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Abstract—We consider network reliability in layered networks
where the lower layer experiences random link failures. In lay-
ered networks, each failure at the lower layer may lead to multiple
failures at the upper layer. We generalize the classical polynomial
expression for network reliability to the multilayer setting. Using
random sampling techniques, we develop polynomial-time approx-
imation algorithms for the failure polynomial. Our approach gives
an approximate expression for reliability as a function of the link
failure probability, eliminating the need to resample for different
values of the failure probability. Furthermore, it gives insight on
how the routings of the logical topology on the physical topology
impact network reliability. We show that maximizing the min cut
of the (layered) network maximizes reliability in the low-failure-
probability regime. Based on this observation, we develop algo-
rithms for routing the logical topology to maximize reliability.

Index Terms—Lightpath routing, multilayer network, network
reliability, random failures, random sampling, reliability approxi-
mation.

I. INTRODUCTION

M ODERN communication networks are constructed
using a layered approach, with one or more electronic

layers (e.g., IP, ATM, SONET) built on top of an optical fiber
network. One important aspect that is unique in layered network
design is the embedding of the logical electronic topology onto
the physical fiber topology, called lightpath routing. The choice
of the lightpath routing determines the way physical failures
affect the logical links and, therefore, plays an important role
in the survivability of layered network. In this paper, we in-
vestigate the survivability of layered networks assuming that
physical links experience random failures.

One important connectivity requirement for a layered net-
work is to keep the logical topology connected under the fail-
ures. For example, many common networking protocols (such
as IP) that run on top of the logical topology rely on restoration
as the recovery mechanism [1]. In the case of failures, the routers
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can rebuild the routing tables based on the new logical topology,
such that the packet traffic continues to be delivered as long as
the logical topology stays connected. Therefore, a natural sur-
vivability metric in this context is, given a lightpath routing, the
probability that the logical topology remains connected. We call
this probability the cross-layer (network) reliability.

The cross-layer reliability reflects the survivability perfor-
mance achieved by the lightpath routing. In this paper, we ad-
dress two important problems of cross-layer reliability.

1) Reliability evaluation: Given a lightpath routing of a lay-
ered network, how can the cross-layer reliability be effi-
ciently computed?

2) Reliability maximization: Given the physical and logical
topologies, how can we compute a lightpath routing with
high reliability?

The reliability evaluation problem has been extensively
studied for single-layer networks (defined as the probability
that a single-layer network remains connected under random
link failures). In particular, it was shown that it is -complete
to compute reliability in a single-layer setting exactly [2] or
up to relative accuracy [3]. Therefore, computing cross-layer
reliability is also -complete as it is at least as difficult as
the single-layer problem. We address this issue by developing
an efficient method that can accurately estimate the cross-layer
reliability with high probability. Although the cross-layer reli-
ability can be exactly computed by enumerating all the failure
states, such a brute-force enumeration takes 2000 min even on
a small network such as the NSFNET, whereas our algorithm
takes less than 1 h (this will be discussed in Section VI).

Clearly, the reliability of a layered network depends on
both the physical and logical topologies. In particular, the
single-layer reliability of the physical topology imposes an
upper bound on the cross-layer reliability. However, even if
both the physical and logical topologies are highly connected,
the layered network may still have low reliability if the light-
path routing is poorly chosen. Hence, the lightpath routing
design is equally important. Therefore, in this paper we study
the reliability maximization problem in order to understand de-
sirable properties of reliable lightpath routings. One important
observation developed in this paper is that the optimal lightpath
routing varies with the link failure probability in general.
Therefore, under different values of link failure probability,
the optimal lightpath routings may exhibit different properties.
In modern high-speed networks such as the IP-over-WDM
network, the probability of a physical link failure is typically
very small. Therefore, in this paper we study optimal lightpath
routings, assuming the link failure probability is small, and de-
fine the reliability maximization problem as finding the optimal
lightpath routing under this low-failure-probability regime.
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To the best of our knowledge, there is no known work dealing
with cross-layer reliability. Our basic approach to address these
two problems is to extend the polynomial expression for single-
layer network reliability to the layered setting. This polynomial
[cf. Equation (1)] provides a formula for network reliability as
a function of the link failure probability. Hence, the cross-layer
reliability can be estimated by approximating the coefficients of
the polynomial.

One important aspect of this approach is that it is not tailored
to a particular probability of link failure, and consequently, once
we have established this polynomial, it can be immediately used
for the reliability evaluation problem for any value of link failure
probability. In addition, the coefficients in the polynomial ex-
pression contain important structural information of the light-
path routing, which provides important insights into the relia-
bility maximization problem.

Our contributions can be summarized as follows.
• We develop polynomial-time approximation algorithms

for cross-layer reliability computation using random
sampling.

• We characterize the properties of optimal lightpath rout-
ings in the low-failure-probability regime and develop
lightpath routing algorithms for reliability maximization
in the low-failure-probability regime.

This paper is organized as follows. We first discuss some
previous work in Section II, followed by a discussion of the
model and background in Section III. In Sections IV–VII, we
develop methods based on Monte Carlo simulation to approxi-
mate cross-layer reliability with provable accuracy and present
our simulation results. In Section VIII, we address the reliability
maximization problem by presenting several lightpath routing
algorithms to maximize the reliability under the low-failure-
probability regime. We present our simulation results for these
algorithms in Section VIII-B. Finally, in Section IX, we briefly
discuss how our reliability estimation algorithm can be extended
to more general random failure models.

II. PREVIOUS WORK

The network reliability estimation problem has been exten-
sively studied in the single-layer setting. Since it is a difficult
problem, most of the previous works in this context focused on
approximating the actual reliability. Although there are some
works aimed at exact computation of reliability through graph
transformation and reduction [4]–[11], the applications of such
methods are highly limited since they are targeted to particular
topologies. Furthermore, those methods cannot be used for es-
timating cross-layer reliability because they assume indepen-
dence between link failures, while failures are often correlated
in multilayer networks.

Monte Carlo simulation was also used for estimating
the single-layer reliability for some fixed link failure prob-
ability [12]–[14]. Using simulation, the reliability can be
approximated to an arbitrary accuracy, but the number of
required iterations tends to be very large especially when the
failure probability is small. Moreover, the simulation must be
repeated for different values of the failure probability.

Another approach is to use a polynomial expression for relia-
bility [15] and estimate every coefficient appearing in the poly-
nomial, where the reliability can be approximated using the es-
timated coefficients. The advantage of this approach over sim-
ulation is that once every coefficient is estimated, they can be
used for any value of failure probability. Most of the works
in this context have focused on bounding the coefficients by
applying subgraph counting techniques and results from com-
binatorics [16]–[20]. This approach is computationally attrac-
tive, but its estimation accuracy is not guaranteed. Some pre-
vious works studied the regime of low failure probability by
focusing on small cut sets [21], [22]. In [23], a random sam-
pling technique is used to enhance those bounding results. In
particular, [23] considers another form of the polynomial used
in [24] and estimates some of the coefficients by enumerating
spanning trees in the graph. These estimates are used to im-
prove the algebraic bound in [24]. This approach is similar to
our work in that it tries to approximate the coefficients in the
polynomial through random sampling. However, the algorithm
cannot be used to estimate cross-layer reliability because of the
inherent structural difference between single-layer and multi-
layer networks. Specifically, one important step in the algorithm
presented in [23] involves uniformly sampling spanning trees
in the network. While this is easy to do in a single-layer net-
work because all spanning trees have the same size, this special
property is no longer true in the multilayer setting due to the
new notion of lightpath routing [25]. Because of the structural
differences between the single-layer and multilayer networks,
estimating reliability in a multilayer network becomes a funda-
mentally different problem from its single-layer counterparts.

Our paper is the first attempt to address reliability estima-
tion in multilayer networks. The most relevant work in mul-
tilayer setting is our work in [26], where a new survivability
metric called the Min Cross Layer Cut (MCLC) is introduced
by generalizing the traditional min cut. The MCLC is defined as
the minimum number of physical link failures that are needed
to disconnect the logical topology, and it is closely related to
cross-layer reliability. As MCLC grows, it becomes harder to
disconnect the logical topology, which in turn implies high re-
liability. Consequently, a lightpath routing that maximizes the
MCLC may achieve good reliability performance. In fact, we
will evaluate the reliability performance of the lightpath routing
algorithms from [26] under the random failure model consid-
ered in this paper. Thus, our work in this paper can be viewed
as an extension of [26] to the case of random link failures.

III. MODEL AND BACKGROUND

We consider a layered network that consists of a logical
topology built on top of a physical topology

through a lightpath routing, where and are
the set of nodes and links, respectively. In the context of WDM
network, a logical link is called a lightpath, and each lightpath
is routed over the physical topology. This lightpath routing is
denoted by , where takes
the value 1 if logical link is routed over physical link ,
and 0 otherwise.

Each physical link fails independently with probability , and
if a physical link fails, all the logical links carried
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Fig. 1. Optimal lightpath routing may depend on the link failure probability.
The logical topologies are connected by solid and dashed lines, respectively.
(a) Disjoint routing. (b) Nondisjoint routing.

over [i.e., such that ] also fail. A set of
physical links is called a cross-layer cut if and only if the failure
of the links in causes some logical nodes to be disconnected
from one another in the logical topology. We also define the net-
work state as the subset of physical links that failed. Hence,
if is a cross-layer cut, the network state represents a dis-
connected network state. Otherwise, it is a connected state. The
cross-layer reliability, or reliability for simplicity, of a multi-
layer network is the probability that the network state is a
connected state.

A. Importance of Lightpath Routing

It is important to note that the reliability depends on the un-
derlying lightpath routing. For example, in Fig. 1, the logical
topology consists of three logical nodes connected in a cycle.
Suppose every physical link fails independently with proba-
bility . The first lightpath routing routes the logical links over
the physically disjoint and shortest paths. Under this routing, the
logical network will be disconnected with probability

. In the second lightpath routing, the lightpaths
are routed over the nondisjoint paths (with the same number of
physical hops). Under this routing, the logical network will be
disconnected with probability . While disjoint path
routing is generally considered more reliable, it is only true in
this example for small values of . For large (e.g., ),
the second lightpath routing is actually more reliable. Therefore,
whether one lightpath routing is better than another depends on
the value of .

B. Cross-Layer Failure Polynomial

In general, it is difficult to compare lightpath routings since
computing the cross-layer reliability is -complete. Hence,
we first need to develop an algorithm that can accurately esti-
mate the reliability. However, even if an estimation algorithm is
capable of comparing lightpath routings for a certain value of ,
it does not mean that the comparison is valid at other values (as
shown in the above example), and this may require rerunning
the algorithm when the probability of interest has changed.
Hence, for this purpose, it is useful to develop an estimation
method such that once an estimation is made, the result can be
used for every value of . Having a failure polynomial makes it
possible to compare reliability among different lightpath rout-
ings at all values of . Furthermore, as will be discussed, the

failure polynomial gives insights to the design of lightpath rout-
ings for better reliability.

We introduce a polynomial expression for reliability that is
a natural extension of the single-layer polynomial [15] to the
cross-layer setting. Assume that there are physical links, i.e.,

. The probability associated with a network state
with exactly physical link failures (i.e., ) is

. Let be the number of disconnected network states
with , then the probability that the network gets discon-
nected is simply the sum of the probabilities over all discon-
nected states, i.e.,

(1)

Therefore, the failure probability of a multilayer network can be
expressed as a polynomial in . The function will be called
cross-layer failure polynomial or simply the failure polynomial.
The vector plays an important role in assessing
the reliability of a network. In particular, one can simply plug
the value of in the above failure polynomial to compute the
reliability if the values of are known.

Intuitively, each represents the number of cross-layer cuts
of size in the network, and its value can be obtained by exhaus-
tively enumerating all possible fiber sets with size and counting
the number of fiber sets that are cross-layer cuts. However, since
the number of fiber sets with size is , this enumeration ap-
proach will enumerate a total of fiber sets in order to com-
pute all the values of . Therefore, this approach is feasible
only for small networks. It is important to devise a more effi-
cient way to estimate the values of ’s.

The coefficient of the failure polynomial also contains impor-
tant structural information about the lightpath routing. Clearly,
if , then (because any cut of size
will still be a cut with the addition of more failed links). The
smallest such that is of special importance because it
represents the MCLC [26] of the network, i.e., it is the minimum
number of physical link failures needed to disconnect the logical
network. Although computing the MCLC is NP-hard [26], for
practical purposes, the MCLC of a network is typically upper-
bounded by some constant, such as the minimum node degree
of the logical network. Therefore, for the rest of the paper, we
denote the MCLC value of the network by and assume that it is
a constant independent of the physical network size. It is impor-
tant to note that , and the term
in the failure polynomial dominates for small values of . Con-
sequently, if a lightpath routing tries to maximize MCLC, i.e.,
make as large as possible, it will achieve good reliability in the
low-failure-probability regime. On the other hand, its reliability
performance is not guaranteed in other regimes. This will be fur-
ther discussed in Section VIII, where we present some lightpath
routing algorithms for achieving maximum reliability. A similar
observation was made for single-layer networks in [27].

Although the failure polynomial in (1) takes the same form
as its single-layer counterpart [15], computing the failure poly-
nomials in the single-layer and multilayer settings are funda-
mentally different problems due to the inherent structural differ-
ences between the two types of networks. For example, it was
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shown in [26] that computing the MCLC for a multilayer net-
work is NP-hard. On the other hand, computing the min-cut for a
single-layer network can be done in polynomial time. Therefore,
although the general approach of computing the failure polyno-
mial applies to both single-layer and multilayer networks, the
actual procedure to estimate the value of each can be vastly
different.

In this paper, we focus on approximating the cross-layer
failure polynomial. We will use the following notions of
approximation.

Definition 1 (Relative Approximation): A function is an
-approximation for the failure polynomial if

for all

This relative error is typically the measure of interest in the lit-
erature of reliability estimation. However, as mentioned above,
it is also -complete to approximate the reliability to accu-
racy [3]. Hence, it is not likely that there exists a deterministic
-approximation algorithm requiring reasonably low computa-

tion. For this reason, our estimation focuses on the following
probabilistic approximation.

Definition 2 [ -Approximation]: A function is an
-approximation for the failure polynomial if

for all

In other words, an -approximation algorithm approximates
the polynomial to relative accuracy with high probability. In
Sections IV and V, we will present randomized -approxi-
mation algorithms for the failure polynomial.

C. Monte Carlo Simulation

Our estimation algorithm is based on Monte Carlo simulation
techniques. The central theme of such Monte Carlo techniques
is based on the Estimator Theorem, presented below. Let be a
ground set defined as the set of all possible events (e.g., all net-
work states), and be a subset of (e.g., disconnected network
states). Suppose that we want to estimate . To do this, the
Monte Carlo method samples an element from uniformly at
random for times and counts the number of times such that

. The Monte Carlo method returns the quantity as an
estimator of . The Estimator Theorem states the following.

Theorem 1 (Estimator Theorem [28]): Let . Then,
the Monte Carlo method yields an -approximation to with
probability at least 1- , provided that

In other words, if we sample from the ground set frequently
enough, we can estimate accurately with high probability.
According to Theorem 1, the ratio , called the density of the
set , is inversely proportional to the required number of itera-
tions . In the following sections, we will define the sets and

in various ways to ensure high value and propose polyno-
mial-time Monte Carlo methods to compute approximations of
the failure polynomial.

IV. ESTIMATING CROSS-LAYER RELIABILITY

Our approach to approximating the cross-layer failure poly-
nomial is to estimate the values of in Equation (1). If we can
estimate each with sufficient accuracy, we will obtain an ap-
proximate failure polynomial for the multilayer network. The
idea is formalized in the following theorem.

Theorem 2: Let be an -approximation of for all
. Then, the function

is an -approximation for the failure polynomial.
Proof: For all

Corollary 1: Let be an algorithm that computes an
-approximation for each . Then, gives an

-approximation algorithm for the failure polynomial.
Proof: By the union bound, the probability that all the

estimates are -approximate is at least
. By Theorem 2, gives an -approximation algorithm

for the failure polynomial.
Therefore, for the rest of the section, our goal is to estimate

each with accuracy and probability at least .

A. Estimating

Let be the family of all subsets of with exactly phys-
ical links. Clearly, is the number of subsets in that are
cross-layer cuts. Hence, one can compute the exact value of
by enumerating all subsets in and counting the number of
cross-layer cuts. However, the number of subsets to enumerate
is , which can be prohibitively large.

An alternative approach to estimating is to carry out
Monte Carlo simulation on . Suppose we sample uniformly
at random from for times and count the number of
cross-layer cuts in the sample. The Estimator Theorem guar-
antees that is an -approximation, provided
that

(2)

where is the density of cross-layer cuts in . The

main issue here is that the exact value for , which depends
on , is unknown to us. However, if we substitute in (2)
with a lower bound of , the sample size will be guaranteed to
be no less than the required value. Therefore, it is important to
establish a good lower bound for in order to keep the sample
size small while achieving the desired accuracy.

B. Lower-Bounding

Given a layered network, suppose its Min Cross Layer Cut
value is known, Theorem 3 gives a lower bound on .

Theorem 3: For .
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Proof: Since is the Min Cross Layer Cut value, there
exists a cross-layer cut with size . Any superset of with

physical links is therefore also a cross-layer cut. Since there
are a total of such supersets, we have , and
the theorem follows immediately.

Therefore, we can use as the lower bound for

in (2) to estimate , with the following observations.
1) The MCLC value needs to be known in advance.
2) The sample size can be very large for small values of .

For example, when , the sample size required is

, which is no better than enumerating all
sets in by brute force.

3) The lower bound increases with . In particular,
. Therefore, the sample size required to estimate

decreases with .
In Section IV-D, we will present an algorithm that combines

the enumeration and Monte Carlo methods to take advantage
of their different strengths. In Section V, we will present an
enhanced version of the algorithm that significantly reduces the
number of iterations by establishing a much tighter lower bound
on . The final outcome is an -approximation algorithm
for the failure polynomial that requires only a polynomial
number of iterations.

C. Combined Enumeration and Monte Carlo Approach

Recall that can be estimated with two different ap-
proaches, brute-force enumeration and Monte Carlo. The two
approaches can be combined to design an efficient -ap-
proximation algorithm for the failure polynomial.

The key observation for the combined approach is that brute-
force enumeration works well when is small, and the Monte
Carlo method works well when is large. Therefore, it makes
sense to use the enumeration method to find the Min Cross Layer
Cut value as well as the associated value . Once we obtain
the value of , we can decide on the fly whether to use the enu-
meration method or the Monte Carlo method to estimate each

by comparing the number of fiber sets of size that needs
to be generated by each method. The total number of fiber sets
generated by this combined approach will be

where the terms inside the min operator are the number of fiber
sets generated by enumeration and Monte Carlo methods, re-
spectively. The total number of iterations can be upper-bounded
as follows:

Fig. 2. Monte Carlo versus enumeration: Number of iterations for estimating
� , for a network with 30 physical links, � � ����, � � , � � �. The
shaded region represents the required iterations for the combined approach.

if
if .

Each iteration involves testing whether the generated fiber
set is a cross-layer cut, which can be done in linear time using
Breadth-First Search over the logical topology with the links
using the failed physical fibers removed. This gives us a polyno-
mial-time approximation algorithm to the reliability estimation
problem.

The improvement in running time of this combined approach
is illustrated by Fig. 2.

V. IMPROVED LOWER BOUNDS FOR RELIABILITY

ESTIMATION

The running time performance of the algorithm introduced in
Section IV hinges on the tightness of the lower bounds used
for the algorithm. In this section, we discuss ways to establish
tighter lower bounds.

The idea behind these improved bounds is based on the obser-
vation that any superset of a cross-layer cut is also a cross-layer
cut. Let be a collection of cross-layer cuts.
For each , let be the family of supersets of

with physical links. Similarly, let
be the union over all . Using the terminology in [29], the
family of subsets is called the th upper shadow for .
The following theorem provides a lower bound on in terms
of .

Theorem 4: Let be a collection of cross-layer cuts with size
less than , then .

Proof: Every set is a superset of the some
cross-layer cut in and is therefore a cross-layer cut with size .
Thus, is a collection of cross-layer cuts with size , which
implies . It follows that .

Therefore, if we know the value of , we can use

as the lower bound for in the Monte Carlo method to esti-
mate . Note that if contains only a Min Cross Layer Cut of
the network, the value of is equal to the bound given by

Theorem 3. Therefore, Theorem 4 generalizes the lower bound
result in Section IV-B.
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Although the value of each
can be computed easily, finding the size of the union

can be difficult because the sets
are not disjoint. Instead of computing precisely,
we introduce techniques for lower-bounding . The
first technique, introduced in Section V-A, is based on
importance sampling. The second technique, introduced
in Section V-B, is a combinatorial result based on the
Kruskal–Katona Theorem [29].

A. Lower Bound Based on Importance Sampling

Given a set of cross-layer cuts , the problem of estimating
the size of its upper shadow can be formulated as the
Union of Sets Problem [30], for which a Monte-Carlo-based
approach exists using the technique of importance sampling. We
summarize the result in this section and leave the detailed proofs
in Appendix A.

Theorem 5: Let be a collection of cross-
layer cuts of the layered network. For each , let
be the th upper shadow of . There exists a Monte Carlo
method that produces an -approximation, , for

, provided that the number of samples is at least

(3)

Proof: Let
be the ground set for the Monte Carlo algorithm, and let

be the
events of interest. We show in Appendix A that the ground set
can be sampled uniformly at random. Since and

, Theorem 5 follows immediately from the Estimator
Theorem.

Theorem 5 implies is a lower bound on

with probability at least . The following theorem describes
how such a probabilistic lower bound can be used to estimate

.
Theorem 6: Let be an -approximation for

. Then, the Monte Carlo method described in
Section IV-A yields an -approximation for ,
provided that the number of samples is at least

(4)

Proof: By definition of , the probability that
is not a lower bound on is at most . Given

that is a lower bound for , by the Estimator Theorem, the
probability that is not an -approximation for is at
most . Hence, by the union bound, the probability that none
of these “bad” events happens is at least , and
the theorem follows.

To apply this result to reliability estimation, we can modify
our algorithm presented in Section IV-C to also maintain the
collection of cross-layer cuts as we carry out the enumeration
or Monte Carlo methods. Specifically, as we discover a cross-
layer cut with size when estimating , we will add the
cut to our collection . When we move on to estimate ,
we will have a collection of cross-layer cuts with size or

smaller. We can therefore apply Theorem 4 to obtain a lower
bound for . Note that the size of is monotonic in .
Therefore, the more cross-layer cuts that are included in , the
better the lower bound is.

B. Lower Bound Based on Kruskal–Katona Theorem

We can also derive a lower bound on based on the values
of for using the Kruskal–Katona Theorem. Let

, i.e., is the enumeration of physical links. Let
be a family of subsets of with

size . For any , we denote to be the th upper
shadow over for .

We define the lexicographic ordering on as follows.
Given any two subsets and in , is lexicographi-
cally smaller than if and only if ,
where denotes the symmetric difference between the two
sets, i.e., . For example, the
set {1,2,4} is lexicographically smaller than {1,3,4} because
the smallest element where the two sets differ, 2, is in the first
set.

Given , the family of all subsets with size , let
be the first elements of under the lexicographical or-

dering. The Kruskal–Katona Theorem states that yields
the smallest upper shadow among all -subsets of .

Theorem 7 [29]: For any and

(5)

In other words, for a fixed value of , the upper shadow for
with is minimized if consists of the first subsets

of in lexicographical order. Therefore, suppose a multilayer
network has a cross-layer cuts with size , Theorem 7 implies
that for all . We prove the following
recursive formula for .

Theorem 8: For and , let
. Also, let ,

, and . Then

if = 1

otherwise.

Proof: See Appendix B.
When estimating in the th round, the algorithm has al-

ready discovered a collection of cross-layer cuts with size for
each either by sampling or exhaustive enumeration. Let

be the number of cross-layer cuts with size seen by the al-
gorithm. Then, is lower-bounded by ,

where each term can be computed easily
using the recursive formula in Theorem 8. Notice that the
original lower bound in Theorem 3 is a special case where a
single MCLC is assumed and (according to Theorem 8)
is lower-bounded by for each

. Theorem 8 improves this bound by accounting for more
cross-layer cuts, and therefore, it can be used to further reduce
the number of iterations required by the Monte Carlo algorithm.
We note, however, that the enhanced lower bounds obtained
by Theorems 5 and 8 may still result in the same order of

iterations. Nevertheless, simulation studies in
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Fig. 3. Physical topologies. (a) NJLATA. (b) Augmented NSFNET. The
dashed lines are the new links.

Section VI show that these enhanced bounds can substantially
reduce the number of iterations.

We also note that a probabilistic lower bound for can be
established by using the estimated value instead of and
adjusting the parameters and in a way similar to Theorem 6.
We omit the details here for brevity.

VI. EMPIRICAL STUDIES

We present some empirical results about the reliability esti-
mation algorithms described in Sections IV and V. We first eval-
uate the efficiency of the algorithms, both in terms of the total
number of fiber sets sampled and the running time, with param-
eters . We then compare the actual relative error
of the failure polynomials computed by the algorithms with the
theoretical guarantee given by the parameter .

We consider two different physical topologies (Fig. 3): the
NJLATA network with 22 links and connectivity 2, and the
augmented NSFNET with 29 links with connectivity 4. For
the NJLATA network, 250 random logical topologies with
6–10 nodes were generated, and each logical link is routed over
the physical route with the minimum number of hops. For the
NSFNET, 350 random logical topologies with 6–12 nodes were
generated, and the lightpath routings are created using the
(multicommodity flow) algorithms described in Section VIII.
These two sets of layered networks represent topologies with
different sizes as well as different levels of connectivity. Note
that each of the logical topologies laid on top of the physical
topology one at a time, and its reliability is estimated.

For each lightpath routing, we ran the following variants of
reliability estimation algorithms to compute the failure polyno-
mials. Each algorithm estimates the value of each in the
failure polynomial by generating a sample of fiber sets with

physical links and counting the number of cross-layer cuts in
the sample. The fraction of cross-layer cuts in the sample can
then be used to estimate the value of . The algorithms only
differ in how the sample of fiber sets is generated, which is de-
scribed as follow.

1) : Each is computed by exhaustively enumerating
all possible sets with physical links.

2) : The sets of physical links are generated
based on the combined enumeration and Monte Carlo
methods introduced in Section IV-C, where the sample
size in the Monte Carlo method is determined by the lower
bound given by Theorem 3.

TABLE I
NUMBER OF ITERATIONS FOR EACH ALGORITHM

3) : The sets of physical links are generated based
on the combined enumeration and Monte Carlo method,
where the sample size in the Monte Carlo method is deter-
mined by the enhanced lower bound given by Theorem 8.

4) : The sets of physical links are generated
based on the combined enumeration and Monte Carlo
method, where the sample size in the Monte Carlo method
is determined by the enhanced lower bound given by
the importance sampling technique in Section V-A, with

, , .
Table I shows the average number of samples as well as the

running time required for each algorithm to compute the failure
polynomial. Compared to the brute-force approach that
enumerates all possible sets of physical links, the polyno-
mial-time algorithms based on the Monte Carlo method have
significantly reduced the running time to estimate the reliability
with the desired accuracy, especially for the larger NSFNET.
A comparison between the algorithm and its en-
hanced counterparts and reflects the
impact of the tightness of the lower bound. The two enhanced
algorithms, which strive to establish a tighter lower bound, are
able to estimate the reliability with the desired accuracy with a
much smaller sample size. Finally, between the two enhanced
algorithms, the lower bound given by is combina-
torial in nature and is thus easier to compute than the one by

, which is based on importance sampling. The dif-
ference is reflected in the overall shorter running time by the
algorithm .

Finally, we compare the failure polynomials estimated by al-
gorithm with the exact failure polynomials com-
puted by the enumeration method . Fig. 4 shows the accu-
racy results on two sets of failure polynomials, with theoretical
relative error bounds 0.01 and 0.05. For each set of failure
polynomials, we compute the maximum relative error (from the
actual polynomial) among them for various values of . There-
fore, each curve shows the upper envelope of relative errors by
the failure polynomials. In both cases, the relative error is much
smaller than the theoretical guarantee. This is because by using
a lower bound for , the algorithm oversamples in each Monte
Carlo approximation for . In addition, the errors for the es-
timates are independent and may cancel out each other. There-
fore, in practice, the algorithm would provide much better esti-
mates than theoretically guaranteed.

VII. ESTIMATING CROSS-LAYER RELIABILITY WITH

ABSOLUTE ERROR

We have considered computing relative approximation for the
failure polynomial . However, in certain contexts, it may
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Fig. 4. Relative error of the failure polynomial approximation. (a) NJLATA.
(b) NSFNET.

make sense to describe the error in absolute terms. A function
is -absolute-approximate to if

For example, if our goal is to design a network with a certain
reliability target (say five 9’s), it is sufficient to present a net-
work whose associated failure polynomial has absolute error in
the order of 10 . Constructing a failure polynomial with such
relative error, however, may be overly stringent.

A function that is -approximate to immediately im-
plies that it is -absolute-approximate. As it turns out, using
a similar approach of probabilistically estimating each re-
quires a much smaller number of samples to achieve -abso-
lute accuracy. The total number of iterations required to com-
pute an -absolute-approximation for with high proba-
bility is , in contrast to in the case
of -approximation.

The intuition behind the difference is that computing an
-approximation for is difficult when the density is small.

However, in that case, the absolute contribution of the term
will be small as well.

Therefore, in this case, even a large relative error for will
only account for a small absolute error.

More precisely, by the Estimator Theorem, the Monte Carlo
method yields an -approximation for with

samples. In other words, if we run the Monte

Carlo method with samples to estimate each , we
can obtain -approximations for all with probability
at least . This implies

This means that we can compute -absolute-approximation
for the failure polynomial with high probability with a
total of iterations. Unlike the case for -approxima-
tion, the number of iterations is independent of the Min Cross
Layer Cut value . This makes the method efficient even in the
settings where can be large.

VIII. LIGHTPATH ROUTING ALGORITHMS FOR RELIABILITY

MAXIMIZATION

As illustrated in Section III-A, lightpath routing in a layered
network plays an important role in the reliability. Therefore, an
important question in reliable layered network design is to find
the lightpath routing that provides maximum reliability given
physical and logical topologies. However, as we have seen in
Fig. 1, different values of link failure probability often lead to
different optimal lightpath routings. Hence, the reliability max-
imization problem is well defined only when the failure proba-
bility is specified.

An important scenario to consider is the case where the phys-
ical link failure probability is very small, as is the case for fiber
networks. Theorem 9 describes an important property of optimal
lightpath routings for this scenario. Specifically, when is suf-
ficiently small, the lightpath routing with the maximum MCLC
value achieves maximum reliability over this low-failure-prob-
ability regime.

Theorem 9: Given two lightpath routings 1 and 2 for a given
pair of physical and logical topologies, let

and

be the failure polynomials for the two lightpath routings, respec-
tively. In addition, let and be their respective MCLC values.
Assume . Then, there exists a positive number such that

for . In particular

Proof: See Appendix C.
Therefore, under the lower failure regime, maximizing the re-

liability of a layered network is equivalent to maximizing its
MCLC. As a result, we can formulate the reliability maximiza-
tion problem using the MCLC as the objective function. This op-
timization criteria for layered network design is consistent with
the deterministic failure setting studied in [26], which discussed
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the intractability of this optimization problem and proposed sev-
eral heuristics based on multicommodity flows that are shown
to archive much better reliability performance than existing al-
gorithms. It is therefore interesting to evaluate the performance
of these algorithms under the random failure setting. A brief de-
scription of the three lightpath routing algorithms we will con-
sider follows.

A. Description of Lightpath Routing Algorithms

1) Multicommodity Flow : The multicom-
modity flow lightpath routing algorithm can be
formulated as an integer linear program (ILP)

Minimize subject to:

forms an path in

where is the weight assigned to logical link . The
optimal lightpath routing under this algorithm is determined by
the weights . For example, if is set to 1 for all
logical links, the above formulation will minimize the number
of logical links that traverse the same fiber. In other words, this
uniform weight function treats each logical link equally and
seeks to minimize the impact of a single physical link failure on
the number of disconnected logical links. However, the connec-
tivity is not well captured under this function since the logical
network may remain connected even when a large number of
logical links fail. In order to better account for the connectivity,
we use the weight function , where

is the size of the min-cut between nodes
and in the logical topology. Intuitively, this weight function
attempts to minimize the impact of a single-fiber failure to the
logical connectivity, where impact is defined to be the total
sum of weight of the logical links that traverse the fiber. Since
the weight is defined to be , a logical link that be-
longs to a small cut will contribute more weight than a logical
link in a large cut. Presumably, if a lightpath routing ensures
that any single-fiber failure has a small impact to the logical
connectivity, a better MCLC will be achieved. In [26], it was
shown that using the weight function
achieves better MCLC than using the uniform weight function

.
2) Enhanced Multicommodity Flow : The en-

hanced version of the multicommodity flow algorithm
tries to capture the impact of a single-fiber failure in much
greater details. For each fiber failure, the algorithm measures
its impact on each logical cut. As a result, the algorithm tries
to minimize the maximum impact of a fiber failure among all
possible logical cuts. It can be formulated by a similar ILP as
follows:

Minimize subject to:

forms an path

Fig. 5. Augmented USIP network (the dashed lines are the new links).

where is the cut set of , i.e., the set of logical links that
have exactly one endpoint in . Therefore, each constraint in

captures the fraction of logical links in the cut
that will be disconnected by the failure of fiber , and the
formulation will try to minimize the maximum fraction discon-
nected among all possible fiber failures. In order to circumvent
the issue of solving an integer program with a large number of
constraints, the lightpath routing is obtained based on random-
ized rounding over the optimal solution to the linear relaxation
of the formulation, as discussed in greater details in [26]. This
enhanced algorithm is shown to achieve better MCLC perfor-
mance compared to [26].

3) Survivable Lightpath Routing : The sur-
vivable lightpath routing algorithm , proposed in
[31], was used as the benchmark to evaluate the reliability
performance of the two lightpath routing algorithms based on
multicommodity flows. The algorithm tries to find a lightpath
routing that keeps the logical topology connected under any
single physical link failure. In other words, the objective is to
find a lightpath routing with MCLC at least two. However, it
makes no attempt to maximize the MCLC value as the previous
two algorithms do.

B. Simulation Results

We study the reliability performance of the lightpath routing
algorithms in this section. We used the NSFNET [Fig. 3(b)] and
USIP networks [Fig. 5] as the physical topologies, both aug-
mented to connectivity 4 so that a wider range of MCLC values
is possible. For the NSFNET, a set of 350 random logical topolo-
gies with size from 6 to 12 nodes is generated, whereas for the
USIP, a set of 500 random logical topologies with size from 6
to 15 nodes is generated. For each pair of physical and logical
topologies, we compute the approximate failure polynomials for
the lightpath routings generated by the three lightpath routing
algorithms, using the reliability estimation algorithm proposed
in Section V.

Fig. 6 shows the cumulative distributions of reliability for
the lightpath routings generated by the three algorithms, with

. For both physical topologies, the multicommodity
flow algorithms and , which try to maximize
the MCLC value, are able to generate more lightpath routings
with higher reliability than the algorithm . In partic-
ular, the enhanced version , which is shown to archive
the best MCLC performance, also achieves the best reliability in
this randomized setting. For small , the term ,
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Fig. 6. Reliability cumulative distribution function (cdf) for the lightpath
routing algorithms: � � ���. (a) NSFNET. (b) USIP.

where is the Min Cross Layer Cut, dominates the failure poly-
nomial. Therefore, maximizing has the effect of maximizing
the cross-layer reliability.

The effect of the lightpath routing and link failure proba-
bility on the cross-layer reliability is further illustrated by
Fig. 7, which plots the ratio of average failure probabilities
of the lightpath routings generated by the three algorithms,
using as the baseline. When is small, the lightpath
routing algorithms with better MCLC performance also achieve
better reliability performance. However, as increases, the
distinction becomes much less clear, primarily because the
unreliability for any lightpath routing becomes close to 1 for
large .

IX. EXTENSIONS TO THE FAILURE MODEL

In this section, we present a few extensions to the failure
model and discuss the application of the reliability estimation
method to these extensions.

A. Nonuniform Failure Probabilities

In the nonuniform physical link failure model, each physical
link fails with probability . The physical topology can
be approximated by replacing each physical link by

physical links in series, where is

the rounding function and is a constant that represents the
link failure probability of the transformed network (Fig. 8). In

Fig. 7. Ratio of average failure probabilities among different algorithms.
(a) NSFNET. (b) USIP.

Fig. 8. Physical link with failure probability � is equivalent to � � ����� �
��� ������ � � physical links in series with failure probability � .

this case, the probability that none of the replacements for
fails equals

where .
Therefore, this probability can be made arbitrarily close to

by choosing a sufficiently small , with the tradeoff
being a larger number of new links. In this case, the lightpath
routing can then be modified such that a logical link originally
using is now routed over its replacements. This gives us
an equivalent layered network where every physical link fails
independently with probability .

B. Random Node Failures

The reliability estimation method can be extended to a model
where each physical link fails with probability and each phys-
ical node fails with probability . We can model a network state
as the set of failed physical nodes and links, and a logical link
will fail if any of the physical nodes and links it uses fail. In this
case, a cross-layer cut is a set of physical nodes and links whose
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failures would cause the logical topology to be disconnected.
The reliability of the layered network can then be expressed as
follows:

where are the numbers of physical links and nodes, respec-
tively, and is the number of cross-layer cuts with failed
physical links and failed physical nodes. Then, we can esti-
mate the reliability in a similar fashion by approximating each

separately via the Monte Carlo method. To estimate ,
network states with fibers and nodes will be uniformly sam-
pled. The methods in Sections IV-B and V-A to establish lower
bounds on can be extended to establish lower bounds on
based on a similar observation in this setting that any network
state that contains a cross-layer cut is also a cross-layer cut.

X. CONCLUSION

We considered network reliability in multilayer networks. In
this setting, logical link failures can be correlated even if phys-
ical links fail independently. Hence, conventional estimation
methods that assume particular topologies, independent fail-
ures, and network parameters could not be used for our problem.
To that end, we developed a Monte Carlo simulation-based esti-
mation algorithm that approximates cross-layer reliability with
high probability. We first extended the classical polynomial ex-
pression for reliability to multilayer networks. Our algorithm
approximates the failure polynomial by estimating the values
of its coefficients. The advantages of our approach are twofold.
First, it does not require resampling for different values of link
failure probability . Second, with a polynomial number of iter-
ations, it guarantees the accuracy of estimation with high proba-
bility. We also observed through the polynomial expression that
lightpath routings that maximize the MCLC can perform very
well in terms of reliability. This observation led to the develop-
ment of lightpath routing algorithms that attempt to maximize
reliability.

While sampling failure states, our estimation algorithm nat-
urally reveals the vulnerable parts of the network or lightpath
routing. This information could be used to enhance the current
lightpath routing. Therefore, future directions include the use
our estimation algorithm for improving the lightpath routing,
and the development of a new lightpath routing algorithm that
maximizes the cross-layer reliability.

APPENDIX A
ESTIMATING LOWER BOUND FOR WITH IMPORTANCE

SAMPLING

As seen in Section V, given a set of cross-layer cuts , the
value gives a lower bound for . We will discuss how to

estimate the size of probabilistically.
Computing the value of can be formulated as the

Union of Sets Problem [30], where Monte Carlo method exists
to estimate the size of using the technique of importance
sampling. Here, we define the ground set to be

, and the events of interest to be
.

In other words, the ground set represents a multiset where
each set in is represented times in , where is the
number of elements in that are subsets of . On the other
hand, each set in is represented by exactly one ele-
ment in , where is the first element in that is a
subset of . As a result, for each ,

, and . It immedi-
ately follows that

and

Therefore, by the Estimator Theorem, if we sample from
uniformly at random for times, where

the Monte Carlo method will yield an -approximation for ,
which is equal to , with probability at least .

Finally, the sample space can be sampled uniformly at
random as follows.

1) Select an element from , where the prob-
ability of selecting is . Note that

, which can be computed easily.
2) Given the selected value , pick a set uniformly

at random.
The probability of selecting each element is

therefore

This gives us a method to establish a probabilistic lower
bound for .

APPENDIX B
PROOF OF THEOREM 8

Let . Let be a
family of subsets of with size , and let be the first
subsets in under the lexicographical ordering. In addition,
for any family of subsets of and for any , let
be the th upper shadow of over . Theorem 8 states the
following.

Theorem 8: For and , let
. Also, let

and . Then

if

otherwise.

The case for follows from the fact that for a set with
size , it has supersets with size . We will prove the case
where .
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Let be the lexicographically largest element in . We
first prove the following lemma.

Lemma 1: and .
Proof: Suppose the lemma is not true. We have the fol-

lowing two cases.
1) does not contain some element . In this case,

all subsets of that contains are lexicographically
smaller than and thus belong to . Therefore,

. This contradicts with the fact that
.

2) contains . Thus, any set that does
not contain is lexicographically greater than
and, therefore, cannot be in . As a result,

. However, by definition of , we

have , which is a contradiction.

Corollary 2: All elements in must contain .
Proof: Any element in must be lexicographically

at most and, therefore, must contain .
Corollary 3: All elements in that contain are in

.
Proof: Any element that contains is lexicographi-

cally smaller than and, therefore, belongs to .
We now partition the family into two subfamilies:
• ;
• .
As a result of Corollaries 2 and 3, consists of all

elements in that contain , and

consists of the next elements in the lexicograph-
ical order. We define a bijection on as follows:

(6)

In other words, for any , we construct
by first removing the common subset from and then sub-
tracting each remaining element by . As a result, each

is a subset of . The image
consists of the first subsets of
size in lexicographical order. In other words, we have

(7)

Now, consider , the th upper shadow over
for . As a result of Corollary 2, all elements in

must contain . We can therefore partition
in a similar fashion:

• ;
• .
We now prove the following properties of and

, which allow us to express the cardinality of the
upper shadow in Theorem 8.

Lemma 2: .
Proof: Every element in must contain

by Corollary 2 and by definition. Therefore, must con-
tain . In addition, for any element in that contains

, let be the set with the smallest elements in . Since
, contains and is in by Corollary 3. As

a result, the subset , being a superset of , is in the th upper
shadow of .

Corollary 4:
Lemma 3:

Proof: For any element , there must
exist an element such that . Since ,
it follows that , which implies . By
applying the same bijection to , is a
subset of with size and is a superset of

. In other words

Now, given , there ex-
ists such that . It follows that

. Since , it follows that
. Therefore, ,

which means

which proves the lemma.
Corollary 5:

Proof:

The second equality is due to shadowneg, and the third equality
is due to (7).

The expression for for follows immedi-
ately from Corollaries 4 and 5.

APPENDIX C
PROOF OF THEOREM 9

We note that there is a similar result in the context of single-
layer network reliability [22], however our result is more general
in that it reveals the impact of the difference of MCLC values
more explicitly. The following three lemmas will be used to
compute . First, recall that and are the size of MCLC under
lightpath routings 1 and 2, respectively. Also, the values and

are the coefficients in its failure polynomial.
Lemma 4: For , .

Proof: If is less than the Min Cross Layer Cut value ,
then , and the inequality holds trivially. Thus, we assume

. Let and be the sets of cross-layer cuts of size
and , respectively. Define the set to be

. Since any superset of a cross-layer cut
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is also a cross-layer cut, each cross-layer cut in is a subset
of exactly cross-layer cuts in . Therefore, we have

(8)

On the other hand, each cross-layer cut in is a superset of
at most cross-layer cuts in , which implies

(9)

The theorem follows immediately from (8) and (9).

Corollary 6: For any , .

Proof:

We will also use the following result to bound the tail proba-
bility of the binomial distribution.

Lemma 5 [32]: For ,
.

Now, we provide the value of such that for all , the
reliability of lightpath routing 1 is no less than the reliability of
lightpath routing 2. We first establish the following bounds for

and .
Lemma 6: For all , we have the following.

1)

2)

Proof:

by Corollary 6

Therefore, it suffices to find a such that for all
. The following lemma provides

such a .
Lemma 7: Let . Then, for

.
Proof: If , we

have

which implies

(10)

Now, note that

Therefore, Lemma 5 is applicable for . It follows that

by Lemma 5

by Equation (10)

As a result, for , we have
, which means that the unreliability of lightpath routing 1

is always smaller when is within that range.
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