot channel model. This is
straightforward as the FBDC policy only needs to solve the LP
in Algorithm 2 for a given Markovian state transition structure,
and the nonsymmetric Gilbert–Elliot channel model leads to
a Markovian state transition structure. For the nonsymmetric
Gilbert–Elliot channels case, the mappings from the queue
sizes to the corner points of the rate region used by the FBDC
policy, analogues to the mappings in Tables II and I, can be
obtained from the slopes of the lines forming the boundary of
the stability region. Furthermore, an analysis very similar to
the one in Section II-E gives the corresponding mapping for
the OLM policy. These mappings are shown in Table V for
the case of , and in Table VI for the case of

.

APPENDIX C
PROOF OF THEOREM 4

Let be the first slot of the frame where .
Let be the service opportunity given to queue at time
slot , where is equal to 1 if queue is scheduled at time
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TABLE V
MAPPING FROM THE QUEUE SIZES TO THE CORNERS OF ,
� � � � � � � � � � � , FOR � � . FOR EACH STATE

� � ������ � ���� � ����� THE OPTIMAL ACTION IS SPECIFIED.
THE THRESHOLDS ON � 	� FOR THE FBDC POLICY ARE

�� 
 � � 	��� � � ��� � � ��� 
 ��� � � �	�� � � �

� �� �� 
 � �	
 � 
 � �	
 AND FOR THE OLM POLICY ARE

�� 
 � � 	��� � �� 
 � ��� � �	��� � �� �� 
 � �	
 � 
 �
�	
 . FOR EXAMPLE, CORNER � IS CHOSEN IN THE FBDC POLICY IF

� � � 	� � 
 , WHEREAS IN THE OLM POLICY IF � � � 	� � 


TABLE VI
MAPPING FROM THE QUEUE SIZES TO THE CORNERS OF , � � � � � � � , FOR

� � . FOR EACH STATE � � ������ � ���� � ����� THE OPTIMAL

ACTION IS SPECIFIED. THE THRESHOLDS ON � 	� FOR THE FBDC POLICY

ARE �� 
 � � 	���� � ��� � �� � � ���� � ���� �� 

� ��� � ��� � �� � � ���� � ��	� AND FOR THE OLM POLICY

ARE �� 
 � � 	��� � �� �� 
 � ��� � �	� . FOR EXAMPLE,
CORNER � IS CHOSEN IN THE FBDC POLICY IF � � � 	� � 
 , WHEREAS

IN THE OLM POLICY IF � � � 	� � 


slot (regardless of whether queue is empty or not) and zero
otherwise. We have the following queue evolution relation:

(24)

Similarly, the following -step queue evolution relation holds:

(25)

where is the total service opportunity
given to queue during the frame. To see this, note that
if , the total service opportunity given to
queue during the frame, is smaller than , then we
have an equality. Otherwise, the first term is 0 and we have
an inequality. This is because some of the arrivals during the

frame might depart before the end of the frame. Note that
denotes the link departures that would

happen in the corresponding saturated system if we were to
apply the same switching decisions over time slots in the
corresponding saturated system. We first prove stability at the
frame boundaries. Define the quadratic Lyapunov function

which represents a quadratic measure of the total load in the
system at time slot . Define the -step conditional drift

where the conditional expectation is over the randomness in
arrivals and possibly the scheduling decisions. Squaring both
sides of (25), using , and

, we have

(26)

Summing (26) over the queues, using and
for all

time slots and , we can easily derive the following -step
conditional Lyapunov drift:

(27)

where and we used the fact that the arrival
processes are i.i.d. over time, independent of the queue lengths.
Recall the definition of the reward functions in (2)
and (3) and let be the reward function associated with
applying policy given in the definition of the FBDC policy in
Algorithm 2 to the saturated system. Let denote
for notational simplicity, . Note that is equal
to , since is the service opportunity given to link

at time slot . Now, let be the infinite horizon
average rate associated with policy . Let be the optimal
vector of state-action frequencies corresponding to . Define
the time-average empirical reward from queue in the saturated
system, , by

Similarly, define the time-average empirical state-action fre-
quency vector

(28)
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where is the indicator function of an event , i.e.,
if occurs and otherwise. Using the definition of the
reward functions in (2) and (3), we have that

and . Similarly, we have

Now, we utilize the following key MDP theory result
in Lemma 4.1 [26], which states that as increases,

converges to .

Lemma 3: For every choice of initial state distribution, there
exists constants and such that

Furthermore, convergence of to is w.p. 1.
This result applies in our system because every extreme point
of can be attained by a stationary and deterministic policy

that has a single irreducible recurrent class in its underlying
Markov chain [26], [34].4 Due to the linear mapping from the
state-action frequencies to the rewards, by Schwartz inequality,
each component of also converges to the corresponding
component of . Therefore, we have that for every choice of
initial state distribution, there exists constants and such
that

(29)

Furthermore, convergence of to is with prob-
ability 1. Now, let and

. We rewrite the drift expression

(30)

Now, we bound the last term. For all we have

(31)

4Note that, in general, multiple stationary-deterministic policies can yield the
same optimal reward vector � . Among these, we choose the one that forms a
Markov chain with a single recurrent class.

where we bound the first expectation by by using
, the second expectation by , and the second

probability by 1. By Schwartz inequality, we have

(32)

Using (29) and (32) in (31), we have

Hence, using , we bound (30) as

Therefore, calling , we have

(33)
Now for strictly inside the -stripped stability region , there
exist a small such that , for some

. Utilizing this and the fact that
by definition of the FBDC policy in Algorithm 2, we have

(34)

Therefore, the queue sizes have negative drift when
is larger than . This establishes stability of the queue sizes
at the frame boundaries for within
the -stripped stability region [14].

For any given time , we have
. Therefore,

. Hence, stability
at the frame boundaries implies the overall stability of the
system. Finally, for any . Therefore,
choosing appropriately (for example, for
some small ), we have that is a decreasing function
of . Therefore, for any , one can find such that the
hypothesis of the theorem holds.

APPENDIX D
PROOF OF THEOREM 5

We first show that the OLM policy produces a mapping from
the set of queue sizes to the stationary-deterministic policies cor-
responding to the corners of the stability region. This mapping
is similar to that of the FBDC policy; however, the thresholds on
the queue size ratios are determined according to (13).

Mapping from queue sizes to actions. Case-1:
For , there are six corners in the stability region de-

noted by where is and is as
shown in Fig. 4(a). We derive conditions on such that
the OLM policy chooses the stationary-deterministic decisions
that correspond to a given corner point.

Corner :
As can be seen from Table I, the actions corresponding to

corner are to stay at queue 2 for every channel condition, i.e.,
the server chooses queue 2 even when the channel states are
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. Therefore, using (13), for the myopic
policy to take the deterministic actions corresponding to , we
must have

This means that if we apply the myopic policy with coefficients
such that , then the system output

rate will be driven toward the corner point .
Corner :
As shown in Table I, the deterministic actions corresponding

to corner are as follows: At queue 1, stay only if the channel
states are , and at queue 2, switch only if the
channel states are . For the OLM policy to take these eight
deterministic actions, needs to satisfy the conditions for
all the eight actions under switching decisions according to (13).
The most limiting conditions are switching at
at queue 1 and switching at at queue 2. The
conditions on for the OLM policy to take these actions
are and . Combining
these, we have

Note that the condition implies that
.

Corner :
As shown in Table I, the deterministic actions corresponding

to corner are as follows: At queue 1, stay only if the channel
states are or , and at queue 2, switch only
if the channel states are . The most limiting actions are
switching at at queue 2, staying at

at queue 1, and switching at at queue
1. The conditions on for the OLM policy to take these
actions are , , and

, respectively. Combining these and noting that since
we have , we obtain the intersection of all the

conditions given by

The conditions for the corners , , and are symmetric,
completing the mapping from the queue sizes to the corners of

for which is shown in Table III. This mapping is in
general different from the corresponding mapping of the FBDC
policy in Table I.

Mapping from queue sizes to actions. Case-2:
In this case, there are four corner points in the throughput re-

gion, where the corners are the same as the case
, and the corners and for the case are domi-

nated when we have .
Corner :
The analysis for the corner is the same as that for the corner
in the previous case. Therefore, for the myopic policy to

take the deterministic actions corresponding to the corner ,
we need

Corner :
The analysis is very similar to the analysis for the corner point
for the case . As shown in Table II, the deterministic

actions corresponding to corner are as follows: At queue 1,
stay only if the channel states are or , and
at queue 2, switch only if the channel states are . The most
limiting actions are switching at at queue
2, staying at at queue 1, and switching at

at queue 1. The conditions on for
the OLM policy to take these actions are ,

and , respectively. Because
we have in this case, we have . Therefore,
combining the conditions, we have

The conditions for the corners and are symmetric, com-
pleting the mapping from the queue sizes to the corners of
for which is shown in Table IV. Again, this mapping
is in general different from the corresponding mapping of the
FBDC policy in Table II. Therefore, for a given ratio of the
queue sizes , the FBDC and the OLM policies may apply
different stationary-deterministic policies corresponding to dif-
ferent corner points of , denoted by and , respectively.
The shaded intervals of in Tables III and IV are the in-
tervals in which the OLM and the FBDC policies apply different
policies.

Next, using these mappings, Lemma 4 given at the end of
this section shows that the weighted average departure rate of
the OLM policy is at least 90% of that of the FBDC policy

(35)

We finalize the proof of Theorem 5 by showing that the bound
on in (35) is a sufficient condition for the OLM policy to
achieve at least 90% of asymptotically in . The following
drift expression for the OLM policy can be derived similarly to
the derivation of (33) used in the proof of Theorem 4

where is a decreasing function of . Using (34)

Using an argument similar to that for (34), we have that for
strictly inside the 0.9 fraction of the -stripped

stability region, there exist a small such that
, for some

. Substituting this expression for
and using , we have
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After cancellations, we have

Therefore, using an argument similar to the proof of Theorem
4 in Appendix C, the system is stable for arrival rates within
at least the 0.9 fraction of -stripped stability region, where

is a decreasing function of . This establishes the proof
of Theorem 5.

Lemma 4: We have that

Proof: Considering the mappings in Tables III and IV, for
the regions of where the OLM policy and the optimal policy
“choose” the same corner point, we have . In the fol-
lowing, we analyze the ratio in the regions where the two poli-
cies choose different corner points, which we call “discrepant”
regions. We will use and instead of and for
notational simplicity. We first consider the case , and
divide the proof into separate cases for different regions of
values.

Weighted Departure-Rate Ratio Analysis, Case 1:
Note that the following inequality always holds:

. However, we have for
for the case of .

Case 1.1:
For this case, we have .

Discrepant Region 1:
In this case, the OLM policy chooses the corner point ,

whereas the optimal policy chooses the corner point . There-
fore

Discrepant Region 2:
In this case, the OLM policy chooses the corner point ,

whereas the optimal policy chooses the corner point . There-
fore

This is a minimization of a function of two variables for all
possible values in the interval , and the ratio in

the interval .
Case 1.2:
For this case, we have

Discrepant Region 1:

In this case, the OLM policy chooses the corner point ,
whereas the optimal policy chooses the corner point . There-
fore

Discrepant Region 2:
In this case, the OLM policy chooses the corner point ,

whereas the optimal policy chooses the corner point . There-
fore

Discrepant Region 3:
In this case, the OLM policy chooses the corner point ,

whereas the optimal policy chooses the corner point . There-
fore

Due to symmetry, the same bounds on applies for .
Weighted Departure-Rate Ratio Analysis, Case 2:
For the case where , we have

and . Therefore, the only discrepant region between
the FBDC and the OLM policies for is given by

, where for this interval, the OLM
policy chooses the corner point , whereas the FBDC policy
chooses the corner point .

Discrepant Region 1:
In this case, the OLM policy chooses the corner point ,

whereas the optimal policy chooses the corner point . There-
fore

Due to symmetry, the same bound on applies for .
Combining all the cases, for all , we have that

for all possible and .

APPENDIX E
PROOF OF LEMMA 2

We follow similar steps to the proof of the sum-throughput
upper bound for the case of two queues in Appendix A. In order
to obtain an expression for , we sum the

equations in (16) for which the server location is
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and the channel process of queue , , is 1. This gives for all

Summing over all queues and using the normalization condi-
tion , we have

From Corollary 1, there exists a stationary-deterministic policy
that solves this LP of maximizing over the state-

action polytope . Therefore, under this policy , at each state,
at least one of the actions must have 0 state-action frequency.
Therefore, in order to maximize the sum rate, the terms that have
negative contribution to the sum rate must be zero

(36)
Similar to the two-queue case in Appendix A, we utilize the
expressions resulting from the fact that the steady-state proba-
bility of each channel state vector is known. For instance, for

, we
have

Summing these expressions, we obtain

Combining this expression with (36), we obtain
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