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Abstract—We study the role played by queue length information
in the operation of flow control and server allocation policies. We
first consider a simple model of a single server queue with conges-
tion-based flow control. The input rate at any instant is decided by
a flow control policy, based on the queue occupancy. We identify
a simple “two-threshold” control policy, which achieves the best
possible exponential scaling for the queue congestion probability,
for any rate of control. We show that when the control channel is
reliable, the control rate needed to ensure the optimal decay expo-
nent for the congestion probability can be made arbitrarily small.
However, if control channel erasures occur probabilistically, we
show the existence of a critical erasure probability threshold be-
yond which the congestion probability undergoes a drastic increase
due to the frequent loss of control packets. We also determine the
optimal amount of error protection to apply to the control sig-
nals by using a simple bandwidth sharing model. Finally, we show
that the queue length based server allocation problem can also be
treated using this framework and that the results obtained for the
flow control setting can also be applied to the server allocation case.

Index Terms—Buffer overflow, congestion control, large devia-
tions, queue length information, resource allocation.

I. INTRODUCTION

N ETWORK control plays a crucial role in the operation
of modern communication networks, and consists of sev-

eral functions, such as scheduling, routing, flow control, and re-
source allocation. A primary goal of network control is to ensure
stability [10], [12]. Furthermore, network control is used to pro-
vide QoS guarantees on metrics such as throughput, delay and
fairness. These objectives are usually accomplished through a
combination of resource allocation and flow control. The con-
trol decisions often take into account the instantaneous channel
quality of the various links, the queue backlogs, and the quality
of Service (QoS) requirements of the different flows. In this
paper, we study the role played by queue length information in
flow control and resource allocation policies.

Flow control and resource allocation play an important role
in keeping congestion levels in the network within acceptable
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limits. Flow control involves regulating the rate of the incoming
exogenous traffic to a queue, depending on its congestion level,
see [9] for example. Resource allocation, on the other hand, in-
volves assigning larger service rates to the queues that are con-
gested, and vice-versa [10], [12]. Most systems use a combina-
tion of the two methods to avoid congestion in the network, and
to achieve various performance objectives [7], [9].

The knowledge of queue length information is often useful,
sometimes even necessary, in order to perform these control
tasks effectively. Almost all practical flow control mechanisms
base their control actions on the level of congestion present at
a given time. For example, in networks employing TCP, packet
drops occur when buffers are about to overflow, and this in turn,
leads to a reduction in the window size and packet arrival rate.
Active queue management schemes such as Random Early De-
tection (RED) are designed to pro-actively prevent congestion
by randomly dropping some packets before the buffers reach the
overflow limit [2]. On the other hand, resource allocation poli-
cies can either be queue-blind, such as round-robin, first come
first served (FCFS), and generalized processor sharing (GPS),
or queue-aware, such as maximum weight scheduling. Queue
length based scheduling techniques are known to have superior
delay and queue overflow performance than queue-blind algo-
rithms such as round-robin and processor sharing [1], [8], [13].

Since the queue lengths can vary widely over time in a dy-
namic network, queue occupancy based flow control and re-
source allocation algorithms typically require the exchange of
control information between agents that can observe the various
queue lengths in the system, and the controllers which adapt
their actions to the varying queues. This control information
can be thought of as being a part of the inevitable protocol and
control overheads in a network. Gallager’s seminal paper [3]
on basic limits on protocol information was the first to address
this topic. He derives information theoretic lower bounds on the
amount of protocol information needed for network nodes to
keep track of source and destination addresses, as well as mes-
sage starting and stopping times.

This paper deals with the basic question of how often control
messages need to be sent in order to effectively control conges-
tion in a single server queue. We separately consider the flow
control and resource allocation problems, and characterize the
rate of control necessary to achieve a certain congestion con-
trol performance in the queue. In particular, we argue that there
is an inherent tradeoff between the rate of control information,
and the corresponding congestion level in the queue. That is, if
the controller has very accurate information about the conges-
tion level in the system, congestion control can be performed
very effectively by adapting the input/service rates appropri-
ately. However, furnishing the controller with accurate queue
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length information requires significant amount of control. Fur-
ther, frequent congestion notifications may also lead to undesir-
able retransmissions in packet drop based systems such as TCP.
Therefore, it is of interest to characterize how frequently con-
gestion notifications need to be employed, in order to achieve a
certain congestion control objective. We do not explicitly model
the packet drops in this paper, but instead associate a cost with
each congestion notification. This cost is incurred either because
of the ensuing packet drops that may occur in practice, or might
simply reflect the resources needed to communicate the control
signals.

We consider a single server queue with congestion based
flow control. Specifically, the queue is served at a constant rate,
and is fed by packets arriving at one of two possible arrival
rates. In spite of being very simple, such a system gives us
enough insights into the key issues involved in the flow control
problem. The two input rates may correspond to different
quality of service offerings of an internet service provider,
who allocates better service when the network is lightly loaded
but throttles back on the input rate as congestion builds up; or
alternatively to two different video streaming qualities where a
better quality is offered when the network is lightly loaded.

The arrival rate at a given instant is chosen by a flow control
policy, based on the queue length information obtained from
a queue observer. We identify a simple “two-threshold” flow
control policy and derive the corresponding tradeoff between
the rate of control and congestion probability in closed form.
We show that the two-threshold policy achieves the best possible
decay exponent (in the buffer size) of the congestion probability
for arbitrarily low rates of control. Although we mostly focus on
the two-threshold policy owing to its simplicity, we also point
out that the two-threshold policy can be easily generalized to
resemble the RED queue management scheme.

Next, we consider a model where erasures may occur on the
control channel, possibly due to wireless transmission. We char-
acterize the impact of control channel erasures on the congestion
control performance of the two-threshold policy. We assume
a probabilistic model for the erasures on the control channel,
and show the existence of a critical erasure probability, beyond
which the losses in receiving the control packets lead to an ex-
ponential worsening of the congestion probability. However,
for erasure probabilities below the critical value, the congestion
probability is of the same exponential order as in a system with
an erasure-free control channel. Moreover, we determine the op-
timal apportioning of bandwidth between the control signals and
the server in order to achieve the best congestion control perfor-
mance.

Finally, we study the server allocation problem in a single
server queue. In particular, we consider a queue with a constant
input rate. The service rate at any instant is chosen from two
possible values depending on the congestion level in the queue.
This framework turns out to be mathematically similar to the
flow control problem, so that most of our results for the flow
control case also carry over to the server allocation problem.
Earlier versions of this work appeared in [5], [6].

The rest of the paper is organized as follows. Section II in-
troduces the system model, and the key parameters of interest
in the design of a flow control policy. In Section III, we intro-

Fig. 1. Single server queue with input rate control.

duce and analyze the two-threshold policy. In Section IV, we
investigate the effect of control channel erasures on the conges-
tion control performance of the two-threshold policy. Section V
deals with the problem of optimal bandwidth allocation for con-
trol signals in an erasure-prone system. The server allocation
problem is presented in Section VI; and Section VII concludes
the paper.

II. PRELIMINARIES

A. System Description

Let us first describe a simple model of a queue with conges-
tion based flow control. Fig. 1 depicts a single server queue with
a constant service rate . We assume that the packet sizes are
exponentially distributed with mean 1. Exogenous arrivals are
fed to the queue in a regulated fashion by a flow controller. An
observer watches the queue evolution and sends control infor-
mation to the flow controller, which changes the input rate
based on the control information it receives. The purpose of the
observer-flow controller subsystem is to change the input rate
so as to control congestion in the queue.

The controller chooses the input process at any instant to be
a Poisson processes of rate . We assume that the input rate at
any instant is chosen to be one of two distinct possible values,

, where and . Physically,
this model may be motivated by a DSL-like system, wherein a
minimum rate is guaranteed, but higher transmission rates
might be intermittently possible, as long as the system is not
congested. Moreover, [11] showed that in a single server system
with flow control, where the input rate is allowed to vary in the
interval , a “bang-bang” solution is throughput optimal.
That is, a queue length based threshold policy that only uses
the two extreme values of the possible input rates, is optimal
in the sense of maximizing throughput for a given congestion
probability constraint.

The congestion notifications are sent by the observer in the
form of information-less control packets. Upon receiving a con-
trol packet, the flow controller switches the input rate from one
to the other. We focus on Markovian control policies, in which
the input rate chosen after an arrival or departure event is only
a function of the previous input rate and queue length. We will
show that Markovian policies are sufficient to achieve the op-
timal asymptotic decay rate for the congestion probability.

B. Markovian Control Policies

We begin by defining notions of Markovian control policies,
and its associated congestion probability.

Let denote continuous time. Let and respec-
tively denote the queue length and input rate ( or ) at time
. Define to be the state of the system at
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Fig. 2. The Markov process � ��� corresponding to the two-threshold flow control policy.

time . We assign discrete time indices to each
arrival and departure event in the queue (“queue event”). Let
and respectively denote the queue length and input rate just
after the queue event. Define . A flow con-
trol policy assigns service rates after every queue event.

Definition 1: A control policy is said to be Markovian if it
assigns input rates such that

(1)

.
For a Markovian control policy operating on a queue with

memoryless arrival and packet size distributions, it is easy to see
that is a continuous time Markov process with a countable
state space, and that is the imbedded Markov chain for the
process . A Markovian policy is said to be stabilizing if the
process is positive recurrent under the policy. Thus, if a
policy is stabilizing, the steady-state distribution of the queue
length, denoted by , exists. In other words, is the distribu-
tional limit of as . The congestion probability under
a stabilizing Markovian policy is defined using the limiting dis-
tribution as follows.

Definition 2: Let be a congestion limit. The conges-
tion probability is defined as .

C. Throughput, Congestion and Rate of Control

We will focus on three important parameters of a flow control
policy, namely, throughput, congestion probability, and rate
of control. There is usually an inevitable tradeoff between
throughput and congestion probability in a flow control policy.
In fact, a good flow control policy should ensure a high enough
throughput, in addition to effectively controlling congestion. In
this paper, we assume that a minimum throughput guarantee

should be met. Observe that a minimum throughput of is
guaranteed, whereas any throughput less than can
be supported, by using the higher input rate judiciously.
Loosely speaking, a higher throughput is achieved by main-
taining the higher input rate for a longer fraction of time,
with a corresponding tradeoff in the congestion probability.

In the single threshold policy, the higher input rate is used
whenever the queue occupancy is less than or equal to some
threshold , and the lower rate is used for queue lengths larger
than . It can be shown that a larger value of leads to a larger
throughput, and vice-versa. In particular, the throughput ob-
tained under the single threshold policy is given by

(2)

where , and . Thus, given the throughput re-
quirement , we can determine the corresponding threshold to
meet the requirement. Once the threshold has been fixed, it can
be shown that the single threshold policy minimizes the proba-
bility of congestion. However, it suffers from the drawback that
it requires frequent transmission of control packets, since the
system may often toggle between states and . It turns out
that a simple extension of the single threshold policy gives rise
to a family of control policies, which provide more flexibility
with the rate of control, while still achieving the throughput
guarantee and ensuring good congestion control performance.

III. TWO-THRESHOLD FLOW CONTROL POLICY

As suggested by the name, the input rates in the two-threshold
policy are switched at two distinct thresholds and , where

, and is the threshold determined by the throughput
guarantee. As we shall see, the position of the second threshold
gives us another degree of freedom, using which the rate of con-
trol can be fixed at a desired value. The two-threshold policy
operates as follows.

Suppose we start with an empty queue. The higher input rate
is used as long as the queue length does not exceed . When

the queue length grows past , the input rate switches to the
lower value . Once the lower input rate is employed, it is
maintained until the queue length falls back to , at which time
the input rate switches back to .

We will soon see that this “hysteresis” in the thresholds helps
us tradeoff the control rate with the congestion probability. The
two-threshold policy is easily seen to be Markovian, and the
state space and transition rates for the process are shown in
Fig. 2. In what follows, we assume that the congestion limit is
much larger than the thresholds and . Since the two-threshold
policy switches to the lower rate for queue lengths larger than

, it is clear that the system is stable, and the steady-state queue
lengths exists.

Define to be the difference between the two queue
length thresholds. We use the short hand notation and

in the figure, to denote respectively, the states
and

. For queue lengths or smaller and or larger,
we drop the subscripts because the input rate for these queue
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lengths can only be and respectively. Note that the case
corresponds to a single threshold policy. As we shall

see later, the throughput of the two-threshold policy for
cannot be smaller than that of the single threshold policy. Thus,
given a throughput guarantee, we can solve for the threshold

using the throughput expression (2) for the single threshold
policy, and the throughput guarantee will also be met for .
We now explain how the parameter can be used to tradeoff the
rate of control and the congestion probability.

A. Congestion Probability Versus Rate of Control Tradeoff

Intuitively, as the gap between the two-thresholds
increases for a fixed , the rate of control packets sent by

the observer should decrease, while the probability of conges-
tion should increase. It turns out that we can characterize the
rate-congestion tradeoff for the two-threshold policy in closed
form. We do this by solving for the steady-state probabilities in
Fig. 2. Define , , and . Note that by
assumption, we have and .

Let us denote the steady-state probabilities of the nonsuper-
scripted states in Fig. 2 by , where , or . Next,
denote by ( ) the steady-state probability of the state

( ), for . Let us now solve for
the steady-state probabilities of various states in terms of . For
the states , the local balance equations imply that

Next, for the set of states , the balance
equations read1

For the state , we have

Using the last two relations, we can recursively obtain the
steady-state probabilities in terms of

Similarly, the states , satisfy

and

From the last two relations, we obtain

1We use the convention � � � for � � �, 2.

To write the above in terms of , note that ,

and that is already known in terms of . Therefore

Finally, for the states beyond , straightforward local balance
yields

The value of , which is the only remaining unknown in the
system can be determined by normalizing the probabilities to 1:

.

(3)

Using the steady-state probabilities derived above, we can com-
pute the congestion probability as

(4)

We define the control rate simply as the average number of
control packets transmitted by the queue observer per unit time.
Since there is one packet transmitted by the observer every time
the state changes from to or from to , the
rate (in control packets per second) is given by

Since , we have

(5)

where was found in terms of the system parameters in (3).
It is clear from (4) and (5) that determines the tradeoff be-

tween the congestion probability and rate of control. Specifi-
cally, a larger implies a smaller rate of control, but a larger
probability of congestion, and vice versa. Thus, we conclude
that for the two-threshold policy, the parameter dictates the
minimum throughput guarantee, while trades off the conges-
tion probability with rate of control packets.

As we mentioned earlier, the threshold is computed based
on the throughput guarantee , using the throughput expres-
sion (2) for the single threshold policy. The throughput ob-
tained under the two-threshold policy can be computed using
the steady-state probabilities derived above. The throughput ex-
pression (for ) is given by

(6)
By direct computation, it can be seen from the above expression
that the throughput for is no smaller than the throughput
obtained under the single threshold policy (i.e., ). Thus,
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Fig. 3. Markov process corresponding to the control policy described in Section III-C that approximates RED.

the two-threshold policy satisfies the throughput guarantee for
all .

B. Large Deviation Exponents

In many simple queueing systems, the congestion probability
decays exponentially in the buffer size . Furthermore, when
the buffer size gets large, the exponential term dominates all
other sub-exponential terms in determining the decay proba-
bility. It is, therefore, useful to focus only on the exponential rate
of decay, while ignoring all other sub-exponential dependencies
of the congestion probability on the buffer size . Such a char-
acterization is obtained by using the so called large deviation
exponent (LDE). For a given control policy, we define the LDE
corresponding to the decay rate of the congestion probability as

when the limit exists. We now compute the LDE for the two-
threshold policy.

Proposition 1: Assume that scales with sub-linearly, so
that . The LDE of the two-threshold policy
is then given by

(7)

The above result follows from the congestion probability ex-
pression (4) since the only term that is exponential in is

. Note that once has been determined from
the throughput requirement, it does not scale with . When

grows sub-linearly in , it should not be surprising that the
two-thresholds are “invisible” in the large deviation limit. We
pause to make the following observations:

• If scales linearly with as for some
constant , the LDE becomes ,
for and for .

• The control rate (5) can be made arbitrarily small, if
tends to infinity. This implies that as long as grows
to infinity sub-linearly in , we can achieve an LDE that
is constant (equal to ) for all rates of control.

• As becomes large, the congestion probability will in-
crease. However, the increase is only sub-exponential in
the buffer size, so that the LDE remains constant.

In what follows, we will be interested only in the LDE cor-
responding to the congestion probability, rather than its actual
value. The following theorem establishes the optimality of the
LDE for the two-threshold policy.

Theorem 1: The two-threshold policy has the best possible
LDE corresponding to the congestion probability among all flow
control policies, for any rate of control.

This result is a simple consequence of the fact that the two-
threshold policy has the same LDE as an M/M/1 queue with the
lower input rate , and the latter cannot be surpassed by any
flow control policy.

C. More General Markovian Policies and Relationship to RED

In the previous section, we analyzed the two-threshold policy
and concluded that it has the optimal congestion probability ex-
ponent for any rate of control. This is essentially because the
input rate switches to the lower value deterministically, well be-
fore the congestion limit is reached. In this subsection, we
show that the two-threshold policy can be easily modified to
a more general Markovian policy, which closely resembles the
well known RED active queue management scheme [2]. Fur-
thermore, this modification can be done while maintaining the
optimal exponent behavior for the congestion probability.

Recall that RED preemptively avoids congestion by starting
to drop packets randomly even before the buffer is about to over-
flow. Specifically, consider two queue thresholds, say and ,
where . If the queue occupancy is no more than , no
packets are dropped, no matter what the input rate is. On the
other hand, if the queue length reaches or exceeds , packets
are always dropped, which then leads to a reduction in the input
rate (assuming that the host responds to dropped packets). If the
queue length is between and , packets are randomly dropped
with some probability .2

Consider the following flow control policy, which closely re-
sembles the RED scheme described above:

For queue lengths less than or equal to , the higher input rate
is always used. If the queue length increases to while the input
rate is , a congestion notification is sent, and the input rate
is reduced to . If the current input rate is and the queue
length is between and , a congestion notification occurs with
probability3 upon the arrival of a packet, and the input rate is
reduced to . With probability , the input continues at the
higher rate. The Markov process corresponding to this policy is
depicted in Fig. 3.

We can derive the tradeoff between the congestion probability
and the rate of congestion notifications for this policy by ana-
lyzing the Markov chain in Fig. 3. Once the lower threshold has

2Often, the dropping probability is dependent on the queue length.
3We can also let this probability to depend on the current queue length, as

often done in RED, but this makes the analysis more difficult.
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been determined from the throughput guarantee, the control rate
versus congestion probability tradeoff is determined by both
and . Further, since the input rate switches to the lower value

when the queue length is larger than , this flow control
policy also achieves the optimal LDE for the congestion prob-
ability, equal to . We skip the derivations for this policy,
since it is more cumbersome to analyze than the two-threshold
policy, without yielding further qualitative insights. We focus on
the two-threshold policy in the remainder of the paper, but point
out that our methodology can also model more practical queue
management policies like RED.

IV. EFFECT OF CONTROL ERASURES ON CONGESTION

In this section, we investigate the impact of control erasures
on the congestion probability of the two-threshold policy. We
use a simple probabilistic model for the erasures on the con-
trol channel. In particular, we assume that any control packet
sent by the observer can be lost with some probability , in-
dependently of other packets. Using the decay exponent tools
described earlier, we show the existence of a critical value of
the erasure probability, say , beyond which the erasures in re-
ceiving the control packets lead to an exponential degradation
of the congestion probability.

A. Two-Threshold Policy Over an Erasure-Prone Control
Channel

As described earlier, in the two-threshold policy, the observer
sends a control packet when the queue length reaches .
This packet may be received by the flow controller with prob-
ability , in which case the input rate switches to . The
packet may be lost with probability , in which case the input
continues at the higher rate . We assume that if a control
packet is lost, the observer immediately knows about it,4 and
sends another control packet the next time an arrival occurs to a
system with at least packets.

In practice, the erasures on the control channel would affect
the rate increasing control packets as well as the rate decreasing
ones. However, in the interest of simplicity, we ignore the era-
sures in the rate increasing control packets, as these erasures do
not affect the asymptotic behavior of the congestion probability.
Thus, we assume in what follows that the rate decreasing control
packets are erased with probability , while the rate increasing
control packets are always received correctly.

The process is a Markov process even
for this erasure-prone two-threshold policy. Fig. 4 shows a part
of the state space for the process , for queue lengths larger
than . Note that due to control erasures, the input rate does
not necessarily switch to for queue lengths greater than .
Indeed, it is possible to have not switched to the lower input
rate even for arbitrarily large queue lengths. This means that
the congestion limit can be exceeded under both arrival rates,
as shown in Fig. 4. The following theorem establishes the LDE
of the erasure-prone two-threshold policy, as a function of the
erasure probability .

4This is an idealized assumption; in practice, delayed feedback can be ob-
tained using ACKS.

Fig. 4. Markov process � ��� corresponding to the erasure-prone
two-threshold policy. Only a part of the state space (with��� � ���� �� )
is shown.

Theorem 2: Consider a two-threshold policy in which
grows sub-linearly in . Assume that the control packets sent
by the observer can be lost with probability . Then, the queue
is stable for all , and the LDE corresponding to the
congestion probability is given by

(8)

where is the critical erasure probability given by

(9)

Before we give a proof of this result, we pause to discuss its
implications. The theorem shows that the two-threshold policy
over an erasure-prone channel has two regimes of operation. In
particular, for “small enough” erasure probability ( ), the
exponential rate of decay of the congestion probability is the
same as in an erasure-free system. However, for , the
decay exponent starts decreasing, and, therefore, the congestion
probability suffers an exponential increase. For this reason, we
refer to as the critical erasure probability. Fig. 5 shows a plot
of the decay exponent as a function of the erasure probability ,
for . The “knee point” in the plot corresponds to for
the stated values of and .

Proof: We first need to prove that the Markov chain is pos-
itive recurrent for all , so that the congestion probability
is well defined. To do this, we will write out the balance equa-
tions, and obtain one possible set of “candidate” steady-state
probabilities. According to Theorem 3 in [4, Chapter 5], if a set
of positive, normalized numbers that satisfy the balance equa-
tions are found, then the solution is unique, and the irreducible
Markov chain (with countable state-space) is positive recurrent.
We will also be able to obtain the desired LDE expression, once
we derive the steady-state probabilities.

As before, we will first express all the steady-state probabil-
ities in terms of . The balance equations for the states with
queue length less than are as in the erasure-free case. Thus

(10)
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Fig. 5. LDE as a function of � for � � �.

Next, for the set of states

Using the above, we can express in terms of

and as

(11)

Similarly, for the states , we have as before

(12)

The balance equations for the top set of states in Fig. 4 can
be written as

(13)

Solving the second order recurrence relation above, we find that
the top set of states in Fig. 4 (which correspond to arrival rate

) have steady-state probabilities of the form

(14)

where

(15)

and

It is easy to show that for all . Since
we are looking for probabilities that decay to zero, the growing

term is inadmissible. Therefore, we set in (14), and
obtain the form

(16)

which satisfies (13). We now use the relation
in (11) to write

from which we can obtain in terms of :

(17)

We next use the relation to obtain in
terms of

(18)

Finally, let us deal with the states .
The balance equations for these states read

for . Since , and have already been deter-
mined in terms of , we can use the above recursion to obtain

.
(19)

Thus, among (10), (17), (18), (11), (12), (16), and (19), we
have expressed the probabilities of all states in terms of . The
value of can finally be obtained by normalizing the probabil-
ities. Since , and for , the infinite summa-
tions converge, and is obtained as a positive number. We have
thus obtained a set of normalized numbers that, by construction,
satisfy the balance equations. Using Theorem 3 in [4, Chapter
5], we conclude that the chain is positive recurrent, and that the
steady-state probabilities that we obtained above are unique.

Let us now proceed to obtain the LDE of the congestion prob-
ability. From (16) and (19), we can deduce that the congestion
probability has two terms that decay exponentially in the buffer
size

(20)

where are constants. In order to compute the LDE, we
need to determine which of the two exponential terms in (20)
decays slower. It is seen by direct computation that
for , where is given by (9). Thus, for erasure probabil-
ities less than dominates the rate of decay of the conges-
tion probability. Similarly, for , we have , and
the LDE is determined by . This proves the theorem.
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B. Repetition of Control Packets

Suppose we are given a control channel with probability of
erasure that is greater than the critical erasure probability in
(9). This means that a two-threshold policy operating on this
control channel has an LDE in the decaying portion of the curve
in Fig. 5. In this situation, adding error protection to the control
packets will reduce the effective probability of erasure, thereby
improving the LDE. To start with, we consider the simplest form
of adding redundancy to control packets, namely repetition.

Suppose that each control packet is transmitted times by
the observer, and that all packets are communicated without
delay. Assume that each of the packets has a probability of
being lost, independently of other packets. The flow controller
fails to switch to the lower input rate only if all control packets
are lost, making the effective probability of erasure . In order
to obtain the best possible LDE, the operating point must be
in the flat portion of the LDE curve, which implies that the ef-
fective probability of erasure should be no more than . Thus,

, so that the number of transmissions should satisfy

(21)

in order to obtain the best possible LDE of . If the value
of is close to 1, the number of repeats is large, and vice-versa.

V. OPTIMAL BANDWIDTH ALLOCATION FOR CONTROL SIGNALS

As discussed in the previous section, the LDE operating point
of the two-threshold policy for any given , can always
be “shifted” to the flat portion of the curve by repeating the
control packets sufficiently many times (21). This ignores the
bandwidth consumed by the additional control packets.

While the control overheads constitute an insignificant part
of the total communication resources in optical networks, they
might consume a sizeable fraction of bandwidth in some wire-
less or satellite applications. In such a case, we cannot add an ar-
bitrarily large amount of control redundancy without sacrificing
some service bandwidth. Typically, allocating more resources
to the control signals makes them more robust to erasures, but it
also reduces the bandwidth available to serve data. To better un-
derstand this tradeoff, we explicitly model the service rate to be
a function of the redundancy used for control signals. We then
determine the optimal fraction of bandwidth to allocate to the
control packets, so as to achieve the best possible decay expo-
nent for the congestion probability.

A. Bandwidth Sharing Model

Consider, for the time being, the simple repetition scheme
for control packets outlined in the previous section. We assume
that the queue service rate is linearly decreasing function of the
number of repeats

(22)

The above model is a result of the following assumptions
about the bandwidth consumed by the control signals:

• corresponds to the service rate when no redundancy is
used for the control packets ( ).

• The amount of bandwidth consumed by the redundancy in
the control signals is proportional to the number of repeats

.
• The fraction of total bandwidth consumed by each repeti-

tion of a control packet is equal to , where is a
constant that represents how “expensive” it is in terms of
bandwidth to repeat control packets.

Thus, with repetitions, the fraction of bandwidth consumed
by the control information is , and the fraction available for
serving data is .

Let us denote by the fraction of bandwidth consumed by
the redundancy in the control information, so that , or

. From (22), the service rate corresponding to the
fraction can be written as

In what follows, we do not restrict ourselves to repetition of con-
trol packets, so that we are not constrained to integer values of .
Instead, we allow the fraction to take continuous values, while
still maintaining that the erasure probability corresponding to
is . We refer to as the “fraction of bandwidth used for
control”, although it is really the fraction of bandwidth utilized
by the redundancy in the control. For example, does not
mean no control is used; instead, it corresponds to each control
packet being transmitted just once.

B. Optimal Fraction of Bandwidth to Use for Control

The problem of determining the optimal fraction of band-
width to be used for control can be posed as follows:

Given the system parameters and , and a control
channel with some probability of erasure , find the
optimal fraction of bandwidth to be used for control, so
as to maximize the LDE of the congestion probability.

Let us define

(23)

as the effective server utilization corresponding to the reduced
service rate . Accordingly, we can also define the effective
knee point as

(24)

which is analogous to (9), with replacing .
First, observe that for the queueing system to be stable, we

need the effective service rate to be greater than the lower input
rate . Thus, we see that , or . Next,
we compute the LDE corresponding to a given probability of
erasure , and fraction of bandwidth used for control.

Proposition 2: For any and , the
corresponding LDE is given by

(25)
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where

The derivation and expression for are analogous to (8),
except that is replaced with , 2, and is replaced
with the effective probability of erasure .

Definition 3: For any given , the optimal fraction
is the value of that maximizes in (25). Thus

(26)

Recall that the value of represents how much bandwidth
is consumed by each added repetition of a control packet. We
will soon see that plays a key role in determining the optimal
fraction of bandwidth to use for control. Indeed, we show that
there are three different regimes for such that the optimal
fraction exhibits qualitatively different behavior in each
regime as a function of . The three ranges of are: (i) ,
(ii) , and (iii) , where

(27)

It can be shown that for .
We shall refer to case (i) as the “small regime”, case (ii) as

the “large regime”, and case (iii) as the “intermediate regime”.
We remark that whether a value of is considered “small” or
“large” is decided entirely by and . Note that the large
regime is nonexistent if , so that even if is arbitrarily
large, we would still be in the intermediate regime.

The following theorem, which is our main result for this sec-
tion, specifies the optimal fraction of bandwidth , for each
of the three regimes for .

Theorem 3: For a given and , the optimal fraction of
bandwidth to be used for control, has one of the following
forms, depending on the value of :

(i) Small regime ( ): .
(ii) Large regime ( ):

where is the unique solution to the transcendental
equation

(28)

(iii) Intermediate regime ( ): there exist and
such that , and the optimal fraction is
given by

where is given by (28) and is the unique solu-
tion in to the transcendental equation

(29)

The proof of the above theorem is not particularly interesting,
and is postponed to the appendix. Instead, we provide some in-
tuition about the optimal solution.

C. Discussion of the Optimal Solution

1) Erasure Probability Less Than : In all three regimes, we
find that for . This is because, as shown in
Fig. 5, the LDE has the highest possible value of for
in this range, and there is nothing to be gained from adding any
control redundancy.

2) Small Regime: In case (i) of the theorem, it is optimal
to not apply any control redundancy at all. That is, the best pos-
sible LDE for the congestion probability is achieved by using a
single control packet every time the observer intends to switch
the input rate. In this regime, the amount of service bandwidth
lost by adding any control redundancy at all, hurts us more than
the gain obtained from the improved erasure probability. The
plot of the optimal LDE as a function of for this regime is
identical to Fig. 5, since no redundancy is applied.

3) Large Regime: Case (ii) of the theorem deals with the
large regime. For , the optimal in this regime is
chosen as the fraction for which the knee point equals
the effective erasure probability . This fraction is indeed

, defined by (28). Fig. 6(a) shows a plot of the optimal frac-
tion (solid line) as a function of . In this example, ,

, and . The resulting optimal LDE is equal to
for . The optimal LDE is shown in Fig. 6(b)

with a solid line.
4) Comparison With Naïve Repetition: It is interesting to

compare the optimal solution in the large regime to the
“naïve” redundancy allocation policy mentioned in (21). Recall
that the naïve policy simply repeats the control packets to make
the effective erasure probability equal to the critical probability

, without taking into account any service bandwidth penalty
that this might entail. Let us see how the naïve strategy com-
pares to the optimal solution if the former is applied to a system
with a finite . This corresponds to a network with limited
communication resources in which the control mechanisms are
employed without taking into account the bandwidth that they
consume.

The fraction of bandwidth occupied by the repeated control
packets can be found using (21) to be

where we have ignored integrality constraints on the number of
repeats. A plot of this fraction is shown in Fig. 6(a), and the cor-
responding LDE in Fig. 6(b), both using dashed lines. As seen
in the figure, the naive strategy is more aggressive in adding re-
dundancy than the optimal strategy, since it does not take into
account the loss in service rate ensuing from the finiteness of .
The LDE of the naïve strategy is strictly worse for . In
fact the naïve strategy causes instability effects for some values
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Fig. 6. (a) Optimal fraction � ��� for the large � regime, and the fraction for
the naïve strategy (b)The corresponding LDE curves.

of close to 1 by over-aggressive redundancy addition, which
throttles the service rate to values below the lower arrival
rate . This happens at the point where the LDE reaches zero
in Fig. 6(b). The naïve strategy has even worse consequences
in the other two regimes. However, we point out that the rep-
etition strategy approaches the optimal solution as becomes
very large.

5) Intermediate Regime: Case (iii) in the theorem deals with
the intermediate regime. For , the optimal fraction be-
gins to increase along the curve exactly like in the large

regime (see Fig. 7). That is, the effective erasure probability
is made equal to the knee point. However, at a particular value
of erasure probability, say , the optimal fraction begins to de-
crease sharply from the curve, and reaches zero at some
value . Equation (29) characterizes the optimal fraction for
values of in . No redundancy is applied for .

Fig. 7. (a) Optimal control fraction � ��� for the intermediate regime (b) The
corresponding LDE.

For this range of erasure probability, the intermediate regime be-
haves more like the small regime (case(i)). Thus, the interme-
diate regime resembles the large regime for small enough
erasure probabilities , and the small regime for large
erasure probability . There is also a non empty “transi-
tion interval” in between the two, namely .

VI. QUEUE LENGTH INFORMATION AND

SERVER ALLOCATION POLICIES

In this section, we discuss the role of queue length infor-
mation on server allocation policies in a single server queue.
We mentioned earlier that queue aware resource allocation poli-
cies tend to allocate a higher service rate to longer queues, and
vice-versa. Intuitively, if the controller is frequently updated
with accurate queue length information, the service rate can
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Fig. 8. Single server queue with service rate control.

be adapted to closely reflect the changing queue length. How-
ever, if the queue length information is infrequently conveyed
to the controller, we can expect a larger queue length variance,
and hence, a higher probability of congestion. We study this
tradeoff between the probability of congestion and the rate of
queue length information in a single server queue.

Fig. 8 depicts a single server queue with Poisson inputs of rate
. An observer watches the queue evolution and sends control

information to the to the service rate controller, which changes
the service rate based on the control information it receives.
The purpose of the observer-controller subsystem is to assign
service rates at each instant so as to control congestion in the
queue.

For analytical simplicity, we assume that the service rate at
any instant is chosen to be one of two distinct values:

, where and . The control decisions
are sent by the observer in the form of information-less packets.
Upon receiving a control packet, the rate controller switches the
service rate from one to the other. As before, we only focus on
Markovian control policies, which are defined analogously to
(1).

Note that if there is no restriction imposed on using the higher
service rate , it is optimal to use it all the time, since the con-
gestion probability can be minimized without using any control
information. However, in a typical queueing system with lim-
ited resources, it may not be possible to use higher service rate
at all times. There could be a cost per unit time associated with
using the faster server, which restricts its use when the queue
occupancy is high. Alternately, one could explicitly restrict the
use of the faster server by allowing its use only when the queue
occupancy is over a certain threshold value. In this paper, we im-
pose the latter constrain, i.e., when the queue length is no more
than some threshold , we are forced to use the lower service
rate . If the queue length exceeds , we are allowed to use the
higher rate without any additional cost until the queue length
falls back to . 5

It turns out that this model is, in a certain sense, dual to the
flow control problem considered earlier in this paper. In fact, for
every Markovian flow control policy operating on the queue in
Fig. 1, it is possible to identify a corresponding server allocation
policy which has identical properties. For example, we can de-
fine a two-threshold server allocation policy analogously to the
flow control policy as follows:

The service rates are switched at two distinct queue length
thresholds and . Specifically, when the queue length grows
past , the service rate switches to . Once the higher service

5Recall that in the flow control problem, the threshold � was derived from a
throughput constraint.

rate is employed, it is maintained until the queue length falls
back to , at which time the service rate switches back to .
The Markov process corresponding to the two-threshold server
allocation policy is depicted in Fig. 9.

Evidently, the Markov chain in Fig. 9 has the same structure
as the chain in Fig. 2, and therefore, can be analyzed in the same
fashion. In particular, we can derive the control rate versus con-
gestion probability tradeoff, along the same lines as (4) and (5).
The following result regarding the two-threshold server alloca-
tion policy, can be derived along the lines of Proposition 1 and
Theorem 1.

Theorem 4: Suppose that goes to infinity sub-linearly in the
buffer size , in a two-threshold server allocation policy. Then,
the LDE can be maintained constant at

while the control rate can be made arbitrarily small. Further, the
two-threshold policy has the largest possible congestion proba-
bility LDE among all server allocation policies, for any rate of
control.

The above result shown the optimality of the two-threshold
policy with respect to the congestion probability exponent.
Next, if the control signals that lead to switching the service
rate are subject to erasures (as detailed in Section IV), we can
show that the LDE behaves exactly as in Theorem 2.

In essence, we conclude that both the flow control and re-
source allocation problems in a single server queue lead to the
same mathematical framework, and can thus be treated in a uni-
fied fashion.

VII. CONCLUSION

The goal of this paper was to study the role played by queue
length information in flow control and resource allocation poli-
cies. Specifically, we deal with the question of how often queue
length information needs to be conveyed in order to effectively
control congestion. To our knowledge, this is the first attempt
to analytically study this particular tradeoff. Since this tradeoff
is difficult to analyze in general networks, we consider a simple
model of a single server queue in which the control decisions
are based on the queue occupancy. We learned that in the ab-
sence of control channel erasures, the control rate needed to en-
sure the optimal decay exponent for the congestion probability
can be made arbitrarily small. However, if control channel era-
sures occur probabilistically, we showed the existence of a crit-
ical erasure probability threshold beyond which the congestion
probability undergoes a drastic increase due to the frequent loss
of control packets. Finally, we determine the optimal amount of
error protection to apply to the control signals by using a simple
bandwidth sharing model. For erasure probabilities larger than
the critical value, a significant fraction of the system resources
may be consumed by the control signals, unlike in the erasure-
free scenario. We also pointed out that allocating control re-
sources without considering the bandwidth they consume, might
have adverse effects on congestion. We also observed that the
sever allocation problem and the flow control problem can be
treated in a mathematically unified manner.
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Fig. 9. Markov process corresponding to the two-threshold server allocation policy.

APPENDIX

PROOF OF THEOREM 3

Given and we want to find the fraction that satisfies
(26). As shown in Fig. 5, the LDE curve for is flat and
has the highest possible value of for . Indeed,
for in the above range, using any strictly positive fraction
would reduce the LDE to . This implies that the optimal
fraction

Thus, the problem of finding the optimal is nontrivial only
for . We begin our exposition regarding the optimal
fraction with two simple propositions.

Proposition 3: For any given , the optimal
fraction is such that the effective erasure probability

cannot be strictly lesser than the knee point of the curve
. That is, .

Proof: Suppose the contrary, i.e, for some , the
optimal is such that . The optimal LDE
would then be . Conti-
nuity properties imply that for which

. Thus, if we use the smaller fraction for con-
trol, the LDE would be . Since this
value is greater than the “optimal value” , we arrive at
a contradiction.

Proposition 4: For a given , there exists a unique
fraction such that the knee point equals
the effective erasure probability . Furthermore, the op-
timal fraction lies in the interval .

Proof: The knee point corresponding to any fraction is
given by (24). Therefore, if there exists a fraction for which

, then satisfies

(30)

The transcendental equation in (30) has a solution in
for any given . This can be shown by applying the
intermediate value theorem to the difference of the right and left
hand side functions in the equation. The uniqueness of follows
from the monotonicity properties of the right and left hand side
functions.

To prove the second statement, suppose that . Since
the knee point (24) is monotonically strictly increasing in , we

have . This contradicts
Proposition 3.

The above proposition shows that the optimal fraction lies
in the interval . Thus, for a given , we seek

for which (defined in Proposition 2) is
minimized. In particular, if is monotonically decreasing
in for some , then clearly, . The fol-
lowing proposition asserts the condition under which is
monotonically decreasing.

Proposition 5: For some , suppose the following
inequality holds:

(31)

Then, .
Proof: Fix . By direct computation, we find that

However, since the left side of the inequality above is strictly
increasing in , we find that is monotonically decreasing
whenever

where the last equality follows from the definition of . Thus, if
(31) is satisfied for a particular , is decreasing in , and
hence, the optimal fraction is given by .

Now, suppose that . Upon rearrangement, this implies
that . In other words, (31) is satisfied with
strict inequality, at . By continuity, we can argue that
there exist a range for which (31) is satisfied. By
Proposition 5, we have , which par-
tially proves part (iii) of the theorem. Note that is the smallest
value of the erasure probability, if any, for which the strict mono-
tonicity of (as a function of ) is compromised. As ar-
gued in Proposition 5, this implies (31) holds with equality. A
simple rearrangement yields a transcendental equation for

(32)

Using basic calculus, it is possible to show that there always
exists a solution to (32) if . However, if ,
there exists a solution iff . In particular, if
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, we have that is monotonically decreasing in for all
, so that for all . This proves part (ii)

of the theorem.
Finally, let us consider the case . (It is straightfor-

ward to show that ). Then a solution to (32) exists,
and for , the optimal fraction is no longer equal to .
It can also be shown that the existence of guarantees the
existence of another such that is increasing in

for each . In such a case, would be equal to
zero.

Proposition 6: For some , suppose the following
inequality holds:

(33)

Then, .
The proof is similar to Proposition 5. The value of is ob-

tained as a solution to the transcendental equation

(34)

Again using basic calculus, we can show there exits a solution
, to (34) if , which is the same condition as for the

existence of . Thus, in the intermediate regime, there exists (i)
such that for , and (ii)

such that for . For , the
function has a minimum in , so that the optimum
fraction is obtained by setting to zero. This condition is
the same as (29), and part (iii) of the theorem is thus proved.

We finally show that it is optimal to not use any redundancy
in the small regime.

Proposition 7: For is monotone increasing
in for each .

Proof: Simple rearrangement shows that the condition
is equivalent to saying that . Since no redundancy is

used for values of erasure probability greater than , it follows
that no redundancy is used in the small regime.
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