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Abstract— We consider multi-user scheduling over the down-
link channel in wireless data systems. Specifically, we consider
a single transmitter serving multiple mobile users with time-
varying channel conditions. With fixed power transmission, the
channel condition of a user determines the reliable rate of
communication. We consider a set ofN throughput guaranteed
quality of service (QoS) users and obtain the optimal policy that
serves these users with the least time-slot utilization; thereby,
maximizing the remaining fraction of time-slots allocated to the
users with best effort (BE) service. We present a simple geo-
metric visualization of the optimal policy. Under a symmetric
Rayleigh fading model we obtain explicit formulas that relate
the various system parameters such as the achievable through-
put rate guarantee, the number of QoS users supportable and
the fraction of time-slots allocated to the BE users. Finally, we
compare the throughput results for the optimal policy with the
random-scheduling policy and show that gains on the order of
ln(N) can be achieved by exploiting multi-user diversity.

Index Terms— Downlink scheduling, Multi-user diversity,
Optimization, Stochastic processes, Wireless fading channel.

I. I NTRODUCTION

Rapid growth of the internet and multi-media applications
has created an ever increasing demand for wireless data
systems. Development of such systems, for example the
1xEV-DO system in [3], introduces numerous new challenges
in providing Quality of Service (QoS) over a wireless chan-
nel. First, in contrast to connection-oriented traffic, such as
voice, data streams are inherently bursty and can tolerate
much higher delays. Hence, reserving resources to provide
QoS is inefficient which means that to share a common
resource one needs efficient scheduling algorithms. Second,
the wireless channel is time-varying and one can exploit the
varying channel conditions among various users to increase
the system throughput. In the literature, such an approach
is referred to asOpportunistic scheduling[1], [2], [4] or
exploiting Multi-user diversity[6].

In this work, we study optimal scheduling that exploits
multi-user diversity. We consider the downlink scenario with
a single server that represents the base station and multiple
users that represent the mobile handsets. The set of users are
divided into two classes: (i) throughput rate guaranteed QoS
users and (ii) “best effort” (BE) users. The QoS users have
high priority service and are guaranteed expected throughput
rates if these rates are feasible; while, the BE users have a
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low priority service and are served when the resources are
available. The goal of this work is to design a scheduling
policy that serves the QoS users with the least time-slot
utilization so as to maximize the remaining fraction of time-
slots available for the BE users.

Down-link scheduling is an active area of research with
recent work that includes [1], [2], [4], [5]. The work in [1]
presented various formulations based on utility maximiza-
tion. The work in [2] considered the objective of maximizing
the minimum throughput rate, [4] maximized the throughput
with fairness constraints while [5] presented algorithms with
delay considerations. Our work differs in presenting a simple
formulation that combines the QoS and the BE users by
abstracting the service of BE users as the fraction of allocated
time-slots. We give the optimality conditions and show that
a policy is optimal if and only if it satisfies a certain simple
geometric structure. Under symmetric Rayleigh fading, we
obtain explicit formulas relating the system parameters that
include the achievable throughput rate guarantee, the number
of QoS users supportable and the fraction of time-slots
assigned to the BE users. Finally, we analytically compare
the optimal and the random-scheduling policy and quantify
the gains achieved by exploiting multi-user diversity.

II. SYSTEM AND PROBLEM DESCRIPTION

A. System Model

We consider the wireless downlink scenario, i.e. commu-
nication from the base station to the mobile handsets, in a
time slotted system. There are multiple users in the system,
each user experiencing time varying channel conditions. The
channel state of a user is assumed constant in a single time
slot but varies over multiple time slots. We assume that the
underlying stochastic process driving the channels’ states is
stationary. This, however, does not preclude the possibility
of channel correlations over time and among users. At the
beginning of a time-slot, the transmitter knows the channel
state of each user for that particular slot1. In a time-slot,
it serves at most one user with full powerP . Since the
users have different channel conditions the reliable rate of
communication per time slot to the users is variable. Clearly,
the transmitter can exploit this variability and select the
“best user” for transmission in a time-slot based on some
performance measure. The above system models a TDMA
system and the recently proposed 1xEV-DO data system [3]
and is a commonly used model in the literature to study
opportunistic schedulingin wireless networks [1], [2], [4].

1This is a simplifying assumption that models one step channel prediction



Let r̄ = {ri} denote the vector of reliable rate of
communication to the users in a generic time-slot, say for
example thekth time-slot. This means that if useri is
chosen to be served in time-slotk, the throughput for that
user is simplyri. The transmitter has knowledge ofr̄ at
the beginning of slotk but does not know this vector for
future slots. LetΩ be the set comprising of all possible rate
vectors. In thekth time-slot,r̄ is a particular realization from
the setΩ which has a probability distribution induced by
the underlying stochastic model of the channels’ states. A
scheduling policy, denoted asΓk(r̄), is a rule that specifies
which user the transmitter serves in time-slotk. A stationary
scheduling policy, denotedΓ(r̄), is one that does not depend
on the time index and can be represented as a map from the
setΩ to the user index; i.e. each̄r ∈ Ω is mapped to a unique
user index. As the underlying processes are stationary, it is
well-known that a stationary optimal policy exists, hence,
it suffices to focus on stationary policies. In the rest of the
paper, a scheduling policy refers to the above map.

Let Xi denote the throughput per time-slot of useri, then,

Xi =

{
ri, if Γ(r̄) = i (i.e. useri selected)

0, otherwise
(1)

The expected throughput per time slot isE[Xi]. Under
ergodicity of the channel process and stationarity of the
scheduling rule, it’s well known thatE[Xi] equals the long
term throughput per slot (called throughput rate) of useri.

B. Problem Description

As mentioned earlier, the set of users are divided into two
priority classes: (i) the throughput rate guaranteed (QoS)
users and (ii) the “best effort” (BE) users. The QoS users
are guaranteed expected throughput rates while the BE users
have no such guarantees. Let there beN QoS users that
are guaranteed throughput ratesR̄ = (R1, .., RN ), if such a
vector is feasible. By feasibility we mean that there exists
a scheduling policy such thatE[Xi] ≥ Ri, ∀i = 1, .., N ,
where Xi is defined as in (1). The objective, now, is to
serve the QoS users with the least time-slot utilization and
share the remaining time-slots among the BE users. This
objective provides a simple and tractable way of integrating
the two classes of service. Also, typically in most practical
systems, the population of BE users is large and a natural
objective while serving such users is simply maximizing the
sum-throughput. Clearly, under a large population of BE
users, maximizing the time-slot allocation is equivalent to
maximizing the total throughput of such users2.

Let Ii(r̄) be the indicator function for selection of useri,

Ii =

{
1, if Γ(r̄) = i

0, otherwise
(2)

With this notation we can re-writeXi as Xi = riIi. The

2Time slots allocated for BE users can be shared in a greedy fashion,
thus, maximizing the sum throughput of these users.

optimization problem can now be stated as follows,

min
N∑

i=1

E[Ii]

subject to E[riIi] ≥ Ri, i = 1, .., N (3)

where the expectation is taken over the joint distribution of
r̄ for the N QoS users. Note that minimizing

∑N
i=1 E[Ii] is

equivalent to maximizing1 −∑N
i=1 E[Ii] which equals the

fraction of time-slots available for the BE users. We assume
that R̄ > 0, i.e. (R1 > 0, .., RN > 0). If some Rk = 0,
we can neglect that user and the problem reduces toN − 1
dimensions. We assume that̄R is feasible and away from
the boundary of the set comprising all achievable through-
put rate vectors. This assumption is solely to simplify the
mathematical exposition by avoiding the limiting conditions
at the boundary and does not affect the results presented
throughout this paper.

III. O PTIMAL POLICY

The QoS users experience different time-varying channel
conditions, hence, intuitively the optimal policy must exploit
the variable communication rates to the users by selecting the
best user to have a high throughput per time slot. The choice
of which user to serve must also account for the different
throughput rate guarantees among users and their varying
channel statistics. Clearly, for optimality the inequality in
(3) must also be met with equality.

Let r̄ = (r1, .., rN ) be the rate vector in a generic time-slot
for the N QoS users3; this vector lies in the setΩ ⊆ R+N .
Let the joint probability density function bef(r̄) such that
the probability of some regionZ ⊂ Ω is given as

∫
Z

f(r̄)dr̄.
The restriction onf(r̄) is that subsets with zero volume
in Ω (or individual points) have zero probability. Since a
scheduling policy maps̄r ∈ Ω to a unique user index, we
can represent it as a partition of the setΩ into N +1 regions
denoted asZ1, .., ZN , Zf . In a particular time-slot (say slot
k), if the transmission rate vector̄r ∈ Zi, useri is selected
for service whereas if̄r ∈ Zf , no QoS user is selected and
the slot is used to serve the BE users. The problem thus
reduces to choosing these regions optimally to minimize the
objective function and satisfy the throughput rate constraint,
i.e.

∫
Zi

rif(r̄)dr̄ ≥ Ri, i = 1, .., N .
As individual points inΩ have zero probability, we will

refer to regions withinΩ4. The notation̄r → Z (̄r 6→ Z)
means that there is a neighborhood aroundr̄ that lies (does
not lie) in Z. Formally, there existsε > 0 such that̂r ∈
Ω, ||̂r − r̄|| < ε ⇒ r̂ ∈ Z. The following lemma gives the
necessary condition for the optimality of regionZf . It states
that for optimality if r̄ is mapped toZi, all rate vectors with
ith component larger thanri cannot be mapped toZf .

Lemma 1: Under the optimal policy, supposēr =
(r1, .., rN ) → Zi then r̂ = (r̂1, .., (r̂i > ri), .., r̂N ) 6→ Zf .

3To make the notations simple,̄r, depending on the context denotes a
random vector and also a particular realization for a generic time-slot.

4Regions with zero probability density can be removed fromΩ as their
mapping does not affect optimality.
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Fig. 1. TheZf region forN = 3, threshold vector̄a = (a1, a2, a3) and
Ω = R+N . Note Zf = {r̄ : 0 ≤ ri ≤ ai, ∀i = 1, . . . , N}.

Proof: We omit a rigorous proof for brevity but the
main idea is that if there is âr → Zf with r̂i > ri then we
can re-map the regions such that the objective function in (3)
decreases. This is achieved by mapping a small neighborhood
of r̂ to Zi and mapping a neighborhood ofr̄ to Zf while
ensuring that the throughput constraints still hold. Asr̂i > ri

one can show that objective function under the new map is
strictly lower than the earlier map.

Interestingly, Lemma 1 implies a special structure onZf as
follows. Let a1 be the infimum value of the first component
among all vectors̄r → Z1; i.e. a1 = inf(r̄→Z1) r1. Now, any
r̂ → Zf must be such that̂r1 ≤ a1; otherwise the above
lemma will be violated. As this holds for allZi, the optimal
policy is such that there exists constants{ai} such that if
ri ≤ ai, ∀i thenr̄ ∈ Zf . The regionZf is shown in Figure 1.
This implication is quite intuitive as it suggests that when
the rate vector of the QoS users is below some threshold
vector (bad channel conditions), the QoS users must not be
scheduled and the slot must be used to serve the BE users.

The vectorā depends on the throughput guarantees,R̄
and the density functionf(r̄). Given thatR̄ does not lie on
the boundary of feasible throughput rates, it follows thatā
is at least a positive vector(a1 > 0, .., aN > 0) and the
region Zf = {r̄ : r̄ ∈ Ω, ri ≤ ai∀i} is not null (non-zero
probability). We now proceed to obtain the structure of the
regionsZi, i = 1, .., N .

Lemma 2: Consider regionsZi, Zj , j 6= i and the corre-
sponding thresholdsai, aj . Supposēr 6∈ Zf and satisfies,

ri

ai
>

rj

aj
(4)

then under the optimal policȳr 6→ Zj

Proof: Appendix I
The above lemma states that if the weighted comparison

of the ith and thejth component of̄r is in favour of useri,
it is not optimal to serve userj. The weights are the inverse
values of the corresponding components of the threshold
vector ā. The above implication is intuitive as condition
(4) means that in some sense useri has a better channel
condition than userj and hence serving userj is not optimal.
Combining the above two lemmas, we obtain the following
necessary conditions for the optimal policy.
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Fig. 2. Optimal policy structure forN = 3, threshold vector̄a =

(a1, a2, a3) andΩ = R+N . The Zi regions are bottom truncated cones.

Theorem I: (Necessary Conditions)Consider r̄ =
(r1, .., rN ) then the optimal policy is such that there exists
a threshold vector̄a with the following structure,

1) r̄ → Zf if it satisfies,

ri < ai, ∀i = 1, .., N (5)

2) r̄ → Zi, (i = 1, .., N ) if it satisfies,
ri

ai
>

rj

aj
, ∀j = 1, .., N, j 6= i (6)

ri > ai (7)

3) ∫

Zi

rif(r̄)dr̄ = Ri, ∀i = 1, .., N (8)

Proof: Conditions 1 and 2 follow from Lemmas 1
and 2. Clearly, as stated in Condition 3, for optimality the
throughput constraint must be met with equality.

The set of r̄ such that there is equality in (5) and (6)
have zero probability and can be mapped to anyZi without
affecting optimality. It can also be observed that the set of
conditions in Theorem I are exhaustive and map everyr̄ ∈ Ω
to a unique user index. Thus, given̄a, we have a unique
partition of Ω into regionsZ1, . . . , ZN , Zf . In Figure 2, we
present a geometric picture of these regions forN = 3. As
seen from the figure theZi regions are bottom truncated
cones and it can be verified (say, for exampleZ2 region)
that (6) is satisfied.

Next, we present the sufficiency argument by proving that
a scheduling policy of the form as in Theorem I minimizes
the objective in (3) and hence is optimal. First, observe that
a scheduling policy outlined in Theorem I can be re-written
in a simplified way as a maximum weighted rule as follows,

Γ(r̄) =

{
Zf (no QoS user) , if ri ≤ ai,∀i = 1, .., N

argmaxi
ri

ai
, otherwise

(9)
where{ai} are such thatE[riIi] = Ri, ∀i.

Theorem II: (Sufficiency) Consider the optimization
problem in (3) and let̄R be feasible, then policyΓ defined
in (9) is optimal.

Proof: Appendix II.



Thus, Theorem I states that the optimal policy must satisfy
certain conditions which impose a weighted comparison
structure on the policy and conversely, Theorem II completes
the argument by stating that any policy with that structure is
optimal. Now, vector̄a is chosen such that

∫
Zi

rif(r̄)dr̄ =
Ri, i = 1, .., N . This can be solved using techniques of
finding the positive root of a non-linear vector equation. For
general density functions, it is difficult to obtain analytical
expressions for̄a. In practice, however, vector̄a can be
adjusted in real time using standard stochastic approximation
algorithms similar to those outlined in [1], [2], [8], [9].
Interestingly, as discussed next in Section IV, one can solve
for ā in closed form under a symmetric Rayleigh fading
model. From a system perspective, this analytical study helps
us obtain explicit results for various important performance
measures such as the achievable throughput rate guarantee,
the number of QoS users supportable and the fraction of
time-slots allocated to the BE users.

IV. D IMENSIONING

We have shown that an optimal policy has a weighted
structure as represented in (9) for some threshold vectorā.
Here, we consider a symmetric Rayleigh fading scenario
under which closed form expressions can be obtained for
various performance measures. To proceed, we make the
following specializations to the earlier model. The rate per
time slot of a user is assumed proportional to the fade
state (square magnitude); i.e.r = k(|h|2P ), wherek is a
constant,|h| is the magnitude of the fade state andP is
the transmission power. This linear relationship is a good
approximation of the Shannon capacity formula in the low
SNR regime and in ultra-wideband transmission and has been
studied earlier in the literature [7]. The users experience in-
dependent identically distributed (i.i.d) flat Rayleigh fading,
hence,|h|2 is exponentially distributed. Asr is proportional
to |h|2, the distribution ofr is also exponential and is given
as f(r) = e−r/µ/µ, r ≥ 0 whereµ = E[r] is the average
throughput rate of a user if it is served in all the time-slots.
Finally, the guaranteed throughput rate is the same for allN
QoS users, i.e.̄R = (R, . . . , R).

A. Throughput Characterization

Intuitively, the fraction of time-slots remaining for the
BE users, denoted asγ, will depend on the parameters
R,N, µ. As R, N increases,γ should decrease whereas if
µ increases (higher communication rates to the QoS users),
the throughput guarantee can be achieved in fewer slots and
γ should increase. Equivalently, givenγ,N, µ, one can also
ask for the maximum throughput-rate guarantee achievable
for the QoS users. Our goal in the subsequent analysis is to
obtain expressions for all these performance measures.

It’s clear that due to symmetry inf(r̄) andR̄, the regions
Zi, i = 1, .., N are identical (Ω = R+N ). Hence, the{ai}’s
are equal and the threshold vector is given asā = (a, .., a).
The following lemma relates the threshold valuea with γ.

Lemma 3: Let γ be the fraction of time-slots allocated to
the BE users, the threshold valuea for the optimal policy is

given by,

a = µ ln
(

1
1− γ1/N

)
(10)

Proof: From Theorem I, the regionZf is given as
Zf = {r̄ : 0 ≤ ri ≤ a, ∀i = 1, . . . , N}. By ergodicity, the
probability of this region equalsγ and by the i.i.d channel
assumption,f(r̄) =

∏
i fi(ri) =

∏
i f(ri). Thus we get,

∫ a

0

. . .

∫ a

0

∏

i

f(ri)dri = γ (11)

Evaluating the integrals for the exponential distribution gives,

γ =
(
1− e−a/µ

)N

(12)

Re-writing the above expression gives the result in (10).
Observe from (10) thatγ = 0 ⇒ a = 0 andγ = 1 ⇒ a →

∞ which corroborates the intuition thatγ = 0 impliesZf is
null andγ = 1 (all slots for BE users) impliesZf = R+N .

Lemma 4: Under the optimal policy, the throughput rate
guaranteeR for a given threshold valuea is given by,

R =
N−1∑

k=0

(
N − 1

k

)
(−1)k

(
a +

µ

k + 1

)
e−(k+1)a/µ

k + 1
(13)

Proof: Given a threshold vector̄a = (a, . . . , a), the
region Zi is given as,Zi = {r̄ : a ≤ ri ≤ ∞, 0 ≤ rj ≤
ri, j 6= i}. As R = E[riIi] we get,

R =
∫ ∞

a

∫ ri

0

. . .

∫ ri

0

rif(ri)dri

∏

j 6=i

f(rj)drj (14)

wheref(r̄) =
∏

i fi(ri) =
∏

i f(ri) by the i.i.d assumption.
For the exponential distribution, (14) simplifies to,

R =
∫ ∞

a

rie
−ri/µ

µ

(
1− e−ri/µ

)N−1

dri (15)

Using the binomial expansion,(1 − e−ri/µ)N−1 =∑N−1
k=0

(
N−1

k

)
(−1)ke−kri/µ, (15) can be solved to give (13).

Conversely, one can also solve (13) to obtain the value ofa
that would achieve rateR. As R is monotonically decreasing
in a, the value ofa ≥ 0 that achievesR in (13) is unique.

Eliminating a from (10) and (13) we obtain a unified
relationship among the system quantities: (i) Throughput rate
R, (ii) Fraction of time-slots,γ, allocated to the BE users
and (iii) Number of QoS users,N , in the system.

Theorem III: Under the model assumptions stated earlier
with N QoS users in the system andγ ∈ [0, 1] fraction of
time-slots allocated to the BE users, the maximum through-
put rateR for each QoS user is given as,

R

µ
=

N−1∑

k=0

(
N − 1

k

)
(−1)k ×

(− ln(1− γ1/N )
k + 1

+
1

(k + 1)2

)
(1− γ

1
N )(k+1) (16)

Proof: The result follows from Lemmas 3 and 4.
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An interesting observation is thatR varies linearly withµ
whereµ is the average channel condition of the QoS users.
Re-phrasing (16) we see that givenR0 and γ, Nmax =
maxN≥1 (R ≥ R0) is the maximum number of supportable
QoS users with rate guaranteeR0, if a solution exists. Finally,
given R and N , the value ofγ in (16) is the maximum
fraction of slots that can be allocated to the BE users.
Figure 3 is a plot ofR/µ versusN for different γ values.

B. Comparison with Random-scheduling

We, now, compare the performance of the optimal policy
with a random scheduling policy that is very simple to im-
plement and does not exploit the varying channel conditions
among the users. Specifically, the random policy assigns a
time-slot to the BE users with probabilityγ and to the QoS
users with probability1− γ. Among the QoS users the slot
is then randomly assigned to one of the users with equal
probability 1/N . Due to the random nature of assignment
each QoS user gets(1− γ)/N fraction of time-slots and the
users have statistically identical channel conditions. Thus the
throughput rate of each QoS user, denotedRr, is given as,

Rr = µ
(1− γ)

N
(17)

Figure 4 plotsRopt/µ andRr/µ versusN for γ = 0.2, 0.4,
whereRopt is the throughput for the optimal policy as given
in (16). We, next, quantify the gain, defined asRopt/Rr, for
largeN and show that it is on the order ofln(N).

Proposition 1: The throughput gain, defined asRopt/Rr,
of the optimal policy as compared to the random policy is,

Ropt

Rr
= Θ(ln(N)) (18)

Proof: Starting with (16), the summation over the first
terms can be evaluated as follows. Letα = (1− γ

1
N ), then,

taking γ ∈ (0, 1) we haveα ∈ (0, 1).

N−1∑

k=0

(
N − 1

k

)
(−1)k α(k+1)

k + 1
=

N−1∑

k=0

(
N − 1

k

) ∫ α

0

(−x)kdx

=
∫ α

0

(1− x)N−1dx =
1− (1− α)N

N
=

1− γ

N
(19)
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We can now re-write (16) as,

R

µ
=

1− γ

N

(
ln

(
1
α

)
+

N

1− γ

N−1∑

k=0

(
N − 1

k

)−1kαk+1

(k + 1)2

)

(20)
Since (19) holds for all α, we get the identity,∑N−1

k=0

(
N−1

k

)
(−1)k x(k+1)

k+1 = 1−(1−x)N

N . Dividing both sides
of this equation byx and integrating from0 to α, we get,

N−1∑

k=0

(
N − 1

k

)−1kαk+1

(k + 1)2
=

∫ α

0

(
1− (1− x)N

Nx

)
dx

≤
∫ α

0

dx = α = (1− γ
1
N ) (21)

The inequality above follows by noting that1−(1−x)N

Nx is
positive, monotonically decreasing forx ∈ [0, 1], N ≥ 1
and has a maximum value equal to1 at x = 0. Us-
ing (21) we can bound the summation term in (20) as,

N
1−γ

∑N−1
k=0

(
N−1

k

)−1kαk+1

(k+1)2 ≤ N
1−γ (1 − γ

1
N ) N→∞−−−−→ − ln(γ)

1−γ
(which is finite forγ > 0). Considering the log term in (20)
we see that,ln( 1

α ) = − ln(1−γ
1
N ) = γ1/N + γ2/N

2 + γ3/N

3 +
. . . = Θ(ln(N)). Thus, for any0 < γ < 1 and largeN , the
log term in (20) dominates and we can expressRopt as,

Ropt

µ
=

1− γ

N
Θ(ln(N)) (22)

From (17) and (22) we get the result in (18),
Observe that asN → ∞ the throughput for both the

optimal and the random policy tends to zero. Equation (22)
simply states thatRopt decreases asln(N)/N while (17)
states thatRr decreases as1/N . Hence, we get a gain on
the order ofln(N). The above logarithmic behavior arises
due to the infinite support and the exponential distribution of
the rate under Rayleigh fading. While such channel statistics
are simplified models, in practice one could expect gains
along these orders for moderate QoS user population.

V. CONCLUSION

We addressed the issue of downlink scheduling over
a wireless channel incorporating the QoS and best effort
services. We considered a set ofN rate guaranteed users and
obtained an optimal policy that serves these users with the



least time-slot utilization, thereby, maximizing the time-slot
allocation to the BE users. This work opens up interesting
questions about QoS guarantees over wireless channels.
While we considered long-term rate guarantee as a QoS
measure, future work seeks to address scheduling over a
wireless channel with more general QoS requirements, for
example, strict delay constraints on the data such as those
that arise in video streaming and multimedia applications.
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APPENDIX I
PROOF OFLEMMA 2

For brevity, we simply outline the steps involved in the
proof and omit the technical steps. The proof is based on
a contradiction argument. To begin, considerr̄ 6∈ Zf and
suppose that for the optimal policy,̄r → Zj such that
ri

ai
>

rj

aj
. We now give a re-mapping of the regions such

that the objective function decreases or equivalently the
probability ofZf region increases, thereby, showing that the
earlier mapping cannot be optimal. As the lemma involves
only the ith and jth component, we will focus only on
these components. Let the neighborhood aroundr̄ that is
mapped toZj be denoted asS1. We can representS1 as
S1 = {x̄ : x̄ ∈ Ω, ||x̄ − r̄|| < δ1} for some0 < δ1 ≤ δm

1

where δm
1 is the largestδ1 such thatS1 ∈ Zj . By the

assumption̄r → Zj , there existsδm
1 > 0. Now, since the

optimal policy satisfies Lemma 1 we know thatai is the
infimum value of theith component amonḡx → Zi. Thus,
there exists a point̄m with mi = ai and a region around
m̄, denotedS2, that maps toZi. The regionS2 can be
represented asS2 = {x̄ : x̄ ∈ Zi, 0 < (xi − mi) < δ2}
for δ2 > 0. Finally, sinceR̄ does not lie on the boundary of
feasible throughput vectors there existsn̄ with nj = aj > 0
and a region around̄n, denotedS3, that maps toZf . The
region S3 is S3 = {x̄ : x̄ ∈ Zf , 0 < (nj − xj) < δ3} for
δ3 > 0. Thus, we have regionsS1, S2, S3 that are not null and
as defined above. Now re-map these regions as follows. Map
S1 ⇒ Zi, S2 ⇒ Zf andS3 ⇒ Zj as shown in Figure 5(b).
By appropriately choosing theδ′is, one can ensure that the
throughput constraints are satisfied and also show that the
objective function is smaller under the new mapping.

a i

x j

a j

x ia i

S ε Zj1

x j

a j

x i

= x i
a ia j

x j

S2 ZfS ε Zi2

ZjS3

Fig. (a): Original mapping Fig. (b): New mapping

r.
S1 Zi

r.
S ε Zf3

Fig. 5. Figure showing the mappings for the proof of Lemma 2.

APPENDIX II
PROOF OFTHEOREM II

We will prove optimality of policy Γ, defined in (9),
by showing that for any other feasible policỹΓ we have∑N

i=1 E[Ii] ≤
∑N

i=1 E[Ĩi] where Ii(r̄) and Ĩi(r̄) are the
indicator functions for the respective policies. We know
that policy Γ satisfies the throughput-rate constraints with
equality, i.e.E[riIi] = Ri. If Γ̃ does not, its trivial to prove
that Γ̃ cannot be optimal. Now, supposẽΓ also satisfies the
rate constraints with equality, i.e.E[riĨi] = Ri, then, the
objective function for policỹΓ can be re-written as,

N∑

i=1

E[Ĩi] =
N∑

i=1

E[Ĩi]−
N∑

i=1

1
ai

(E[riĨi]−Ri) (23)

where{ai} is the threshold vector for policyΓ. Note that
the second term in (23) is zero. Re-arranging (23) we get,

N∑

i=1

E[Ĩi] = E

[
N∑

i=1

(
1− ri

ai

)
Ĩi

]
+

N∑

i=1

Ri

ai
(24)

For any vector̄r we have the following two cases.
Case 1: Supposeri ≤ ai, ∀i, then, policy Γ does not

choose any QoS user (Equation (9)) andIi = 0, ∀i =
1, . . . , N . Now, sinceri ≤ ai, we have(1 − ri

ai
) ≥ 0, ∀i.

This implies that whether̃Γ chooses or does not choose a
QoS user we have the following inequality,

N∑

i=1

(
1− ri

ai

)
Ĩi ≥ 0 =

N∑

i=1

(
1− ri

ai

)
Ii (25)

Case 2: Supposeri > ai for some indexi. Let j be the
chosen index for policyΓ, then, from (9) we see thatrj/aj

has the maximum value. Thus,(1− rj

aj
) ≤ (1− ri

ai
), ∀i and

also (1− rj

aj
) < 0. Again irrespective of what̃Γ chooses,

N∑

i=1

(
1− ri

ai

)
Ĩi ≥

(
1− rj

aj

)
=

N∑

i=1

(
1− ri

ai

)
Ii (26)

From (24), (25) and (26) we get,
N∑

i=1

E[Ĩi] ≥ E

[
N∑

i=1

(
1− ri

ai

)
Ii

]
+

N∑

i=1

Ri

ai
=

N∑

i=1

E[Ii]

where the last equality follows from (23) replacing̃Ii with
Ii. This completes the proof.


