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to Throughput Maximization over
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Abstract. We consider scheduling over a wireless system in which the channel state in-
formation is not available a priori to the scheduler but can be inferred from past history.
Specifically, the wireless system is modeled as a network of parallel queues. We assume
that the channel state of each queue evolves stochastically as an independent on/off
Markov chain. The scheduler, which is aware of the queue lengths but is ignorant of
the channel states, has to choose at most one queue at a time for transmission. The
scheduler has no information regarding the current channel states but can estimate
them from the acknowledgment history.

We first characterize the capacity region of the system using tools from the theory
of Markov decision processes (MDPs). Specifically, we prove that the capacity region
boundary is the uniform limit of a sequence of linear programming (LP) solutions.
Next, we combine the LP solution with a queue-length-based scheduling mechanism
that operates over long frames to obtain a throughput optimal policy for the system.
By incorporating results from MDP theory within the Lyapunov-stability framework,
we show that our frame-based policy stabilizes the system for all arrival rates that lie
in the interior of the capacity region.
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1. Introduction

In this paper, we consider a scheduling problem in a wireless uplink or downlink
system in which there is no explicit instantaneous channel state information
(CSI) available to the scheduler. The lack of CSI may arise in practice for several
reasons. For example, the control overheads, as well as the delay and energy
costs associated with channel probing, might make instantaneous CSI too costly
or impractical to obtain.

Our system consists of N wireless links, which are modeled as N parallel
queues that are fed by stochastic traffic. Due to the shared wireless medium,
only a single queue can be chosen at each time slot for transmitting its data.
The channel quality (or state) of each wireless link is time-varying, evolving as
an independent on/off Markov chain. A given transmission is successful only
if the underlying channel is currently in the on state.

Our basic assumption in this paper is that the scheduler cannot observe the
current state of any of the wireless links. Nonetheless, when the scheduler serves
one of the queues in a given time slot t, there is an ACK feedback mechanism
that acknowledges whether the transmission was successful, thereby revealing
the channel state a posteriori. Since the channels are correlated across time by
the Markovian assumption, this a posteriori CSI can be used for predicting the
channel state of the chosen queue in future time slots. We emphasize that the
ACK mechanism is the only means by which CSI is made available to the sched-
uler. From a practical viewpoint, this ACK mechanism is natural and should be
available as part of the underlying LLC/MAC protocol.

The capacity region (or the rate region) of the system described above is the
set of all arrival-rate vectors that are stably supportable by some behavioristic
scheduling policy. Our aim is to characterize the capacity region of the system
and to design a throughput-optimal scheduling policy.

The general problem of scheduling parallel queues with time-varying con-
nectivity has been widely studied for almost two decades. The seminal paper
[Tassiulas and Ephremides 93] considered the case in which both channel states
and queue lengths are fully available to the scheduler. It was shown in that pa-
per that the max-weight algorithm, which serves the longest connected queue, is
throughput optimal. Notably, the algorithm stabilizes all rates in the capacity
region without requiring any a priori knowledge of the arrival rates.

Following that paper, several variants of imperfect and delayed CSI scenar-
ios have been considered in the literature; see, e.g., [Pantelidou et al. 09, Ying
and Shakkottai 08, Ying and Shakkottai 09, Gopalan et al. 12] and references
therein. However, our scheduling problem differs fundamentally from the models
considered in those references. Specifically, no explicit CSI is ever made available
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to the scheduler, and acquiring channel state information is a part of the schedul-
ing decision made at each time instant. This adds significant difficulties to the
scheduling problem.

Two recent papers consider the scheduling problem in which the CSI is ob-
tained through an acknowledgment process, as in our model. In [Ahmad et al. 09],
the authors consider the objective of maximizing the sum rate of the system, un-
der the assumption that the queues are fully backlogged (i.e., there is always data
to send in each queue). It is shown that a simple myopic policy is sum rate op-
timal. The suggested policy keeps scheduling the channel that is being served as
long as it remains on, and switches to the least recently served channel when
the current channel goes off.

In [Li and Neely 11], the authors propose a randomized round-robin scheduling
policy for the system, which is inspired by the myopic sensing results in [Ahmad
et al. 09]. Their policy is shown to stabilize arrivals that lie within an inner
bound to the rate region. However, their policy is not throughput optimal, and
their method cannot be used to characterize the capacity region.

In this paper, we propose a throughput-optimal scheduling policy for the sys-
tem. In particular, the policy we propose can stabilize arrival rates that lie ar-
bitrarily close to the capacity region boundary, with a corresponding tradeoff in
the computational complexity. We also provide a characterization of the capacity
region boundary as the limit of a sequence of LP solutions.

The scheduling problem we consider is related to the celebrated restless ban-
dits problem [Whittle 88], which is known to be computationally difficult in
general. In fact, every point on the boundary of the capacity region can be im-
plicitly expressed as the optimal solution to a restless bandits problem. Such a
solution involves solving an MDP with a countably infinite state space. Since
obtaining this solution may be computationally and analytically prohibitive, we
approximate the original MDP by a finite-state MDP with a “tunable” number
of states. We then employ a linear programming approach to solve the resulting
finite-state MDP [Puterman 94].

We prove that the solution to the LP approximates the boundary of the capac-
ity region arbitrarily closely, where the accuracy of the approximation improves
with the number of states in the underlying finite MDP. Thus, there is a tradeoff
between the accuracy of the approximation and the dimensionality of the LP.

Next, we combine the LP solution with a queue-length-based scheduling mech-
anism that operates over long time frames to obtain a dynamic scheduling pol-
icy for the system. Our main result establishes that this “frame-based” policy is
throughput optimal, i.e., can stably support all arrival rates in the interior of the
capacity region. Our proof of throughput optimality combines tools from Markov
decision theory within a Lyapunov-stability framework.
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Figure 1. A system of parallel queues served by a single server. The channels
connecting the queues to the server are randomly time-varying.

The remainder of this paper is organized as follows. The model is presented
in Section 2. In Section 3, we formulate a linear program that leads to the
characterization of the capacity region. In Section 4, we suggest the frame-based
policy, which we prove to be throughput optimal. We conclude the paper in
Section 5.

2. System Description

2.1. The Network Model

We model the wireless system as consisting of N parallel queues (see Figure 1).
Time is slotted (t = 1, 2, . . . ). Packets arrive at each queue i ∈ {1, 2, . . . , N} ac-
cording to an independent stochastic process with rate λi . We assume that the
arrival processes are independent of each other, and independent and identi-
cally distributed (i.i.d.) from slot to slot. We further assume that the number of
arrivals in a slot at each of the queues has a finite variance.

Due to the shared wireless medium, only a single transmission is allowed at
a given time. In our queuing model, this is equivalent to having the queues
connected to a single server belonging to one of the queues that is capable of
serving only a single packet per slot. Each queue is connected to the server
by an on/off channel, which models the time-varying channel quality of the
underlying wireless link. If a particular channel is off and the queue is chosen
by the scheduler, the packet has to be retransmitted to avoid transmission failure.
If it is on and chosen by the scheduler, a single packet is properly transmitted,
and an ACK is received by the scheduler.
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Figure 2. The Markov chain governing the time evolution of each channel’s state
Ci (t).

We denote the channel state of the ith link at time t by Ci(t) ∈ {on,off},
i = 1, . . . , N . We assume that the states of different channels are statistically
independent of each other. The time evolution of each of the channels is given
by a two-state on/off Markov chain (see Figure 2). Although our methodology
allows for different Markov chains for different channels, we shall assume for ease
of notation and exposition that the Markov chains are identically distributed
across users, with the structure shown in Figure 2. We further assume that
p01 + p10 < 1, so that each channel is positively correlated in time. The steady-
state probability of a channel being in the on state is given by

πon =
p01

p01 + p10
. (2.1)

2.2. Information Structure

At each time t, we assume that the scheduler knows the current queue lengths
Qi(t) prior to making the scheduling decision. Yet no information about the cur-
rent channel conditions is made available to the scheduler. Only after scheduling
a particular queue does the scheduler get to know whether the transmission suc-
ceeded, by virtue of the ACK mechanism. The scheduler thus has access to the
entire history of transmission successes and failures. However, due to the Marko-
vian nature of the channels, it is sufficient to record how long ago each channel
was served, and the state of the channel (on/off) when it was last served. In ad-
dition to the above, the scheduler also knows precisely the statistical properties
of each of the channels (i.e., the Markov chain of Figure 2).

2.3. Scheduling Objective

Given the above information structure, our objective is to design a scheduling
policy that can support the largest possible set of input rates. More precisely, an
arrival-rate vector λ = (λ1 , . . . , λN ) is said to be supportable if there exists some
scheduling policy under which the queue lengths are finite (almost surely). The
capacity region Γ of the system is the closure of all supportable rate vectors. A
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policy is said to be throughput optimal if it can support all arrival rates in the
interior of Γ.

3. Optimal Policies for a Fully Backlogged System

In the interest of simplicity of notation and exposition, we restrict attention here-
inafter to the case of N = 2 queues, although our methodology extends naturally
to more queues. In this section, we assume that the queues are fully backlogged,
i.e., the queues are never empty. As we shall see, our analysis of the fully back-
logged system gives us insights into the optimal scheduling policy for dynamic
systems with finite queues.

Since the queues are assumed to be infinitely backlogged in this section, the
state of the system is completely specified by the state of each channel the
last time it was served and how long ago each channel was served. In a sys-
tem with two fully backlogged queues, the information state during slot t has
the form s(t) = [k1(t), b1(t), k2(t), b2(t)], where ki(t) is the number of slots since
queue i was served, and bi(t) ∈ {0, 1} is the state of the channel the last time
it was observed.1 Since the channels are Markovian, s(t) is a sufficient statis-
tic for the fully backlogged system. Note that min(k1(t), k2(t)) = 1 for all t and
max(k1(t), k2(t)) ≥ 2 for all t. Let S denote the (countably infinite) set of all
possible states s(t).

Denote the l-step transition probabilities of the channel Markov chain in Fig-
ure 2 by p

(l)
11 , p

(l)
01 , p

(l)
10 , and p

(l)
00 . It can be shown by explicit computation that

for l ≥ 1,

p
(l)
01 =

p01 [1 − (1 − q)l ]
q

, p
(l)
10 =

p10 [1 − (1 − q)l ]
q

,

p
(l)
00 =

p10 + p01(1 − q)l

q
, p

(l)
11 =

p01 + p10(1 − q)l

q
,

where q = p01 + p10 . Next, define the belief vector corresponding to state s ∈ S
as [ω1(s), ω2(s)], where ωi(s), i = 1, 2, is the conditional probability that channel
i is on. For example, if s = [1,on, 3,off], then the corresponding belief vector
is
[
p11 , p

(3)
01

]
. It can be shown that the belief vector has a one-to-one mapping

to the information state and is therefore also a sufficient statistic for the fully
backlogged problem.

1 Throughout, 0 is used interchangeably to denote the channel state off, and 1 is used to
denote on.
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In each slot, there are two possible actions a ∈ {1, 2}, corresponding to serving
one of the two queues. Given a state and an action at a particular time, the belief
for the next slot is updated according to the following equation:

ωi(t + 1) =

⎧⎪⎪⎨
⎪⎪⎩

p11ωi(t) + p01(1 − ωi(t)), if a(t) �= i,

p11 , if a(t) = i, Ca(t)(t) = 1,

p01 , if a(t) = i, Ca(t)(t) = 0,

where we have abused notation to write ωi(t) = ωi(s(t)).
A policy for the fully backlogged system is a rule that associates an action

a(t) ∈ {1, 2} to the state s(t) for each t. A deterministic stationary policy is a
map from S to {1, 2}, whereas a randomized stationary policy picks an action
given the state according to a fixed distribution P {a | s(·)}.

Suppose that a unit reward is accrued from each of the two channels every
time a packet is successfully transmitted on that channel, i.e., when the server
is assigned to a particular channel and the channel is on. Given a state s(t) at a
particular time and an action a(t), the probability that a unit reward is accrued
in that time slot is simply equal to the belief of the channel that was chosen.
We are interested in the long-term time-average rate achieved on each of the
channels under a given policy. From the viewpoint of the reward defined above,
the average rate translates to the infinite-horizon time-average reward obtained
on each channel under a given policy.

We say that rate pair (λ1 , λ2) is achievable in the fully backlogged system if
there exists some policy for which the infinite-horizon time-average reward vector
equals (λ1 , λ2). The closure of the set of all achievable rate pairs is called the rate
region Λ of the fully backlogged system. It should be evident that a rate pair that
is not achievable in the fully backlogged system cannot be supportable in the
dynamic system with finite queues. Thus, the capacity region Γ of the queuing
system is contained in the rate region Λ of the fully backlogged system. In fact,
we show in Section 4 that the two rate regions have the same interior, by deriving
a queue-length-based policy for the original system that can stabilize any arrival
rate in the interior of Λ. We now proceed to obtain an implicit characterization
of the rate region boundary.

3.1. An MDP Formulation and State Action Frequencies

Let us consider a Markov decision process (MDP) formulation of the belief space
for characterizing the rate region boundary.

It is easy to show that the rate region Λ is convex. Indeed, given two points
in the rate region each attainable by some policy, we can obtain every convex
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combination of the rate points by time-sharing the policies over sufficiently long
intervals. Further, the rate region is also closed by definition. Therefore, every
point on its boundary maximizes a weighted sum rate expression. That is, if
(r∗1 , r

∗
2) is a rate pair on the boundary of Λ, then

(r∗1 , r
∗
2) = arg max(λ1 ,λ2 )∈Λw1λ1 + w2λ2 (3.1)

for some weight vector w = [w1 , w2 ], with w1 + w2 = 1. The following proposi-
tion shows that if the rate pair (λ1 , λ2) is in Λ, then there necessarily exists a
state action frequency vector whose entries satisfy a set of balance equations.

Proposition 3.1. Let (λ1 , λ2) ∈ Λ. Then for each state s ∈ S and action a ∈ {1, 2},
there exists a state action frequency x(s; a) that satisfies

0 ≤ x(s; a) ≤ 1, (3.2)

the balance equations

x([1,on, k, b2 ]; 1) + x([1,on, k, b2 ]; 2) (3.3)
= x([1,on, k − 1, b2 ]; 1)p11 + x([1,off, k − 1, b2 ]; 1)p01 , k > 2,

x([1,off, k, b2 ]; 1) + x([1,off, k, b2 ]; 2) (3.4)
= x([1,off, k − 1, b2 ]; 1)p00 + x([1,on, k − 1, b2 ]; 1)p10 , k > 2,

x([1,on, 2, b2 ]; 1) + x([1,on, 2, b2 ]; 2) (3.5)

=
∑
l≥2

(
x([l,on, 1, b2 ]; 1)p(l)

11 + x([l,off, 1, b2 ]; 1)p(l)
01

)
,

x([1,off, 2, b2 ]; 1) + x([1,off, 2, b2 ]; 2) (3.6)

=
∑
l≥2

(
x([l,off, 1, b2 ]; 1)p(l)

00 + x([l,on, 1, b2 ]; 1)p(l)
10

)
,

x([k, b1 , 1,on]; 1) + x([k, b1 , 1,on]; 2) (3.7)
= x([k − 1, b1 , 1,on]; 2)p11 + x([k − 1, b1 , 1,off]; 2)p01 , k > 2,

x([k, b1 , 1,off]; 1) + x([k, b1 , 1,off]; 2) (3.8)
= x([k − 1, b1 , 1,off]; 2)p00 + x([k − 1, b1 , 1,on]; 2)p10 , k > 2,

x([2, b1 , 1,on]; 1) + x([2, b1 , 1,on]; 2) (3.9)

=
∑
l≥2

(
x([1, b1 , l,on]; 2)p(l)

11 + x([1, b1 , l,off]; 2)p(l)
01

)
,

x([2, b1 , 1,off]; 1) + x([2, b1 , 1,off]; 2) (3.10)

=
∑
l≥2

(
x([1, b1 , l,off]; 2)p(l)

00 + x([1, b1 , l,on]; 2)p(l)
10

)
,
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where b1 , b2 ∈ {on,off}, the normalization condition∑
s∈S

(x(s; 1) + x(s; 2)) = 1, (3.11)

and the rate constraints

λi ≤
∑
s∈S

x(s; i)ωi(s), i = 1, 2. (3.12)

Proof. The result follows from the linear programming formulation of countable
MDPs; see [Altman 99].

Intuitively, a state action frequency vector corresponds to a stationary ran-
domized policy such that x(s; a) equals the steady-state probability that in a
given time slot, the state is s and the action is a. Further, conditioned on
being in state s, the action a is chosen with probability x(s; a)/P {s}, where
P {s} = x(s; 1) + x(s; 2). (If P {s} = 0, the policy prescribes actions arbitrarily.)

Let us now provide an intuitive explanation of the balance equations. Equa-
tions (3.4)–(3.10) simply equate the steady-state probability of being in a par-
ticular state with the total probability of entering that state from all possible
states. For example, the left-hand side of (3.4) equals the steady-state probabil-
ity of being in the state [1,on, k, b2 ], k > 2, while the right-hand side equals the
total probability of getting to the above state from other states, and similarly
for the other balance equations. Equation (3.11) equates the total steady-state
probability with unity. Finally, in (3.12), the term x(s; i)ωi(s) equals the steady-
state probability that the state is s, the action i is chosen, and the transmission
succeeds. Thus, the right-hand side of (3.12) equals the total expected rate on
channel i.

We now return to the characterization of the rate region boundary. In light of
Proposition 3.1, (3.1) can be rewritten as follows.

Problem 3.2. (infinite(w).)

(r∗1 , r
∗
2) = arg max(λ1 ,λ2 )w1λ1 + w2λ2 (3.13)

subject to (3.2)–(3.12).

Since the number of state spaces of the MDP is countably infinite, the opti-
mization in (3.13) involves an infinite number of variables. In order to make this
problem tractable, we now introduce an LP approximation.
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3.2. LP Approximation Using a Finite MDP

In this section, we introduce an MDP with a finite state space, which, as we show,
approximates the original MDP arbitrarily closely. The state action frequencies
corresponding to the finite MDP approximation can then be solved as a linear
program.

First note that the belief of a channel that has not been observed for a long
time increases monotonically toward the steady-state value of πon if it was off

the last time it was scheduled. Similarly, the belief decreases monotonically to πon

if the channel was on the last time it was scheduled. These observations follow
from the l-step transition probabilities given in Section 3. The key idea now is to
construct a finite MDP whose states are the same as those of the original MDP,
with the exception that the belief of a channel that remains unobserved for a
long time is clamped to the steady-state on probability πon. Specifically, when a
channel has not been scheduled for τ or more time slots, its observation history
is entirely forgotten, and the belief on it is assumed to be πon. The action space
and the reward structure are exactly as before. We show that this truncated
finite MDP approximates the original MDP better and better as τ gets large.

Let us now specify the states and state action frequencies for this finite
MDP. There are 4(τ − 2) states of the form [1, b1 , k2 , b2 ], 2 ≤ k2 ≤ τ − 1, b1 , b2 ∈
{on,off}, which correspond to the first channel being scheduled in the previous
slot and the second channel being scheduled fewer than τ time slots ago. In a
symmetric fashion, there are 4(τ − 2) states of the form [k1 , b1 , 1, b2 ], 2 ≤ k1 ≤
τ − 1, b1 , b2 ∈ {on,off}, which correspond to the second channel being sched-
uled in the previous slot. Finally, there are four states [1, b1 , φ, φ], b1 ∈ {on,off}
and [φ, φ, 1, b2 ], b2 ∈ {on,off} in which one of the channels has not been seen
for at least τ slots and its belief has been reset to πon. Let us denote by Ŝ the
above set of states for the finite MDP, and let x̂(s; a), s ∈ Ŝ, a ∈ {1, 2} denote
the state action frequencies for the finite MDP. These state action frequencies
satisfy

0 ≤ x̂(s; a) ≤ 1, (3.14)∑
s∈Ŝ

x̂(s; 1) + x̂(s; 2) = 1, (3.15)

λ̂i ≤
∑
s∈Ŝ

x̂(s; i)ωi(s), i = 1, 2, (3.16)

and a set of balance equations analogous to (3.4)–(3.10).
For a fixed w and τ , let us now consider the following LP.
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Problem 3.3. (finite(τ,w).)

(r̂1 , r̂2) = arg max(λ̂1 ,λ̂2 )w1 λ̂1 + w2 λ̂2 (3.17)

subject to (3.14)–(3.16) and the balance equations.

The main result of this section shows that the solution to this LP approximates
the boundary point specified by the problem infinite(w) for every w when τ is
large.

Proposition 3.4. For a given w with w1 + w2 = 1, and τ , let r̂(τ,w) denote the
solution to the problem finite(τ,w), and let r∗(w) denote the solution to
infinite(w). Then r̂(τ,w) converges uniformly to r∗(w) as τ → ∞. In other
words, given any κ > 0 and any w, there exists τ0 > 0 that depends on κ but not
on w such that for all τ > τ0 , we have

|r̂(τ,w) − r∗(w)| < κ.

Proof. The convergence of r̂(τ,w) to r∗(w) for a fixed w follows from the clas-
sical work in [Whitt 78, Whitt 79]. The difficulty is in proving that the con-
vergence is uniform across all w. Without loss of generality, we assume that
w = (x, 1 − x) for x ∈ [0, 1]. The main observation here is that the function
fτ : [0, 1] → R that takes an element x and returns r̂(τ, (x, 1 − x)) is a convex
function for every τ , since it is the solution of a parametric linear program
[Bertsimas and Tsitsiklis 97]. It also follows that fτ (0) and fτ (1) are the same
for all τ (since these are the cases in which only one of the channels matters).
Let us define the function f∞(x) : [0, 1] → R to be the function that takes x and
returns r∗((x, 1 − x)). Take a finite grid of points on [0, 1] denoted by G. We
have convergence for every g ∈ G of fτ (g) to f∞(g) [Whitt 78, Whitt 79]. Since
these are all convex functions, the uniform convergence for all values of x follows;
see [Rockafellar 70].

We next prove a result that asserts that using the state action frequencies
obtained from a finite MDP in a backlogged system entails only a negligible
suboptimality when τ is large. The finite-MDP solution is applied to the back-
logged system as follows. If the state in the backlogged system is such that both
channels were served no more than τ time slots ago, then we schedule according
to the state action frequencies of that particular state in the finite MDP. On the
other hand, if one of the channels was last served more than τ time slots ago, the
finite MDP will not have a corresponding state and state action frequencies. In
such a case, we schedule according to the state action frequencies of one of the
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four states in the finite MDP in which the belief is clamped to the steady-state
value. For example, if the system state is [1, b1 , k2 , b2 ], with k2 > τ , we sched-
ule according to the state action frequencies of the state [1, b1 , φ, φ] in the finite
MDP, and so on.

Proposition 3.5. Suppose the optimal state action frequencies obtained by solving the
problem finite(τ,w) are used to perform scheduling in a fully backlogged system,
as detailed above. Let r̄(τ,w) denote the average reward vector so obtained. Then
for every w with w1 + w2 = 1, we have that r̄(τ,w) converges uniformly to the
optimal reward r∗(w) as τ → ∞.

Proof outline. Proposition 3.4 asserts that r̂(τ,w) converges to r∗(w) uniformly. It
therefore suffices to prove that r̄(τ,w) converges uniformly to r̂(τ,w). In words,
we need to prove that the evaluation of the optimal policy of the truncated MDP
that is evaluated on the truncated MDP (r̂(τ,w)) converges to the evaluation of
this policy on the infinite MDP (r̄(τ,w)) uniformly with respect to w. Indeed, we
will prove a stronger result claiming that this holds for every stationary policy
for the finite MDP and not just for optimal policies under some w.

Suppose that we are given a stationary policy Π defined on the truncated MDP
with a “memory” of τ , and let Π∞ be the extension of Π to the infinite state
space as discussed above. To proceed with the proof, we imitate the methodology
of [Whitt 78, Whitt 79]. While the details are lengthy and technical, the main
observation that is required to obtain uniform convergence is that the reward that
is obtained in the finite MDP for Π is obtained in the same states as is obtained
for Π∞ for the infinite MDP (and this is true for all w). The difference between
the finite and infinite MDPs in terms of transitions is only in the transitions
out of the four additional states [1, b1 , φ, φ], b1 ∈ {on,off} and [φ, φ, 1, b2 ], b2 ∈
{on,off} that have the same policy as the appropriate states where one of the
queues was not visited for τ steps (by construction). As long as the transition
is within these four states or within the other states that are identical for the
truncated and infinite MDPs, the rewards are the same. Once there is a transition
out of these states, the conditional transition probability becomes close as τ

increases (i.e., exiting each of the four states has a conditional probability that
becomes closer to the conditional probability on exiting the matching states in
the infinite MDP). The fact that the transitions are becoming closer makes the
values of the policies similar uniformly over all policies.

We pause momentarily to emphasize the subtle difference between Proposi-
tions 3.4 and 3.5. Proposition 3.4 asserts that the optimal reward obtained from
the finite MDP is close to the optimal reward of the infinite MDP. In this case,
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the optimal solution to the finite MDP is applied to the finite state space. On the
other hand, in Proposition 3.5, the optimal policy obtained from the finite MDP
is used on the original infinite state space, and the ensuing reward is shown to
be close to the optimal reward. From a practical perspective, Proposition 3.4 is
useful in obtaining a characterization of the rate region, while Proposition 3.5
plays a key role in the throughput optimality proof of the frame-based policy.

3.3. An Outer Bound

We now derive an outer bound to the rate region Λ, using “genie-aided” channel
information. Although the bound is not used in deriving our optimal policy, it
is of interest to compare the outer bound we obtain to existing bounds in the
literature.

Consider a fictitious fully backlogged system in which the channel processes
follow the same sample paths as in the original system. However, after a channel
is served in a particular time slot, a genie reveals the states of all the channels in
the system. Therefore, at the beginning of a time slot in the fictitious system, the
scheduler has access to all the channel states in the previous slot, and not just the
channel that was served. Clearly, the rate region boundary for the genie-aided
system is an outer bound to the rate region of the original system.

Let us compute the above outer bound for our two-user system. Indeed, there
are only four possibilities for the channel states in the previous slots: {on,on},
{off,on}, {on,off}, and {off,off}. Furthermore, since the two channels are
independent, the states above occur with probabilities π2

on, πon(1 − πon), πon(1 −
πon), and (1 − πon)2 respectively, in steady state. Using these facts, we can obtain
the rate region for the genie-aided fictitious system.

Indeed, let Λ00 be the convex hull of the vectors (p01 , 0) and (0, p01). Intuitively,
Λ00 is the set of all rate vectors that are achievable exclusively in the time slots
with {off,off} as the channel states in the previous slot. Similarly, let Λ01 =
C {(p01 , 0), (0, p11)}, Λ10 = C {(p11 , 0), (0, p01)}, and Λ11 = C {(p11 , 0), (0, p11)},
where C stands for convex hull. Then the rate region of the fictitious system is
given by

Λ =
{
λ ≥ 0 | λ =

(
(1 − πon)2λ00 + πon(1 − πon)(λ01 + λ10) + π2

onλ11
)}

,

where λ00 ∈ Λ00, etc.

3.4. A Numerical Example

In this section, we use the finite LP approximation obtained in Section 3.2
to numerically compute and plot the capacity region for a two-user system.
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Specifically, we use the solution to the problem finite(τ,w) with large enough
τ , which, according to Proposition 3.4, uniformly approximates the rate region
boundary for all w. We also plot the genie-aided outer bound obtained above,
and compare our rate region and outer bound to the inner and outer bounds
derived in [Li and Neely 11]. We assume in this section that the channel Markov
chains have a symmetric structure with p10 = p01 = ε, so that πon = 0.5.

Figures 3 and 4 show the numerically obtained rate region, the genie-aided
outer bound, and the inner and outer bounds derived in [Li and Neely 11] for a
symmetric two-user system. Figure 3 is for the case ε = 0.2 (higher correlation in
time), while Figure 4 is for ε = 0.4 (lower correlation in time). The rate region,
shown with a dark solid line, was obtained by solving the LP approximation
finite(τ,w) for all weight vectors and large enough τ . We observed that τ ≈
30 and τ ≈ 10 were sufficient for the cases ε = 0.2 and ε = 0.4, respectively.
The dash-dotted curve in each figure is the genie-aided outer bound, derived in
Section 3.3. The achievable region of the randomized round-robin policy proposed
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Figure 3. The rate region, our outer bound, and the inner and outer bounds
derived in [Li and Neely 11], for ε = 0.2.
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Figure 4. The rate region, our outer bound, and the inner and outer bounds
derived in [Li and Neely 11], for ε = 0.4.

in [Li and Neely 11] is shown by a dashed line. Finally, the outermost region in
the figure is the outer bound derived in [Li and Neely 11]. We observe that the
genie-aided bound is uniformly better than the outer bound derived in [Li and
Neely 11].

It is evident from Figures 3 and 4 that the genie-aided outer bound is achiev-
able at the symmetric rate point, since the rate region boundary touches the
outer bound. To see this analytically, we first determine that the symmetric rate
point on the genie-aided outer bound is given by (3/8 − ε/4, 3/8 − ε/4). Next, in
the original fully backlogged system, consider a myopic policy that stays with a
queue as long as its channel remains on, and switches to the other queue when
the channel goes off. The sum throughput of this policy can be shown by direct
computation to be 3/4 − ε/2 (see [Ahmad et al. 09], for example). Since this
sum throughput is equally shared between the two channels, it follows that the
symmetric rate point on the outer bound is achievable. Interestingly, the above
argument constitutes a simple optimality proof of myopic sensing for the case of
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two symmetric channels. This is a special case of the general optimality result
derived in [Ahmad et al. 09] for any N .

4. A Throughput-Optimal Frame-Based Policy

In this section, we return to the original problem, with finite queues and stochas-
tic arrivals. We propose a throughput-optimal queue-length-based policy that
operates over long frames.

In our frame-based policy, the time axis is divided into frames consisting of T

slots each, and the queue lengths are updated at the beginning of each frame.
Given the queue-length vector Q(kT ) at the beginning of each frame, the idea
is to maximize a weighted sum rate quantity over the frame, where the weight
vector is the queue-length vector for that frame. The weighted rate maximization
is, in turn, performed approximately by solving the finite MDP. Intuitively, the
above procedure has the net effect of performing max-weight scheduling over each
time frame, where MDP techniques are employed to compute each of the “opti-
mal schedules.” More precisely, our policy operates according to Algorithm 1.

Our main result in this section is the throughput optimality of the frame-based
policy, for large enough values of T and τ . Specifically, our frame-based policy
can stabilize all arrival rates within a δ-stripped region of Λ, for every δ > 0.
The δ-stripped region is defined as

Λ − δ1 = {λ | λ + δ1 ∈ Λ} .

As we shall see, a small δ could require large values of T and τ , which would
increase the dimensionality of the LP (depends on τ) as well as the average

Algorithm 1. (Frame-based policy.)
1. At the beginning of time frame k, update the queue-length vector

Q(kT ).

2. Compute the normalized queue-length vector Q̃(kT ), whose entries
sum to 1.

3. Solve the problem finite(τ, Q̃(kT )) and obtain the state action
frequencies x̂(s, a), s ∈ Ŝ, a ∈ {1, 2}.

4. Schedule according to the state action frequencies obtained in the
previous step during each slot in the frame, even if it means
scheduling an empty queue.
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delay (depends on T ). Thus our policy offers a tradeoff between computational
complexity and delay on the one hand, and better throughput on the other. Our
main theorem is stated below. Note also that our policy requires queue-length
information only at the beginning of each time frame.

Theorem 4.1. Given any δ > 0, there exist large enough τ and T such that the
frame-based policy stabilizes all arrival rates in the δ-stripped rate region Λ − δ1.

A proof of the theorem is given in Section 6.

4.1. Simulations of the Frame-Based Policy

We now provide some basic simulation results for the frame-based policy. In
Figures 5 and 6, we plot the average queue length of one of the queues, under
the frame-based policy, as a function of the arrival rate. We take ε = 0.25 and
consider a symmetric rate scenario whereby independent Poisson traffic of equal
rates feeds the two queues. Each simulation run was carried out over ten thousand
frames, with frame sizes of T = 10 and T = 50 in Figures 5 and 6, respectively.

Under this symmetric traffic scenario, the theoretical boundary of the capacity
region lies at (λ1 , λ2) = (0.3125, 0.3125). The first observation we make from the
figure is that the frame-based policy easily stabilizes arrival rates up to 0.29

0.26 0.27 0.28 0.29 0.3 0.31
0

200

400

600

800

1000

1200

Traffic rate to each queue

A
ve

ra
ge

 q
ue

ue
 le

ng
th

Frame Size T=10

Figure 5. The average queue length as a function of the symmetric arrival rate
under the frame-based policy, for T = 10.



Jagannathan et al.: A State Action Frequency Approach to Throughput Maximization 153

0.26 0.27 0.28 0.29 0.3 0.31
0

1000

2000

3000

4000

5000

Traffic rate to each queue

A
ve

ra
ge

 q
ue

ue
 le

ng
th

Frame Size T=50

Figure 6. The average queue length as a function of the symmetric arrival rate
under the frame-based policy, for T = 50.

even for small frame sizes such as T = 10. There is considerable queue buildup at
(λ1 , λ2) = (0.3, 0.3), and very large buildup when the symmetric rate equals 0.31.

Another interesting point to note from the figure is that in heavy traffic, the
average queue length when T = 50 is roughly a factor of five larger than when
T = 10. This conforms to the theoretical prediction that the frame-based policy
inherently suffers from an O(T ) average congestion level in the queues. This
implies that although the frame-based policy is theoretically optimal for large T ,
it is possible that for a given traffic rate, a large frame size leads to considerable
delay.

5. Conclusions

In this paper, we have studied the problem of scheduling over uncertain wireless
channels, where channel state information can be only indirectly obtained, using
past successes and failures of transmissions. We showed that the capacity region
boundary for such a system can be approximated arbitrarily well by a sequence of
LPs. We then incorporated the LP solution into a queue-length-based scheduling
framework to obtain a throughput-optimal policy for the system.
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Although we explicitly dealt with a two-user setting with statistically identical
channels, our methodology extends naturally to more than two heterogeneous
channels. However, when the number of channels becomes asymptotically large,
the dimensionality of the LP approximation increases exponentially in the num-
ber of channels. In such a case, it may be more practical to resort to the subopti-
mal policy from [Li and Neely 11]. On the other hand, for relatively small system
sizes (say N = 10), our method may entail solving an LP with a dimensionality
of a few thousands (i.e., τ · 210), which is by no means prohibitive.

For future work, it would be interesting to obtain structural properties of op-
timal policies for the backlogged system. For example, we believe that threshold
policies should be sufficient to achieve the rate region boundary. If this is in-
deed the case, we can use a simple threshold policy over long frames to obtain a
throughput-optimal policy instead of solving a large LP in every frame. Finally,
we believe that combining frame-based scheduling with Whittle’s indexability
[Liu and Zhao 10, Ouyang et al. 10] can lead to computationally simple algo-
rithms that work well in practice.

6. Appendix: Proof of Theorem 4.1

We prove stability of the queuing system under the frame-based policy by calcu-
lating the expected Lyapunov drift over each frame. This multistep Lyapunov-
drift analysis has been used in the past [Neely et al. 05] to show stability of
max-weight scheduling. In our setting, the main challenge lies in establishing
that the empirical service rates obtained under the frame-based policy are close
to maximizing a weighted sum rate quantity, where the weights are the queue
lengths at the beginning of the frame.

Let us define the Lyapunov function

L(Q(t)) =
1
2

∑
i

Q2
i (t)

and the corresponding conditional drift over a frame

ΔT (kT ) = E [L(Q((k + 1)T )) − L(Q(kT )) | Q(kT )] .

Let Ai(·) and Di(·), respectively, denote the arrival and departure processes from
the ith queue. The evolution of queue i is given by

Qi(t + 1) = Qi(t) + Ai(t) − Di(t).

Next, define D̂i(t) as the departure process from a fully backlogged system when
our frame-based policy is used on it. That is, D̂i(t) is the same as the departure
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process Di(t), except there are no lost departures due to empty queues. For each
queue i, we have

Qi((k + 1)T ) ≤ max
(

Qi(kT ) −
T −1∑
σ=0

D̂i(kT + σ), 0
)

+
T −1∑
σ=0

Ai(kT + σ).

The above expression is an inequality because some arrivals during the frame may
leave during the same frame. Squaring both sides, and noting that max2(x, 0) ≤
x2 , we have

Q2
i ((k + 1)T ) ≤

(
Qi(kT ) −

T −1∑
σ=0

D̂i(kT + σ)
)2

+
(T −1∑

σ=0

Ai(kT + σ)
)2

+ 2
(T −1∑

σ=0

Ai(kT + σ)
)

Qi(kT )

= Q2
i (kT ) +

(T −1∑
σ=0

D̂i(kT + σ)
)2

+
(T −1∑

σ=0

Ai(kT + σ)
)2

+ 2Qi(kT )
(T −1∑

σ=0

Ai(kT + σ) −
T −1∑
σ=0

D̂i(kT + σ)
)

.

Thus
1

2T
(Q2

i ((k + 1)T ) − Q2
i (kT ))

≤ 1
2T

(T −1∑
σ=0

D̂i(kT + σ)
)2

+
1

2T

(T −1∑
σ=0

Ai(kT + σ)
)2

+ Qi(kT )
(

1
T

T −1∑
σ=0

Ai(kT + σ) − 1
T

T −1∑
σ=0

D̂i(kT + σ)
)

.

Summing the above expression over all queues and taking conditional expecta-
tions, we arrive at the following bound on the T -step Lyapunov drift:

ΔT (kT )/T ≤ B +
∑

i

Qi(kT )λi −
∑

i

Qi(kT )E

[
1
T

T −1∑
σ=0

D̂i(kT + σ)|Q(kT )

]
,

(6.1)
where B is a constant that depends on the (finite) second moment of the arrival
process. We have also used the i.i.d. nature of arrivals to obtain the second term
on the right-hand side of (6.1).

We now pause to make some definitions. Let

D̂T (kT ) =
∑

i

Qi(kT )

(
1
T

T −1∑
σ=0

D̂i(kT + σ)

)
.
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Given a weight vector w, let r∗(w) denote the rate vector on the boundary of the
original capacity region Λ that maximizes the w-weighted sum of rates. Define

R∗(kT ) =
∑

i

Qi(kT )r∗i (Q̃(kT )),

where Q̃(kT ) is the normalized queue-length vector at time kT . Next, for a
weight vector w, let r̄(τ,w) be as defined in Proposition 3.5. Define

R(kT ) =
∑

i

Qi(kT )r̄i(τ, Q̃(kT )).

Observe that r∗(·) and r̄(τ, ·) are deterministic vectors once the weight vector
and the truncation threshold τ are fixed. On the other hand, D̂i(·) is a random
variable, which is determined by the channel outcomes and the outcomes of the
randomized actions dictated by the state action frequencies.

Next, we invoke a result stating that the mixing of the finite MDP is expo-
nentially fast, so that the empirical average reward obtained over a long frame
of length T is very close to the infinite-horizon average reward.

Lemma 6.1. Regardless of the state at time kT , and for all κ > 0, there exists
η(κ) > 0 such that2

P

{∥∥∥∥ 1
T

T −1∑
σ=0

D̂(kT + σ) − r̄(τ, Q̃(kT ))
∥∥∥∥ > κ

}
< ce−η (κ)T .

Proof. The result follows from [Mannor and Tsitsiklis 05].

Let us return to the drift expression (6.1) and rewrite it as

ΔT (kT )/T (6.2)

≤ B +
∑

i

Qi(kT )λi − E
[
D̂T (kT ) | Q(kT )

]

= B +
∑

i

Qi(kT )
[
λi − r∗i (Q̃(kT ))

]
+ E

[
R∗(kT ) − D̂T (kT ) | Q(kT )

]

≤ B +
∑

i

Qi(kT )
[
λi − r∗i (Q̃(kT ))

]
+ E

[∣∣R∗(kT ) − R(kT )
∣∣ | Q(kT )

]
+ E

[∣∣∣R(kT ) − D̂T (kT )
∣∣∣ | Q(kT )

]
.

The bound in (6.2) is due to the triangle inequality.

2 Throughout this paper, ‖ · ‖ denotes the 2-norm.
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We now bound the two expectation terms on the right-hand of (6.2). First,
we have

E
[∣∣R∗(kT ) − R(kT )

∣∣ | Q(kT )
]

= E
[∣∣∣〈Q(kT ), r∗(Q̃(kT )) − r(Q̃(kT ), τ)

〉∣∣∣ | Q(kT )
]

≤ E
[
‖Q(kT )‖

∥∥∥r∗(Q̃(kT )) − r̄(τ, Q̃(kT ))
∥∥∥ | Q(kT )

]
(6.3)

≤ κ‖Q(kT )‖, (6.4)

where (6.3) follows from the Cauchy–Schwarz inequality, and (6.4) is due to
Proposition 3.5 for large enough τ . Next, we bound the second expectation term
in (6.2):

E
[∣∣∣R(kT ) − D̂T (kT )

∣∣∣ | Q(kT )
]

(6.5)

= E
[∣∣∣R(kT ) − D̂T (kT )

∣∣∣ | Q(kT ),
∣∣∣R(kT ) − D̂T (kT )

∣∣∣ ≤ κ ‖Q(kT )‖
]

× P
{∣∣∣R(kT ) − D̂T (kT )

∣∣∣ ≤ κ ‖Q(kT )‖ | Q(kT )
}

+ E
[∣∣∣R(kT ) − D̂T (kT )

∣∣∣ | Q(kT ),
∣∣∣R(kT ) − D̂T (kT )

∣∣∣ > κ ‖Q(kT )‖
]

× P
{∣∣∣R(kT ) − D̂T (kT )

∣∣∣ > κ ‖Q(kT )‖ | Q(kT )
}

≤ κ ‖Q(kT )‖
+
(∑

i

Qi(kT )
)

P
{∣∣∣R(kT ) − D̂T (kT )

∣∣∣ > κ ‖Q(kT )‖ | Q(kT )
}

.

In arriving at the bound in (6.5), we have used

E
[∣∣∣R(kT ) − D̂T (kT )

∣∣∣ | Q(kT ),
∣∣∣R(kT ) − D̂T (kT )

∣∣∣ > κ ‖Q(kT )‖
]

≤ E
[∣∣∣D̂T (kT )

∣∣∣ | Q(kT ),
∣∣R(kT ) − WT (kT )

∣∣ > κ ‖Q(kT )‖
]
≤
∑

i

Qi(kT ).

Let us next bound the probability term in (6.5) using the Cauchy–Schwarz in-
equality:

P
{∣∣∣R(kT ) − D̂T (kT )

∣∣∣ > κ ‖Q(kT )‖ | Q(kT )
}

≤ P

{∥∥∥∥r̄(τ, Q̃(kT )) − 1
T

T −1∑
σ=0

D̂(kT + σ)
∥∥∥∥ > κ | Q(kT )

}
. (6.6)
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The right-hand side of (6.6) is bounded, by Lemma 6.1. Returning to bounding
(6.5), we have

E
[∣∣∣R(kT ) − D̂T (kT )

∣∣∣ | Q(kT )
]
≤ κ ‖Q(kT )‖ +

(∑
i

Qi(kT )
)(

ce−η (κ)T
)

.

(6.7)
We can now use (6.7) together with (6.4) to bound the drift in (6.2) from

above:
ΔT (kT )

T
≤ B +

∑
i

Qi(kT ) [λi − r∗i (Q(kT ))] +
(∑

i

Qi(kT )
)(

2κ + ce−η (κ)T
)

.

(6.8)
Let δ = 2κ + ce−η (κ)T . Assume now that the input-rate vector λ lies in the
interior of the δ-stripped region Λ − δ1. That is, there exists ξ > 0 such that
λ + ξ1 = r − δ1, for r ∈ Λ. Thus,

ΔT (kT )
T

≤ B +
∑

i

Qi(kT ) [ri − r∗i (Q(kT ))] −
(∑

i

Qi(kT )
)

ξ.

Finally, noting that
∑

i Qi(kT ) [ri − r∗i (Q(kT ))] ≤ 0, by the definition of
r∗i (Q(kT )), we get

ΔT (kT )
T

≤ B −
(∑

i

Qi(kT )
)

ξ. (6.9)

According to [Neely et al. 05, Theorem 3], the bound in (6.9) shows that the
queuing system is stable under our frame-based policy for arrival rates in the
interior of the δ-stripped region Λ − δ1. Since δ can be made arbitrarily small
by choosing sufficiently large values for T and τ , our policy can support rates
arbitrarily close to the capacity region boundary, with a corresponding tradeoff
in delay and computational complexity.
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