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Abstract—In layered networks, a single failure at a lower layer
may cause multiple failures in the upper layers. As a result, tra-
ditional schemes that protect against single failures may not be
effective in multilayer networks. In this paper, we introduce the
problem of maximizing the connectivity of layered networks. We
show that connectivity metrics in layered networks have signifi-
cantly different meaning than their single-layer counterparts. Re-
sults that are fundamental to survivable single-layer network de-
sign, such as the Max-Flow Min-Cut Theorem, are no longer ap-
plicable to the layered setting. We propose new metrics to measure
connectivity in layered networks and analyze their properties. We
use one of the metrics, Min Cross Layer Cut, as the objective for
the survivable lightpath routing problem and develop several algo-
rithms to produce lightpath routings with high survivability. This
allows the resulting cross-layer architecture to be resilient to fail-
ures between layers.

Index Terms—Connectivity, cross-layer survivability, disjoint
paths, lightpath routing, max-flow, min-cut, multicommodity flow,
survivable path set.

I. INTRODUCTION

M ODERN communication networks are constructed
using a layered approach, as shown in Fig. 1. Such a

network typically consists of an electronic packet switched
network (such as IP). Often, this packet-switched network is
built on top of one or more electronic circuit switched transport
networks (e.g., ATM, SONET; sometimes neither or both), and
these in turn are built upon a fiber network. This multitude of
layers is used in order to simplify network design and opera-
tions. However, this layering also leads to certain inefficiencies
and interoperability issues. In this paper, we focus on the impact
of layering on network survivability.

We examine this problem in the context of wavelength
division multiplexing (WDM)-based networks, although the
concepts discussed are equally applicable to other layered
architectures (e.g., IP over ATM, ATM over SONET, etc.). In a
WDM-based network, the logical topology is defined by a set of
nodes and lightpaths connecting the nodes, while the physical
topology is defined by a (possibly different) set of nodes and
the fibers connecting them. For example, an IP-over-WDM
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Fig. 1. IP-over-WDM network where the IP routers are connected using optical
lightpaths. The logical links (arrowed lines on top) are formed using lightpaths
(arrowed lines at the bottom) that are routed on the physical fiber (thick gray
lines at the bottom). In general, the logical and physical topologies are not the
same.

network consists of IP routers that are connected using (WDM)
lightpaths as shown in Fig. 1. Each lightpath is realized by
setting up a physical connection using one of the wavelength
channels in the optical fibers. For networks where wavelength
conversion capability [1] is unavailable, the lightpaths are also
subject to the wavelength continuity constraint, which requires
the lightpath to use the same wavelength channel along the
physical route [2].

Networks often rely on the logical layer for providing protec-
tion and restoration services. However, even when the logical
topology is designed to tolerate single logical link failures, once
the logical topology is embedded on the physical topology, the
logical topology may no longer be survivable to single phys-
ical (fiber) link failures. This is because each physical fiber link
may carry multiple lightpaths. Hence, the failure of a single
fiber link can lead to the failure of multiple links in the logical
topology, which may subsequently leave the logical topology
disconnected.

As a simple illustrative example, consider the physical and
logical topologies shown in Fig. 2(a) and (b). The lightpaths in
the logical topology are routed over the physical topology in
two different ways in Fig. 2(c) and (d). In Fig. 2(c), a failure
of physical fiber (1, 5) would cause lightpaths (1, 5) and (3, 5)
to fail. Consequently, node 5 will be disconnected from other
nodes in the logical topology. On the other hand, in Fig. 2(d),
the logical topology will remain connected even if one of the
fibers fails. The above example demonstrates that in a multilayer
network, a physical link failure can result in multiple logical link
failures, and that the routing of the logical links on the physical
topology has a big impact on the connectivity of the multilayer
network.

In contrast to the simplified example of Fig. 2, real-life net-
works are highly intertwined and layered. However, due to the
lack of general understanding of the issues in cross-layer sur-
vivability, most existing protection and restoration mechanisms
are based on principles that are applicable only to single-layer
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Fig. 2. Different lightpath routings can affect survivability. (a) Physical
topology. (b) Logical topology. (c) Unsurvivable routing. (d) Survivable
routing.

network environments and are subject to cross-layer issues as
illustrated.

Nearly all previous literature in cross-layer survivability fo-
cused on single fiber failure, where the problem of interest gen-
erally falls into two broad categories: finding primary and pro-
tection routes for a single lightpath [3]–[6] or routing multiple
lightpaths jointly for a given logical topology [7]–[16]. The
problem studied in this paper belongs to the second category,
with the focus on designing lightpath routings that are tolerant
against the maximum number of physical failures. Some of the
concepts introduced in this paper are generalizations of the sur-
vivable lightpath routing concept, which was first introduced
in [7]. The same paper also developed an integer linear pro-
gram (ILP) formulation for survivable routing of arbitrary log-
ical topologies, which was subsequently improved in [10] and
[15]. The problem of routing logical rings survivably on the
physical network was studied in [7], [13], and [14]. In [11],
the authors introduced the notion of piecewise survivable map-
ping and developed an algorithm to compute survivable routings
based on piecewise survivable components. The same technique
was extended to compute lightpath routings that are survivable
against failures, for a fixed value of [17].

To the best of our knowledge, this is the first paper that for-
mally studies classical survivability theory in the context of
layered networks. We show that standard survivability metrics,
such as the minimum cut and maximum disjoint paths, which
have been widely used in characterizing the survivability prop-
erties of single-layer networks, lose much of their meaning in
the context of cross-layer architecture. In particular, the Max-
Flow Min-Cut Theorem, which constitutes the foundations of
network survivability theory and provides the mathematcial jus-
tification of the aforementioned metrics, no longer holds in the
cross-layer context. Such a fundamental difference suggests that
many basic issues of cross-layer survivability are largely not
understood.

In Section II, we investigate some combinatorial properties
of layered graphs related to network survivability and high-
light the key difference from their single-layer counterparts. In
Section III, we specify the requirements for cross-layer surviv-
ability metrics and propose two new metrics, Min Cross Layer
Cut and Weighted Load Factor, that measure the connectivity of

multilayer networks. In Section IV, we consider the survivable
lightpath routing problem using the Min Cross Layer Cut as the
objective and develop several lightpath routing algorithms based
on the multicommodity flow formulation in order to maximize
the cross-layer connectivity of the network. In Section V, we
present the simulation results for these algorithms, along with
some empirical studies of the metrics introduced in Section III.

II. FLOWS, CUTS, AND PATH SETS IN LAYERED GRAPHS

In this section, we will study connectivity structures such as
flows, cuts, and paths in multilayer graphs from a theoretical
standpoint in order to develop insights into cross-layer surviv-
ability. We will highlight the key difference in combinatorial
properties between multilayer graphs and single-layer graphs.
In particular, we will show that fundamental survivability re-
sults, such as the Max Flow Min Cut Theorem, are no longer
applicable to multilayer networks. Consequently, metrics such
as “connectivity” have significantly different meanings in the
cross-layer setting. Such fundamental differences make it much
more challenging to design survivable multilayer networks.

A. Max Flow versus Min Cut

For single-layer networks, the Max-Flow Min-Cut The-
orem [18] states that the maximum amount of flow passing
from the source to the sink always equals the minimum
capacity that needs to be removed from the network so that
no flow can pass from to . In addition, if all links have
integral capacity, then there exists an integral maximum flow.
This implies the maximum number of disjoint paths between

and is the same as the minimum cut between the two
nodes. Hence, the term connectivity between two nodes can
be used unambiguously to refer to different measures such as
maximum disjoint paths or minimum cut, and this makes it a
natural choice as the standard metric for measuring network
survivability.

Because of its fundamental importance, we would like to in-
vestigate the Max-Flow Min-Cut relationship for multilayer net-
works. We first generalize the definitions of Max Flow and Min
Cut for layered networks.

Definition 1: In a multilayer network, the Max Flow be-
tween two nodes and in the logical topology is the maximum
number of physically disjoint paths in the logical topology.
The Min Cut between two nodes and in the logical topology
is the minimum number of physical links that need to be
removed in order to disconnect the two nodes in the logical
topology.

We model the physical topology as a network graph
, where and are the nodes and links in the

physical topology. The logical topology is modeled as
, where . The lightpath routing is represented

by a set of binary variables , where a logical link uses
physical fiber if and only if . For any pair of
logical nodes and , let be the set of all paths
in the logical topology. For each path , let be
the set of physical links used by the logical path , that is,

. Then, the Max Flow and Min
Cut between nodes and can be formulated mathematically as
follows:
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(1)

(2)

The variable in the formulation indicates
whether the path is selected for the set of -disjoint
paths. Constraint (1) requires that no selected logical paths
share a physical link. Similarly, in the formulation ,
the variable indicates whether the physical fiber is
selected for the minimum -cut. Constraint (2) requires
that all logical paths between and traverse some physical
fiber with .

Note that the above formulations generalize the Max Flow
and Min Cut for single-layer networks. In particular, the formu-
lations model the classical Max Flow and Min Cut of a graph
if both and are equal to , and if and only if

.
Let and be the optimal values of the

above Max Flow and Min Cut formulations. We also denote
and to be the optimal values to the linear

relaxations of the above Max Flow and Min Cut formulations.
The Max-Flow Min-Cut Theorem for single-layer networks can
then be written as follows:

The equality among these values has profound implications
on survivable network design for single-layer networks. Be-
cause all these survivability measures converge to the same
value, it can naturally be used as the standard survivability
metric that is applicable to measuring both disjoint paths or
minimum cut. Another consequence of this equality is that
linear programs (which are polynomial-time solvable) can be
used to find the minimum cut and disjoint paths in the network.

It is therefore interesting to see whether the same relation-
ship holds for multilayer networks. First, it is easy to verify
that the linear relaxations for the formulations and

maintain a primal-dual relationship, which, by Duality
Theorem [19], implies that . In addition,
since any feasible solution to an integer program is also a fea-
sible solution to the linear relaxation, we can establish the fol-
lowing relationship.

Observation 1:
.

Therefore, like single-layer networks, the maximum number
of disjoint paths between two nodes cannot exceed the minimum
cut between them in a multilayer network.

Fig. 3. Logical topology with three links, where each pair of links shares a fiber
in the physical topology.

However, unlike the single-layer case, the values of
, , and are not always iden-

tical, as illustrated in the following example. In our examples
throughout the section, we use a logical topology with two
nodes and that are connected by multiple lightpaths. For
simplicity of exposition, we omit the complete lightpath routing
and only show the physical links that are shared by multiple
lightpaths. Theorem 1 states that this simplification can be
made without loss of generality.

Theorem 1: Let be a logical topology with two nodes
and , connected by lightpaths ,

and let be a family of subsets of ,
where each , which captures the fiber-sharing rela-
tionship of the logical links. There exist a physical topology

and lightpath routing of over , such
that:

1) there are exactly fibers in , denoted by
, that are used by multiple lightpaths;

2) for each fiber , the set of lightpaths using is .
Proof: See Appendix A.

Theorem 1 implies that for a two-node logical topology, any
arbritrary fiber-sharing relationship can be realized by re-
constructing a physical topology and lightpath routing. There-
fore, in the following discussion, we can simplify our examples
by only giving the fiber-sharing relationship of our two-node
logical topology without showing the details of the lightpath
routing.

In Fig. 3, the two nodes in the logical topology are connected
by three lightpaths. The logical topology is embedded on the
physical topology in such a way that each pair of lightpaths
share a fiber. It is easy to see that no single fiber can discon-
nect the logical topology, and that any pair of fibers would.
Hence, the value of is 2 in this case. On the other
hand, the value of is only 1 because any two log-
ical links share some physical fiber, so none of the paths in
the logical network are physically disjoint. Finally, the value of

is 1.5 because a flow of 0.5 can be routed on each
of the lightpaths without violating the capacity constraints at the
physical layer. Therefore, all three quantities are different in this
example. We will study the integrality gaps for the formulations
more carefully.

1) Integrality Gap for : The above example can
be generalized to show that the ratio between and

is , where is the number of paths between
and . Consider an instance of lightpath routing where the

two nodes in the logical network are connected by logical
links, and every pair of logical links shares a separate fiber. In
this case, the value of will be 1, and the value of

will be , using the same arguments as above.
Therefore, the ratio is . Note that
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this is an asymptotically tight bound since and
for all lightpath routings.

2) Integrality Gap for : The ratio between
and can be shown to be at most as a di-
rect application of the result by Lovász [20], who showed that
the integrality gap between integral and fractional set cover is

. We can construct a lightpath routing where the gap
between the two values is , thereby showing the tight-
ness of the bound.

Consider a layered network consisting of a two-node logical
topology, and a set of fibers that are shared
by multiple logical links. For every subset of fibers
in , we add a logical link between the two logical nodes that
uses only the fibers in . Hence, for every set of
fibers, there is a logical link that does not use any of the fibers.
This implies the Min Cut is at least .

On the other hand, since each logical link uses ex-
actly fibers, the assignment where each

satisfies Constraint (2) and is therefore a feasible
solution to . The objective value of this solution is

, which is at most 2. Therefore, the integrality
gap is at least .

Therefore, for the two-node logical network with
logical links, the ratio between the integral and

relaxed optimal values for the Min Cut is .
We summarize our observation as follows.

Observation 2: In a layered network, the values of
, , and can be all different.

In addition, the gaps among the three values are not bounded
by any constant.

Therefore, a multilayer network with high connectivity value
(i.e., that tolerates a large number of failures) does not guarantee
existence of physically disjoint paths. This is in sharp contrast
to single-layer networks where the number of disjoint paths is
always equal to the minimum cut.

It is thus clear that network survivability metrics across layers
are not trivial extensions of the single-layer metrics. New met-
rics need to be carefully defined in order to measure cross-layer
survivability in a meaningful manner. In Section III, we will
specify the requirements for cross-layer survivability metrics
and propose two new metrics that can be used to measure the
connectivity of multilayer networks.

B. Minimum Survivable Path Set

In this section, we introduce another graph structure, called
Survivable Path Set, that is useful in describing connectivity in
layered networks. A survivable path set for two logical nodes
and is a set of logical paths such that at least one of the
paths in the set survives for any single physical link failure. The
Minimum Survivable Path Set, denoted as , is the size
of the smallest survivable path set. For convenience,
is defined to be if no survivable path set exists.

In a single-layer network, the value of reveals
nothing more than the existence of disjoint paths, as its value is
either two or , depending on whether disjoint paths between

and exist. However, for multilayer networks,
can take on other values. For example, in Fig. 3, the minimum
survivable path set for and has size 3 because any pair of

logical links can be disconnected by a single fiber failure. In
fact, it is easy to verify that:

• if and only if ;
• if and only if .
Therefore, the value of provides a different per-

spective about the connectivity between two nodes in the cross-
layer setting. It is particularly interesting in the regime where

and , i.e., there is a gap between
the Max Flow and the Min Cut. The following theorem reveals
a connection between survivable path sets and the relaxed Max
Flow .

Theorem 2: .
Proof: See Appendix B

It is worth noting that the theorem provides a sufficient con-
dition for the existence of disjoint paths in the layered networks,
in terms of the optimal value of :

Corollary 3: Disjoint paths between two nodes and exist
in a layered network if the relaxed Max Flow, , is
greater than .

Proof: By Theorem 2, a survivable path set of size 2 exists
if . This implies the existence of
disjoint paths in the layered network.

Therefore, survivable path sets not only are interesting graph
structures that describe connectivity of layered networks, but
they can also be useful in revealing the relationship between
integral and fractional flows in the layered network.

C. Computational Complexity

For single-layer networks, because the integral Max Flow and
Min Cut values are always identical to the optimal relaxed so-
lutions, these values can be computed in polynomial time [18].
However, computing and approximating their cross-layer equiv-
alents turns out to be much more difficult. Theorem 4 describes
the complexity of computing the Max Flow and Min Cut for
multilayer networks.

Theorem 4: Computing Max Flow and Min Cut for multi-
layer networks is NP-hard. In addition, both values cannot be
approximated within any constant factor, unless .

Proof: The Max Flow can be reduced from the NP-hard
Maximum Set Packing problem [21].

Maximum Set Packing: Given a set of elements
and a family of

subsets of , find the maximum value such that there exist
subsets that are mutually disjoint.
Given an instance of Maximum Set Packing, we construct a

2-node logical topology connected by multiple lightpaths as de-
scribed in Theorem 1, so that the optimal value of the Maximum
Set Packing instance equals the maximum number of physi-
cally disjoint paths in the 2-node logical topology. This means
that Maximum Set Packing is polynomial time reducible to the
2-node disjoint path problem. Theorem 1 implies that any in-
stance of the 2-node disjoint path problem is polynomial-time
reducible to an instance of the multilayer Max Flow problem.
It follows that Maximum Set Packing is polynomial-time re-
ducible to the multilayer Max Flow problem, which proves the
theorem.

Given an instance of Maximum Set Packing with ground
set and a family of subsets of , we construct a logical
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topology with two nodes, and , connected by logical
links, where each logical link corresponds to a subset in .
The logical links are embedded on the physical network in a
way that two logical links share a physical fiber if and only
if their corresponding subsets share a common element in the
Maximum Set Packing instance. It immediately follows that
a set of physically disjoint paths in the logical topology
corresponds to a family of mutually disjoint subsets of .

Similarly, the Min Cut can be reduced from the NP-hard Min-
imum Set Cover problem [21].

Minimum Set Cover: Given a set
and a family of subsets of

, find the minimum value such that there exist
subsets that cover , i.e.,

.
Given an instance of Minimum Set Cover with ground set

and family of subsets , we construct a logical topology that
contains two nodes connected by a set of logical links, where
each logical link corresponds to the element . The logical
links are embedded on the physical network in a way that exactly

fibers, namely , are used by multiple logical
links, and the logical link uses physical fiber if and only if

. It follows that the minimum number of physical fibers
that forms a cut between the two logical nodes equals the size
of a minimum set cover.

The inapproximability result follows immediately from the
inapproximabilities of the Maximum Set Packing and Minimum
Set Cover problems [22]–[24].

In summary, multilayer connectivity exhibits fundamentally
different structural properties from its single-layer counter-
part. Because of that, it is important to reinvestigate issues of
quantifying, measuring, as well as optimizing survivability in
multilayer networks. In the rest of the paper, we will focus on
designing appropriate metrics for layered networks and devel-
oping algorithms to maximize the cross-layer survivability.

III. METRICS FOR CROSS-LAYER SURVIVABILITY

Section II demonstrates the new challenges in designing
survivable layered network architectures. Insights into quanti-
fying and optimizing survivability are fundamentally different
between the single-layer and multilayer settings. In this section,
we focus on the issue of quantifying survivability in multilayer
networks. Not only should such metrics have natural physical
meaning in the cross-layer setting, but they should also be
mathematically consistent and compatible with the conven-
tional single-layer connectivity metric. Hence, we first define
formal requirements for metrics that can be used to quantify
cross-layer survivability.

• Consistency: A network with a higher metric value should
be more resilient to failures.

• Monotonicity: Any addition of physical or logical links to
the network should not decrease the metric value.

• Compatibility: The metric should generalize the connec-
tivity metric for single-layer networks. In particular, when
applied to the degenerated case where the physical and log-
ical topologies are identical, the metric should be equiva-
lent to the connectivity of the topology.

A metric that carries all the above properties would give us a
meaningful and consistent measure of survivability for layered
networks. We propose two metrics, the Min Cross Layer Cut
and the Weighted Load Factor, that can be used as cross-layer
survivability metrics. It is easy to verify that both metrics satisfy
the defined requirements.

A. Min Cross Layer Cut

In Section II, we defined to be the minimum number
of physical failures that would disconnect logical nodes and .
One can easily generalize this by taking the minimum over all
possible node pairs to obtain a global connectivity metric. We
define the Min Cross Layer Cut (MCLC) to be the minimum
number of physical failures that would disconnect the logical
topology.

A lightpath routing with high Min Cross Layer Cut value
implies that the network remains connected even after a large
number of physical failures. It is also a generalization of the
survivable lightpath routing definition in [7] since a lightpath
routing is survivable if and only if its Min Cross Layer Cut is
greater than 1.

Let be a subset of the logical nodes , and be the
set of the logical links with exactly one endpoint in . Let
be the minimum number of physical links failures required to
disconnect all links in . The Min Cross Layer Cut can be
defined as follows:

For each , computing can be considered as finding the
Min Cut between the two partitions and . In the proof
of Theorem 4, we have shown that computing the value of

is NP-Hard even if the logical topology contains just
two nodes. This immediately implies that computing the global
MCLC value is NP-Hard.

Theorem 5: Computing the MCLC is NP-Hard.
In practice, however, the MCLC is bounded by the node de-

gree of the logical topology, which is usually a small constant .
In that case, the MCLC can be computed in polynomial time by
enumerating all fiber sets with up to fibers. To compute the
MCLC in a general setting, it can be modeled by the following
integer linear program.

Given the physical and logical topologies , and
, let be binary constants that represent the light-

path routing, such that logical link uses physical fiber
if and only if . The can be formulated as the
following integer program:

(3)

(4)
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The integer program contains a variable for each phys-
ical link , and a variable for each logical node . Con-
straint (3) maintains the following property for any feasible so-
lution: If , the node will be disconnected from node 0
after all physical links with are removed. To see
this, note that since and , any logical path from
node 0 to node contains a logical link where
and . Constraint (3) requires that such a logical link tra-
verse at least one of the fibers with . As a result, all
paths from node 0 to node must traverse one of these fibers,
and node will be disconnected from node 0 if these fibers are
removed from the network. Constraint (4) requires node 0 to be
disconnected from at least one node, which ensures that the set
of fibers with forms a global Cross Layer Cut.

In Section IV, we will use MCLC as the objective for the
survivable lightpath routing problem and develop algorithms to
maximize such an objective.

B. Weighted Load Factor

Another way to measure the connectivity of a layered net-
work is by quantifying the “impact” of each physical failure.
The Weighted Load Factor (WLF), an extension of the metric
Load Factor introduced in [25], provides such a measure of
survivability.

Given the physical topology and logical
topology , let be binary constants that repre-
sent the lightpath routing, such that logical link uses
physical fiber if and only if . We formulate the
WLF as follows:

where is the cut set of , i.e., the set of logical links that
have exactly one endpoint in .

The variables are the weights assigned to the lightpaths.
Over all possible logical cuts, the variable measures the max-
imum fraction of weight inside a cut carried by a fiber. Intu-
itively, if we interpret the weight to be the amount of traffic in the
lightpath, the value can be interpreted as the maximum frac-
tion of traffic across a set of nodes disrupted by a single fiber cut.
The Weighted Load Factor formulation, defined to maximize the
reciprocal of this fraction, thus tries to compute the logical edge
weights that minimize the maximum fraction. This effectively
measures the best way of spreading the weight across the fibers
for the given lightpath routing. A lightpath routing with a larger
Weighted Load Factor value means that it is more capable of
spreading its weight within any cut across the fibers.

The Weighted Load Factor also generalizes the survivable
lightpath routing defined in [7] since its value will be greater
than 1 if and only if the lightpath routing is survivable.

Although the formulation contains the quadratic terms
, the optimal value of can be obtained by iteratively

solving the linear program with different fixed values of .
Using binary search over the range of , we can find the min-
imum where a feasible solution exists.

Unfortunately, the formulation contains an exponential
number of constraints and may not be polynomial-time solvable.
In fact, Theorem 6 states that finding objective value for is
NP-Hard, even if the weights of the logical links are given.

Theorem 6: Computing the Weighted Load Factor for a light-
path routing is NP-Hard even if the weight assignment for
the logical links is fixed.

Proof: The NP-Hardness proof is based on the reduction
from the NP-Hard Uniform Sparsest Cut [26] problem. For de-
tails, see Appendic C.

Finally, Theorem 7 describes the relationship between the
WLF and the MCLC. Given a lightpath routing, let be
the ILP formation for its Min Cross Layer Cut, and let
and be the optimal values for and its linear
relaxation, respectively. In addition, let be the Weighted
Load Factor of the lightpath routing. Then, we have the fol-
lowing relationship

Theorem 7: .
Proof: See Appendix D.

Therefore, although the two metrics appear to measure dif-
ferent aspects of network connectivity, they are inherently re-
lated. As we will show in Section V, the two values are often
identical.

IV. LIGHTPATH ROUTING FOR MCLC MAXIMIZATION

In this section, we consider the survivable lightpath routing
problem using MCLC as the objective. At an abstract level, the
optimal lightpath routing can be expressed as the following op-
timization problem:

where is set of all possible lightpath routings, is the log-
ical node set, and is the minimum number of fibers
whose removal will disconnect all logical links in the cut set

given the lightpath routing . This is a Max-Min-Min
problem that may not have a simple formulation. In [27], we
present an ILP formulation for this optimization problem. How-
ever, the formulation contains an exponential number of vari-
ables and constraints, which makes it infeasible even for small
networks.

Therefore, in this section, we consider ILP formulations
whose objective values are lower bounds to the MCLC. These
formulations are much simpler than the exact formulation
presented in [27]. This makes it possible to develop survivable
lightpath routing algorithms based on these simpler formu-
lations. In particular, in Section IV-C we discuss how to use
randomized rounding [28] based on these formulations as
a heuristic to approximate MCLC maximization. Note that
since MCLC is -inapproximable, polynomial-time
algorithms with approximation guarantees within this factor
are unlikely to exist. Therefore, we will instead evaluate the
performance of our algorithms via simulation in Section V.
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All the formulations introduced in this section are based
on multicommodity flows, where each lightpath is considered
a commodity to be routed over the physical network. Given
the physical network and the logical network

, the multicommodity flow for a lightpath
routing can be generally formulated as follows:

forms an -path

(5)

where is the variable set that represents the lightpath routing,
such that if and only if lightpath uses physical
fiber in its route. is an objective function that de-
pends on .

For WDM networks where the wavelength continuity con-
straint is present, the above formulation can be extended to cap-
ture the wavelength assignment aspect. In that case, the wave-
length assignment can be modeled by replacing the variable
set by , which equals 1 if and only if lightpath uses
wavelength on physical link . Constraint (5) can be easily
extended to restrict that, for each logical link ,
forms an physical path along one of the wavelengths. To
make sure that any wavelength on a physical fiber is used by
at most one lightpath, the following constraint will be added:

(6)

Similar formulations based on multicommodity flows with
wavelength continuity constraint have been proposed to solve
the RWA problem of WDM networks [29], [30], where the ob-
jective is to minimize the number of lightpaths that traverse the
same fiber. The key difference in the problem studied in this
paper is in the objective function , which should instead de-
scribe the survivability of the lightpath routing. To focus on the
survivability aspect of the problem, the wavelength continuity
constraint will be omitted in the formulations that follow. How-
ever, in cases where the wavelength continuity constraint is nec-
essary, all these formulations can be extended as discussed.

A. Simple Multicommodity Flow Formulations

Ideally, to ensure that the lightpath routing is survivable
against the largest number of failures, the objective function

should express the MCLC value of the lightpath routing
given by . However, since there is no simple way to express
the lightpath routing problem that maximizes the MCLC as an
integer linear program, we use an objective that approximates
the MCLC value. In our formulation, each lightpath is assigned
a weight . The objective function measures the maximum
load of the fibers, where the load is defined to be the total
lightpath weight carried by the fiber. The intuition is that the
multicommodity flow formulation will try to spread the weight
of the lightpaths across multiple fibers, thereby minimizing the
impact of any single fiber failure. We can formulate an ILP
with such an objective as follows:

forms an -path

As we will prove in Theorem 8, with a careful choice of the
weight function , the value gives a lower bound on the
MCLC. Therefore, a lightpath routing with a low value is
guaranteed to have a high MCLC.

The routing strategy of the algorithm is determined by the
weight function . For example, if is set to 1 for all light-
paths, the integer program will minimize the number of light-
paths traversing the same fiber. Effectively, this will minimize
the number of disconnected lightpaths in the case of a single
fiber failure.

In order to customize toward maximizing the MCLC
of the solution, we propose a different weight function
that captures the connectivity structure of the logical topology.
For each edge , we define to be

, where is the minimum
-cut in the logical topology. Thus, if an edge belongs

to a smaller cut, it will be assigned a higher weight. The algo-
rithm will therefore try to avoid putting these small cut edges
on the same fiber.

If is used as the weight function used in ,
we can prove the following relationship between the objective
value of a feasible solution to and the Weighted Load
Factor of the associated lightpath routing.

Theorem 8: For any feasible solution of with
as the weight function, .

Proof: By definition of the weight function , given
any , every edge in has weight at least .
Therefore, we have

(7)

Now consider the lightpath routing associated with . For any
logical cut , the maximum fraction of weight inside the cut
carried by a fiber is

by Equation (7)

In other words, no fiber in the network is carrying more than
a fraction of the weight in any cut. This gives us a feasible
solution to the Weighted Load Factor formulation , where
each variable is assigned the value of , and the
variable is assigned the value of . As a result, the Weighted
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Load Factor, defined to be the maximum value of among all
feasible solutions to , must be at least .

As a result of Theorems 7 and 8, the MCLC of a lightpath
routing is lower-bounded by the value of , which the algo-
rithm will try to maximize.

B. Enhanced Multicommodity Flow Formulation

As we have discussed in Section III-B, the Weighted Load
Factor provides a good lower bound on the MCLC of a light-
path routing. Here, we propose another multicommodity flow-
based formulation whose objective function approximates the
Weighted Load Factor of a lightpath routing. The formulation,
denoted as , can be written as follows:

forms an -path

Essentially, the formulation optimizes the unweigthed Load
Factor of the lightpath routing (i.e., all weights equal 1) by min-
imizing the maximum fraction of a logical cut carried by a single
fiber. As this formulation provides a constraint for each logical
cut, it captures the impact of a single fiber cut on the logical
topology in much greater detail. The following theorem shows
that for any lightpath routing, its associated Load Factor value

gives a tighter lower bound than , given by the
formulation.

Theorem 9: For any lightpath routing, let be its associated
objective value in the formulation with as the
weight function, and let be its associated objective value in
the formulation . In addition, let be its Weighted
Load Factor. Then

Proof: The value is the objective value for the for-
mulation in Section III-B when all logical links have
weight 1. This gives a feasible solution to and implies
that .

To prove that , we consider the physical
link and logical cut set , where carries a frac-
tion of the logical links in . Let be the set of logical
links in carried by . Therefore, we have

. In addition, by the definition of , we have

This implies .
Therefore, the formulation gives a lightpath routing

that is optimized for a better lower bound on the MCLC. How-
ever, this comes at the cost of a larger number of constraints, and
solving such an integer program may not be feasible in prac-
tice. Therefore, we next introduce a randomized rounding tech-
nique that approximates the optimal lightpath routing by solving
the linear relaxation of the integer program. As we will see

in Section V, the randomized rounding technique significantly
speeds up the running time of the algorithm without observable
degradation in the MCLC performance. This offers a practical
alternative to solving the integer program formulations intro-
duced in this section.

C. Randomized Rounding for Lightpath Routing

While the multicommodity flow integer program formu-
lations discussed in Section IV-B introduce a novel way to
route lightpaths in a survivable manner, such an approach may
not scale to large networks due to the inherent complexity of
solving integer programs. In order to circumvent the computa-
tional difficulty, we apply the randomized rounding technique,
which is able to quickly obtain a near-optimal solution to the
integer program. Randomized rounding has previously been
used to solve multicommodity flow problems to minimize the
link load [28], [29], and its performance guarantee is studied
in [28].

Through randomized rounding, we solve the linear relax-
ation of the ILP and choose a random physical path between

and for each lightpath with probability based on the
optimal fraction solution obtained from the linear relaxation.
We consider a variant, called , where the process
of choosing random lightpath routing is repeated for times.
The lightpath routing with the highest MCLC value is selected
as the final output. The repetition increases the probability of
obtaining a good solution. As we will see in the next section,
randomized rounding provides a much more efficient way of
obtaining a survivable lightpath routing without sacrificing the
quality of solution.

V. SIMULATION

In this section, we discuss our simulation results for the algo-
rithms introduced in Section IV. We first compare the lightpath
routing algorithms by solving the ILP directly and by random-
ized rounding. Next, we compare the survivability performance
among different formulations. Finally, we investigate the dif-
ferent lower bounds of MCLC and their effects on the MCLC
value of the lightpath routing when used as an optimization
objective.

1) ILP versus Randomized Rounding: In this experiment, we
use the NSFNET (Fig. 4) as the physical topology. The network
is augmented to have connectivity 4, which makes it possible
to study the performance of the algorithms where a higher
MCLC value is possible. We generated 350 random logical
topologies with connectivity at least 4 and size ranging from 6
to 12 nodes. Using the formulation with weight function

introduced in Section IV-A as our benchmark,
we compare the performance of against solving
the ILP optimally.

Table I compares the average running time between the algo-
rithms and on various logical topology size.
All simulations are run on a Xeon E5420 2.5-GHz workstation
with 4 GB of memory, using CPLEX to solve the integer and
linear programs. As the number of logical nodes increases, the
running time for the integer program algorithm increases
tremendously. On the other hand, there is no observable growth
in the average running time for the algorithm ,
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Fig. 4. Augmented NSFNET. The dashed lines are the new links.

Fig. 5. MCLC performance of randomized rounding versus ILP.

TABLE I
AVERAGE RUNNING TIME OF AND

which is less than a minute. In fact, our simulation on larger
networks shows that the algorithm often fails to terminate
within a day when the network size goes beyond 12 nodes. On
the other hand, the algorithm for is able to
terminate consistently within 2 h for very large instances with a
100-node physical topology and 50-node logical topology. This
shows that the randomized approach is a much more scalable
solution to compute survivable lightpath routings.

In Fig. 5, the survivability performance of the randomized al-
gorithm is compared with its ILP counterpart. Each data point in
the figure is the MCLC average of 50 random instances with the
given logical network size. As our result shows, the lightpath
routings produced by have higher MCLC values
than solving the ILP optimally. This is because the objective
value for ILP is a lower bound on MCLC. As we will
see in Section V-A.3, this lower bound is often not tight enough
to accurately reflect the MCLC value, and the optimal solu-
tion to the ILP does not necessarily yield a lightpath routing
with maximum MCLC. On the other hand, the randomized al-
gorithm generates lightpath routings nondeterministically based
on the optimal fractional solution of . Therefore, it ap-
proximates the lightpath routing given by the ILP, with an ad-
ditional randomization component to explore better solutions.

Fig. 6. Augmented USIP network. The dashed lines are the new links.

When the randomized rounding process is repeated many times,
the algorithm often encounters a solution that is even better than
the one given by the ILP.

To sum up, randomized rounding provides an efficient alter-
native to solving integer programs without observable quality
degradation. This allows us to experiment with more complex
formulations in larger networks where solving the integer
programs optimally is infeasible. In the next section, we will
compare the different formulations introduced in Section IV-A,
using randomized rounding to compute the lightpath routings.

2) Lightpath Routing With Different Formulations: In this
experiment, we study the survivability performance of the
lightpath routings generated by the formulations introduced
in Section IV. We use the 24-node USIP network (Fig. 6),
augmented to have connectivity 4, as the physical topology.
We generate 500 random graphs with connectivity 4 and size
ranging from 6 to 15 nodes as logical topologies.

We compare the MCLC performance of the lightpath
routings generated by the randomized rounding algorithm,

, on the following formulations:
1) Multicommodity Flow , with the identity weight

function, i.e., for all ;
2) Multicommodity Flow , with the weight function

introduced in Section IV-A ;
3) Enhanced Multicommodity Flow .
For comparison, we also run randomized rounding on the Sur-

vivable Lightpath Routing formulation , introduced
in [7], which computes the lightpath routing that minimizes the
total fiber hops, subject to the constraint that the MCLC must
be at least 2.

Fig. 7 compares the average MCLC values of the lightpath
routings computed by the four different algorithms. Overall,
the formulations introduced in this paper achieve better surviv-
ability than . This is because these formulations try
to maximize the MCLC in their objective functions, whereas

minimizes the physical hops. Therefore, even
though does well in finding a survivable routing
(i.e., ), the new formulations are able to achieve
even higher MCLC values, which allow more physical failures
to be tolerated.

To further verify the survivability performance of the light-
path routings from a different perspective, for each lightpath
routing, we simulated the scenario where each physical link
fails independently with probability 0.01. Fig. 8 shows the
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Fig. 7. MCLC performance of different formulations.

Fig. 8. Probability that logical topology becomes disconnected if physical links
fail independently with probability 0.01.

average probability that the logical topology becomes discon-
nected under this scenario. The result is consistent with Fig. 7,
as lightpath routings with higher MCLC values can tolerate
more physical failures, and the logical topologies are thus more
likely to stay connected.

The quality of the lightpath routing also depends on the
graph structures captured by the formulations. Compared to

, the formulation uses a weight function
that captures the connectivity structure of the logical topology.
As a result, the algorithm will try to avoid putting edges that
belong to smaller cuts onto the same physical link, thereby
minimizing the impact of a physical link failure on these
critical edges. This allows the algorithm to produce
lightpath routings with higher MCLC values than .

As the number of logical links increases with the size of the
logical topology, the maximum fiber link load becomes less ef-
fective in capturing the impact of fiber failures for the logical
cuts. As a result, the performance of the simple multicommodity
formulations degrades somewhat rapidly. On the other hand, the
enhanced formulation captures the connectivity struc-
ture of the logical topology in much greater detail by having a
constraint to describe the impact of a physical link failure to
each logic cut. Therefore, this formulation is able to provide
lightpath routings with the highest MCLC values. This observa-
tion is supported by Theorem 9, which states that the objective
maximized by is closer to the actual MCLC value.

3) Lower Bound Comparison: In Theorem 9, we establish
different lower bounds for the MCLC. In this experiment, we

Fig. 9. Comparison among Min Cross Layer Cut (MCLC), Weighted Load
Factor (WLF), and the optimal values of and .

measure these lower bound values for 500 different lightpath
routings and compare them to the actual MCLC values.

As Fig. 9 shows, the Weighted Load Factor is a very
close approximation of the Min Cross Layer Cut. Among the
500 routings being investigated, the two metrics are identical
in 368 cases. This suggests a tight connection between the
two metrics, which also justifies the choice of such metrics as
survivability measures.

The figure also reveals a strong correlation between the
MCLC performance and the tightness of the lower bounds given
by the multicommodity flow formulations in Section IV-A.
Compared to , the formulation provides an
objective value that is closer to the actual MCLC value of the
lightpath routing. This translates to better lightpath routings,
as we saw in Fig. 7. Since there is still a large gap between
the objective value and the MCLC value, this suggests
room for further improvement with a formulation that gives a
better MCLC lower bound.

To summarize this section, a good formulation that properly
captures the cross-layer connectivity structure is essential for
generating lightpath routings with high survivability. Combined
with randomized rounding, it gives a powerful tool for designing
highly survivable layered networks.

VI. CONCLUSION

In this paper, we introduce the problem of maximizing the
connectivity of layered networks. We show that survivability
metrics in multilayer networks have significantly different
meaning than their single-layer counterparts. We propose
two survivability metrics, the Min Cross Layer Cut and the
Weighted Load Factor, that measure the connectivity of a mul-
tilayer network and develop linear and integer formulations to
compute these metrics. In addition, we use the metric Min Cross
Layer Cut as the objective for the survivable lightpath routing
problem and develop multicommodity flow formulations to
approximate this objective. We show, through simulations, that
our algorithms produce lightpath routings with significantly
better Min Cross Layer Cut values than existing survivable
lightpath routing algorithm.

Our simulation shows that a good formulation, combined
with the randomized rounding technique, provides a powerful
tool for generating highly survivable layered networks. There-
fore, an important direction for future research is to establish
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a better formulation for the lightpath routing problem that
maximizes the Min Cross Layer Cut. The multicommodity
flow formulation introduced in this paper approximates the
Min Cross Layer Cut by using its lower bound as the objective
function. However, this lower bound is often not very close
to the actual Min Cross Layer Cut value. A better objective
function, such as the Weighted Load Factor, would significantly
improve the proposed lightpath routing algorithms. We are
currently exploring the possibilities in this direction.

The similarity between the Min Cross Layer Cut and the
Weighted Load Factor is also intriguing. Our simulation result
demonstrated a very tight connection between the two metrics.
This observation might reflect certain properties of cross-layer
network connectivity that are yet to be discovered and for-
malized. A better understanding of how these metrics relate
to each other will possibly lead to important insights into the
cross-layer survivability problem.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1: Let be a logical topology with two nodes
and , connected by lightpaths , and let

be a family of subsets of where each
. There exists a physical topology and

lightpath routing of over , such that the following apply.
1) There are exactly fibers in , denoted by

, that are used by multiple lightpaths.
2) For each fiber , the set of lightpaths using the fiber

is .
Proof: Given a logical topology with two

nodes and connected by lightpaths ,
and is the family of subsets of , we
construct a physical topology and lightpath routing that satisfy
the conditions specified in the theorem.

• Physical Topology: The physical topology contains the two
end nodes and in the logical network. In addition, be-
tween the two end nodes, there are groups of nodes. Each
group containing nodes, namely . For
any , , there is an edge con-
necting nodes and . In addition, is connected to

and is connected to for all . In other
words, in the physical network we have constructed so far,
there are edge disjoint paths connecting and , and each
path has edges.
Next, we add pairs of nodes to
the physical network, where each node pair is con-
nected by an edge. Finally, we connect to and
to for all .

• Lightpath Routing: We will define a route in the physical
topology for each lightpath . Each route will contain

segments

Segments and will take the direct edges
and , respectively, as their routes. The

routes for other segments depend on whether is in .

Fig. 10. Physical topology and lightpath routing on three lightpaths
between two logical nodes � and �, and lightpath-sharing relationship
� � ���� ��� ��������������.

— If , the route for is
.

— If , the route for is .
Fig. 10 shows the physical topology and lightpath

routing constructed from a two-node logical topology with
.

By construction, all fibers except
are used by at most one lightpath. Also, a lightpath uses
fiber if and only if is in . In other words, there are
exactly fibers, , that are used by multiple
lightpaths, and each fiber is used by the lightpaths in

.

APPENDIX B
PROOF OF THEOREM 2

Let be the size of the minimum survivable path
set between the logical nodes and . Theorem 2 describes the
relationship between the value of and the relaxed Max
Flow, , between the two nodes.

Theorem 2: .
Proof: Let and be the set of logical paths

and the set of physical links, respectively. For each path
, denote the set of physical links used by as . We

first construct a bipartite graph on the node set . There
is an edge if and only if the path does not
use physical link , i.e., . In other words, the edge
is in the bipartite graph if and only if the path survives the
failure of physical link .

We prove the theorem by explicitly constructing a survivable
path set with size at most , using



LEE et al.: CROSS-LAYER SURVIVABILITY IN WDM-BASED NETWORKS 1011

the bipartite graph. Algorithm describes a greedy
algorithm that constructs the path set by repeatedly selecting

paths and removing physical links whose failures the se-
lected path can survive. When the algorithm terminates, every
physical link failure is survived by a selected path in the output.
Therefore, the algorithm gives a survivable path set.

Algorithm 1:

1: ,
2: while : do

— Select with the largest node degree in the
bipartite graph.

— ,
— Remove nodes and from the bipartite graph.

3: Return .

The key observation for this algorithm is that, every iteration
of the algorithm removes a constant fraction of remaining nodes
in . We state this result as the following lemma.

Lemma 10: Let be the bipartite graph at the beginning
of the th iteration of the algorithm, where the remaining node
sets for and are and , respectively. There exists
a node in with node degree at least , where

is the optimal value for the formulation .
Proof: Suppose is the optimal solution for

, such that . For the purpose of anal-
ysis, for each edge in the bipartite graph, we
assign the edge a weight .

For each node in the bipartite graph, let be its node
degree, and we define its weight to be sum of the weight
of its incident edges. Then, we have

(8)

For each node in , its neighbors in are the same as
its neighbors in since otherwise it should have already been
removed from the bipartite graph. Its node weight is

since by Equation (1)

Therefore, the total weight for the nodes in is at least
, which implies

(9)

Let be the largest node degree among the nodes in .
We have

by (8) and (9)

Therefore, the set contains a node with degree at least
.

As a result of Lemma 10, every iteration of the algorithm
removes a fraction of nodes of from the bi-
partite graph. After the th path is selected, the number of
nodes in that remain in the bipartite graph is at most

. The algorithm will terminate
as soon as , which implies

. Therefore, the algorithm returns a
survivable path set with size .

APPENDIX C
PROOF OF THEOREM 6

Theorem 6: Computing the Weighted Load Factor for a light-
path routing is NP-Hard even if the weight assignment for
the logical links is fixed.

Proof: We construct a reduction from the NP-Hard Uni-
form Sparsest Cut [26] problem.

• Uniform Sparsest Cut: Given an undirected graph
, compute the value of .

Given the graph in an instance of Uniform
Sparsest Cut problem, we construct an instance of the Weighted
Load Factor problem, with the weight assignment fixed,
such that the optimal values of the two problems are identical.
Without loss of generality, we assume is connected. We
will construct a physical topology, logical topology, lightpath
routing , and weight assignment of the logical links
based on the graph in the Uniform Sparsest Cut
instance.

• Logical Topology: The logical topology is a complete
graph on the vertex set . Each logical link
has weight .

• Physical Topology: The physical topology is a complete
graph on the vertex set , where and
are two new vertices not in .

• Lightpath Routing: For each logical link , if is
an edge of in the Uniform Sparsest Cut instance, the
logical link takes on the physical route .
Otherwise, it takes on the physical route .

Let be an arbitrary subset of . Let be the cut set of
with respect to graph of the Uniform Sparsest Cut instance,

and let be the cut set of with respect to the logical
topology , which is a complete graph on . We claim
the following equality:

(10)

This is because every physical link not attached to or is
used by at most one logical link. In addition, any logical link
that uses a physical link in the form or , for any

in , also uses in the lightpath routing. Since is
connected, for each , there is at least one logical link
in that uses the physical link . Therefore, for any

, the physical link carries the largest number of
logical links in . Since a logical link uses if and
only if the corresponding edge exists in , the number of logical
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links in using is . Therefore, the fraction of
weight carried by the physical link is

. This implies the sparsest cut value equals
the Weighted Load Factor value.

APPENDIX D
PROOF OF THEOREM 7

Let and be the optimal objective values
for formulation and its linear relaxation , respec-
tively. And let be the Weighted Load Factor of the light-
path routing. Theorem 7 declares the following.

Theorem 7:
roof: Recall that the ILP formulation for is

(11)

(12)

where are binary constants such that logical link tra-
verses physical fiber if and only if .

For the rest of the proof, for any , we denote to
be the set of logical links with exactly one endpoint in .

We first prove that . We construct the
dual [19] of

(13)

(14)

The variables in the primal correspond to Con-
straint (13) in the dual. Similarly, the variables , where ,
in the primal correspond to Constraint (14) in the dual. For Con-
straints (11) and (12) in the primal, the corresponding variables
in the dual are and , respectively. We can interpret the vari-
able as the flow value assigned to logical link . Then,
Constraint (13) requires that the total flow on each physical fiber
be at most 1. Constraint (14) requires at least units of incoming
flow for all nodes other than node 0. Intuitively, the dual pro-
gram tries to maximize the value such that the node 0 sends at
least units of flow to every other node, subject to the capacity
constraint for each fiber.

We will use Lemma 11 to prove a lower bound on .
Lemma 11: Let be a feasible solution for , and

let be
the net flow into the cut set . Then, , for any

with .

Proof: Consider an arbitrary node set , and
let . We prove by induction on that .

• Base Case: : is an empty set, so .
• Inductive Case: Suppose for some ,

for all with and . Now, let
be any subset of nodes that does not contain node
0, let be an arbitrary node in , and let .
Since is a set of nodes, by induction hypothesis, we
have . It follows that

by Constraint (14)

By induction, and .
Now we are ready to prove that . Given an

optimal solution to the formulation , the value of
is a feasible assignment of the variable in the Weighted

Load Factor formulation . The corresponding objective
value for this assignment is

by Lemma 11

by Constraint (13)

which implies . On the other hand, by Duality The-
orem [19], the optimal value for is exactly . Therefore,
we have .

Next, we prove that . Let be the set of
physical fibers that constitute a Min Cross Layer Cut, and let
be an arbitrary node in the logical network. Let be the
set of nodes reachable from after has been removed from
the physical network. It follows that all logical links in
use fibers in .

Let be the weight function on that achieves the optimal
Weighted Load Factor, and let be the total weight of the
logical links in . Also, let be the physical fiber that
carries the most weight for lightpaths in . The definition
of implies that

(15)

Next, since all logical links in use fibers in , we have

(16)
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Finally, combining inequalities (15) and (16), we have
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