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Abstract—We investigate the asymptotic behavior of the
steady-state queue-length distribution under generalized
max-weight scheduling in the presence of heavy-tailed traffic.
We consider a system consisting of two parallel queues, served by
a single server. One of the queues receives heavy-tailed traffic,
and the other receives light-tailed traffic. We study the class
of throughput-optimal max-weight- scheduling policies and
derive an exact asymptotic characterization of the steady-state
queue-length distributions. In particular, we show that the tail of
the light queue distribution is at least as heavy as a power-law
curve, whose tail coefficient we obtain explicitly. Our asymptotic
characterization also shows that the celebrated max-weight sched-
uling policy leads to the worst possible tail coefficient of the light
queue distribution, among all nonidling policies. Motivated by
the above negative result regarding the max-weight- policy, we
analyze a log-max-weight (LMW) scheduling policy. We show that
the LMW policy guarantees an exponentially decaying light queue
tail while still being throughput-optimal.

Index Terms—Heavy-tailed traffic, scheduling, throughput
optimality.

I. INTRODUCTION

T RADITIONALLY, traffic in telecommunication networks
has been modeled using Poisson and Markov-modulated

processes. These simple traffic models exhibit “local random-
ness,” in the sense that much of the variability occurs in short
timescales, and only an average behavior is perceived at longer
timescales. With the spectacular growth of packet-switched net-
works such as the Internet during the last couple of decades,
these traditional traffic models have been shown to be inade-
quate. This is because the traffic in packetized data networks is
intrinsically more “bursty” and exhibits correlations over longer
timescales than can be modeled by any finite-state Markovian
point process. Empirical evidence, such as the famous Bellcore
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study on self-similarity and long-range dependence in ethernet
traffic [18], led to increased interest in traffic models with high
variability.
Heavy-tailed distributions, which have long been used to

model high variability and risk in finance and insurance, were
considered as viable candidates to model traffic in data net-
works. Furthermore, theoretical work such as [15], linking
heavy-tails to long-range dependence (LRD) lent weight to
the belief that extreme variability in the Internet file sizes is
ultimately responsible for the LRD traffic patterns reported
in [18] and elsewhere.
Many of the early queueing theoretic results for heavy-tailed

traffic were obtained for the single server queue; see [5], [6],
and [23] for surveys of these results. In [7], the authors study
the tail behavior of the waiting time in an M/G/2 system, when
one of the service time distributions is heavy-tailed and the other
is exponential.
It turns out that the service discipline plays an important role

in the delay experienced in a queue when the traffic is heavy-
tailed. For example, it was shown in [1] that any nonpreemp-
tive service discipline leads to infinite expected delay when
the traffic is sufficiently heavy-tailed. Furthermore, the asymp-
totic behavior of delay under various service disciplines such
as first-come–first-served (FCFS) and processor sharing (PS)
is markedly different under light-tailed and heavy-tailed sce-
narios [5], [28]. This is important, for example, in the context
of scheduling jobs in server farms [14].
In the context of communication networks, a subset of the

traffic flows may be well modeled using heavy-tailed processes,
and the rest better modeled as light-tailed processes. For ex-
ample, an Internet user might generate occasional file down-
load requests with highly variable file sizes that can be mod-
eled as being heavy-tailed. On the other hand, routine Web page
loading, e-mail, and Twitter traffic are likely to be far less vari-
able and thus better modeled as being light-tailed. In such a sce-
nario, there are relatively few studies on the problem of sched-
uling between the different flows and the ensuing nature of in-
teraction between the heavy-tailed and light-tailed traffic. An
important paper in this category is [4], where the interaction
between light- and heavy-tailed traffic flows under generalized
processor sharing (GPS) is studied. In that paper, the authors de-
rive the asymptotic workload behavior of the light-tailed flow
when its GPS weight is greater than its traffic intensity. In a
related paper [3], the authors obtain the asymptotic workload
behavior under a general coupled-queues framework, which in-
cludes GPS as a special case.
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One of the key considerations in the design of a scheduling
policy for a queueing network is throughput optimality, which is
the ability to support the largest set of traffic rates that is support-
able by a given queueing network. Queue-length-based sched-
uling policies, such as max-weight scheduling [26], [27] and its
many variants, are known to be throughput-optimal in a general
queueing network. For this reason, the max-weight family of
scheduling policies has received much attention in various net-
working contexts, including switches [20], satellites [21], wire-
less [22], and optical networks [8].
In spite of a large and varied body of literature related to

max-weight scheduling, it is somewhat surprising that the policy
has not been adequately studied in the context of heavy-tailed
traffic. Specifically, a question arises as to what behavior we can
expect due to the interaction of heavy- and light-tailed flows
when a throughput-optimal max-weight-like scheduling policy
is employed. Our present work is aimed at addressing this basic
question.
In a recent paper [19], a special case of the problem con-

sidered here is studied. Specifically, it was shown that when
the heavy-tailed traffic has an infinite variance, the light-tailed
traffic experiences an infinite expected delay under max-weight
scheduling. Furthermore, it was shown that the max-weight
policy can be tweaked to favor the light-tailed traffic, so as to
make the expected delay of the light-tailed traffic finite. In the
present paper, we considerably generalize these results by pro-
viding a precise asymptotic characterization of the occupancy
distributions under the max-weight scheduling family for a
large class of heavy-tailed traffic distributions.
We study a system consisting of two parallel queues served

by a single server. One of the queues is fed by a heavy-tailed
arrival process, while the other is fed by light-tailed traffic. We
refer to these queues as the “heavy” and “light” queues, respec-
tively. In this setting, we analyze the asymptotic performance
of max-weight- scheduling, which is a generalized version of
max-weight scheduling. Specifically, while max-weight sched-
uling makes scheduling decisions by comparing the queue
lengths in the system, the max-weight- policy uses different
powers of the queue lengths to make scheduling decisions.
Under this policy, we derive an asymptotic characterization
of the light queue occupancy distribution and specify all the
bounded moments of the steady-state queue lengths.
A surprising outcome of our asymptotic characterization is

that the “plain” max-weight scheduling policy induces the worst
possible decay rate on the light queue tail distribution. We also
show that by a choice of parameters in the max-weight- policy
that increases the preference afforded to the light queue, the tail
behavior of the light queue can be improved. Ultimately, how-
ever, the tail of the light queue distribution is lower-bounded
by a power-law-like curve for any scheduling parameters used
in the max-weight- scheduling policy. Intuitively, the reason
max-weight- scheduling induces a power-law-like decay on
the light queue distribution is that the light queue has to com-
pete with an often large heavy queue for service.
The simplest way to guarantee a good asymptotic behavior

for the light queue distribution is to give the light queue
complete priority over the heavy queue so that it does not have
to compete with the heavy queue for service. We show that

Fig. 1. System of two parallel queues, with one of them fed with heavy-tailed
traffic.

under priority for the light queue, the tail distributions of both
queues are asymptotically as good as they can possibly be under
any policy. Be that as it may, giving priority to the light queue
has an important shortcoming—it is not throughput-optimal for
a general constrained queueing system.
We therefore find ourselves in a situation where, on the one

hand, the throughput-optimal max-weight- scheduling leads to
poor asymptotic performance for the light queue. On the other
hand, giving priority to the light queue leads to good asymp-
totic behavior for both queues, but is not throughput-optimal in
general. To remedy this situation, we propose a throughput-op-
timal log-max-weight (LMW) scheduling policy, which gives
significantly more importance to the light queue compared to
max-weight- scheduling. We analyze the asymptotic behavior
of the LMW policy and show that the light queue occupancy
distribution decays exponentially. We also obtain the exact large
deviation exponent of the light queue tail under a regularity as-
sumption on the heavy-tailed input. Thus, the LMW policy has
both desirable attributes—it is throughput-optimal, and ensures
an exponentially decaying tail for the light queue distribution.
The remainder of this paper is organized as follows. In

Section II, we describe the system model. In Section III, we
present the relevant definitions and mathematical prelimi-
naries. Section IV deals with the queue-length behavior under
priority scheduling. Sections V and VII respectively contain
our asymptotic results for max-weight- scheduling and the
LMW policy. We conclude the paper in Section VIII. A shorter
version of this work appeared in [17].

II. SYSTEM MODEL

Our system consists of two parallel queues, and , served
by a single server, as depicted in Fig. 1. Time is slotted, and
stochastic arrivals of packet bursts occur to each queue in each
slot. The server is capable of serving one packet per time slot
from only one of the queues according to a scheduling policy.
Let and denote the number of packets that arrive
during slot to and , respectively. Although we postpone
the precise assumptions on the traffic to Section III-B, let us
loosely say that the input is light-tailed, and is heavy-
tailed. In the sequel, we will sometimes refer to the collection of
packets that arrive at a given time as a burst. We will refer to the
queues and as the heavy and light queues, respectively. The
queues are assumed to be always connected to the server. Let

and , respectively, denote the number of packets in
and at the beginning of slot (i.e., before the slot arrivals),

and let and denote the steady-state queue lengths, when
they exist. Our aim is to characterize the behavior of
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and as becomes large, under various scheduling
policies.

III. DEFINITIONS AND MATHEMATICAL PRELIMINARIES

A. Heavy-Tailed Distributions

We begin by defining some properties of tail distributions of
nonnegative random variables.
Definition 1: A random variable is said to be light-tailed

if there exists for which . A random
variable is heavy-tailed if it is not light-tailed.
In other words, a light-tailed random variable is one that has a

well-defined moment-generating function in a neighborhood of
the origin. The complementary distribution function of a light-
tailed random variable decays at least exponentially fast. Heavy-
tailed random variables are those which have complementary
distribution functions that decay slower than any exponential.
This class is often too general to study, so subclasses of heavy-
tailed distributions, such as subexponentials, have been defined
and studied in the past [25]. We now review some definitions
and existing results on some relevant classes of heavy-tailed
distributions. In the remainder of this section, will denote a
nonnegative random variable, with complementary distribution
function . For the most part, we adhere to
the terminology in [2] and [9].
Notation: If and are positive functions defined on

, we write to mean

Similarly, means

Definition 2:
1) has a regularly varying tail of index , denoted by

, if

2) is extended-regularly varying, denoted by ,
if for some real and

3) is intermediate-regularly varying, denoted by
, if

4) is order-regularly varying, denoted by , if
for some

It is easy to see from the definitions that
. In fact, the containments are proper, as shown in [9]. In-

tuitively, is the class of distributions with tails that decay
according to a power-law with parameter . Indeed, it can be
shown [11] that

where is a slowly varying function, i.e., a function that
satisfies . The other three classes are
increasingly more general, but as we shall see, they all corre-
spond to distributions that are asymptotically heavier than some
power-law curve. In what follows, a statement such as
should be construed to mean .
Next, we define the lower and upper orders of a distribution.
Definition 3:
1) The lower order of is defined by

2) The upper order of is defined by

It can be shown that for regularly varying distributions, the
upper and lower orders coincide with the index . It also turns
out that both orders are finite for the class , as asserted in
the following.
Proposition 1: for every .
Proof: Follows from [2, Theorem 2.1.7 and Proposi-

tion 2.2.5].
The following result, which is a consequence of

Proposition 1, states that every is asymptotically
heavier than a power-law curve.
Proposition 2: Let . Then, for each we

have as .
Proof: See [24, eq. (2.4)].

Definitions 2 and 3 deal with asymptotic tail probabilities of
a random variable. Next, we introduce the notion of tail coeffi-
cient, which is a moment property.
Definition 4: The tail coefficient of a random variable is

defined by

In other words, the tail coefficient is the threshold where the
power moment of a random variable starts to blow up. Note that
the tail coefficient of a light-tailed random variable is infinite.
On the other hand, the tail coefficient of a heavy-tailed random
variable may be infinite (e.g., log-normal) or finite (e.g., Pareto).
The next result shows that the tail coefficient and order are, in
fact, closely related parameters.
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Proposition 3: The tail coefficient of is equal to the lower
order of .1

Proof: Suppose first that the lower order is infinite, so that
for any , we can find an large enough such that

Thus, for large enough , we have

This implies for all . Therefore, the tail
coefficient of is also infinite.
Next, suppose that We will show that: 1)

for all ; and 2) for all
. Regarding 1), we note that there is nothing to be

shown if . If , we argue as above that for
large enough , we have when .
Thus, for all . To show 2), let us consider
some such that . By the definition of , there
exists a sequence that increases to infinity as , such
that

i.e.,

Therefore

from which it follows that . Therefore, the tail
coefficient of is equal to .
We remark that Proposition 3 holds for any random variable,

regardless of its regularity properties. Finally, we show that any
distribution in necessarily has a finite tail coefficient.
Proposition 4: If , then has a finite tail

coefficient.
Proof: From Proposition 1, the upper order is finite:

. Thus, the lower order is also finite. Since the
lower order equals the tail coefficient (Proposition 3), the result
follows.

B. Assumptions on the Arrival Processes

We are now ready to state the precise assumptions on the
arrivals processes.
1) The arrival processes to the two queues are independent of
each other. Furthermore, and are independent of
the past history until time .

2) is independent and identically distributed (i.i.d.) from
slot to slot.

3) is i.i.d. from slot to slot.
4) is light-tailed with .

1The first author is grateful to J. Nair (Caltech, Pasadena, CA) for suggesting
a proof of Proposition 3 via a personal communication.

5) with tail coefficient and
.

We also assume that , so that the input rate does
not overwhelm the service rate. Then, it can be shown that the
system is stable2 under any nonidling policy, and that the steady-
state queue lengths and exist.

C. Residual and Age Distributions

Here, we define the residual and age distributions for the
heavy-tailed input process, which will be useful later. First, we
note that necessarily has a nonzero probability mass at
zero since . We define as a random variable dis-
tributed according to the conditional distribution of , given
that . Specifically

Note that has tail coefficient equal to and inherits any
regularity property of .
Now consider a discrete-time renewal process with interre-

newal times distributed as . Let denote
the residual random variable, and the age of
the renewal process, in steady state [12].3 The joint distribution
of the residual and the age can be derived using basic renewal
theory

(1)

. The marginals of and
can be derived from (1)

(2)

(3)

Next, let us invoke a useful result from the literature.
Lemma 1: If , then and

(4)

A corresponding result also holds for the age .
Proof: See [9, Lemma 4.2(i)].

Using the above, we prove the important result that the
residual distribution is one order heavier than the original
distribution.
Proposition 5: If has tail coefficient equal to
, then and have tail coefficient equal to .
Proof: According to (4), we have, for all and some real

2The notion of stability used here is the positive recurrence of the system
occupancy Markov chain.
3We define the residual time and age so that if a renewal occurs at a particular

time slot, the age at that time slot is zero, and the residual time is equal to the
length of the upcoming renewal interval.
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Let us now consider the lower order of

In the last step above, we have used the tail coefficient of
. Since the lower order of equals its tail coefficient

(Proposition 3), the above relation shows that the tail coefficient
of is at most .
Next, to show the opposite inequality, let us consider the

duration random variable, defined as

Using the joint distribution (1), we can obtain the marginal of
as

Thus, for any , the moment of is finite

Since is stochastically dominated by , it is immediate
that . Therefore, the tail coefficient of
is at least , and the proposition is proved.

IV. PRIORITY POLICIES

In this section, we study the two “extreme” scheduling poli-
cies, namely priority for and priority for . Our analysis helps
us arrive at the important conclusion that the tail of the heavy
queue is asymptotically insensitive to the scheduling policy. In
other words, there is not much we can do to improve or hurt
the tail distribution of by the choice of a scheduling policy.
Furthermore, we show that giving priority to the light queue en-
sures the best possible asymptotic decay for both queue-length
distributions.

A. Priority for

In this policy, receives service whenever it is nonempty,
and receives service only when is empty. It should be in-
tuitively clear at the outset that this policy is bound to have un-
desirable impact on the light queue. The reason we analyze this
policy is that it gives us a best-case scenario for the heavy queue.
Our first result shows that the steady-state heavy queue occu-

pancy is one order heavier than its input distribution.
Theorem 1: Under priority scheduling for , the steady-state

queue occupancy distribution of the heavy queue satisfies the
following bounds.

1) For every , there exists a such that

(5)

2)

(6)

Furthermore, is a heavy-tailed random variable with tail co-
efficient equal to . That is, for every , we have

(7)

and

(8)

Proof: Equation (7) can be shown using a straightforward
Lyapunov argument, along the lines of [19, Proposition 6].
Equation (5) follows from (7) and the Markov inequality.
Next, to show (6), we consider a time instant at steady state,

and write

We have used Little’s law at steady state to write
. Let us now lower-bound the

term . Conditioned on being
nonempty, denote by the number of packets that
belong to the burst in service that are still in queue
at time . Then, clearly, , from which

. Now, since
the queue receives service whenever it is nonempty, it is
clear that the time spent at the head-of-line by a burst is equal
to its size. It can therefore be shown that, in steady state,
is distributed according to the residual variable . Thus,

and (6) follows.
Finally, (8) follows from (6) and Proposition 5.
When the distribution of is regularly varying, the lower

bound (6) takes on a power-law form that agrees with the upper
bound (5).
Corollary 1: If then

where is some slowly varying function.
Since priority for affords the most favorable treatment to

the heavy queue, it follows that the asymptotic behavior of
can be no better than the above under any policy.
Proposition 6: Under any scheduling policy, is heavy-

tailed with tail coefficient at most . That is, (8) holds for
all scheduling policies.

Proof: The queue occupancy under any policy stochas-
tically dominates the queue occupancy under priority for .
Therefore, the lower bounds (6) and (8) hold for all policies.
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Interestingly, under priority for , the steady-state light
queue occupancy is also heavy-tailed with the same tail
coefficient as . This should not be surprising since the light
queue has to wait for the entire heavy queue to clear before it
receives any service.
Theorem 2: Under priority for , is heavy-tailed with

tail coefficient . Furthermore, the tail distribution
satisfies the following asymptotic bounds.

1) For every , there exists a such that

(9)

2) If , then

(10)

Proof: The upper bound (9) is a special case of Theorem 4
given in the next section. Let us show (10). Notice first that the
lower bound (10) is asymptotic, unlike (6), which is exact. As
before, let us consider a time at steady state and write using
Little’s law

Let us denote by the number of slots that the current
head-of-line burst has been in service. Clearly then, has not
received any service in the interval and has kept all
the arrivals that occurred during the interval. Thus, conditioned
on being nonempty, . Next, it

can be seen that in steady state, is distributed as the age
variable . Putting everything together, we can write

(11)

Next, since , Lemma 1 implies that
. We can therefore invoke Lemma 4 in the Appendix to write

(12)

Finally, (10) follows from (11) and (12).
When is regularly varying, the lower bound (10) takes

on a power-law form that matches the upper bound (9).

B. Priority for

We now study the policy that serves whenever it is
nonempty and serves only if is empty. This policy af-
fords the best possible treatment to and the worst possible
treatment to among all nonidling policies. Under this policy,
is completely oblivious to the presence of in the sense

that it receives service whenever it has a packet to be served.
Therefore, behaves like a discrete time G/D/1 queue with
light-tailed inputs. Classical large deviation bounds can be
derived for such a queue; see [13] for example.

Recall that since is light-tailed, the log moment-gener-
ating function

exists for some Define

(13)

Proposition 7: Under priority for , satisfies the large
deviation principle (LDP)

(14)

In other words, the above proposition asserts that the tail of is
asymptotically exponential, with rate function .Wewill refer
to as the intrinsic exponent of the light queue. An equivalent
expression for the intrinsic exponent that is often used in the
literature is

(15)

where is the Fenchel–Legendre transform [13] of .
It is clear that the priority policy for gives the best possible

asymptotic behavior for the light queue and the worst possible
treatment for the heavy queue. Perhaps surprisingly however,
the heavy queue tail under priority for is asymptotically no
worse than that under priority for .
Proposition 8: Under priority for , is heavy-tailed with

tail coefficient .
Proof: This is a special case of Theorem 4, given in

Section V.
The above result also implies that the tail coefficient of

cannot be worse than under any other scheduling policy.
Proposition 9: Under any nonidling scheduling policy,

has a tail coefficient of at least . That is, (7) holds for all
nonidling scheduling policies.

Proof: The queue occupancy under any other policy is
stochastically dominated by the queue occupancy under priority
for .
Propositions 6 and 9 together imply the insensitivity of the

heavy queue’s tail distribution to the scheduling policy.We state
this important result in the following theorem.
Theorem 3: Under any nonidling scheduling policy, is

heavy-tailed with tail coefficient equal to . Furthermore,
satisfies bounds of the form (5) and (6) under all

nonidling policies.
Therefore, it is not possible to either improve or hurt the

heavy queue’s asymptotic behavior by the choice of a sched-
uling policy.
It is evident that the light queue has the best possible asymp-

totic behavior under priority for . Although priority for is
nonidling, and therefore throughput-optimal in this simple set-
ting, we are ultimately interested in studying more sophisticated
network models, where priority for may not be throughput-
optimal. We therefore analyze the asymptotic behavior of gen-
eral throughput-optimal policies belonging to the max-weight
family.
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V. QUEUE-LENGTH ASYMPTOTICS FOR MAX-WEIGHT-
SCHEDULING

In this section, we analyze the asymptotic tail behavior of the
light queue distribution under max-weight- scheduling. For
fixed parameters and , the max-weight- policy
operates as follows: During each time slot , perform the com-
parison

and serve one packet from the queue that wins the comparison.
Ties can be broken arbitrarily, but we break them in favor of
the light queue for the sake of definiteness. Note that
corresponds to the usual max-weight policy, which serves the
longest queue in each slot. The case where cor-
responds to emphasizing the light queue over the heavy queue,
and vice versa.
We provide an asymptotic characterization of the light queue

occupancy distribution under max-weight- scheduling by de-
riving matching upper and lower bounds. Our characterization
shows that the light queue occupancy is heavy-tailed undermax-
weight- scheduling for all values of the parameters and
. Furthermore, our distributional bounds on the light queue

occupancy shed further light and refine the moment results de-
rived in [19] for max-weight- scheduling.

A. Upper Bound

In this section, we derive two different upper bounds on the
overflow probability (Theorems 4 and 6) that both
hold under max-weight- scheduling. Depending on the values
of and , either bound can be the tighter one. The first
upper bound holds for all nonidling policies, including max-
weight- scheduling.
Theorem 4: Under any nonidling policy, and for every ,

there exists a constant , such that

(16)

and

(17)

Proof: Let us combine the two queues into one, and con-
sider the sum input process feeding the composite
queue. The server serves one packet from the composite queue
in each slot. Under any nonidling policy in the original system,
the occupancy of the composite queue is given by .
Lemma 2 in the Appendix shows that the combined input has
tail coefficient equal to . The composite queue is therefore a
G/D/1 queue with input tail coefficient . For such a queue, it
can be shown that

(18)

This is, in fact, a direct consequence of Theorem 1.
Thus, in terms of the queue lengths in the original system, we

have

from which it is immediate that . This
proves (16). To show (17), we use the Markov inequality to
write

The above result asserts that the tail coefficient of is at
least under any nonidling policy, and that
is uniformly upper-bounded by a power-law curve. Our second
upper bound is specific to max-weight- scheduling. It hinges
on a simple observation regarding the scaling of the parame-
ters, in addition to a theorem in [19]. We first make an elemen-
tary but useful observation.
Observation: (Scaling of parameters) Let and be

given parameters of a max-weight- policy, and let be
arbitrary. Then, the max-weight- policy that uses the param-
eters and for the queues and , respectively, is
identical to the original policy. That is, in each time slot, the
two policies make the same scheduling decision.
Next, let us invoke an important result from [19], which is

proved therein using a suitable Lyapynov function.
Theorem 5: If max-weight- scheduling is performed with

, then, for any , we have
.
Thus, by choosing a large enough , any moment of the

light queue length can be made finite as long as .
Our second upper bound, which we state next, holds regardless
of how the parameters are chosen.
Theorem 6: Define

Under max-weight- scheduling, and for every , there
exists a constant , such that

(19)

and

(20)

Proof: Given , let us choose
, and perform max-weight- scheduling with param-

eters and . According to our earlier observation,
this policy is identical to the original max-weight- policy.
Next, since , Theorem 5 applies, and we have

, which proves (19). Finally, (20)
can be proved using (19) and the Markov inequality.
The above theorem asserts that the tail coefficient of

is at least under the max-weight- policy. We remark that
Theorems 4 and 6 both hold for max-weight- scheduling with
any parameters. However, one of them yields a stronger bound
than the other, depending on the parameters. Specifically, we
have the following two cases.
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1) : This is the regime where the light queue is
given lesser priority, when compared to the heavy queue.
In this case, Theorem 4 yields a stronger bound.

2) : This is the regime where the light queue
is given more priority compared to the heavy queue. In
this case, Theorem 6 gives the stronger bound.

Remark 1: The upper bounds in this section hold whenever
is heavy-tailed with tail coefficient . We need the

assumption only to derive the lower bounds in
Section V-B.

B. Lower Bound

In this section, we state our main lower bound result, which
asymptotically lower-bounds the tail of the light queue distribu-
tion in terms of the tail of the residual variable .
Theorem 7: Let . Then, under max-weight-

scheduling with parameters and , the distribution of the
light queue occupancy satisfies the following asymptotic lower
bounds:
1) If

(21)

2) If

(22)

3) If

(23)

As a special case of the above theorem, when is regu-
larly varying with index , the lower bounds take on a more
pleasing power-law form that matches the upper bounds (17)
and (20).
Corollary 2: Suppose that . Then, under

max-weight- scheduling with parameters and , the dis-
tribution of the light queue satisfies the following asymptotic
lower bounds:
1) If

(24)

2) If

(25)

where is some slowly varying function.
Corollary 2 follows from Theorem 7 together with

Karamata’s theorem for regularly varying functions
[2, Section 1.6].
It takes several steps to prove Theorem 7; we start by defining

and studying a related fictitious queueing system.

C. Fictitious System

We introduce a fictitious system that consists of two queues
fed by the same input processes that feed the original system. In
the fictitious system, let us call the queues fed by heavy-tailed

and light-tailed traffic and , respectively. The fictitious
system operates under the following service discipline.
Service for the Fictitious System: The queue receives ser-

vice in every time slot. The queue receives service at time
if and only if .
Note that if receives service and is nonempty,

two packets are served from the fictitious system. Also,
is just a discrete time queue since it receives service at
every time slot. We now show a simple result that asserts that
the light queue in the original system is “longer” than in the
fictitious system.
Proposition 10: Suppose that we drive both the original and

the fictitious system with a common sample path of the arrival
processes. Then, , for all . In particular, for every

, we have

Proof: We will assume the contrary and arrive at a contra-
diction. Suppose that and that for some time

. Let be the first time when
. It is then necessary that

since no more than one packet is served from a queue in each
slot. Next, and together
imply that received service at time , but did not. This
is possible only if , which is a contra-
diction, since receives service in each slot.
Next, we show that the distribution of satisfies the lower

bounds in (21)–(23). Theorem 7 then follows, in light of
Proposition 10.
Theorem 8: In the fictitious system, the distribution of is

asymptotically lower-bounded as follows.
1) If

(26)

2) If

(27)

3) If

(28)

Proof: Consider the fictitious system in steady state, and let
us fix a particular time . Since the heavy queue in the fictitious
system receives service in each slot, the steady-state distribution
satisfies by Little’s law. Therefore, we have
the lower bound

In the rest of the proof, we will lower-bound the above condi-
tional probability.
Indeed, conditioned on , denote as before by

the number of packets that belong to the head-of-line burst that
still remain in queue at time . Similarly, denote by the
number of packets from the head-of-line (HoL) burst that have
already been served by time . Since is served in every time
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slot, also denotes the number of time slots that the HoL
burst has been in service at .
The remainder of the proof shows that stochastically

dominates a particular heavy-tailed random variable. Indeed, at
the instant , there are two possibilities:
a) ;
b)

Let us take a closer look at case b) in the following proposition.
Proposition 11: Suppose that

Let be the instant before that last received service.
Then, the head-of-line burst at time in arrived after the
instant .

Proof: We have

The first inequality holds because received service at , the
second inequality is true since does not receive service be-
tween and , and the final inequality is from the hypothesis.
We have shown that , and hence the HoL burst

could not have arrived by the time slot .
The above proposition implies that if case b) holds, has

not received service ever since the HoL burst arrived at . In
particular, has not received service for time slots, and
it accumulates all arrivals that occur during the interval

. Let us denote the number of arrivals to during this
interval as

In this notation, our argument above implies that if case b) holds,
then . Putting this together with case a), we can
conclude that

(29)

Therefore

(30)

Recall now that in steady state, is distributed as and
is distributed as . Therefore, the above bound can be

written as

(31)

Next, Lemma 5 (in the Appendix) shows that

Notice that the assumption is used in the proof of
Lemma 5.
Theorem 8 now follows from the above asymptotic relation

and (31).
Proof of Theorem 7: The result follows from Theorem 8

and Proposition 10.

VI. TAIL COEFFICIENT OF

In this section, we characterize the exact tail coefficient of the
light queue distribution under max-weight- scheduling. In par-
ticular, we show that the upper bound (16) is tight if
and (19) is tight if .
Theorem 9: The tail coefficient of the steady-state queue

length of the light queue is given by the following:
i) if ;
ii) if
Proof: Consider first the case . The lower

order (Definition 3) of can be upper bounded using (21) or
(22) as follows:

The last step is from Proposition 5. The above equation shows
that the tail coefficient of is at most . However, it is
evident from (16) that the tail coefficient of is at least .
Therefore, the tail coefficient of equals for .
This proves case i) of the theorem.
Next, suppose that . Using (23), we can upper-

bound the lower order of as

(32)

Equation (32) shows that the tail coefficient of is at most .
However, it is evident from (19) that the tail coefficient of
is at least . Therefore, the tail coefficient of equals

if . This proves case ii) of the
theorem.
In Fig. 2, we show the tail coefficient of as a function of

the ratio . The tail coefficient stays constant at the value
as varies from 0 to 1. Recall that

corresponds to max-weight scheduling, while cor-
responds to priority for . Thus, the tail coefficient of under
max-weight scheduling is the same as the tail coefficient under
priority for . In other words, max-weight scheduling leads
to the worst possible asymptotic behavior for the light queue
among all nonidling policies in the sense that it leads to the
smallest possible tail coefficient for . However, the tail coef-
ficient of begins to improve in proportion to the ratio
in the regime where the light queue is given more importance.
Remark 2: If the heavy-tailed input has infinite variance

, then it follows from Theorem 9 that the expected
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Fig. 2. Tail coefficient of under max-weight scheduling, as a function of
, for .

delay in the light queue is infinite under max-weight sched-
uling. Thus, our result can be viewed as a generalization of
[19, Proposition 5].

VII. LOG-MAX-WEIGHT SCHEDULING

We showed in Theorem 9 that the light queue occupancy dis-
tribution is necessarily heavy-tailed with a finite tail coefficient
under max-weight- scheduling. On the other hand, the priority
for policy that ensures the best possible asymptotic behavior
for both queues suffers from possible instability effects in more
general queueing networks.
In this section, we analyze the log-max-weight (LMW)

scheduling policy. We show that the light queue distribution
is light-tailed under LMW scheduling, i.e., that
decays exponentially fast in . However, unlike the priority for
policy, LMW scheduling can be shown to be throughput-op-

timal in very general settings [10]. For our simple system
model, we define the LMW policy as follows.
In each time slot , the log-max-weight policy compares

and serves one packet from the queue that wins the comparison.
Ties are broken in favor of the light queue.
The main idea in the LMW policy is to give preference to

the light queue to a far greater extent than any max-weight-
policy. Specifically, for , the max-weight- policy
compares to a power of that is smaller than 1. On the other
hand, LMW scheduling compares to a logarithmic function
of , leading to a significant preference for the light queue.
It turns out that this significant deemphasis of the heavy queue
with respect to the light queue is sufficient to ensure an expo-
nentially decaying tail for the distribution of in our setting.
Furthermore, the LMW policy has another useful property

when the heavy queue gets overwhelmingly large. Although
the LMW policy significantly deemphasizes the heavy queue,
it does not ignore it, unlike the policy that gives priority to .
That is, if the queue occupancy gets overwhelmingly large

compared to , the LMW policy will serve the queue. In
contrast, the priority for policy will ignore any buildup in
as long as is nonempty. This property turns out to be cru-
cial in more complex queueing models, where throughput op-
timality is nontrivial to obtain. For example, when the queues
have time-varying connectivity to the server, the LMW policy
will stabilize both queues for all traffic rates within the rate re-
gion, whereas priority for leads to a strictly smaller stability
region [16].
Our main result in this section shows that under the LMW

policy, decays exponentially fast in , unlike under
max-weight- scheduling.
Theorem 10: Under log-max-weight scheduling, is light-

tailed. Specifically

(33)

where is the intrinsic exponent, given by (13) and (15).
Proof: Fix a small . We first write the equality

(34)

We will next upper-bound each of the above three terms on the
right.
(i) : Intuitively, this event
corresponds to an overflow of the light queue, when
the heavy queue is not “exponentially large” in , i.e.,

. Suppose without loss of generality
that this event happens at time 0. Denote by
the last instant when the heavy queue received service.
Since has not received service since , it is clear that

, Thus, .
In the time interval , the light queue receives
service in each slot. In spite of receiving all the service, it
grows from less than to overflow at time 0. This implies
that every time the event in (i) occurs, there necessarily
exists satisfying

Therefore

Letting , the above inequality can
be written as

(35)
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The right-hand side of (35) is precisely the probability of
a single server queue fed by the process reaching the
level . Standard large deviation bounds are known
for such an event. Specifically, from [13, Lemma 1.5], we
get

(36)

From (35) and (36), we see that for every , there
exists a positive (in our notation, we suppress the de-
pendence of on ), such that for all large enough

(37)

(ii) Let us deal with the term (iii) before (ii). This is the regime
where the overflow of occurs, along with becoming
exponentially large in . We have

We have shown earlier, in the proof of Theorem 4, that for
any nonidling policy and any

for and some . Therefore

(38)

(iii) We now deal with the second term in (34). Let us call this
event . Suppose this event occurs at time 0. Denote by

the last time during the current busy period that
received service, and define

(39)

If never received service during the current busy pe-
riod, we take to be equal to the last instant that the
system was empty, and . We can deduce that

because receives no service in .
Since received service at time , it follows from (39)

that . Therefore, during the time interval
, the queue length of grows from at most

to more than , in spite of receiving all the service. Addi-
tionally, it is evident from (39) that

. The last two statements imply that every time
the event occurs, there necessarily exists and

such that and
. This leads to the bound in (40), which can be fur-

ther upper-bounded using a union bound, as shown in (40)
and (41) at the bottom of the page. Notice now that for
every , the event is independent
of the value of , since these are deter-
mined by arrivals in disjoint intervals.
Therefore, the right-hand side of (41) equals

(42)

(43)

Equation (42) follows from Theorem 4, and (43) is a
classical large deviation bound that follows, for example,
from [13, Lemma 1.5]. (These inequalities are valid for
all and for some and that depend on ). Thus,
for every

(44)

Let us now distinguish two cases.
a) : In this case, we can bound the prob-
ability in (44) as follows:

(45)

where is some constant that depends on .
b) : Manipulating similar to case a), we
get

(46)

(40)

(41)
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Let us now put together the bounds on terms (i)–(iii) into (34).
1) If , we get from (37), (38), and (45)

from which it is immediate that

Since the above is true for every and , we get

(47)

2) If , we get from (37), (38), and (46)

from which it is immediate that

Since the above is true for every and , we get

(48)

Theorem 10 now follows from (47) and (48).
Thus, the light queue tail is upper-bounded by an exponen-

tial term, whose rate of decay is given by the smaller of the in-
trinsic exponent and . We remark that Theorem 10
utilizes only the light-tailed nature of and the tail coefficient
of . Specifically, we do not need to assume any regularity
property such as for the result to hold. However, if
we assume that the tail of is regularly varying, we can ob-
tain a large deviation lower bound that matches the upper bound
in Theorem 10.
Theorem 11: Suppose that . Then, under

LMW scheduling, the tail distribution of satisfies an LDP
with rate function given by

Proof: In light of Theorem 10, it is enough to prove that

Let us denote by the length of the light queue,
when it is given complete priority over . Note that

is a lower bound on the overflow proba-
bility under any policy, including LMW. Therefore, for all

. This implies

(49)
where the last step is from (14).

Fig. 3. Large deviation exponent for under LMW scheduling, as a function
of . The light queue is fed by Poisson bursts, and .

Next, we can show, following the arguments in the proofs of
Proposition 10 and Theorem 8 that

Arguing as in the proof of Lemma 5, we can show that

Thus

Next, since is regularly varying with tail coefficient
is also regularly varying with tail coefficient , so that

. Finally, we can write

The final limit supremum is shown to be zero in Lemma 6 in the
Appendix, using a representation theorem for slowly varying
functions. Thus

(50)

Equations (49) and (50) imply the theorem.
Fig. 3 shows the large deviation exponent given by

Theorem 11 as a function of , for and Poisson
inputs feeding the light queue. There are two distinct regimes in
the plot, corresponding to two fundamentally different modes
of overflow. For relatively large values of , the exponent
for the LMW policy equals , the intrinsic exponent. In
this regime, the light queue overflows entirely due to atypical
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behavior in the input process . In other words, would
have grown close to the level even if the heavy queue were
absent. This mode of overflow is more likely for larger values
of , which explains the diminishing exponent in this regime.
The flat portion of the curve in Fig. 3 corresponds to a second

overflow mode. In this regime, the overflow of the light queue
occurs due to extreme misbehavior on the part of the heavy-
tailed input. Specifically, the heavy queue becomes larger than
after receiving a very large burst. After this instant, the heavy

queue takes over the server, and the light queue gets starved until
it gradually builds up to the level . In this regime, the light
queue input behaves typically and plays no role in the overflow
of . That is, the exponent is independent of , being equal
to a constant . The exponent is determined entirely by
the “burstiness” of the heavy-tailed traffic, as reflected in the tail
coefficient.

VIII. CONCLUDING REMARKS

We considered a system of parallel queues fed by a mix of
heavy-tailed and light-tailed traffic and served by a single server.
Westudiedtheasymptoticbehaviorof thequeuesizedistributions
undervariousschedulingpolicies.Weshowedthat theoccupancy
distribution of the heavy queue is asymptotically insensitive to
the scheduling policy used and inevitably heavy-tailed. In con-
trast, the light queue occupancy distribution can be heavy-tailed
or light-tailed depending on the scheduling policy.
The major contribution of the paper is in the derivation of an

asymptotic characterization of the light queue occupancy dis-
tribution under max-weight- scheduling. We showed that the
light queue distribution is heavy-tailed with a finite tail coef-
ficient under max-weight- scheduling for any values of the
scheduling parameters. However, the tail coefficient can be im-
proved by choosing the scheduling parameters to favor the light
queue. We also observed that “plain” max-weight scheduling
leads to the worst possible tail coefficient of the light queue dis-
tribution among all nonidling policies.
Another main contribution of the paper is the log-max-weight

policy and the corresponding asymptotic analysis. We showed
that the light queue occupancy distribution is light-tailed under
LMW scheduling and explicitly derived an exponentially de-
caying upper bound on the tail of the light queue distribution.
Additionally, the LMW policy also has the desirable property of
being throughput-optimal in a general queueing network.
Although we focused on a very simple queueing network in

this paper, we believe that the insights obtained are valuable in
much more general settings. For instance, in a general queueing
network with a mix of light-tailed and heavy-tailed traffic flows,
weexpect that the celebratedmax-weight policyhas the tendency
to“infect”competing light-tailedflowswithheavy-tailedasymp-
totics. A similar effect was also noted in [19], in the context of
expected delays. Regarding the asymptotic distribution of the
steady-state delays, we can intuitively expect similar behavior
to that of the respective queue lengths, as long as the queues are
served in an FCFS fashion. However, when the queueing disci-
pline is not FCFS, the delay asymptotics could bemore complex.
Furthermore, results analogous to the ones derived in this paper
are also expected to hold in continuous time.

We also believe that the LMW policy occupies a “sweet spot”
in the context of scheduling light-tailed traffic in the presence of
heavy-tailed traffic. This is because the LMW policy deempha-
sizes the heavy-tailed flow sufficiently to maintain good light
queue asymptotics while also ensuring network-wide stability.
For future work, we propose the extension of the results in

this paper to more general single-hop and multihop networks
and time-varying channel models.

APPENDIX
TECHNICAL LEMMATA

Lemma 2: The tail coefficient of is .
Proof: Clearly, ,

for every . We next need to show that
, for every . For a

random variable and event , let us introduce the notation
, where is the indicator of . (Thus,

for example, ). Now

where the last step follows from the tail coefficient of and
the light-tailed nature of .

Lemma 3: .
Proof: Using (1) and (2)

Lemma 4: Let be a nonnegative integer-valued
random variable. Let be i.i.d. nonnegative light-tailed
random variables, with mean , independent of . Define

Then

Proof: For notational ease, we will prove the result for
, although the result and its proof technique remain valid for
any . First, for a fixed , we have

(51)
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Next, we write a lower bound

(52)

Since the have a well-defined moment-generating func-
tion, their sample average satisfies an exponential concentration
inequality around the mean. Specifically, we can show using the
Chernoff bound that there exist positive constants such that

Thus

(53)

as . Similarly

(54)

Next, getting back to (51)

(55)

The first term on the right-hand side is zero in view of (53), so
that for all , we have

Taking the limit as

(56)
The final limit is unity, by the definition of the class . Simi-
larly, we can show using (52), (54), and the intermediate-regular
variation of the tail of that

(57)

Equations (56) and (57) imply the result.
The above lemma can be proved under more general assump-

tions than stated here; see [24].
Lemma 5: If , we have

if

if

if

(58)

Proof: In this proof, let us take for notational sim-
plicity, although the same proof works without this assumption.
Denote .

We first get an upper bound. For every , we have

(59)

In (59), we have utilized Lemma 3.
Next, let us derive a lower bound.

(60)

Equation (60) uses Lemma 3. Now, observe that the terms
in (59) and in (60)

decay exponentially fast as , for any . This is
because is light-tailed, and its sample average satisfies an
exponential concentration inequality around the mean (unity).
More precisely, a Chernoff bound can be used to show that

(61)

and

(62)

Case (i): Using (59), we write

where we have used “ ” to abbreviate . The first
term on the right is zero in view of (61). Since
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Thus

(63)

To justify the final step, recall that according to Lemma 1,
implies . Since , the final

limit in (63) is unity by the definition of intermediate-regular
variation (Definition 2).
Along similar lines, we can use (60), (62), and the fact that

to show that

(64)

Equations (63) and (64) imply that

which implies Lemma 5 for and
Case (ii): . The proof is similar to the previous

case. Here, we get

Case (iii): .
For the upper bound, we have from (59) and (61)

Similarly, for the lower bound, we have from (60) and (62)

Thus

where the last limit is unity due to the intermediate-regular vari-
ation of . Therefore, for , we can conclude that

Lemma 5 is now proved.
Lemma 6: For any slowly varying function

Proof: We use the representation theorem for slowly
varying functions derived in [11]. For every slowly varying
function there exists a such that for all the
function can be written as

where converges to a finite constant, and as
Therefore

where the last step is because converges to a constant.
Next, given any , choose such that

. Then, we have

Since the above is true for every the result follows.
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