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Abstract—We consider scheduling over a wireless system,
where the channel state information is not available a priori to
the scheduler, but can be inferred from the past. Specifically, the
wireless system is modeled as a network of parallel queues. We
assume that the channel state of each queue evolves stochastically
as an ON/OFF Markov chain. The scheduler, which is aware of
the queue lengths but is oblivious of the channel states, hasto
choose one queue at a time for transmission. The scheduler has
no information regarding the current channel states, but can
estimate them by using the acknowledgment history.

We first characterize the capacity region of the system using
tools from Markov Decision Processes (MDP) theory. Specifically,
we prove that the capacity region boundary is the uniform limit
of a sequence of Linear Programming (LP) solutions. Next, we
combine the LP solution with a queue length based scheduling
mechanism that operates over long ‘frames,’ to obtain a through-
put optimal policy for the system. By incorporating results from
MDP theory within the Lyapunov-stability framework, we show
that our frame-based policy stabilizes the system for all arrival
rates that lie in the interior of the capacity region.

I. I NTRODUCTION

In this paper, we consider the scheduling problem in a
wireless uplink or downlink system, when there is no explicit
instantaneous Channel State Information (CSI) available to the
scheduler. The lack of CSI may arise in practice due to several
reasons. For example, the control overheads, as well as the
delay and energy costs associated with channel probing, might
make instantaneous CSI too costly or impractical to obtain.

Our system consists ofN wireless links, which are modeled
as N parallel queues that are fed by stochastic traffic. We
assume that only a single queue can be chosen at each time
slot by the server for transmitting its data. The state of each
wireless link is time-varying, evolving as an independent
ON/OFF Markov chain. A given transmission is successful
only if the underlying channel is currently ON.

Our basic assumption in this paper is that the scheduler
cannot observe the current state ofany of the wireless links.
Nonetheless, when the scheduler serves one of the queues in
a given time slott, there is an ACK-feedback mechanism
which acknowledges whether the transmission was successful
or not, thereby revealing the channel statea posteriori. Since
the channels are correlated across time by the Markovian
assumption, thisa posteriori CSI can be used for predicting
the channel state of the chosen queue in future time slots.
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The capacity region (or the rate region) of the system
described above, is the set of all arrival-rate vectors thatare
stably-supportable bysomescheduling policy. Our aim is to
characterize the capacity region of the system, and to design
a throughput optimal scheduling policy.

The general problem of scheduling parallel queues with
time-varying connectivity has been widely studied for almost
two decades. The seminal paper of Tassiulas and Ephremides
[6] considered the case where both channel states and queue
lengths are fully available to the scheduler. It was shown in
[6] that the max-weight algorithm, which serves the longest
connected queue, is throughput optimal.

Following this paper, several variants of imperfect and
delayed CSI scenarios have been considered in the literature
[2], [5], [7], [8]. However, our scheduling problem fundamen-
tally differs from the models considered in these references.
Specifically, no explicit CSI is ever made available to the
scheduler, and acquiring channel state information is apart
of the scheduling decisionmade at each time instant. This
adds significant difficulties to the scheduling problem.

Two recent papers consider the scheduling problem where
the CSI is obtained through an acknowledgment process, as
in our model. In [1], the authors consider the objective of
maximizing thesum-rateof the system, under the assumption
that the queues arefully-backlogged(i.e., there is always data
to send in each queue). It is shown that a simplemyopic policy
is sum-rate optimal. The suggested policy keeps scheduling
the channel that is being served as long as it remains ON, and
switches to the least recently served channel when the current
channel goes OFF.

In [4], the authors propose a randomized round-robin
scheduling policy for the system, which is inspired by the
myopic sensing results in [1]. That policy is shown to stabilize
arrivals that lie within an inner-bound to the rate region.
However, the policy isnot throughput optimal, and their
method cannot be used to characterize the capacity region.

In this paper, we propose a throughput optimal scheduling
policy for the system. In particular, the frame-based policy we
propose can stabilize arrival rates that lie arbitrarily close to the
capacity region boundary, with a corresponding tradeoff inthe
computational complexity. Our proof of throughput optimality
combines tools from Markov decision theory within a Lya-
punov stability framework. We also provide a characterization
of the capacity region boundary, as the uniform limit of a
sequence of LP solutions.

This paper is organized as follows. The model is presented
in Section II. In Section III, we formulate a linear program
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Fig. 1. A system of parallel queues served by a single server.The channels
connecting the queues to the server are randomly time-varying.

which leads to the characterization of the capacity region.
In Section IV, we suggest the frame-based policy, which we
prove to be throughput optimal. Proofs are omitted throughout
due to space constraints, and can be found in [3].

II. SYSTEM DESCRIPTION

The network model. We model the wireless system as
consisting ofN parallel queues (see Fig. 1). Time is slotted
(t = 1, 2, . . . ). Packets arrive to each queuei ∈ {1, 2, . . . , N}
according to an independent stochastic process with rateλi.
We assume that the arrival processes are independent of each
other, and independent and identically distributed (i.i.d.) from
slot-to-slot.

Due to the shared wireless medium, only a single trans-
mission is allowed at a given time. In our queuing model,
this is equivalent to having the queues connected to a single
server, which is capable of serving only a single packet per
slot. Each queue is connected to the server by an ON/OFF
channel, which models the time-varying channel quality of the
underlying wireless link. If a particular channel is OFF and
the queue is chosen by the scheduler, the transmission fails,
and the packet has to be retransmitted. If it is ON and chosen
by the scheduler, a single packet is properly transmitted, and
an ACK is received by the scheduler.

We denote the channel state of thei-th link at time t by
Ci(t) ∈ {ON,OFF}, i = 1, . . . , N . We assume that the
states of different channels are statistically independent of each
other. The time evolution of each of the channels is given by
a two state ON/OFF Markov chain (see Fig. 2). Although our
methodology allows for different Markov chains for different
channels, we shall assume for ease of notation and exposition
that the Markov chains are identically distributed across users.
We further assume thatǫ < 0.5, so that each channel is
positively correlatedin time.
Information structure. At each timet, we assume that the
scheduler knows the current queue lengthsQi(t) prior to
making the scheduling decision. Yet,no information about the
current channel conditions is made available to the scheduler.
Only after scheduling a particular queue, does the scheduler
get to know whether the transmission succeeded or not, by
virtue of the ACK-mechanism. The scheduler thus has access
to the entire history of transmission successes and failures.
However, due to the Markovian nature of the channels, it is
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Fig. 2. The Markov chain governing the time evolution of eachof the
channels stateCi(t).

sufficient to recordhow long agoeach channel was served, and
the state of the channel(ON/OFF) when it was last served.
Scheduling objective.Given the above information structure,
our objective is to design a scheduling policy that can support
the largest possible set of input rates. More precisely, an arrival
rate vectorλ = (λ1, . . . , λN ) is said to besupportable, if there
exists some scheduling policy under which the queue lengths
are finite (almost surely). Thecapacity regionΓ of the system
is the closure of all supportable rate vectors. A policy is said
to be throughput optimalif it can support all arrival rates in
the interior ofΓ.

III. O PTIMAL POLICIES FOR AFULLY BACKLOGGED

SYSTEM

In the interest of simplicity of notation and exposition, we
restrict attention to the case ofN = 2 queues in the rest of
the paper, although our methodology extends naturally to more
queues. In this section, we assume that the queues are fully
backlogged, i.e., the queues never empty. As we shall see,
our analysis of the fully backlogged system gives us insights
about the optimal scheduling policy for the dynamic system
with finite queues.

Since the queues are assumed to be infinitely backlogged
in this section, the state of the system is completely specified
by the state of each channel the last time it was served, and
how long ago each channel was served. In a system with two
fully backlogged queues, theinformation stateduring slot t
has the forms(t) = [k1(t), b1(t), k2(t), b2(t)], whereki(t) is
the number of slots since the queuei was served, andbi(t) ∈
{0, 1} is the state of the channel the last time it was observed.1

Since the channels are Markovian,s(t) is a sufficient statistic
for the fully backlogged system. Note thatmin(k1(t), k2(t)) =
1, ∀ t, and max(k1(t), k2(t)) ≥ 2 ∀ t. Let S denote the
(countably infinite) set of all possible statess(t).

Denote thel step transition probabilities of the channel
Markov chain in Fig. 2 byp(l)11 , p

(l)
01 , p

(l)
10 , and p

(l)
00 . It can

be shown by explicit computation that forl ≥ 1,

p
(l)
01 = p

(l)
10 =

1− (1− 2ǫ)l

2
, p

(l)
11 = p

(l)
00 =

1 + (1− 2ǫ)l

2
.

Next, define thebelief vector corresponding to states ∈
S as [ω1(s), ω2(s)], where ωi(s), i = 1, 2 is the condi-
tional probability that the channeli is ON. For example,
if s = [1, ON, 3, OFF ], the corresponding belief vector is

1Throughout,0 is used interchangeably to denote the channel state OFF,
and1 is used to denote ON.



[1− ǫ, p
(3)
01 ]. It can be shown that the belief vector has a one-

to-one mapping to the information state, and is therefore also
a sufficient statistic for the fully backlogged problem.

In each slot, there are two possible actions,a ∈ {1, 2},
corresponding to serving one of the two queues. Given a state
and an action at a particular time, the belief for the next slot
is updated according to the following equation.

ωi(t+ 1) =







(1− ǫ)ωi(t) + ǫ(1− ωi(t)), if a(t) 6= i,

1− ǫ, if a(t) = i, Ca(t)(t) = 1,
ǫ, if a(t) = i, Ca(t)(t) = 0,

where we have abused notation to writeωi(t) = ωi(s(t)).
A policy for the fully backlogged system is a rule that

associates an actiona(t) ∈ {1, 2}, to the states(t) for eacht.
A deterministic stationarypolicy is a map fromS to {1, 2},
whereas arandomized stationarypolicy picks an action given
the state according to a fixed distributionP {a|s(·)} .

Suppose that a unit reward is accrued from each of the two
channels, every time a packet is successfully transmitted on
that channel, i.e., when the server is assigned to a particular
channel and the channel is ON. Given a states(t) at a
particular time, and an actiona(t), the probability that a unit
reward is accrued in that time slot is simply equal to the
belief of the channel that was chosen. We are interested in the
long term time average rate achieved on each of the channels
under a given policy. From the viewpoint of the reward defined
above, the average rate translates to the infinite horizon time
average reward obtained on each channel under a given policy.

We say that rate pair(λ1, λ2) is achievablein the fully
backlogged system, if there existssomepolicy for which the
infinite horizon time average reward vector equals(λ1, λ2).
The closure of the set of all achievable rate pairs is called
the rate regionΛ of the fully backlogged system. It should
be evident that a rate pair that is not achievable in the fully
backlogged system, cannot be supportable in the dynamic
system with random arrivals. Thus, the capacity regionΓ of
the queueing system is contained in the rate regionΛ of the
fully backlogged system. In fact, we show in Section IV that
the two rate regions have the same interior, by deriving a queue
length based policy for the original system that can stabilize
any arrival rate in the interior ofΛ. We now proceed to obtain
an implicit characterization of the rate region boundary.

A. MDP formulation and state action frequencies

Let us consider a Markov decision process (MDP) formu-
lation on the belief space for characterizing the rate region
boundary.

It is easy to show that the rate regionΛ is convex. Indeed,
given two points in the rate region, each attainable by some
policy, we can obtain any convex combination of the rate
points by time-sharing the policies over sufficiently long
intervals. Further, the rate region is also closed by definition.
Therefore, any point on its boundary maximizes a weighted
sum- rate expression. That is, if(r∗1 , r

∗
2) is a rate pair on the

boundary ofΛ, then

(r∗1 , r
∗
2) = argmax(λ1,λ2)∈Λw1λ1 + w2λ2 (1)

for some weight vectorw = [w1, w2], with w1+w2 = 1. The
following proposition shows that if the rate pair(λ1, λ2) is in
Λ, then there must necessarily existstate action frequencies
that satisfy a set of balance equations.

Proposition 1: Let (λ1, λ2) ∈ Λ. Then, for each states∈ S
and actiona ∈ {1, 2}, there exists state action frequencies
x(s; a), that satisfy

0 ≤ x(s; a) ≤ 1, (2)

the balance equations (3)-(6) (next page), the normalization
condition

∑

s∈S

x(s; 1) + x(s; 2) = 1, (7)

and the rate constraints

λi ≤
∑

s∈S

x(s; i)ωi(s), i = 1, 2. (8)

Intuitively, a set of state action frequencies correspondsto
a stationary randomized policy such thatx(s; a) equals the
steady-state probability that in a given time slot, the state is s
and the action isa. Further, conditioned on being in states,
the actiona is chosen with probabilityx(s;a)

P{s} , whereP {s} =

x(s; 1) + x(s; 2). (If P {s} = 0, the policy prescribes actions
arbitrarily).

Let us now provide an intuitive explanation of the balance
equations. Equations (3)-(6) simply equate the steady-state
probability of being in a particular state, to the total probability
of entering that state from all possible states. For example,
the left side of (3) equals the steady-state probability of being
in the state[1, b1, k, b2], k > 2, while the right side equals
the total probability of getting to the above state from other
states, and similarly for the other balance equations. Equation
(7) equates the total steady-state probability to unity. Finally,
in Equation (8), the termx(s; i)ωi(s) equals the probability
that the state iss, the actioni is chosen,and the transmission
succeeds. Thus, the right-side of (8) equals the total expected
rate on channeli.

We now return to the characterization of the rate region
boundary. In light of Proposition 1, Equation (1) can be
rewritten as follows.

Problem INFINITE(w):

(r∗1 , r
∗
2) = argmax(λ1,λ2)w1λ1 + w2λ2 (9)

subject to (2)-(8).

Since the state-space of this MDP is countably infinite, the
optimization in (9) involves an infinite number of variables.
In order to make this problem tractable, we now introduce an
LP approximation.

B. LP approximation using a finite MDP

In this section, we introduce an MDP with a finite state
space, which as we show, approximates the original MDP
arbitrarily closely. The state action frequencies corresponding
to the finite MDP approximation can then be solved as an LP.



x([1, b1, k, b2]; 1) + x([1, b1, k, b2]; 2) = x([1, b1, k − 1, b2]; 1)(1− ǫ) + x([1, 1− b1, k − 1, b2]; 1)ǫ, k > 2, (3)

x([1, b1, 2, b2]; 1) + x([1, b1, 2, b2]; 2) =
∑

l≥2

x([l, b1, 1, b2]; 1)p
(l)
11 + x([l, 1− b1, 1, b2]; 1)p

(l)
01 , (4)

x([k, b1, 1, b2]; 1) + x([k, b1, 1, b2]; 2) = x([k − 1, b1, 1, b2]; 2)(1− ǫ) + x([k − 1, b1, 1, 1− b2]; 2)ǫ, k > 2, (5)

x([2, b1, 1, b2]; 1) + x([2, b1, 1, b2]; 2) =
∑

l≥2

x([1, b1, l, b2]; 2)p
(l)
11 + x([1, b1, l, 1− b2]; 2)p

(l)
01 , (6)

First note that the belief of a channel that has not been
observed for a long time increases monotonically toward the
steady state value of0.5 if it was OFF the last time it was
scheduled. Similarly, the belief decreases monotonicallyto 0.5
if the channel was ON the last time it was scheduled. The key
idea now is to construct a finite MDP whose states are the same
as the original MDP, with the exception that the belief of a
channel that remains unobserved for a long time is clamped
to the steady state ON probability,0.5. Specifically, when a
channel has not been scheduled forτ or more time slots, its
observation history is entirely forgotten, and the belief on it is
assumed to be0.5. The action space and the reward structure
are exactly as before. We show that this truncated finite MDP
closely approximates the original MDP whenτ gets large.

Let us now specify the states and state action frequencies
for this finite MDP. There are4(τ − 2) states of the form
[1, b1, k2, b2], 2 ≤ k2 ≤ τ − 1, b1, b2 ∈ {ON,OFF} that
correspond to the first channel being scheduled in the previous
slot, and the second channel being scheduled less thatτ time
slots ago. In a symmetric fashion, there are4(τ − 2) states of
the form[k1, b1, 1, b2], 2 ≤ k1 ≤ τ−1, b1, b2 ∈ {ON,OFF}
that correspond to the second channel being scheduled in the
previous slot. Finally, there are 4 states[1, b1, φ, φ], b1 ∈
{ON,OFF} and [φ, φ, 1, b2], b2 ∈ {ON,OFF} in which
one of the channels has not been seen for at leastτ slots, and
its belief reset to0.5. Let us denote bŷS the above set of states
for the finite MDP, and let̂x(s; a), s∈ Ŝ, a ∈ {1, 2} denote
the state action frequencies for the finite MDP. These state
action frequencies satisfy normalization, balance equations,
and rate constraints, analogous to (2)-(8).

For a fixedw andτ, let us now consider the following LP.

Problem FINITE(τ ,w):

(r̂1, r̂2) = argmax(λ̂1,λ̂2)
w1λ̂1 + w2λ̂2 (10)

subject to normalization, balance equations and rate con-
straints, analogous to (2)-(8).

The main result of this section shows that thesolution to this
LP approximates the boundary pointspecified by the problem
INFINITE(w) for everyw, whenτ is large.

Proposition 2: For a givenw with w1 +w2 = 1, andτ, let
η̂(τ,w) denote the solution to the problem FINITE(τ ,w), and
let r∗(w) denote the solution to INFINITE(w). Then,η̂(τ,w)
convergesuniformly to r∗(w), asτ → ∞.

We next show a result that asserts that using the state action
frequencies obtained from the finite MDP in the backlogged
system entails only a negligible sub-optimality, whenτ is
large. The finite MDP solution is applied to the backlogged
system as follows. If the state in the backlogged system is such
that both channels were served no more thanτ time slots ago,
then we schedule according to the state action frequencies of
that particular state in the finite MDP. On the other hand, if
one of the channels was served more thanτ time slots ago,
the finite MDP would nothavea corresponding state and state
action frequencies. In such a case, we schedule according to
the state action frequencies of one of the four states in the
finite MDP in which the belief is clamped to the steady-state
value. For example, if the system state is[1, b1, k2, b2], with
k2 > τ, we schedule according to the state action frequencies
of the state[1, b1, φ, φ] in the finite MDP, and so on.

Proposition 3: Suppose that the optimal state action fre-
quencies obtained by solving the problem FINITE(τ,w) are
used to perform scheduling in a fully backlogged system, as
detailed above. Let̂r(τ,w) denote the average reward vector
so obtained. Then for everyw with w1 + w2 = 1, we have
that r̂(τ,w) convergesuniformly to the optimal rewardr∗(w),
asτ → ∞.

We pause briefly to emphasize the subtle difference between
Propositions 2 and 3. Proposition 2 asserts that optimal reward
obtained from the finite MDP is close to the optimal reward of
the infinite MDP. In this case, the optimal solution to the finite
MDP is applied to the finite state-space. On the other hand, in
Proposition 3, the optimal policy obtained from the finite MDP
is used on the originalinfinite state-space, and the ensuing
reward is shown to be close to the optimal reward. From a
practical perspective, Propositions 2 yields a characterization
of the rate region, while Proposition 3 plays a key role in
the throughput optimality proof of the frame-based policy in
Section IV.

C. An Outer Bound

We now derive an outer bound to the rate regionΛ, using
‘genie-aided’ channel information. Although the bound isnot
used in deriving our optimal policy, it is of interest to compare
the outer bound we obtain to existing bounds in the literature.

Consider a fictitious, fully backlogged system in which
the channel processes follow the same sample paths as in
the original system. However, after a channel is served in
a particular time slot, a genie reveals the states of all the
channels in the system. Therefore, at the beginning of a time
slot in the fictitious system, the scheduler has access toall the
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channel states in the previous slot, and not just the channel
that was served. Clearly, the rate region for the genie-aided
system, denoted byΛ, is an outer bound to the rate region
of the original system. The boundary of the regionΛ can be
explicitly characterized (see [3]) in terms ofǫ:

Λ =







(λ1, λ2)
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ǫλ1 + (1− ǫ)λ2 ≤ (1− ǫ)/2;
(1− ǫ)λ1 + ǫλ2 ≤ (1− ǫ)/2;

λ1 + λ2 ≤ 3/4− ǫ/2







. (11)

D. Numerical Example

In this section, we use the finite LP approximation obtained
in Section III-B to numerically compute and plot the capacity
region for a two queue system. Specifically, we use the
solution to the problem FINITE(τ ,w) with large enoughτ ,
which, according to Proposition 2, uniformly approximatesthe
rate region boundary for allw. We also plot the genie-aided
outer bound obtained above, and compare the rate region and
our outer bound to the inner and outer bounds derived in [4].

Fig. 3 shows the numerically obtained rate region, the genie-
aided outer bound, and the inner and outer bounds derived in
[4] for our symmetric two queue system withǫ = 0.2. The
capacity region, shown with a dark solid line, was obtained
by solving the LP approximation FINITE(τ,w) for all weight
vectors, and large enoughτ. The dash-dot curve in the figure
is our genie-aided outer bound. The achievable region of the
randomized round-robin policy proposed in [4], is shown by
a dashed line. Finally, the outer most region in the figure is
the outer bound derived in [4].

Interestingly, we observe that the genie-aided outer bound
is tight at the symmetric rate point; see [3] for details.

IV. A T HROUGHPUTOPTIMAL FRAME-BASED POLICY

In this section, we return to the original problem, with
finite queues and stochastic arrivals. We propose a throughput
optimal queue length based policy that operates over long
‘frames.’

In our frame-based policy, the time axis is divided into
frames consisting ofT slots each, and the queue lengths are

updated at the beginning of each frame. Given the queue length
vector Q(kT ) at the beginning of each frame, the idea is
to maximize a weighted sum rate quantity over the frame,
where theweight vector is the queue length vectorfor that
frame. The weighted rate maximization is, in turn, performed
approximately by solving the finite MDP. Intuitively, the
above procedure has the net effect of performing max-weight
scheduling over each time-frame, where MDP techniques are
employed to compute each of the ‘optimal schedules.’ More
precisely, our policy operates as follows.

FRAME-BASED POLICY:

(i) At the beginning of time framek, update the queue length
vectorQ(kT ).

(ii) Compute the normalized queue length vectorQ̃(kT ),
whose entries sum to 1.

(iii) Solve the problem FINITE(τ, Q̃(kT )) and obtain the state
action frequencieŝx(s, a), s∈ Ŝ, a ∈ {1, 2}.

(iv) Schedule according to the state action frequencies ob-
tained in the previous step during each slot in the frame.

The main result of this paper is the throughput optimality
of the frame-based policy, for large enough values ofT and
τ . Specifically, our frame-based policy can stabilize all arrival
rates within aδ-stripped region ofΛ, for any δ > 0. As we
shall see, a smallδ could require large values ofT and τ,

which increases the dimensionality of the LP (depends onτ )
as well as the average delay (depends onT ). Thus our policy
offers a tradeoff between computational complexity and delay
on the one hand, and better throughput on the other. Our main
theorem is stated below. Note also that our policy requires
queue length information only at the beginning of each frame.

Theorem 1:Given anyδ > 0, there exist large enoughτ
and T such that the frame-based policy stabilizes all arrival
rates in theδ-stripped rate regionΛ − δ1.
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