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Abstract—Communication networks are vulnerable to natural
disasters, such as earthquakes or floods, as well as to physical at-
tacks, such as an electromagnetic pulse (EMP) attack. Such real-
world events happen in specific geographical locations and disrupt
specific parts of the network. Therefore, the geographical layout of
the network determines the impact of such events on the network’s
connectivity. In this paper, we focus on assessing the vulnerability
of (geographical) networks to such disasters. In particular, we aim
to identify the most vulnerable parts of the network. That is, the lo-
cations of disasters that would have the maximum disruptive effect
on the network in terms of capacity and connectivity. We consider
graph models in which nodes and links are geographically located
on a plane. First, we consider a simplistic bipartite graph model
and present a polynomial-time algorithm for finding a worst-case
vertical line segment cut. We then generalize the network model
to graphs with nodes at arbitrary locations. We model the disaster
event as a line segment or a disk and develop polynomial-time algo-
rithms that find a worst-case line segment cut and a worst-case cir-
cular cut. Finally, we obtain numerical results for a specific back-
bone network, thereby demonstrating the applicability of our al-
gorithms to real-world networks. Our novel approach provides a
promising new direction for network design to avert geographical
disasters or attacks.

Index Terms—Electromagnetic pulse (EMP), fiber-optic, geo-
graphically correlated failures, network survivability.

I. INTRODUCTION

T HE GLOBAL communications infrastructure is primarily
based on fiber-optic networks and, as such, has physical

vulnerabilities. Fiber links and backbone nodes can be destroyed
by anything from electromagnetic pulse (EMP) attacks [14],
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[15], [31] to dragging anchors [8], [36]. Such real-world dis-
asters happen in specific geographic locations, and therefore,
the geographical layout of the network affects their impact. For
example, an EMP is an intense energy field that can instantly
overload or disrupt numerous electrical circuits at a large dis-
tance, thereby affecting electronic components in a large geo-
graphic area [37]. Hence, such an attack over a U.S. city that
is a telecommunications hub would have a disastrous impact on
U.S. telecommunications capabilities. Our approach is to gain
insight into robust network design by developing the necessary
theory to find the most geographically vulnerable areas of a net-
work. This can provide important input to the development of
network design tools and can support the efforts to mitigate the
effects of regional disasters.

There are several works on the topology of the Internet
as a random graph [4] and on the effect of link failures in
these graphs [12], [23] (for more details, see Section II).
However, most of these works are motivated by failures of
routers due to logical attacks (e.g., viruses and worms) and
thereby focus on the logical Internet topology. There have also
been some attempts to model the Internet using geographical
notions [21], [39]. Yet, these works do not consider the effect of
failures that are geographically correlated. Finally, [29] studied
the network inhibition problem in which a set of links has to
be removed from a graph such that the effect on the graph will
be maximized. Yet, to the best of our knowledge, the network
inhibition problem was not studied under the assumption of
geographically correlated failures.

Since disasters affect a specific geographical area, they will
result in failures of neighboring network components. There-
fore, one has to consider the effect of disasters on the physical
layer rather than on the network layer (i.e., the effect on the
fibers rather than on the logical links). It should be noted that
fibers are subject to regional failures resulting from events such
as earthquakes, floods, and even an EMP attack, as these may
lead to failure of the electrical circuits (e.g., amplifiers) that are
needed to operate the fiber plant [37].

Our long-term goal is to understand the effect of a regional
failure on the bandwidth, connectivity, and reliability of the In-
ternet, and to expose the design tradeoffs related to network
survivability under a disaster with regional implications. Such
tradeoffs may imply that in certain cases there may be a need
to redesign parts of the network, while in other cases there is
a need to protect electronic components in critical areas (e.g.,
protecting against EMP attacks by shielding [15], [31]). In this
paper, we are interested in the location of geographical dis-
asters that have the maximum effect on the network in terms
of capacity and connectivity. That is, we want to identify the

1063-6692/$26.00 © 2011 IEEE
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Fig. 1. Fiber backbone operated by a major U.S. network provider [22].

worst-case location for a disaster or an attack as well as its ef-
fect on the network.

The global fiber plant has a complicated structure. For ex-
ample, Fig. 1 presents the fiber backbone operated by a major
network provider in the U.S. (point-to-point fibers are repre-
sented by straight lines). We consider two graph models that
serve as an abstraction of the continental/undersea fiber plant. In
these models, nodes, links, and cuts are geographically located
on a plane. Nodes are represented as points, and links are repre-
sented as line segments between these points. We first study a bi-
partite graph model (in the topological and geographical sense).
That model is analogous to the east and west coasts of the U.S.,
where nodes on the left and right sides of the graph represent
west and east coast cities (respectively) and the cities within the
continent are ignored. Similarly, it can represent transatlantic or
transpacific cables. Since vertical line segment cuts are simpler
to analyze, we focus initially on such cuts and provide some mo-
tivating examples.

However, the bipartite model does not consider the impact on
nodes located within the continent, nor does it consider the im-
pact of a disaster that is not simply a vertical cut. Therefore, we
later relax the bipartite graph and vertical cut assumptions by
considering a general model where nodes can be arbitrarily lo-
cated on the plane. Under this model, we consider two problems.
In the first one, disasters are modeled as line segment cuts (not
necessarily vertical) in the network graph. In the second one,
disasters are modeled as circular areas in which the links and
nodes are affected. These general problems can be used to study
the impact of disasters such as EMP attacks (circular disks) and
tornadoes (line segments) more realistically.

We assume that a regional disaster affects the electronic com-
ponents of the network within a certain region. Hence, the fibers
that pass through that region are effectively cut due to such a
disaster. There are various performance measures for the effect
of a cut. We consider the following: 1) the expected capacity
of the removed links; 2) the fraction of pairs of nodes that re-
main connected; 3) the maximum possible flow between a given
source–destination pair; and 4) the average maximum flow be-
tween pairs of nodes. We show that although there is an infinite
number of cut locations, only a polynomial number of candidate
cuts has to be considered in order to identify a worst-case cut
for these performance measures in any of the problems above.
Thus, we are able to show that the location of a worst-case cut
can be found by polynomial-time algorithms. It should be noted
that any other quantity that can be calculated in polynomial time
may be used as a performance measure. Hence, measures such

as concurrent maximum flow and other measures that are de-
rived from multicommodity flow problems may also be used.

Finally, we present numerical results and demonstrate the
use of these algorithms. We identify the locations of the worst-
case line segment and circular cuts in the network presented in
Fig. 1.1 In particular, we illustrate the locations of cuts that op-
timize the different performance measures described.

The main contributions of this paper are the formulation of
a new problem (termed as the geographical network inhibi-
tion problem), the design of algorithms for its solution, and the
demonstration of the obtained numerical solutions on a U.S. in-
frastructure. To the best of our knowledge, we are the first to
attempt to study this problem.

This paper is organized as follows. We briefly discuss re-
lated work in Section II. In Section III, we introduce the net-
work models and formulate the geographical network inhibition
problems. In Section IV, we consider a simple case of the bipar-
tite model and provide numerical examples that provide insight
into the location of a worst-case cut. In Section V, we develop
a polynomial-time algorithm for finding the worst-case cuts in
the bipartite model. In Sections VI and VII, we study the gen-
eral model with line segment and circular cuts. In Section VIII,
we present numerical results. We conclude and discuss future
research directions in Section IX.

II. RELATED WORK

The issue of network survivability and resilience has been
extensively studied in the past (e.g., [6], [18], [24], [41], and
references therein). However, most of the previous work in
this area and in particular in the area of physical topology
and fiber networks (e.g., [25] and [26]) focused on a small
number of fiber failures or on the concept of Shared Risk Link
Group (SRLG) [20]. On the contrary, in this paper we focus
on events that cause a large number of failures in a specific
geographical region (e.g., [8], [15], [31], and [36]). To the
best of our knowledge, geographically correlated failures have
been considered only in a few papers and under very specific
assumptions [2], [19], [38].

The theoretical problem most closely related to the problem
we consider is known as the network inhibition problem [29].
Under that problem, each edge in the network has a destruction
cost, and a fixed budget is given to attack the network. A feasible
attack removes a subset of the edges, whose total destruction
cost is no greater than the budget. The objective is to find an
attack that minimizes the value of a maximum flow in the graph
after the attack. A few variants of this problems were studied in
the past (e.g., [9], [11], and [30]). However, as mentioned, the
removal of (geographically) neighboring links has been rarely
considered [7], [33]. One of the first and perhaps the closest to
this concept is the problem studied in [34].

When the logical (i.e., IP) topology is considered, widespread
failures have been extensively studied [12], [13], [17], [23].
Most of these works consider the topology of the Internet as a
random graph [4] and use percolation theory to study the effects
of random link and node failures on these graphs. The focus
on the logical topology rather than on the physical topology is

1We present results only for one major operator. The same methodologies can
be used in order to obtain results for all other major operators.
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Fig. 2. Bipartite network and an example of a cut.

motivated by failures of routers due to attacks by viruses and
worms. Based on various measurements (e.g., [16]), it has been
recently shown that the topology of the Internet is influenced by
geographical concepts [3], [21], [39]. These observations moti-
vated the modeling of the Internet as a scale-free geographical
graph [35], [40]. Although these models may prove useful in
generating logical network topologies, we decided to present
numerical results based on real physical topologies (i.e., the
topology presented in Fig. 1).

III. MODEL AND PROBLEM FORMULATION

In this section, we present three geographical network inhi-
bition problems. The first problem assumes that the network is
bipartite in the topological and geographic sense and that the
cuts are vertical line segments. We then present two problems
where network links can be in almost arbitrary locations on the
plane. In one of the problems, the disasters correspond to line
segment cuts in any direction. In the other, the cuts are modeled
by arbitrarily placed circular disks on the plane.

A. Bipartite Model With Vertical Line Segment Cuts

We now define the geometric bipartite graph. It has a width of
1 and height (south-to-north) of . The height of a left (west)
node is denoted by . Similarly, the height of a right (east)
node is denoted by . Nodes cannot overlap and must have
nonnegative height; that is, and

. Denote the total number of nodes on the left and right
side by . We denote a link from node to node as and let

be represented by a line segment from to . We
define as the probability that link exists, and as the
capacity of link , where . To avoid considering
the trivial case in which there are no links with positive capacity,
we assume that there exist some and for which .
We assume that the disaster results in a vertical line segment cut
of height whose lowest point is at point . We denote this
cut by . Such a cut removes all links that intersect it.
For clarity, in this paper we refer to the start and the end of a
link as nodes and the start and the end of a cut as endpoints.
Fig. 2 demonstrates a specific construction of the model and an
example of a cut.

There are many ways to define the effect of a cut on the loss
of communication capability in a network. We define the per-
formance measures and the worst-case cut as follows.

Definition 1 (Performance Measures): The performance
measures of a cut are (the last three are defined as the values
after the removal of the intersected links):

• : the total expected capacity of the intersected links;

• : the fraction of pairs of nodes that remain con-
nected (this is similar to the average two-terminal relia-
bility of the network2);

• : the maximum flow between a given pair of nodes
and ;

• : the average value of maximum flow between all
pairs of nodes.

Definition 2 (Worst-Case Cut): Under a specific performance
measure, a worst-case cut, denoted by , is a cut that
maximizes/minimizes the value of the performance measure.3

We now demonstrate the formulation of the following opti-
mization problem using the performance measure.

1) Bipartite Geographical Network Inhibition (BGNI)
Problem: Given a bipartite graph, cut height, link probabili-
ties, and capacities, find a worst-case vertical line segment cut
under performance measure .

We define the following (0, 1) variables:

if is removed by
otherwise.

A solution to the following BGNI optimization problem is an
endpoint of a worst-case cut:

such that

(1)

The above optimization problem can be formulated as a
mixed integer linear program (MILP) as follows. Define the
following (0,1) variables:

if crosses the cut location ( ) above
otherwise

if crosses the cut location ( ) below
otherwise.

For , the solution to the following MILP is a worst-case
cut:

such that

Solving integer programs can be computationally inten-
sive, yet the geographical (geometric) nature of the BGNI
Problem lends itself to relatively low-complexity algorithms
(see Section V). Although we initially focus only on the
measure, variants of the BGNI Problem can be formulated

2The two-terminal reliability between two nodes is the probability they re-
main connected after random independent link failures [32].

3For performance measure ���, the worst-case cut obtains a maximum
value, while for the rest, it obtains a minimum value.
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for performance measures , , and (by
definition, when computing these measures, we assume that

). In the bipartite model, the worst-case cut
under some of these measures is trivial. However, in the general
model, a worst-case cut is nontrivial.

B. General Model

The general geometric graph model contains nonoverlap-
ping nodes on a plane. Let the location of node be given by the
cartesian pair . Assume the points representing the nodes
are in general form, that is, no three points are collinear. Denote
a link from node to node as , and let be represented
by a line segment from to .4 We define as the
probability of existing and as the capacity of ,
where . We again assume that for some

and . We now define two types of cuts and the corresponding
problems.

When dealing with arbitrary line segment cuts, we assume
that a disaster results in a line segment cut of length , which
starts at and contains the point (with ).
We define this cut as (note there can be in-
finitely many ways to express a single cut). A cut removes all
links that intersect it. For brevity, we sometimes denote the
worst-case cut as . We now define
the following problem and demonstrate its formulation.

1) Geographical Network Inhibition by Line Segments
(GNIL) Problem: Given a graph, cut length, link probabili-
ties, and capacities, find a worst-case cut under performance
measure .

We define the following (0,1) variable:

if is removed by
otherwise.

A solution to the following GNIL optimization problem is a
worst-case cut:

such that

for some and

for some and

(2)

When dealing with circular cuts, we assume that a disaster
results in a cut of radius , which is centered at . We define
this cut as . Such a cut removes all links that intersect
it (including the interior of the disk). We call the set of points for
which the Euclidean distance is away from the boundary
of . For brevity, we sometimes denote the worst-case
cut as . We now define the following problem
and demonstrate its formulation.

4Notice that the assumption that links are represented by line segments is an
approximation of the real deployments (e.g., [22]) in which links may not be
linear.

Fig. 3. Example of a complete bipartite graph with � � �.

2) Geographical Network Inhibition by Circular Cuts
(GNIC) Problem: Given a graph, cut radius, link probabilities,
and capacities, find a worst-case circular cut under perfor-
mance measure .

We define the following (0,1) variable:

if is removed by
otherwise.

A solution to the following GNIC optimization problem is the
center of a worst-case cut:

such that for some and

for some and (3)

Similar GNIL and GNIC problems can be formulated for
performance measures , , and (for these
measures, we assume that ). For example,
under , flow conversation constraints should be added
to the set of constraints, the flow through links for which

is 0, and the flow between and has to
be maximized. In Sections VI and VII, we use the geometric
nature of the GNIL and GNIC problems to show that under all
these measures, we only need to check a polynomial number of
locations in order to find a worst-case cut.

IV. MOTIVATING EXAMPLE

In this section, we consider a simple case of the bipartite
model in which the network is represented as a complete bipar-
tite graph, each side has nodes, , and . We
also place nodes evenly on each side such that they are separated
by distance . An example is shown in Fig. 3. We first obtain a
lower bound for the BGNI problem by considering cuts down
the center. Then, we provide numerical results for the BGNI
problem.

A. Lower Bound

In this simple model, we can bound the value of for
the worst-case cut by considering cuts with endpoints at

. In the very center of the graph, there is an intersection of
links. units vertically up and down from this point, an

additional links intersect. Another units up and
down from these points, another links intersect. This
pattern continues until all of the links are included. Therefore,
the capacity removed by a worst-case cut of height for
is lower-bounded by

(4)
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Fig. 4. Number of links intersected (���) by a worst-case cut [��� �� � � �]
as a function of the cut height (�) in a bipartite graph with 15 nodes on each side
(� 	 
�).

Fig. 5. Maximum number of removed links (���) as a function of the
�-location of the cut for � 	 ��. Note that the results were relatively
monotonic, with the worst-case cut appearing at the center.

B. Intuition From Numerical Results

We now describe numerical solutions obtained for the BGNI
problem (1).5 We obtained solutions for a network with 15 nodes
on each side ( ) and with ( ). Fig. 4 de-
scribes the values of under the worst-case cut for different
cut heights, (notice that for and , is
equivalent to the number of removed links). The result is iden-
tical to the lower bound for the center cuts in (4). This implies
that a worst-case cut is located at the center of the graph.

Next, we study the effect of the horizontal cut location on
(the number of removed links) on the same network.

Figs. 5 and 6 illustrate the maximum number of removed links
versus the horizontal ( ) position of the cut on the network. For
a given cut height ( ), the maximum number of removed links
at each horizontal position ( ) is not decreasing monotonically
as we move away from the center. With , the results
were relatively monotonic, with the worst-case cut appearing
at the center while the number of removed links more or less
descends from there (Fig. 5). When the cut height is reduced
to 0.1, significant local maxima begin to appear (Fig. 6). It
seems the smaller the cut height, the more pronounced these
local maxima are. This possibly results from large intersections
of links crossing at different horizontal locations in the graph.
Small cuts can cut these off-center intersections and remove a

5These solutions were initially obtained using MATLAB’s genetic algorithms
and later on verified using the algorithm described in Section V.

Fig. 6. Maximum number of removed links (���) as a function of the
�-location of the cut for � 	 ���. Note the two “spikes”’ in the function at
� � ��
 and � � ���.

Algorithm 1: Worst-Case Cut in a Bipartite Graph (WCBG)

1: input: , height of cut
2:
3: for every node location and link intersection do
4: call evaluateCapacityofCut( )
5: call evaluateCapacityofCut( )

Procedure evaluateCapacityofCut( )
6:
7: for every do
8: if then
9:

10: if then
11:
12:
13:

large number of links, but these small cuts are not as effective
elsewhere in the graph (where links do not intersect).

The results above motivate us to analytically study the effect
of the cut location on the removed capacity. In the following
sections, we focus on developing polynomial-time algorithms
for identifying a worst-case cut.

V. WORST-CASE CUTS—BIPARTITE MODEL

In this section, we present an algorithm for solving
the BGNI problem. The main underlying idea is that the algo-
rithm only needs to consider cuts that have an endpoint on a
link intersection or a node. Before proceeding, we note that the
objective function takes on a finite number of bounded values.
This leads to the following observation.

1) Observation 1: There always exists an optimal solution to
(1) (i.e., a worst-case cut).

We present the algorithm that finds a worst-case cut. It can be
seen that the complexity of Algorithm WCBG is . This
results from the following facts: 1) links are line segments, and
a pair of line segments can have at most one intersection point
(no three nodes are collinear), resulting in at most link
intersections; 2) there are two candidate cuts per link intersec-
tion or node (cuts have two endpoints), and therefore, the total
number of candidate cuts is at most ; 3) since evaluating
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Fig. 7. Example showing �� � � � and �� � � �. �� � � � is the lowest link in-
tersected by the cut, and this intersection is at �� � � �. �� � � � are the highest
links intersected by the cut, and this intersection is at �� � � �. Note �� � � �
is not unique.

(Line 8) takes time
and has to be evaluated for all , finding the capacity of a
candidate cut takes .6

We now use a number of steps to prove the following theorem.
Theorem 1: Algorithm WCBG finds a worst-case cut that is

a solution to the optimization problem in (1).
Before proving the theorem, we introduce some useful termi-

nology and prove two supporting lemmas. If inter-
sects any links, the links that are intersected closest to the end-
point are denoted by , and the point where they
intersect the cut is denoted by (see Fig. 7 for an ex-
ample). Let those links that intersect farthest from
the endpoint be given by , and let the point where
they intersect the cut be given by . Note that or

need not be unique. This is because or
can be a link intersection. It should be noted that since the model
assumes that there exists a link with for some and ,
all worst-case cuts must intersect at least one link. This implies

and exist for all worst-case cuts.
Lemma 1: If there exists a worst-case cut, , such

that either is not unique, is not unique, or
, then there exists a worst-case cut that has an endpoint on

a node or a link intersection.
Proof: Assume is not unique or

( is a node or link intersection). Consider ,
which is a “slid up” version of the worst-case cut .

intersects at least the same links as
since, by definition of , there exist no links at from

to . Thus, is also a worst-case cut and has
an endpoint on a node or link intersection. For an example,
see Fig. 8. The case where is not unique is analogous
except that , which is a “slid down” version of

, is considered.
Lemma 2: If there exists a worst-case cut, , such

that both and are unique, then there exists a
worst-case cut that has an endpoint on a link intersection or
node.

Proof: See the Appendix.
Basically, according to Lemma 2, if and are

both unique for a worst-case cut, we can find another worst-case
cut such that it has at least one endpoint on a link intersection
or node (see Fig. 9).

6Computational geometry results can probably be used to reduce the com-
plexity of Algorithm WCBG. Particularly, [10] (based on [5]) enables counting
and locating all the intersections of � line segments in ��� ���� � ��
time, where � is the number of line segment intersections. A modified version
of the algorithm of [10] can be used within Algorithm WCBG.

Fig. 8. Example showing how 	
� �� � � � is a “slid up” version of
	
� �� � � �. 	
� �� � � �, which has an endpoint on a link intersection, is
guaranteed to intersect every link 	
� �� � � � does because there exist no
links at � from � to � .

Fig. 9. 	
� �� � � � is a worst-case cut and has a unique �� � � � and
�� � � �. From this, we are able to find 	
� �� � � �� ��, a worst-case cut that
has an endpoint on a link intersection.

Using the above lemmas, we now prove Theorem 1.
Proof of Theorem 1: Since and exist for

all worst-case cuts, Lemmas 1 and 2 imply that we need only
check cuts that have endpoints at nodes or link intersections to
find a worst-case cut. Algorithm 1 checks all possible nodes and
intersections as endpoints, and therefore will necessarily also
find a worst-case cut.

We note that although algorithm WCBG finds a worst-case
cut, there may be other worst-case cuts with the same value.
The endpoints of these cuts do not necessarily have to be on a
link intersection or a node. However, there cannot be a cut with
a higher value than the one obtained by the algorithm.

VI. WORST-CASE LINE SEGMENT CUT—GENERAL MODEL

In this section, we present a polynomial-time algorithm for
finding the solution of the GNIL Problem, i.e., for finding a
worst-case line segment cut in the general model. We show that
we only need to consider a polynomial-sized subset of all pos-
sible cuts. We first focus on the performance measure and
then discuss how to obtain a worst-case cut for other measures.
Our methods are similar to the approach for solving the BGNI
Problem, described in Section V. In this section, a worst-case
cut refers to a worst-case line segment cut.

A. Performance Measure

Before proceeding, note that the objective function in (2)
takes on a finite number of bounded values. This leads to the
following observation.

1) Observation 2: There always exists an optimal solution to
(2) (i.e., a worst-case cut).

We present an algorithm that finds a worst-case line segment
cut under the measure in the general model. This algo-
rithm considers all cuts that: ) have an endpoint on a link in-
tersection and contain a node not at the intersection; 2) have an
endpoint on a link intersection and another endpoint on a link;
3) contain two distinct nodes and have an endpoint on a link;
and 4) contain a node and have both endpoints on links.
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Algorithm 2: Worst-Case Line Segment Cut in the General
Model (WLGM)

1: input: , length of cut
2:
3:
4: for every link intersection do
5: for every node such that do
6: {cut that has an endpoint at and

contains }
7: for every do
8: {cuts that have an endpoint at and

another endpoint on }
9: for every and node do

10: for every node such that do
11: {cuts that have an endpoint on and

contain and }
12: for every do
13: {cuts that have an endpoint on ,

another endpoint on , and contain }
14: for every do
15: call evaluateCapacityofCut( )
16: return

Procedure evaluateCapacityofCut( )
17:
18: for every do
19: if then
20:
21: if then
22:
23:

We now use a number of steps to prove the following theorem.
Theorem 2: Algorithm WLGM has a running time of

and finds a worst-case line segment cut that is a solution to the
GNIL Problem.

Before proving the theorem, we present some lemmas to re-
duce the set of candidate worst-case cuts.

Lemma 3: There exists a worst-case cut that contains a node
or has an endpoint at a link intersection.

Proof: Let be a worst-case cut with endpoints
given by and . We now define some useful
terminology. Let the links that intersect closest to the
endpoint be given by , and let the closest point
to where intersects be given by .
Let those links that intersect farthest from the endpoint

be given by , and let the closest point to
where intersects be given by . We con-
sider two cases, one where either or are not
unique, and the other where and are unique.

In the first case, either or are not unique
for . Without loss of generality, we assume is not
unique. We consider , which is a translated version of
such that it has an endpoint on and on

. Since there exist no links between
and , we know intersects at least as many links as

Fig. 10. ��� contains a node as well as intersects all links that ��� does.

and thus is a worst-case cut that satisfies the lemma. Fig. 8
shows the analogous case for the bipartite model.

In the second case, and are both unique for
. If contains a node, the lemma is satisfied. In the fol-

lowing, assume does not contain a node. Now we consider
and

to be translated versions of such that:
1) and ; 2) there does not
exist any nodes in the parallelogram defined by and
(which we denote “parallelogram ”) except those contained in

and in the parallelogram defined by and (which
we denote “parallelogram ”) except those contained in ;
and 3) no link intersects or in either parallelo-
gram except on or . Since a node does not exist within
the interior of either parallelogram, all links intersected by
must also cut one of the other three edges of each parallelogram.

Now choose the maximum and such that the edge
of parallelogram and the

edge of parallelogram are
both parallel to the link and the parallelograms
satisfy the constraints in the previous paragraph. This im-
plies both and contain a node or contain a point
where or intersects a link. Since
is parallel to both edges and

) and since can cut at
most one of the edges and

or be parallel to them (as they both
lay on the same straight line), we know at least one of
or intersects the same links that are intersected by .
Therefore, we can choose , , , and such that either
or is a worst-case cut and: 1) contains a node (Fig. 10);
or 2) contains a point where or intersects a
link. In the latter case, we can translate this worst-case cut in
a similar fashion to the first case to construct a worst-case cut
that satisfies the lemma.

We now consider two cases of worst-case cuts. The first case
is a worst-case cut that has an endpoint at a link intersection.
The second case is a worst-case cut that contains a node. In
both cases, let the node or link intersection that is in the cut be
denoted by . Lemma 4 handles the first case where can be
considered as a link intersection.

Lemma 4: If there exists a worst-case cut that has an endpoint
on point , then: 1) there exists a worst-case cut that has an
endpoint on and has its other endpoint on a link; or 2) there
exists a worst-case cut that has an endpoint on and contains a
node that is not .

Proof: Assume there exists a worst-case cut with end-
point , denoted by . Therefore, the other endpoint of

must be on a circle of radius . Denote by the angle of
in some coordinate system. Denote by the angles from

to all nodes inside the circle and all intersections of links
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Fig. 11. Translate an endpoint of ��� along the circumference of the circle
until the cut intersects a node or the translated endpoint intersects a link; call
this new cut ��� . Since every link which intersects ��� intersects ��� , ���
is a worst-case cut.

Fig. 12. Translate ��� along the line that contains it until one of its endpoints
intersects a link. We call this new cut ��� . ��� intersects all links ��� in-
tersects.

with the circle (including links tangent to the circle). Choose
such that . Choose to be the

cut with endpoint at and having length and angle . By
definition of and the ’s, all links intersecting must
also intersect (because between and no link intersects
with the circle and there exists no node within the interior of
that sector). Thus, is a worst-case cut (see Fig. 11).

The following two lemmas handle the second case where
can be considered as a node.

Lemma 5: If there exists a worst-case cut that contains
point , then there exists a worst-case cut that contains and
has an endpoint on some link.

Proof: Let be a worst-case cut that intersects with
endpoints given by and . Let the links that inter-
sect closest to the endpoint be given by ,
and let the closest point to where intersects
be given by . We consider , which is a translated
version of such that it has endpoints at and at

. Since there exist no links between
and , and because the same line contains both

and , we know that every link that intersects also
intersects in the same location (see Fig. 12). Thus, is
a worst-case cut that contains and has an endpoint on a link
(this endpoint is ).

Lemma 6: If there exists a worst-case cut that contains and
has an endpoint on a link, then there exists a worst-case cut that
contains , has an endpoint on a link, and at least one of the
following holds: 1) the cut contains a node that is not ; 2) one
of the cut endpoints is also a link intersection that is not ; or
3) the cut has both endpoints on links.

Proof: Let be a worst-case cut such that it contains
and has an endpoint on a link. If has an endpoint on

, then Lemma 4 implies Lemma 6. Assume contains
and has an endpoint on a link and does not have an endpoint on

. Denote the link that contains this endpoint by , and one of
its endpoints by . Denote the point at which inter-
sects by . Now translate the endpoint of along

Fig. 13. Translate an endpoint of ��� right along � until it intersects a link
intersection. This new cut is the ��� on the right. We can also translate an
endpoint of ��� left along� until it intersects a node. This new cut is the ���
on the left.

Fig. 14. Translate an endpoint of ��� along � until it can no longer intersect
the bottom link. This new cut is ��� .

so that this new cut still contains . That is, consider the cut, of
length , with endpoint at and
passing through , for . For , this is just .
We increase until a new cut, called , either has an end-
point that is away from (we cannot translate further) or
can no longer satisfy .
In the first case, the cut has both endpoints on links. In the
second case, satisfies at least one of the following:
has an endpoint on that is a link intersection (considered in
Lemma 4), intersects a node that is not , or has
an endpoint on and the other endpoint on a link. The first two
possibilities are demonstrated in Fig. 13. Fig. 14, which demon-
strates the third possibility, shows that contains and has
both endpoints on links.

Using the lemmas above, we now prove Theorem 2.
Proof of Theorem 2: The lemmas presented in this sec-

tion imply we only need to consider a polynomially sized set
of cuts. By Lemma 3, there are two possible cases of worst-case
cuts. The first case is a worst-case cut that has an endpoint at a
link intersection. The second case is a worst-case cut that con-
tains a node. In the first case, Lemma 4 implies that for every
link intersection, , there exists a possible worst-case cut
for every link and node, . In the second case, Lemmas 5
and 6 imply that for every node–link pair ( and some link ),

, there exist several possible worst-case cuts for every
node and link, . Since naively checking each cut for the
total cut capacity takes , the algorithm has a total run-
ning time of (the first case provides the greatest running
time).

It should be noted that similarly to the bipartite case, although
the algorithm finds a worst-case cut, there may be other worst-
case cuts with the same value. However, there cannot be a cut
with a better value than the one obtained by the algorithm.

B. , , and Performance Measures

As mentioned in Section III-B, the formulation of the GNIL
Problem, presented in (2), should be slightly modified in order to
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accommodate the , , and performance mea-
sures. We now briefly discuss how the algorithm has to be modi-
fied in order to obtain results for these problems. In Section VIII,
we present numerical results obtained using these modified al-
gorithms. Using the above-mentioned lemmas and theorem, it is
easy to show that only a polynomial number of candidate cuts
need to be checked in order to find the worst-case cut under
any of the performance measures. This is due to the fact that the
performance measures are monotonic. Therefore, any additional
link removed/added only increases/decreases the measure, and
all the arguments supporting our lemmas still hold.

For each potential cut, some links and/or nodes are removed.
Hence, one has to update the network adjacency matrix. Then,
different operations have to be performed for each measure.

• : If the network is fully connected, the value of
is 1. Otherwise, one has to sum over all compo-

nents the value of , where is the number of
nodes in each of the components. Then, the sum has to
be divided by . In order to verify connectivity
or to count the number of nodes in each component, the
Breadth First Search (BFS) algorithm or the adjacency ma-
trix eigenvalues and eigenvectors can be used.

• : Run a max-flow algorithm (e.g., [1]).
• : Run a max-flow algorithm for every node pair.

VII. WORST-CASE CIRCULAR CUT—GENERAL MODEL

In this section, we present a polynomial-time algorithm for
finding a solution of the GNIC Problem, i.e., for finding a worst-
case circular cut in the general model. We show that we only
need to consider a polynomial-sized subset of all possible cuts.
We focus on the performance measure and then briefly dis-
cuss how to obtain a worst-case cut for the other performance
measures. In this section, a cut refers to a circular cut of a par-
ticular radius.

Before proceeding, note that the objective function in (3)
takes on a finite number of bounded values. This leads to the
following observation.

Observation 3: There always exists an optimal solution to (3)
(i.e., a worst-case cut).

We present an algorithm that finds a worst-case circular cut
under the measure in the general model.

Theorem 3: Algorithm WCGM has a running time of
and finds a worst-case circular cut which is a solution to the
GNIC Problem.

Before proving the theorem, we present a useful lemma about
cuts and line segments and then present some lemmas to reduce
the set of candidate cuts.

Lemma 7: If a line segment intersects only the boundary of a
cut, then the line segment and cut intersect at exactly one point.

Proof: Proof by contradiction. Assume a line segment in-
tersects only the boundary of a cut and this intersection contains
more than one point. Since a line segment and a cut region are
both convex, their intersection must be convex as well. However,
we assumed at least two points on the boundary of the cut are
in the intersection. The fact that the intersection must be convex
implies the chord connecting these two points must be in the in-
tersection as well. Since part of the chord is in the interior of the
cut, this leads to a contradiction.

Fig. 15. Example illustrating Lemma 8. ��� is a translated version of ���
such that �� � � � lies on the line that contains the intersected link and ���
intersects the link at exactly one point (recall �� � � � is the center of ��� ).

Algorithm 3: Worst-Case Circular Cut in the General Model
(WCGM)

1: input: , radius of cut
2:
3:
4: for every do
5: {cuts that intersect at exactly one point

and are centered on the line which contains }
6: for such that do
7: if is parallel to then
8: {cuts that contain node or on its

boundary and intersect at exactly one
point}

9: else
10: {cuts that intersect and at

exactly one point each such that these points are
distinct}

11: for every do
12: call evaluateCapacityofCut( )
13: return

Procedure evaluateCapacityofCut( )
14:
15: for every do
16: if minimum distance from to is then
17:
18: if then
19:
20:

Lemma 8: If there exists a worst-case cut, denoted by ,
which intersects exactly one link, then there exists a worst-case
cut, denoted by , that intersects this link at exactly one point
such that lies on the line that contains the link (recall

is the center of ).
Proof: Since is a worst-case cut and only intersects a

single link, any cut that intersects the same link is also a worst-
case cut. See Fig. 15.

Lemma 9: If there exists a worst-case cut, denoted by ,
that intersects at least two links, then there exists a worst-case
cut, denoted by , that intersects at least two links at exactly
one point each and at least one of the following holds: 1) at least
two of the points are distinct and are not diametrically opposite;
2) at least two of the points are distinct and one of them is a
node; or 3) lies on a line containing one of the two links.

The proof of this lemma is similar to the proofs of the lemmas
in Section VI. Essentially, it is shown that we can translate a
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worst-case cut such that it remains a worst-case cut and satisfies
the properties in the lemma.

Proof: Assume a link that intersects has node loca-
tions given by and . Consider

, where is the minimum nonnegative
value such that only the boundaries of this cut and some link
intersect. Denote this translation of by , and note by
Lemma 7 this cut must intersect at least one link at exactly one
point. Every link that is intersected by must intersect
because as a line segment and a cut are continuously translated
away from each other, the last nonempty intersection is an in-
tersection of their boundaries. Thus, is also a worst-case
cut. In the proceeding, we consider two cases. In the first case,
we assume intersects at least two links at exactly one point
each, and in the second case we assume intersects exactly
one link at exactly one point.

We first consider the case where intersects at least two
links at exactly one point each (in addition to possibly other
links that intersect the interior of ). Denote one of the points
by and another by . If and are distinct and not dia-
metrically opposite, the conditions in the lemma are satisfied.
Now we will consider two subcases. In the first subcase, we as-
sume and reside in two diametrically opposing points on

, and in the second subcase we assume and are not dis-
tinct. In the first subcase, if either or is a node, the lemma
holds true. If neither or are nodes, then and are di-
ametrically opposing points where parallel links are tangent to

. Denote one of these parallel links by . Now consider
, where is the min-

imum nonnegative value such that two links intersect only the
boundary of this cut at distinct and nondiametrically opposing
points, or two links intersect only the boundary of this cut and
one of these intersection points is a node. Denote this translated
cut by . Now, by Lemma 7, one of the following must hold:
either intersects the parallel links at exactly one point each
where one of these points is a node, or a link that intersected the
interior of now intersects at exactly one point such
that intersects two links at exactly one point each such that
they are not diametrically opposite and distinct.

In second subcase, two links intersect at a single point .
This implies is a node of at least one of these links. Now
choose a link with a node given by and denote the link by

. Let be a continuous parameterized closed curve that
is always a distance from such that and

, where is the point on closest to that in-
tersects the line containing (see Fig. 16). Additionally, we
require that is exactly units away from for .
Let and denote the - and -components of ,
respectively. Since intersects , we know is on
a semicircular-shaped part of [these are the only parts of

that are units away from an endpoint of ]. Now con-
sider , where is the minimum value such that
two links intersect only the boundary of this cut and these in-
tersection points are distinct or . Denote this translated
cut by . If , we know is centered on the line
that contains . As before, we know every link that is in-
tersected by must intersect . This is because as a line
segment and a cut are continuously translated away from each

Fig. 16. Case in the proof of Lemma 9. ��� is first translated in the direction
of ��� �� to become ��� , which intersects ��� �� at exactly one point and inter-
sects another link [in this case ��� ��] at exactly the same point. Then, ��� is
translated along ���� toward ��� � to ��� such that �� � � � lies on the line
that contains ��� ��.

Fig. 17. Case in the proof of Lemma 9. ��� is first translated in the direction of
��� �� to become ��� , which intersects ��� �� at exactly one point. Then, ���
is translated along ���� to ��� , where ��� �� and ��� �� each intersect ��� at
exactly one point.

other, the last nonempty intersection is an intersection of their
boundaries. Also, the links that intersect at remain in-
tersected throughout the translation because
intersects on . Thus, is a worst-case cut, and
by Lemma 7, we know two links intersect this cut at exactly one
point each and one of the following: 1) these points are distinct,
and one of them is a node given by ; or 2) lies on a line
that contains ( ).

Now we consider the case where intersects exactly one
link at exactly one point (in addition to other links that inter-
sect the interior of ). Similarly as above, denote this link
by . Let be a continuous parameterized closed curve
that is always a distance from such that
(see Fig. 17). Consider , where is the min-
imum nonnegative value such that two links intersect only the
boundary of this cut (we assume intersects at least two
links). By Lemma 7, we know these two links intersect this cut
at exactly one point each. Therefore, this case reduces to the first
case for which we know the lemma holds.

Lemma 10: There are at most 20 cuts of radius that intersect
two nonparallel line segment links at exactly one point each such
that these points are distinct.

Proof: If a link intersects a cut at exactly one point, then
either a node of the link intersects the boundary of the cut or the
link is tangent to the cut (we call a link tangent to a cut if the
line containing the link is tangent to the boundary of the cut).
For a particular pair of links, this implies a cut that satisfies the
lemma falls into at least one of three cases: 1) the boundary of
the cut intersects two distinct nodes (one from each link); 2) the
boundary of the cut intersects a node of one link, and the cut is
tangent to the other link; or 3) both links are tangent to the cut.

In case 1, by geometry we know there are at most two cuts of
radius whose boundary contains two distinct nodes. In case 2,
given a node and a link, we know by geometry there are at
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most two cuts of radius that the link is tangent to and whose
boundary contains the node. In case 3, given two nonparallel
links, the lines containing these segments divide the plane into
four pieces. There exist at most one cut tangent to both lines in
each of these pieces. Thus, there are at most four cuts tangent
to both links. Since for a pair of nonparallel links there are four
pairs of nodes to consider (with at most two cuts per pair that
satisfy the lemma), four endpoint–link pairs (with at most two
cuts per pair that satisfy the lemma), and one link–link pair (with
at most four cuts per pair that satisfy the lemma), we know there
exists at most 20 cuts that satisfy the lemma.

Note that the bound above is a simple upper bound on the
number of possible cuts and can possibly be further reduced.

Using the above lemmas, we now prove Theorem 3.
Proof of Theorem 3: The lemmas presented in this section

imply there exists a worst-case cut that intersects a link at ex-
actly one point such that the center of this cut lies on the line
containing this link or there exists a worst-case cut that inter-
sects two links at exactly one point each and at least one of the
following: 1) at least two of the points are distinct and are not
diametrically opposite; or 2) at least two of the points are dis-
tinct and one of them is a node. Algorithm WCGM enumer-
ates all these possible cuts. It considers each link, , and
finds both cuts that intersect the link at exactly one point and
whose center lies on the line that contains this link. Then, it con-
siders every combination of two links, , and if the links
are not parallel, it finds every cut (if any exist) that intersects
each of the two links at exactly one point such that these points
are distinct. By Lemma 10, we know there are at most 20 of
these cuts for every pair of links. If the links are parallel, we
need only consider cuts that intersect one of the links at exactly
one point and whose boundary intersects the other links end-
point. In total, Algorithm WCGM considers cuts, and
since naively checking each cut for the total expected capacity
removed takes , the algorithm has a total running time of

.
As mentioned in Section III-B, the formulation of the GNIC

Problem, presented in (3), can be slightly modified in order to
accommodate the , , and performance mea-
sures. This modification is done in exactly the same way as it
was done for the GNIL Problem (see Section VI-B).

It should be noted that we can also consider the case of an
elliptic cut with fixed axis (that is, no rotation of the ellipse
is considered). This disaster model more closely resembles the
effect of an EMP. This case can be solved by applying an affine
transformation to the network node locations and then running
WCGM.

VIII. NUMERICAL RESULTS

In this section, we present numerical results that demonstrate
the use of the algorithms presented in Sections VI and VII.
These results shed light on the vulnerabilities of a specific fiber
network. Clearly, the algorithms can be used in order to obtain
results for additional networks or for a combined fiber plant of
several operators. The results were obtained using MATLAB.

We used Algorithm WLGM, presented in Section VI, to
compute worst-case cuts under the , , ,

Fig. 18. Line segments cuts optimizing ��� for � � �. The gray cuts (red
cuts in online color version) maximize���, and the black segments are nearly
worst-case cuts.

Fig. 19. Line segments cuts optimizing the ���� for � � �. The gray cuts
(red cuts in online color version) minimize ����, and the black segments are
nearly worst-case cuts.

and performance measures for a fiber plant of a major
network provider [22]. In all cases, we found that the results
are intuitive. We also used Algorithm WCGM, presented
in Section VII, to compute worst-case circular cuts under the

performance measure for the same fiber plant. We found
these circular cuts are in similar locations to their line segment
counterparts. All distance units mentioned in this section are in
longitude and latitude coordinates (one unit is approximately
60 mi), and for simplicity we assume latitude and longitude
coordinates are projected directly to pairs on the plane.
We also assume that all the link capacities are equal to 1.

Fig. 18 presents line segment cuts of that maximize
the performance measure. As expected, we find that
is large in areas of high link density, such as areas in Florida,
New York, and around Dallas, TX. Fig. 19 presents line segment
cuts of that minimize the performance measure.

is smallest where parts of the network are disconnected,
such as at the southern tip of Texas, Florida, and most of New
England. This is intuitive since in order to decrease the ,
the graph must be split, and under a small cut, only small parts
of the graph can be removed.

Fig. 20 illustrates line segment cuts of , which min-
imize the performance measure between Los Angeles,
CA ( ) and New York City (NYC) ( ). Removal of the and
nodes themselves is not considered as this is a trivial worst-case
cut. We found that is smallest directly around Los An-
geles and NYC as well as in Colorado, Utah, Arizona, New
Mexico, and Texas. There are also cuts in the East Coast that
completely disconnect NYC from Los Angeles without actu-
ally going through NYC. The cuts in the southwest are intuitive
since the network in that area is very sparse. In some sense, the
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Fig. 20. Line segments cuts optimizing���� between Los Angeles and NYC
for � � �. The gray cuts (red cuts in online color version) minimize ����,
and the black segments are nearly worst-case cuts. Cuts that intersect the nodes
representing Los Angeles or NYC are not shown.

Fig. 21. Line segments cuts optimizing the ��� for � � �. The gray cuts
(red cuts in online color version) minimize ���, and the black segments are
nearly worst-case cuts.

fact that in this case we obtain expected results validates the as-
sumptions and approximations.

We note that different networks (e.g., networks in Europe or
Asia) have a different structure than the sparse structure of the
southwest U.S. network. In such cases, the solution will not be
straightforward. In order to demonstrate it, we will discuss the

measure between NYC and Fort Worth, TX. Before that,
we present in Fig. 21 line segment cuts of that min-
imize the performance measure. The values are
minimized by cuts in the southwest as well as in Florida and
New York.

Finally, we tested how line segment cuts compare to circular
cuts. Using Algorithm WCGM, we found circular cuts of
that minimize the performance measure between Los
Angeles and NYC (see Fig. 22). Our results were similar to the
line segment case: Worst-case circular cuts were found close
to both to Los Angeles and NYC. The southwest area also ap-
peared to be vulnerable, just as in the line segment case.

As mentioned, we tested the measure for circular cuts
between Fort Worth and NYC (see Fig. 23). Due to the com-
plexity of the network along the East Coast, the results were
less straightforward than in the Los Angles–NYC case.

Finally, for a circular cut in the fiber plant illustrated in
Fig. 1, we computed the maximum value of (removed
capacity) as a function of the cut radius. The results are illus-
trated in Fig. 24. As expected, the maximum value of
monotonically increases with the cut radius. This implies that
the minimum radius that guarantees a certain level of a specific
performance measure (e.g., finding the radius of a circular cut

Fig. 22. Impact of circular cuts of radius 2 on the���� between Los Angeles
and NYC. Gray circles (red circles in online color version) represent cuts that
result in���� � 	, and black circles result in���� � 
. Cuts that intersect
the nodes representing Los Angeles or NYC are not shown.

Fig. 23. Impact of circular cuts of radius 2 on the ���� between Fort Worth
and NYC. Gray circles (red circles in online color version) represent cuts that
result in ���� � 	, black circles result in ���� � 
, and light gray circles
(yellow circles in online color version) result in���� � �. Cuts that intersect
the nodes representing Fort Worth or NYC are not shown.

Fig. 24. Maximum value of ��� as a function of the cut radius for a circular
cut in the fiber plant illustrated in Fig. 1.

that ensures that ) can be found by using binary
search along with the methods described in Section VII.

IX. CONCLUSION

Motivated by applications in the area of network robustness
and survivability, in this paper we focused on the problem of
geographical network inhibition. Namely, we studied the prop-
erties and impact of geographical disasters that can be repre-
sented by either a line segment cut or a circular cut in the phys-
ical network graph. We considered a simple bipartite graph that
abstracts the fiber links between the east and west coasts in the
U.S. or trans-Atlantic/Pacific links. Then, we considered a gen-
eral graph model in which nodes are located on the Euclidian
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plane and studied two related problems in which cuts are mod-
eled as line segments or as circular disks. For all cases, we devel-
oped polynomial-time algorithms for finding worst-case cuts.
We then used the algorithms to obtain numerical results for var-
ious performance measures.

Our approach provides a fundamentally new way to look at
network survivability under disasters or attacks that takes into
account the geographical correlation between links. Some fu-
ture research directions include the analytical consideration of
arbitrarily shaped cuts and the use of computational geometric
tools for the design of efficient algorithms. Moreover, we plan
to study the impact of geographical failures on the design of sur-
vivable components, networks, and systems.

APPENDIX

PROOF OF LEMMA 2

Let be the equation of
on . Let be the equation
of on . Let be the
equation of on .

Consider the slopes of and . There are two cases.
1) The slope of is smaller or equal to the slope of :

.
2) The slope of is greater or equal to the slope of :

.
We consider now the first case. Let.

such that and
for any not or
for any not

if the above does not exist.

Essentially, is the first -location after where or
intersect another link. If or do not intersect

another link after , then .
We now show that is an -location where it is possible

to cut all the links that intersect . Since links are
line segments, we know

. Since we know [
intersects both and ] and

(case 1 above and ), we have
.

Thus, . See Fig. 9.
This means will intersect both and

. Since both these links do not intersect another link
on , links that are intersected by
are also intersected by (they are “trapped” be-
tween and on ).

Now we know is a worst-case cut and
, is a link intersection, or is a link

intersection. Therefore, by Lemma 1, we know there exists a
worst-case cut that has an endpoint on a link intersection or
node. The second case follows in an analogous fashion.
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