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Abstract—We develop diverse routing schemes for dealing with
multiple, possibly correlated, failures. While disjoint path protec-
tion can effectively deal with isolated single link failures, recov-
ering from multiple failures is not guaranteed. In particular, events
such as natural disasters or intentional attacks can lead to multiple
correlated failures, for which recovery mechanisms are not well un-
derstood. We take a probabilistic view of network failures where
multiple failure events can occur simultaneously, and develop algo-
rithms for finding diverse routes with minimum joint failure prob-
ability. Moreover, we develop a novel Probabilistic Shared Risk Link
Group (PSRLG) framework for modeling correlated failures. In
this context, we formulate the problem of finding two paths with
minimum joint failure probability as an integer nonlinear program
(INLP) and develop approximations and linear relaxations that can
find nearly optimal solutions in most cases.

Index Terms—Correlated failures, disjoint paths, path protec-
tion, probabilistic shared risk link group (SRLG), random link
failures.

I. INTRODUCTION

T HIS paper deals with protection in communication net-
works with correlated probabilistic link failures. The ob-

jective of protection is to provide reliable communication in the
event of failure of network components such as nodes or links.
Such protection mechanisms are classified as link protection and
path protection. Link protection precomputes an alternate de-
tour for each link, and recovers from a link failure by rerouting
the traffic along its predetermined detour. In contrast, path pro-
tection assigns two paths, a primary and a backup, to each con-
nection, and the traffic is switched onto the backup path in case
of a primary path failure. Therefore, the primary and backup
paths need to be disjoint since otherwise the two paths will fail
simultaneously if a link or node shared by the two paths fails.
In this paper, we focus on path protection.
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The disjoint-path-based protection effectively addresses the
case of a single point failure, but if more than one failure oc-
curs at the same time, protection is not guaranteed since both
paths may fail simultaneously. There are several factors that can
cause multiple failures. First, modern communication networks
are deployed over an optical fiber network, and so multiple com-
munication links can share the same fiber in the optical layer.
Consequently, any fiber cut can lead to the failure of all the
(upper-layer) communication links sharing that fiber. Second,
multiple link failures can occur if the second link fails before
the first was repaired. Third, natural disasters or attacks can de-
stroy several links (which do not necessarily share a fiber) in the
vicinity of such events.

The concept of Shared Risk Link Group (SRLG) has been
proposed in order to address multiple correlated link failures
systematically [1]. An SRLG is a set of links sharing a common
physical resource (cable, conduit, etc.) and thus a risk of failure.
In this context, Bhandari first studied the so-called Physically
Disjoint Paths (PDP) problem in [2] and proposed a shortest
PDP algorithm for particular topologies. Since this pioneering
work, there has been a large body of work [3]–[14] dealing with
multiple failures in the context of SRLGs. In [15], Hu showed
the NP-completeness of the SRLG-Disjoint Paths Problem
(SDPP) where SRLG-disjoint paths are two paths touching no
common SRLG.

All of the previous SRLG works assume that once an SRLG
failure event occurs, all of its associated links fail simultane-
ously. Here, we generalize the notion of an SRLG to account
for probabilistic link failures. This generalized notion allows us
to model correlated failures that may result from a natural or
man-made disaster. For example, in the event of a natural dis-
aster, some, but not necessarily all, of the links in the vicinity of
the disaster may be affected. Such failures cannot be described
using a deterministic failure model, and this raises the need for
a systematic approach to dealing with correlated probabilistic
link failures. We address this issue by modeling SRLG events
probabilistically so that upon an SRLG failure event, links be-
longing to that SRLG fail with some probability (not neces-
sarily one). Our probabilistic SRLG model is applicable to a
number of real-world failure scenarios. Some examples include:
1) WDM Networks where the lightpaths traversing a fiber form
an SRLG and fail (with probability 1) in the event of a fiber cut;
2) Satellite/wireless communication links where links are sub-
ject to outage in the event of bad weather. In this case, the satel-
lite links affected by the weather event form an SRLG and may
fail with some probability; 3) ElectroMagnetic Pulse (EMP) at-
tack: EMP is an intense energy field that can instantly over-
load or disrupt numerous electrical circuits at a distance [16].
In the event of an EMP attack, the fiber links in the vicinity
of the attack may have a high probability of failure, and those
distant from the attack would fail with low probability due to
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signal attenuation; and 4) Natural/man-made disasters such as
earthquakes or floods where communication links in the vicinity
of the disaster may fail. For example, an undersea cable was
cut during the Taiwan earthquake of 2006 [17], disrupting most
communications out of Taiwan. Similarly, during the Baltimore
tunnel fire in 2001 [18], the fire melted away the fiber along the
tunnel, leading again to a large number of correlated failures.

There are a number of papers dealing with probabilistic link
failures [19]–[21]. Typically, they consider the availability (i.e.,
probability) that a connection is in the operating state and seek
to find a path pair satisfying minimum availability requirement
[19], [20] or a path pair with maximum availability [21]. While
the above works assume independent link failures, there have
been efforts to deal with correlated failures. In [22]–[24], the
link failure probability is extended and defined as a function
of SRLG parameters to account for correlated failures. In par-
ticular, in [24], the path failure probability is defined as the
ratio of the number of touched SRLGs to the total number of
SRLGs. Under this model, [24] considers the problem of finding
a pair of primary and backup paths that satisfy joint reliability
requirement. This model generalizes the traditional concept of
SRLG-disjointness such that if the joint reliability of primary
and backup paths is , then it means they are disjoint with re-
spect to fraction of SRLGs. However, under this model, link
failures are deterministic, given an SRLG failure. Hence, this
model cannot be directly applied to the case of correlated fail-
ures with uncertainty that may occur due to disasters and attacks.
In [25], a primary/backup path allocation problem is defined to
find a pair of paths having minimum joint failure probability.
They adopt a correlated link failure probability model where
the correlation between the links is represented by their joint
failure probability. This correlation model requires exponen-
tial number of conditional probabilities in general, prohibiting
a simple formulation. Due to this difficulty, they take into ac-
count only the first-order correlation, i.e., the correlation be-
tween pairs of links.

In this paper, we consider finding a pair of paths with min-
imum joint failure probability in a network where the link fail-
ures occur randomly and are possibly correlated. We propose an
alternative model that enables a simple formulation and captures
the essence of correlated link failures. Our model assumes that
once an SRLG failure event occurs, its associated links fail with
some probabilities. Thus, the correlation exists among the links
only when they belong to the same SRLG. Clearly, this model
can be viewed as a generalization of the traditional (determin-
istic) SRLG model.

Our contributions can be summarized as follows.
• We generalize the SRLG framework to a probabilistic

SRLG (PSRLG). This new framework enables us to effec-
tively model correlated link failures and develop efficient
formulations to otherwise intractable problems involving
correlated link failures.

• We develop mathematical formulations for the problem of
finding a pair of paths with minimum joint failure proba-
bility. This new approach enables the generalization of dis-
joint-path protection schemes to the case of multiple (prob-
abilistic) failures.

• We develop heuristic algorithms for finding a pair of paths
with minimum joint failure probability. Our algorithms are

based on linear approximations and Lagrangian relaxations
and are shown to find nearly optimal solutions.

While the deterministic SRLG model has been widely used
in the literature, there are many scenarios where the deter-
ministic model is not applicable. For example, the Working
Group on California Earthquake Probabilities (WGCEP) has
been developing the earthquake rate models for California. In
particular, they compute the probabilities of all possible dam-
aging earthquakes (according to their magnitudes) throughout
a region and over a specified time span [26]. Such disasters
lead to correlated failures that are well addressed by our new
PSRLG model; namely, the earthquake probabilities correspond
to SRLG failure probabilities, and the link failure probabilities
can be computed based on their magnitudes. The network
providers could use this PSRLG data and our formulation in
order to protect a path in the presence of earthquakes.

The probabilistic SRLG model can also be applied to deal
with the inaccuracy in the SRLG database. Typically, the
SRLG data is the mapping between the IP layer components
and the underlying physical components. This information
is used for failure diagnosis1 as well as survivable routing.
However, it often contains errors due to traffic engineering and
recovery mechanism [28]. Recently, in [30], failure diagnosis
mechanisms were studied assuming probabilistic errors in the
SRLG data where the association of an IP-layer component
to a physical component is probabilistic. Note that with this
erroneous SRLG data, the survivable routing problem is best
handled probabilistically as in our PSRLG model.

The rest of the paper is organized as follows. In Section II, we
present our new probabilistic SRLG model and describe the gen-
eralized path protection problems. In Section III, we study the
case of independent link failures, which provides fundamental
insights to the study of correlated failures. In Section IV, we for-
mulate the path protection problems using the PSRLG model
and develop algorithms for finding paths with minimum joint
failure probability. Finally, in Section V, we analyze the perfor-
mance of our algorithms via simulations.

II. MODEL AND PROBLEM DESCRIPTION

Consider a directed network graph , where is a
set of nodes and is a set of links. Any link in will be denoted
by for , meaning that the link starts from node
and ends at node . There is a set of SRLG events that can
incur link failures. Each SRLG event occurs with proba-
bility , and once an SRLG event occurs, link will fail
with probability . For example, if link is never
affected by event , then we define . On the other hand,
if the event is a cable cut and link traverses that cable,
then we will have . In the following, we generalize the
traditional notion of an SRLG to include probabilistic correlated
failures.

Definition 1: A probabilistic SRLG (PSRLG) is a set of links
with positive failure probability in the event of an SRLG failure.
Namely, link belongs to SRLG if , and SRLG

.

1Typically, in failure diagnosis, the underlying physical-layer failures are in-
ferred from the IP-layer failures by using the SRLG data, i.e., the mapping be-
tween physical-layer components and IP-layer components [27]–[31].
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We say that links and are correlated if there ex-
ists an SRLG such that . Clearly, this model is a
generalization of the traditional SRLG model and enables us to
deal with correlated probabilistic link failures.

We consider a single source–destination pair. Let and
be source and destination nodes, respectively. Our objec-

tive is to find a pair of primary and backup paths from to with
minimum joint failure probability. This problem will be consid-
ered using two different models: 1) independent link failure; and
2) SRLG-based correlated link failure. In each case, we seek to
find a pair of paths with minimum joint failure probability.

Let if the primary path traverses link , and 0
otherwise. Similarly, define another binary variable for the
backup path. We will just drop the index of a variable to denote
its vector version, e.g., represents the vector .
The set of -dimensional binary vectors will be defined as ,
i.e., . Our problems will be formulated as integer
programs (IPs).

III. INDEPENDENT LINK FAILURE MODEL

In order to gain insights into the problem, we start by first con-
sidering the independent link failure model. Moreover, we begin
by considering the simple case of finding a single path with
minimum failure probability. We then use the insights gained
in order to formulate the problem of finding a pair of paths with
minimum joint failure probability. In Section IV, we will fur-
ther generalize our formulations to deal with correlated (SRLG)
failures.

A. Single-Path Problem

First, consider the problem of finding a single path having
minimum failure probability. Let be the probability that link

fails, then link will survive with probability .
Consequently, the survivability probability of path is given in
a product form by . The problem is formulated
as

o.w.
(1)

where is the cardinality of . The constraints in (1) require
that the set of links selected by forms a path from node to
node . For simplicity, we will denote this constraint by ,
representing the connectivity constraint on for a path from to
. As all the variables in this work are binary, we will sometimes

omit the binary constraint for convenience. The problem (P1.1)
is an integer nonlinear program (INLP), which generally is very
difficult to solve. However, using the following theorem, we are
able to reformulate (P1.1) as an integer linear program (ILP).

Theorem 1: Assume , then the problem
(P1.1) is equivalent to the following ILP:

where is the connectivity constraint as given in (1).
Proof: First, the objective in (P1.1) can be equivalently

written as . Taking logarithm over the en-
tire function gives without affecting
the optimal solution. The proof is completed by applying the
identity for binary variable

and noting that is the same as .
Observation 1: Theorem 1 shows that the path with min-

imum failure probability is the shortest path under link weights
. It immediately follows that if the failure

probability is sufficiently small (i.e., , then the
probability-wise shortest path has the minimum failure proba-
bility because for small . Furthermore,
with uniform failure probability, i.e., , the
shortest-hop path has the lowest failure probability. This result
will be used in developing heuristic algorithms.

B. Path-Pair Problem With Disjointness Constraint

Let be the objective function of problem (P1.1), i.e.,
is the failure probability of path for given link failure

probability vector . Suppose that the two paths and are link-
disjoint, then their failures are mutually independent because the
link failures are independent and further the paths do not share
any link. Then, the joint failure probability of two disjoint paths

and is given by . The path-pair problem
with disjointness constraint (DC) is thus formulated as

o.w.

o.w.

Again, the first and second constraints are the connectivity con-
straints requiring that and are paths from to . The last
constraints require that and cannot share any link, i.e., they
are link-disjoint. Hence, and satisfying all the constraints
in (P1.2) will form a pair of disjoint paths from to . For
brevity, throughout this paper, we will denote by the
connectivity constraint on any binary link selection vector ,
and the disjointness constraint (DC) on paths and

. The problem (P1.2) is an INLP and has a special structure that
is difficult to solve in general. Let be the length of the shortest
path from to .

Lemma 1: Assume the uniform failure probability
, where . Then, the problem (P1.2)

is a concave minimization.
Proof: See Appendix A.

Therefore, the problem (P1.2) contains a concave mini-
mization as a special case. Generally, a concave minimization
problem is NP-hard [32], and hence the above lemma implies
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that the problem (P1.2) may not be easy. In the following, we
consider heuristic algorithms to solve the problem.

1) Greedy Algorithm: First, we analyze the properties of the
optimal solution to (P1.2). This motivates a greedy algorithm.
Our analysis is based on the theory of majorization, whose in-
troduction follows.

Definition 2 (Majorization): Given an -tuple vector , let
be the th largest of coordinate. An -tuple vector is

said to be majorized by if

and

This relationship is denoted by .
The majorization formalizes how evenly distributed the ele-

ments of a vector are. For example, is the most
evenly distributed vector over all the 3-tuple vectors summing
up to 6, and majorized by any other such vector, e.g.,

.
Definition 3 (Schur Convexity): A function

is Schur convex if for any such that
. It is called Schur concave if for .

It is clear from this definition that a Schur convex function
is minimized at evenly distributed points, whereas

if is Schur concave, it is minimized at unevenly distributed
points. We will show the Schur concavity of the objective func-
tion in (P1.2), and use this property to develop a greedy path
selection algorithm.

Assume the uniform failure probability, i.e., .
Then, the objective function in (P1.2) can be written as

(2)

where and . Note that and
are the number of hops in primary and backup paths, respec-

tively. Hence, for fixed , is a function of the numbers
of hops in the primary and back paths. The problem (P1.2) can
be restated as: minimize subject to the same constraints
as in (P1.2) with the additional constraints and

. The objective function in this problem
can be shown to be Schur concave.

Lemma 2: The function in (2) is Schur concave for
.

Proof: See Appendix B.
As mentioned above, a Schur concave function is minimized

at unevenly distributed points rather than evenly distributed
ones. So, for example, we have since

. Accordingly, Lemma 2 implies that a pair with
unbalanced (in terms of the number of hops) paths is preferred
because its joint failure probability may be lower than that of
a balanced pair. Consider an example in Fig. 1, where there
are two pairs of – paths: one with , and the
other with , . Fig. 1(b) plots the joint path failure
probabilities of the two pairs and shows that the unbalanced
pair (i.e., the one with , ) is more reliable than the
balanced pair for all values of .

It should be noted that a similar observation can also be made
as follows for the nonuniform failure probabilities where ’s
can be different.

Observation 2: Consider an example topology in Fig. 2
where the number on each link is its failure probability. We

Fig. 1. Two pairs of disjoint paths and their failure probabilities under uniform
link failure probability. The unbalanced pair is always more reliable than the
balanced one. (a) Two pairs of disjoint paths: (top)� � �,� � � and (bottom)
� � �, � � �. (b) Plot of joint path failure probabilities.

want to find a pair of disjoint paths with minimum joint failure
probability. It is easy to see that there are only two pairs shown
in the figure. The pair in the top has individual path failure
probabilities of (0.1,0.1), and thus its joint failure probability is
0.01. On the other hand, the pair in the bottom has individual
path failure probabilities of (0,0.19), leading to zero joint failure
probability. This reasserts that a good–bad path pair might be
better than a medium–medium pair.

The above observations suggest that it is important to include
the best path (i.e., path having minimum failure probability) in
the pair. Furthermore, it motivates a greedy algorithm that se-
lects the best path first and then selects the next best disjoint
path (See Algorithm 1). Note that according to Observation 1,
the best path is obtained by the probability-wise shortest path.
Hence, Algorithm 1 only needs to run a shortest path algorithm
twice whose complexity is .

Algorithm 1 Greedy: IND w/ DC

1: Set link weight
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Fig. 2. Example motivating greedy algorithm. Including the most reliable path
is also important in the case of nonuniform failure probabilities.

2: Find shortest path
3: Remove all the directed edges used by
4: Find shortest path

Note that the greedy algorithm can possibly run out of
– paths after the first path is found. This is a so-called trap

problem. In the following, we show that such a case does not
happen under mild assumptions. First, notice that the paths
found by the greedy algorithm are simple (i.e., do not contain
cycles) or can contain cycles of zero length, in which case they
can be removed without affecting the path failure probability.
Hence, we may assume that the paths and found by the
greedy algorithm are simple.

Lemma 3: Consider a -connected2 bidirectional graph
where . Removing a simple – path in does not dis-
connect and .

Proof: See Appendix C.
Therefore, the greedy algorithm does not run out of – paths

after the first path is found, provided that the graph is bidirec-
tional and -connected with . We note that this assumption
is very common, as most practical networks use bidirectional
links.

2) ILP Approximation of (P1.2) and Its Lagrangian Relax-
ation: We develop another heuristic algorithm based on the ILP
approximation of the problem (P1.2). First, the objective func-
tion in (P1.2) can be expanded as

(3)

Further expanding the product terms and canceling out common
terms yields

(4)

2A graph is said to be �-connected if it remains connected after up to � � �

link (or node) failures. Equivalently, if every source–destination pair has at least
� disjoint paths, then it is �-connected.

where stands for high-order terms—namely, terms in-
volving the product of 3 or more failure probabilities. In the
low-failure-probability regime, i.e., , the s
can be neglected, and the ILP can be formulated as follows:

where we have introduced the binary variables
such that only if both of and are 1. That is,
link is used by the primary and by the backup path.
This enables us to use instead of in the objective,
hence resulting in a linear formulation. Consequently, the ob-
jective function represents the joint failure probability based on
the pair-wise (one from and one from ) joint link failure.

While generally ILPs are difficult to solve, in this case
we also observe that the constraints and
are totally unimodular3 (TU) [33], hence the linear pro-
gram (LP) relaxation has an integral optimal solution
[33]. Furthermore, we can use Lagrangian relaxation on
the constraints and to further simplify the
problem. In particular, define the Lagrangian function as

, where and
are Lagrangian multiplier vectors associated with
and , respectively. The (Lagrangian) relaxed problem is
given by

The above problem is TU, and so it can be solved by LP relax-
ation, which is polynomial-time solvable. Moreover, for given

and , the problem (P1.2LR) is completely separable with re-
spect to , , and . Namely, the optimal and are shortest
paths, respectively, and optimal is obtained as: if

, and 0 otherwise. Now, the above optimization
can be solved using a simple primal-dual method as described
in Algorithm 2, where is a positive diminishing step size,

is the maximum number of iterations, and is the weight
of link . Note that steps 2.1–2.3 solve the relaxed problem
(P1.2LR), and steps 2.4–2.5 are the subgradient-based update of
Lagrangian multipliers. The algorithm keeps the best path pair
all over the iterations (step 2.6), and takes it as the final solution.
Such a Lagrangian relaxation method for IP does not guarantee
an optimal solution due to the duality gap, but it has been very
successful in solving many IPs [34].

Algorithm 2 Lagrangian Relaxation: IND w/ DC

1: Initialization: , and
, and

3A matrix� is said to be totally unimodular if the determinant of each square
submatrix of � is 0, 1, or�1 (the network flow conservation matrices are TU).
If the constraint matrix of an ILP is TU, then its linear program relaxation has
an integral optimal solution, that is equivalent to the optimal solution of the ILP.
Hence, the optimal solution of such an ILP can be obtained by solving its linear
program relaxation, which is polynomial time solvable.
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2: While
2.1 Set ;

Find shortest path
2.2 Set ;

Find shortest path

2.3 if
otherwise

2.4
2.5

2.6 Set if
where is the joint failure prob. of

2.7

Although the linear approximation in (P1.2L) may not be ac-
curate in the high-probability regime, it is an upper bound on
the original (nonlinear) objective function.

Lemma 4: The objective function in (P1.2L) is an upper
bound on the joint path failure probability .

See Appendix D.
Therefore, the linearization approach may work as well in

other regimes including the high-probability regime. This is ver-
ified through simulations in Section V.

C. Path-Pair Problem Without Disjointness Constraint

The disjointness constraint is a necessary condition for sur-
viving a single link failure in the traditional deterministic failure
model. However, in a probabilistic model, a link may be shared
if it is known that the link is very reliable. If link is shared
by and , then ’s failure leads to the simultaneous failure
of both and . Hence, the probability that both and fail
can be written as

(5)

where is the probability that both and fail due
to a shared link failure, and is the probability that
both and fail due to the failure of nonshared links. For path
pair , let denote the set of links shared by and , i.e.,

. Then, the probability
can be written as

(6)

For a binary vector , define its complement as
where is a vector of 1’s with appropriate dimension. Then,
the vector only includes the links which are not selected by

. Hence, the probability that fails due to the failure of non-
shared links is equivalent to the probability that both and
fail due to the failure of the links shared by and . This prob-
ability can be subsequently expressed as following
to the definition . Similarly, denotes the
probability that fails due to the failure of nonshared links.

The probability is then given by
, leading to the following formulation:

The problem (P1.3) has an equivalent [if disjoint paths are
optimal in (P1.3)] or better optimal solution compared to the
problem (P1.2).

Under the low-failure-probability regime, we can approxi-
mate the problem (P1.3) by an ILP as follows:

In constraint , only if , which
means that link is shared. Hence, the first term in the objec-
tive function is the joint failure probability due to the failure of
shared links. In constraint , only if
and , which means links and are
respectively used by and , but neither of them are shared.
Hence, the second term is the joint failure probability due to the
failure of nonshared links.

The formulation (P1.3L) is a standard ILP that can be solved
using an ILP solver such as CPLEX. However, it can take un-
acceptably long to run because it is NP-complete in general.
Inspired by the approximation (P1.3L), we propose a simple
greedy algorithm, as shown in Algorithm 3. Similar to Algo-
rithm 1, step 1 finds a shortest path for using link weights

, and this gives a primary path with min-
imum failure probability. For the backup path , the weight of
each link is set to the joint path failure probability due to
the failure of link and the links in . Hence, two different
cases have to be considered. First, if link has not been se-
lected by the primary path , then its weight is set to the product
of ’s failure probability and the (approximated) failure
probability of path . If was selected by ,
then ’s failure leads to joint path failure (provided that
also selects ), and so its weight is set to . The shortest
path under these link weights will minimize the joint path failure
probability and will be used as the backup path . Note that
if link is to be shared, its weight is set to a first-order
value, i.e., , which is obviously larger than the second-order
weight in the nonshared case. Hence, the links with relatively
low failure probability will be more likely to be shared.

Algorithm 3 Greedy: IND w/o DC

1: Set ; Find shortest path

2:
if
if

;

Find shortest path
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Fig. 3. Example topology.

D. Extension to Correlated Failures

As discussed in the introduction, many failure scenarios in-
volve multiple links. Hence, link failure events may be corre-
lated. In order to account for such correlation, the path failure
probability expressions must include conditional probabilities
for joint link failures. Let be the probability of link ’s
failure given ’s failure, then the joint link failure proba-
bility is given by or . Note that high value of
conditional probability implies strong correlation between
the failures of and . Consider an example topology in
Fig. 3, then the path – ’s failure probability can be expressed
as

(7)

Generally, it can be written as

(8)

where is the set of links on – path. These conditional
probability expressions involve an exponential number of terms
accounting for the joint failure probability of multiple links.
Hence, formulating the above problems under correlated fail-
ures seems to be intractable. Due to this difficulty, [25] considers
only the first-order correlation, i.e., conditional probability for
every pair of links.

In order to better account for correlated failures, we propose
a new model using probabilistic SRLGs. In our model, once an
SRLG failure event occurs, its associated links fail with some
probabilities. Thus, the link failures are correlated only if the
links belong to the same SRLG (while in the link-wise model,
the correlation is considered between every pair of links). More-
over, under the condition that an SRLG event occurs, its as-
sociated link failures are mutually independent, and thus the
formulations developed in the independent model can be used.
This enables a simple formulation for the path protection prob-
lems with correlated failures. More importantly, it can be used
to model most correlated failure scenarios, as events leading to
failures can be modeled as a probabilistic SRLG (PSRLG).

IV. PSRLG-BASED CORRELATED FAILURE MODEL

We consider a single SRLG model where only one SRLG
failure event can take place at a time. Let be the probability
that the failed SRLG is , then we will have .
We refer to this model as the mutually exclusive PSRLGs. Note
that the traditional deterministic SRLG model also assumes a
single SRLG failure, and so our model of mutually exclusive

PSRLGs is a probability-wise generalization of the traditional
model.

A. Single-Path Problem

Again, we start by considering a single-path problem. Given
that SRLG event happens, each link will fail with prob-
ability as if they are independent. Hence, the failure prob-
ability of path is given by , and ac-
cording to the definition of in Section III, this probability
can be denoted by , where .
The single-path problem can be simply written as

Note that the path failure probability is averaged over all SRLGs
because they are mutually exclusive. As shown in Section III-A,
the single-path problem under independent failures is an easy
shortest-path problem. However, the same problem in the cor-
related failures case [i.e., (P2.1)] can be shown to be difficult.

Theorem 2: The single-path problem (P2.1) is NP-complete.
Proof: This is proved by showing that the problem (P2.1)

contains as a special case a Minimum-Color Single-Path
(MCSiP) Problem that is NP-complete [35]. The MCSiP
problem is stated as follows. Given network graph
and set of colors , each edge is colored
with one of the colors in . The problem is to find a path
from to that touches the minimum number of colors. Note
that it assumes monochromatic edges (i.e., single color to
each edge), but this assumption can be easily relaxed by graph
transformation. Namely, an edge with colors is replaced by
serial edges (and intermediate nodes), each of which is
associated with a different color from the set of colors. Hence,
the MCSiP problem without the monochromatic assumption is
also NP-complete.

First, assume uniform failure probabilities, i.e.,
and for all such that .

Then, using the identity , the objective
in (P2.1) can be rewritten as

(9)

Furthermore, assume . Note that this case corresponds
to the traditional SRLG model that assumes deterministic fail-
ures. Under this assumption, the above objective function value
represents the number of untouched SRLGs. In other words, it
finds a path that touches the minimum number of SRLGs. If
SRLG is replaced by color, it is a Minimum-Color Single-Path
Problem (without monochromatic assumption). This shows that
the problem (P2.1) contains an NP-complete problem, implying
that it is NP-complete.
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Due to this difficulty, its approximation is again con-
sidered. Under the low-failure-probability assumption (i.e.,

), the objective function can be written as

(10)

We first begin by considering the simple case of uniform SRLG
failure probability. Namely, let and

, where
.
Observation 3: Under the uniform failure probability, mini-

mizing the objective function (10) is equivalent to minimizing
, where each term in the summation

is the number of SRLGs to which link belongs. This shows
that the path touching the minimum number of SRLGs has the
lowest failure probability.

The traditional SRLG model falls into a special case of
the uniform failure probability with , and hence,
Observation 3 implies that in the traditional model, the number
of SRLGs touched by a link is an important link-weight metric
when finding a reliable path. In fact, some previous works have
used this metric [10], and our result provides a theoretical basis
for those works in traditional SRLG model.

B. Path-Pair Problem With Disjointness Constraint

The path-pair problem can also be formulated in a simple
form as in the case of single path. Once an SRLG event oc-
curs, paths and will fail with probabilities and

, respectively. In this case, their joint failure proba-
bility is given by the product because the
link failures are independent, under the condition that SRLG
event has occurred. The problem can be formulated as follows:

Our probabilistic SRLG model has enabled us to express the
joint failure probability in a product form leading to a simple
formulation. Namely, the objective function in (P2.2) is the com-
bination of the objective functions in (P1.2) and (P2.1). That is,
for given SRLG , the joint path failure probability is equivalent
to the joint path failure probability with link failure probability
vector in the independent model, and those joint failure prob-
abilities are averaged over all SRLGs, as done in (P2.1). This
is in sharp contrast with the link-wise correlated failure model
where the path failure probability would include terms of the
conditional probabilities involving all the combinations of link
failures.

It is obvious that the path-pair problem is harder than the
single-path problem, and thus we can infer from Theorem 2 that
the problem (P2.2) will also be difficult. In fact, we can show its
NP-completeness as well.

Theorem 3: The path-pair problem (P2.2) is NP-complete.
Proof: First, note that the objective value of (P2.2) is non-

negative, and so if any path pair results in zero objective value,

then it is optimal. The probability in (P2.2) can be
written as

(11)

because if link does not belong to SRLG ,
i.e., . Consequently, the function becomes
zero for the path , which does not touch SRLG , i.e.,

. Hence if and do not share any SRLG,
then the product will be zero for every

, thereby leading to zero objective value. This implies
that any pair of SRLG-disjoint paths is an optimal solution to
the problem (P2.2). Subsequently, the problem (P2.2) becomes
an SRLG-disjoint paths problem if one exists. Therefore, the
problem (P2.2) is NP-complete because it includes (as a special
case) the SRLG-disjoint paths problem, which is NP-complete
[15].

Again, it is easy to show that when the link failure probabili-
ties are low, the objective function of (P2.2) can be expressed as

(12)

Next, we observe that the problem is still NP-complete even
after the approximation.

Observation 4: Under the uniform failure proba-
bility (i.e., and

), the objective function (12) becomes
, where each term in

the summation represents the number of SRLGs shared by
corresponding link pair in and . This obviously contains
SRLG-disjoint paths problem as a special case (if there exist
SRLG-disjoint paths), and so it is NP-complete (following
to the proof of Theorem 3). Subsequently, the approximated
problem (12) is also NP-complete.

As this approximation is still difficult to solve, we propose a
heuristic in Algorithm 4 using the approximations (10) and (12).
For primary path , we set the link weights and find the shortest
path according to (10). This will give a path having minimum
failure probability. Then, all the links selected by are removed
for disjointness. Finally, the obtained primary is substituted
into (12), and the backup path is computed by minimizing (12)
for fixed . Hence, the greedy algorithm takes into account the
correlation so that the links highly correlated with the selected
links can be avoided. One can also develop a Lagrangian re-
laxation based algorithm by linearizing the problem. However,
this development is nearly identical to that in Section III-B2 and
omitted for brevity.

Algorithm 4 Greedy: MES w/ DC

1: Set
2: Find shortest path
3: Remove all the links used by
4: Set
5: Find shortest path
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The path-pair problem without DC was also studied, but
omitted for brevity.

V. PERFORMANCE EVALUATION

In this section, we evaluate and compare the performance of
the algorithms developed in this paper. In particular, we consider
the following four algorithms:

• the brute-force solution to the ILP formulations using the
CPLEX solver (denoted by CPLEX;

• the Lagrangian relaxation for the ILP (Algorithm 2; de-
noted by LR);

• the greedy algorithms that select the first path with min-
imum failure probability and the second path with adjusted
link weights to reduce the joint path failure probability (i.e.,
Algorithms 1, 3, and 4; denoted by Greedy);

• the shortest-disjoint-paths algorithm that finds a pair of dis-
joint paths with minimum total weight, where the weight
of a link is its failure probability (i.e., for each link ,

in the independent model or
in the PSRLG model). This algorithm is a straightforward
approach simply selecting a shortest path pair, and as
mentioned in Observation 2, such a pair does not neces-
sarily have minimum joint failure probability. Note that
this joint-shortest-path approach is in contrast with our
heuristic, which is one-by-one shortest-path approach.
(denoted by SDP)

The protection quality (i.e., joint path failure probability) and
run-time of the above algorithms will be compared.

First, we compare the ILP (P1.1L) and probability-wise
shortest path (PSP) algorithm that finds a shortest path under
link weights . As discussed in Theorem 1
and Observation 1, the ILP finds a path with minimum failure
probability while the PSP algorithm approximates the optimal
path in the low-failure-probability regime. Because the PSP
algorithm is used in our heuristics (Algorithms 1, 3, and 4) to
find a path with minimum failure probability, this comparison
will demonstrate the suitability of the PSP algorithm in our
heuristics. We generated 100 random graphs, each of which has
10 nodes and maximum node degree of 5, and is 3-connected4

from to . To avoid the trap problem discussed in Section III,
we assume that the graphs are bidirectional. In each graph, the
failure probability of each link is assigned as follows:

where and are constants in [0,1], and is a random number
uniformly distributed on the interval (0,1). Note that as in-
creases, the network approaches to the uniform-failure-proba-
bility regime (i.e., ). For example, if , it
will be , which implies uniform-failure-proba-
bility regime. In contrast, if , will be a random number
from . On the other hand, small corresponds to the low-
failure-probability regime and large to the high-failure-prob-
ability regime.

Fig. 4 plots the path failure probability for each combina-
tion of , where each point is the average of the results
of 100 random graphs. As expected in Observation 1, the PSP
algorithm finds an optimal path in the uniform or low-failure-

4In our simulation, once a graph is generated, we examine the 3-connected-
ness of the graph, and if it is not 3-connected, it is discarded.

Fig. 4. Comparison of ILP and probability-wise shortest path (PSP).

probability regime (large or small , respectively). Further-
more, even in high-probability-regime (large ), the PSP ap-
proximates the ILP very well. When the network is nearly in the
uniform-probability regime (large ), shortest-hop path would
be optimal, and the PSP obviously finds this shortest path. With
small , the network is in a mixed regime having high and low
failure probabilities. In this case, both the ILP and PSP would
select only the links with low failure probability whenever fea-
sible. Then, it is highly likely that the same path is optimal
after the links with high failure probability are removed. This
is equivalent to being in the low-probability regime, and there-
fore, the PSP performs comparably to the ILP. Overall, the PSP
algorithm finds an optimal path in most cases, as desired.

Next, we consider the problem of finding the path pair with
minimum joint failure probability. The proposed greedy and
LR-based algorithms are compared with CPLEX and the SDP
algorithm using various topologies. The CPLEX solves the ILP
version of every path-pair problem. For LR-based iterative al-
gorithms, the following parameters are used: maximum itera-
tion number and step size . The
comparison is performed by changing the number of nodes, and
100 random geometric graphs are generated for each case. In a
random geometric graph, nodes are randomly located on the

plane. Two nodes are connected if the distance from
one to the other is less than 0.5. As in the above, each graph is
3-connected (from to ) with maximum node degree of 5. For
each topology, we consider only a single – pair and average
these values over 100 different topologies. For the independent
model, the failure probability of each link is set to a random
number uniformly distributed on the interval , hence

. For the PSRLG model, 20 SRLGs
are generated for every graph, and their failure event probabili-
ties ’s are set to uniformly distributed random numbers such
that . Each SRLG is associated with a circle whose
center is randomly located on the plane and whose radius is a
uniformly distributed random number in (1,1.5). An SRLG in-
cludes all the links touched by its circle. Once a link, say ,
is included in SRLG , its failure probability is set to a uni-
formly distributed random number in for low-proba-
bility regime and in (0.5,1) for high-probability regime.

Fig. 5 plots the joint path failure probability achieved by
each algorithm in the independent model, with and without
the disjointness constraints. Fig. 5(a) shows that with the DC,
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Fig. 5. Joint path failure probability in independent model. (a) With disjointness constraint (DC). (b) Without DC.

Fig. 6. Run-time (on DELL Workstation T7400) in independent model.

the CPLEX always finds the best path pair, while the other
algorithms achieve nearly the same protection performance as
the CPLEX. Without DC, the CPLEX still performs better than
any other, whereas the performance of Lagrangian relaxation
(LR)-based algorithm is substantially degraded as the number
of nodes increases [see Fig. 5(b)]. It is remarkable that our
greedy algorithm that does not explicitly attempt to solve the
optimization problem performs as well as the CPLEX solution
that finds a path pair by solving the optimization problem. This
verifies our observation in Section III-B that for path protection
against probabilistic failures, it is important to include the
best path in the primary and backup path pair. Notice that
the LR-based algorithm performs well with DC. However,
without DC, the LR-based algorithm does not perform very
well, especially in large networks [see Fig. 5(b)]. Clearly, the
search space without DC is much larger than that with DC. This
implies that in large networks, it requires many more iterations
in order to find a better solution. This is part of the reason why
the LR-based algorithm does not work well in large networks.

The run-time of each algorithm is shown in Fig. 6. As the
number of nodes increases, the run-time of CPLEX increases
exponentially. This shows that CPLEX takes a brute-force ap-
proach having exponential run-time and, hence, may be pro-
hibitively complex. The LR algorithm also takes a long time,
but its run-time increases much more slowly than CPLEX. On
the other hand, the greedy and SDP find a path pair in minimal

time, almost independent of the problem size. Therefore, both
the greedy and the SDP algorithms find a fairly reliable pair of
paths with short run-times.

The joint path failure probabilities in the PSRLG model are
shown in Fig. 7. As in the independent model, the CPLEX al-
ways finds the most reliable pair of paths in the low-failure-
probability regime [see Fig. 7(a)]. Observe from Fig. 7(b) that
the CPLEX performs as well in the high-probability regime. As
discussed earlier, this is because the linear approximation solved
by CPLEX is an upper bound on the joint path failure prob-
ability. Fig. 7 also shows that our greedy algorithm provides
better protection than the SDP. This is due to the fact that our
greedy algorithm adjusts the failure probability before selecting
the second path in order to reduce the joint failure probability
while the SDP algorithm fails to take correlation into account.

As mentioned in Section III-C, relaxing the DC should im-
prove the protection quality (if nondisjoint path pair is optimal).
Fig. 8 shows that the joint failure probability is decreased by re-
laxing the DC. Observe further that our greedy algorithm finds
a more reliable path pair than SDP, again verifying our observa-
tion in Section III-B that it is important to include the best path
in the pair.

We further examine the algorithms using a U.S. IP network
topology shown in Fig. 9. As in the previous simulations, the
link failure probability under the independent model is uni-
formly distributed on the interval . For the PSRLG
model, the nodes are located on the plane as seen in Fig. 9.
As in the previous simulations, SRLGs are
randomly located on the plane and include the links touched
by their circles of radius in (1,2). The link failure probability

is uniformly distributed on the interval (0.5,1). Under this
assumption, 100 realizations of the SRLGs and failure proba-
bilities are generated. In each realization, 100 source–destina-
tion pairs are randomly selected to find their disjoint primary
and backup paths. The joint failure probabilities are averaged
over all realizations and source–destination pairs. Table I shows
that the greedy algorithm works as well in the U.S. IP network
topology.

VI. CONCLUSION

In this paper, we studied path protection problems in a
network with multiple, possibly correlated, failures. In such
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Fig. 7. Joint path failure probability in PSRLG model (with disjoint constraint). (a) Low-probability regime: � � ��� �� �. (b) High-probability regime:
� � ����� ��.

Fig. 8. Improvement of protection quality by relaxing disjointness constraint:
PSRLG model with 20 SRLGs and � � ��� ������� �� � �� �� � �. The
average numbers of links in an SRLG are [6.8, 17.1, 26.9, 32.5, 42.3] for � �
��, 20, 30, 40, 50, respectively.

Fig. 9. U.S. IP network [36].

a network, protection cannot be guaranteed by simply pro-
viding disjoint paths, and thus we sought to find diverse routes
that maximize reliability, i.e., have the minimum joint failure
probability. To that end, we first developed a probabilistic
SRLG (PSRLG) framework by generalizing the traditional
notion of SRLG. Under this model, given an SRLG failure,
links belonging to that SRLG fail independently; significantly
simplifying the computation of the joint failure probability
between two paths. This enables a simple formulation to the

TABLE I
JOINT PATH FAILURE PROBABILITIES IN A U.S. IP NETWORK: 	 IS THE

PROBABILITY THAT EACH LINK IS INCLUDED IN EACH SRLG

path protection problem under correlated failures that would be
otherwise intractable. Using this model, we formulated the path
protection problem of finding a pair of paths with minimum
joint failure probability as an integer nonlinear program (INLP).

Furthermore, using linear approximations, we transformed
the INLP to an ILP and developed algorithms for finding a pair
of paths with minimum joint failure probability. Finally, we
showed through simulations that our heuristic algorithms often
find a better path pair and require less run-time than a brute-
force solution using an ILP solver such as CPLEX.

APPENDIX A
PROOF OF LEMMA 1

Under the uniform failure probability, the objective function
in (P1.2) is written as

(13)

where and . The lemma
can be proved by showing the concavity of the above objective
function. We use the following lemma for the proof.

Lemma 5 [37]: Let be the Hessian of . Then,
is concave if , , and

.
The Hessian of is given by

Since , , and , we have
and , which satisfy the concavity condition
on the diagonal components. The condition on the determinant
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can be written as . This is also
satisfied because

where the first inequality is due to and , and the
second inequality is due to the assumption . By
Lemma 5, the objective function is concave in and

. This shows that the original objective function

is also concave since the convexity and concavity are preserved
under the composition with a linear mapping [38]. Therefore,
the problem (P1.2) is a concave maximization.

APPENDIX B
PROOF OF LEMMA 2

For the proof, we need the following lemma on the Schur
concavity criterion.

Lemma 6 (Schur’s Criterion): Given that the function
is continuously differentiable and symmetric, it is

Schur concave on if and only if

for all and all .
Obviously, the function is differentiable and also

symmetric because the function value remains unchanged under
the exchange of and . To apply this criterion to the function

, we write

According to Lemma 6, this shows that is Schur
concave.

APPENDIX C
PROOF OF LEMMA 3

Consider an – partition and such that
and . Let and be the sets of links

going out from to and to , respectively. That is

Since the graph is bidirectional, we have .
Consider a simple – path . Then, it follows that

(14)

Suppose , that is, the path touches
links in . By (14), . This implies that
at least links in are untouched by path because it is
simple and the graph is bidirectional. Consequently, if ,
at least one outgoing link remains after removing all the links

in . If , then , i.e., only one outgoing
link is removed. Since the graph is -connected with , we
have . Consequently, in the case of , at least
one outgoing remains untouched. Therefore, at least one link in

survives after removing a simple – path. This is true
for any – partition and , and this completes the proof.

APPENDIX D
PROOF OF LEMMA 4

For notational convenience, let and also denote the sets
of links in the primary and backup paths, respectively. Let
denote the event that link fails. Since we are assuming
independent failures, it follows that for

(15)

Then, the joint failure probability can be written as

where the inequality is due to the union bound, and the last
equality is due to (15). This proves that the linear approxima-
tion is an upper bound on the joint failure probability.
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