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Abstract—We consider multi-user scheduling over the down- low priority service and are served when the resources are
link channel in wireless data systems. Specifically, we consider gyvailable. The goal of this work is to design a scheduling
a single transmitter serving multiple mobile users with time- policy that serves the QoS users with the least time-slot

varying channel conditions. With fixed power transmission, the e e . . .
channel condition of a user determines the reliable rate of utilization so as to maximize the remaining fraction of time-

communication. We consider a set ofV throughput guaranteed ~ Slots available for the BE users.

quality of service (QoS) users and obtain the optimal policy that Down-link scheduling is an active area of research with
serves these users with the least time-slot utilization; thereby, recent work that includes [1], [2], [4], [5]. The work in [1]
maximizing the remaining fraction of time-slots allocated to the presented various formulations based on utility maximiza-

users with best effort (BE) service. We present a simple geo- . ) . L o
metric visualization of the optimal policy. Under a symmetric tion. The work in [2] considered the objective of maximizing

Rayleigh fading model we obtain explicit formulas that relate  the minimum throughput rate, [4] maximized the throughput
the various system parameters such as the achievable through- with fairness constraints while [5] presented algorithms with
put rate guarantee, the number of QoS users supportable and delay considerations. Our work differs in presenting a simple
the fraction of time-slots allocated to the BE users. Finally, we ¢ mulation that combines the QoS and the BE users by
compare the throughput results for the optimal policy with the ) . .
random-scheduling policy and show that gains on the order of a_\bstractlng the service of BI_E users as the_ fraction of allocated
In(N) can be achieved by exploiting multi-user diversity. time-slots. We give the optimality conditions and show that
Index Terms—Downlink scheduling, Multi-user diversity, a policy is optimal if and only if it satisfies a certain simple
Optimization, Stochastic processes, Wireless fading channel.  geometric structure. Under symmetric Rayleigh fading, we
obtain explicit formulas relating the system parameters that
include the achievable throughput rate guarantee, the number
Rapid growth of the internet and multi-media applicationgf QoS users supportable and the fraction of time-slots
has created an ever increasing demand for wireless dafgsigned to the BE users. Finally, we analytically compare
systems. Development of such systems, for example tige optimal and the random-scheduling policy and quantify
1XEV-DO system in [3], introduces numerous new challengepe gains achieved by exploiting multi-user diversity.
in providing Quality of Service (QoS) over a wireless chan-
nel. First, in contrast to connection-oriented traffic, such as [l. SYSTEM AND PROBLEM DESCRIPTION
voice, data streams are inherently bursty and can tolerat¢ System Model
much higher delays. Hence, reserving resources to provide

QoS s inefficient which means that to share a common. We_: consider the Wireless_downlink scen_ario, i.e. commu-
resource one needs efficient scheduling algorithms Secoﬁ(#:atlon from the base station to th_e mobile handsets, n a
he wireless channel is time-varving and one can e>.< loit tht| e slotted syst_em._The_re are m_uIt|pIe users in th(_a system,
the wire ying P §ach user experiencing time varying channel conditions. The

varying channel conditions among various users to increa%&annel state of a user is assumed constant in a single time

Fhe sfyste;n tthro;ghputt. In. E[he I|tﬁrzztulre, 1SUChZ an4approa% ot but varies over multiple time slots. We assume that the
'; rleoi_rre M Olt'a eppctl)_r g:“f[ ICG schedulingl], [2], [4] or underlying stochastic process driving the channels’ states is
xploiting Multi-user diversity[6]. stationary. This, however, does not preclude the possibility

In this work, we study optimal scheduling that eXpIOI'[Sof channel correlations over time and among users. At the

multi-user diversity. We consider the downlink scenario Witrbeginning of a time-slot. the transmitter knows the channel
a single server that represents the base station and multige; . ‘aach user for ihat particular $lol a time-slot

users that represent the mobile handsets. The set of users.are. < at most one user with full powdt. Since the

divided into .FWO classes: (i) throughput rate guaranteed Qq sers have different channel conditions the reliable rate of
E'sehrs a}nqt 0) bgst effgrt (BE) usetrs.c;rhe QotSdutshers hﬁvgqmmunication per time slot to the users is variable. Clearly,
'gh priority service and are guaranteed expected trOUdNRYL ansmitter can exploit this variability and select the

rates if these rates are feasible; while, the BE users have,a. .. \ser” for transmission in a time-slot based on some
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Let T = {r;} denote the vector of reliable rate ofoptimization problem can now be stated as follows,
communication to the users in a generic time-slot, say for

example thekt" time-slot. This means that if user is min ZE[I]
chosen to be served in time-slbt the throughput for that
user is simplyr;. The transmitter has knowledge of at subjectto  E[r;I;] > R;, i=1,..,N (3)

the beginning of slott but does not know this vector for
future slots. Let be the set comprising of all possible rateWhere the expectation is taken over the Jomt distribution of
vectors. In the:*" time-slot,F is a particular realization from T for the N QoS users. Note that minimizing;. , E[I;] is

the setQ) which has a probability distribution induced by equivalent to maximizing — Z 1 E[I;] which equals the

the underlying stochastic model of the channels’ states. #action of time-slots available f0r the BE users. We assume
scheduling policy, denoted d¥(F), is a rule that specifies that R > 0, i.e. (R; > 0,.., Ry > 0). If some Ry = 0,
which user the transmitter serves in time-gtofA stationary we can neglect that user and the problem reduces te 1
scheduling policydenoted ' (t), is one that does not dependdimensions. We assume thRt is feasible and away from

on the time index and can be represented as a map from fhe boundary of the set comprising all achievable through-
set() to the user index; i.e. eaahc ) is mapped to a unique put rate vectors. This assumption is solely to simplify the
user index. As the underlying processes are stationary, it figathematical exposition by avoiding the limiting conditions
well-known that a stationary optimal policy exists, henceat the boundary and does not affect the results presented
it suffices to focus on stationary policies. In the rest of théhroughout this paper.

paper, a scheduling policy refers to the above map.

. Il. OPTIMAL PoLicY
Let X, denote the throughput per time-slot of usgthen, ©

The QoS users experience different time-varying channel
rq, if T'(F) =i (i.e. useri selected) conditions, hence, intuitively the optimal policy must exploit
Xi= 0, otherwise (1) the variable communication rates to the users by selecting the
best user to have a high throughput per time slot. The choice
The expected throughput per time slot B[X;]. Under of which user to serve must also account for the different

ergodicity of the channel process and stationarity of ththroughput rate guarantees among users and their varying
scheduling rule, it's well known thaE[X;] equals the long channel statistics. Clearly, for optimality the inequality in
term throughput per slot (called throughput rate) of user (3) must also be met with equality.

Lett = (r4, .., ) be the rate vector in a generic time-slot
B. Problem Description for the N QoS user§ this vector lies in the se@ C R+,
Let the joint probability density function bé(r) such that
e probability of some regio## C Q is given as[, f(T)dr.
e restriction onf(r) is that subsets with zero volume
Q (or individual points) have zero probability. Since a
c?]edullng policy maps € ) to a unique user index, we
can represent it as a partition of the §einto NV +1 regions
denoted as71, .., Zn, Z;. In a particular time-slot (say slot
k), if the transmission rate vectare Z;, useri is selected

for service wher ifecZ:,n ri I n
where X; is defined as in (1). The objective, now, is to or service whereas if € 7y, no QoS user is selected and
serve the QoS users with the least time-slot utilization anél’]e slot is used to serve the BE users. The problem thus
share the remaining time-slots amona the BE users. Thleduces to choosing these regions optimally to minimize the

9 g objective function and satisfy the throughput rate constraint,
objective provides a simple and tractable way of mtegratm

; ) ) ) fzrl r)dt > R;, i=1,..,N.
the two classes of service. Also, typically in most practical As individual points inQ have zero probability, we will
systems, the population of BE users is large and a naturalfer to regions within?®. The notationt — 7 (r’ 2 7)
objective while serving such users is simply maximizing the” eans thagt] there is a neighborhood hiat lies (d
m ghborhood arourttiat lies (does

sum-throughput. Clearly, under a large population of B

L : C : not lie) in Z. Formally, there existe > 0 such thatt €
users, maximizing the time-slot allocation is equivalent t

maximizing the total throughput of such users ?2’ IF —x]] < e = &€ 2 The following lemma gives the
Let 7.(¥) be the indicator function f lecti f U necessary condition for the optimality of regidh. It states
et I;(r) be the indicator function for selection of user that for optimality ift is mapped taZ;, all rate vectors with

As mentioned earlier, the set of users are divided into tw
priority classes: (i) the throughput rate guaranteed (Qo
users and (ii) the “best effort” (BE) users. The QoS users
are guaranteed expected throughput rates while the BE use
have no such guarantees. Let there BeQoS users that
are guaranteed throughput rafes= (R, .., Ry), if such a
vector isfeasible By feasibility we mean that there exists
a scheduling policy such that[X;] > R;,Vi = 1,.., N,

it T(F) = ith component larger than; cannot be mapped t4;.
.= { ’ o (2) Lemmal: Under the optimal policy, suppos& =
0, otherwise (P, oy vN) — Zi thent = (71, ., (7 > 1), .., ) 7 Zs.

With this notation we can re-writ&; as X; = r;/;. The 3To make the notations simpl&, depending on the context denotes a

random vector and also a particular realization for a generic time-slot.
2Time slots allocated for BE users can be shared in a greedy fashion,*Regions with zero probability density can be removed fi@nas their
thus, maximizing the sum throughput of these users. mapping does not affect optimality.



|
N T T z,
[l
| . 4
P e L 34,—
-7 a, r a
7 ik I L 5
r1
a3
a ria, =
g s 3 \Z r/a, =ryja,

3 f

Fig. 1. TheZ; region for N = 3, threshold vecto& = (a1,a2,a3) and  Fig. 2. Optimal policy structure folN = 3, threshold vectora =
O =R+Y. Note Zy={r:0<r;<aq; Vi=1,...,N}. (a1,a2,a3) andQ = RN, The z; regions are bottom truncated cones.

Proof: We omit a rigorous proof for brevity but the Theorem|: (Necessary Conditions)Consider r =
main idea is that if there is &— Z; with #; > r; then we (71, ..,7x) then the optimal policy is such that there exists
can re-map the regions such that the objective function in (3) threshold vectoa with the following structure,
decreases. This is achieved by mapping a small neighborhoog) ¢ — Z; if it satisfies,
of ¥ to Z; and mapping a neighborhood &fto Z; while .
ensuring that the throughput constraints still hold.7As> r; ri <ai, Vi=1,.,N (5)
one can show that object|ye function under the new map S9) ¥ — Z,, (i = 1,.., N) if it satisfies,
strictly lower than the earlier map.

Interestingly, Lemmg 1 implies a special st.ructur@}ras ﬁ > Lj_, Vi=1,.,N,j#1i (6)
follows. Leta; be the infimum value of the first component @i aj
among all vector§ — Z; i.e. a; = infz_, 7, r1. Now, any i > G )

f — Z; must be such that; < a;; otherwise the above 3

lemma will be violated. As this holds for a#f;, the optimal o )

policy is such that there exists constafts} such that if /Z rif(F)dt = R;, Vi=1,.,N (8)

r; < a;, Vi thent € Z;. The regionZy is shown in Figure 1. o

This implication is quite intuitive as it suggests that when ~ Proof:  Conditions 1 and 2 follow from Lemmas 1

the rate vector of the QoS users is below some threshofffd 2. Clearly, as stated in Condition 3, for optimality the

vector (bad channel conditions), the QoS users must not B¥Oughput constraint must be met with equality. u

scheduled and the slot must be used to serve the BE users.Th€ set off such that there is equality in (5) and (6)
The vectora depends on the throughput guaranteRs, Nave zero probability and can be mapped to @qywithout

and the density functiorf(F). Given thatR does not lie on affecp_ng opt|mal|ty. It can also be Qbserved that the set of

the boundary of feasible throughput rates, it follows taat conditions in Theorem | are exhaustive and map every()

is at least a positive vectda; > 0,..,ay > 0) and the to a unique user index. Thus, giveny we have a unique

region Z; = {F : ¥ € Q,r; < a,Vi} is not null (non-zero partition of Q2 into rggiqnle, s 4Ny Zy In Figure 2, we
probability). We now proceed to obtain the structure of th@féSent a geometric picture of these regionsXor= 3. As
regionsZ;, i = 1,.., N. seen from the figure the&; regions are bottom truncated

Lemma2: Consider regions;, Z;, j # i and the corre- cones and it can be verified (say, for examgle region)

sponding thresholds;, a;. Supposer ¢ Z; and satisfies, ~ that (6) is satisfied. N _
Next, we present the sufficiency argument by proving that

i > 5 (4) a scheduling policy of the form as in Theorem | minimizes
@i 4 the objective in (3) and hence is optimal. First, observe that
then under the optimal policy /> Z; a scheduling policy outlined in Theorem | can be re-written
Proof: Appendix | B in a simplified way as a maximum weighted rule as follows,
The above lemma states that if the weighted comparison .
of thei*" and thej component of is in favour of uset, A 2, (no QoS user, if r; <a;,Vi=1,.,N
it is not optimal to serve user. The weights are the inverse argmax -t , otherwise
values of the corresponding components of the threshold L 9)

vector a. The above implication is intuitive as condition where{a;} are such thaf[r;I;] = R;, Vi.

(4) means that in some sense usenas a better channel Theorem Il: (Sufficiency) Consider the optimization
condition than usej and hence serving usgtis not optimal. problem in (3) and leR be feasible, then policy' defined
Combining the above two lemmas, we obtain the followingn (9) is optimal.

necessary conditions for the optimal policy. Proof: Appendix II. [ ]



Thus, Theorem | states that the optimal policy must satisfgiven by,
certain conditions which impose a weighted comparison a :uln< 1 ) (10)
structure on the policy and conversely, Theorem Il completes 1—~UN
the argument by stating that any policy with that structure is Proof: From Theorem |, the regio; is given as
optimal. Now, vectora is chosen such thaf, r;f(F)dr = , _ (F:0<m <a, Vi= 17’. ..,N}. By ergodicity, the
R“ = 1""]\_['_ This can be sol_ved using technlques Ofprobability of this region equals and by the i.i.d channel
finding the positive root of a non-linear vector equation. Foéssumption,f(f) — L. f:(r:) = [L, f(r). Thus we get,
general density functions, it is difficult to obtain analytical ' ¢
expressions fora. In practice, however, vecto& can be /a.../aHf(’l“i)dTi . (11)
adjusted in real time using standard stochastic approximation 0 0
algorithms similar to those outlined in [1], [2], [8], [9] '
Interestingly, as discussed next in Section IV, one can sol
for a in closed form under a symmetric Rayleigh fading N SEp—yp N
model. From a system perspective, this analytical study helps 7= ( — e )
us obtain explicit results for various important performanc®e-writing the above expression gives the result in (1).
measures such as the achievable throughput rate guarantegypserve from (10) that =0 => a = 0 andy =1 = a —
the number of QoS users supportable and the fraction gf which corroborates the intuition that= 0 implies Z; is
time-slots allocated to the BE users. null and~ = 1 (all slots for BE users) implie; = R*".

Lemma4: Under the optimal policy, the throughput rate
guaranteeR for a given threshold value is given by,

\%valuating the integrals for the exponential distribution gives,

12)

IV. DIMENSIONING
We have shown that an optimal policy has a weighte

structure as represented in (9) for some threshold vextor NN U e~ (k+1l)a/p
- - : : ioR=>_ (-D)* (a+ (13)
Here, we consider a symmetric Rayleigh fading scenario k k+1 k+1
under which closed form expressions can be obtained for k=0
various performance measures. To proceed, we make the Proof: Given a threshold vectof = (a,...,a), the

following specializations to the earlier model. The rate pefegion Z; is given as,Z; = {T:a < r; < o0, 0 < rj <
time slot of a user is assumed proportional to the fade, j # i}. As R = E[r;I;] we get,

state (square magnitude); i.e.= k(|h|?P), wherek is a 0o 1y T
constant,|h| is the magnitude of the fade state aidis R =/ / / rif(ri)dr; ] f(rj)dr; — (14)
the transmission power. This linear relationship is a good a JO 0 J#i

approximation of the Shannon capacity formula in the |°V\4vheref(f) =TI f:(r:) = 1, f(r;) by the i.i.d assumption.
SNR regime and in ultra-wideband transmission and has begg; the expone?wti:al aistribultionl (14) simplifies to

studied earlier in the literature [7]. The users experience in-

dependent identically distributed (i.i.d) flat Rayleigh fading, n— /°° rie”"i/m (1 _ e_m/u)N’l dr (15)
hence,|h|? is exponentially distributed. As is proportional @ I ’

to |h|?, the gistribution ofr is also exponent.ial and is given Using the binomial expansion(l — e—m/u)N—l _
as f(’f’) —e T/“/M, r>0 Where,u, = E[T] is the average N-1 (N*l)(_l)k’e—kﬁ/li (15) can be solved to give (13)
throughput rate of a user if it is served in all the time-slots&=*=0 \ ' - '

Finally, the guaranteed throughput rate is the same favall Conversely, one can also solve (13) to obtain the valug of

QoS users, i.eR = (R, ..., R). that would achieve rat&®. As R is monotonically decreasing
A. Throughput Characterization in a, the value ofe > 0 that achieves® in (13) is unique.
Eliminating a from (10) and (13) we obtain a unified

Intuitively, the fraction of time-slots remaining for the . . . .
relationship among the system quantities: (i) Throughput rate

BE users, denoted as, will depend on the parameters - . :
R.N, . As R, N increasesy should decrease whereas ifR’ (||)_“Fract|on of time-slots;y, aII_ocated to the BE users
1 increases (higher communication rates to the QoS usergf]d (i Numt.)er of QS usersy, in the system. :
the throughput guarantee can be achieved in fewer slots ané‘l’heorem - Und_er the model assumptions stat.ed earlier
~ should increase. Equivalently, given N, 1, one can also V_V'th N QoS users in the system ande [0, 1] fracuon of
ask for the maximum throughput-rate guarantee achievab [ne-slots allocated to the BE users, the maximum through-

for the QoS users. Our goal in the subsequent analysis is %t rate R for each QoS user Is given as,

obtain expressions for all these performance measures. rR Nl /N
Its clear that due to symmetry if(r) andR, the regions ~ — = ( i )(Uk X
Zi, i =1,..,N are identical Q = R™""). Hence, the{a;}'s k=0
are equal and the threshold vector is giveraas (a, .., a). (-111(1 — N L > (1= %)+ (16)
The following lemma relates the threshold valuevith ~. E+1 (k+1)2 K

Lemma3: Let~ be the fraction of time-slots allocated to
the BE users, the threshold valudor the optimal policy is Proof: The result follows from Lemmas 3 and 4.m
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: . L o . We can now re-write (16) as,
An interesting observation is that varies linearly withu (16)

wherey is the average channel condition of the QoS usersk 1 —~ 1 N =N 1\ 1Rkt

Re-phrasing (16) we see that givety and v, Ny = m -TN In <a> + 1—+~ Z ( k )(k+1)2

maxys; (R > Rp) is the maximum number of supportable k=0 (20)

QoS users with rate guarantélg, if a solution exists. Finally, gjyce (19) holds for alla, we get the identity,

given R and N, the value ofy in (16) is the maximum %:N—l (N71)(_1)k1<k+1)
f

= 1=0=2" pividing both sid
i k=0 k L N . g both sides
frgcuon qf slots that can be allocatgd to the BE user this equation byz and integrating frond to o, we get,
Figure 3 is a plot ofR/u versusN for different~ values.

N-1 . 1k, k41 a (1 _ AN
B. Comparison with Random-scheduling (Nk 1)(1614_0‘1)2 :/ (1(1wa)> dx
We, now, compare the performance of the optimal policy *=° Oa
with a random scheduling policy that is very simple to im- < / dr =a=(1- 7%) (21)
plement and does not exploit the varying channel conditions 0
among the users. Specifically, the random policy assigns
time-slot to the BE users with probability and to the QoS

users with probabilityl — v. Among the QoS users the slota d has a maximum value equal foat = — 0. Us-

is then randomly assigned to one of the users with equ g (21) we can bound the summation term in (20) as
probability 1/N. Due to the random nature of assignment y - N—1 ;N_1y _1Fak+? N 1\ Nooo —In(y)
_ i ime- 7 Simo (k)T S oy (1—y) —— 522
each QoS user gefs —~)/N fraction of time-slots and the Rien'is Finite f (+6 Considering the lod t 720
users have statistically identical channel conditions. Thus tm@/ Ich 1S |n|elom> )- Oni' erln?/Ne $9Nerr23'2( )
throughput rate of each QoS user, denaed is given as, W€ S€€ thatn(g) = —In(1—y~) = o/% 4 I5— 4 35—+
...=06(In(N)). Thus, for any0 < v < 1 and largeN, the

The inequality above follows by noting thdf(]l\%)]v is
positive, monotonically decreasing for € [0,1],N > 1

_ — og term in ominates and we can expr as,
R, = =) a7 | in (20) domi d s
T N
Rort 11—«
Figure 4 plotskR°?* /1, and R,/ versusN for 4 = 0.2,0.4, TN O(In(N)) (22)
where R°P! is the throughput for the optimal policy as given .
in (16). We, next, quantify the gain, defined A%"*/R,., for From (17) and (22) we get the result in (18), -

Observe that asV. — oo the throughput for both the

large N and show that it is on the order df(V). . . :
Proposition 1: The throughput gain, defined & /R, optimal and the rand<t)m policy tends to zero. Equation (22)
. L ' . simply states thatz°P! decreases am(N)/N while (17)
of the optimal policy as compared to the random policy IS'States thatk, decreases as/N. Hence, we get a gain on

Rept O(In(N)) (18) the order ofln(N). The above logarithmic behavior arises
due to the infinite support and the exponential distribution of
the rate under Rayleigh fading. While such channel statistics
are simplified models, in practice one could expect gains
along these orders for moderate QoS user population.

Proof: Starting with (16), the summation over the first
terms can be evaluated as follows. ket= (1 —y~), then,
takingy € (0,1) we havea € (0,1).

_ _ V. CONCLUSION
= /N-1 Lokt LN N e _ . .
Z 1 (-1) Tl Z i (—z)"dx We addressed the issue of downlink scheduling over
k=0 + k=0 0 a wireless channel incorporating the QoS and best effort
@ 1-(1-a)¥ 1- services. We considered a set/éfrate guaranteed users and
:/ (1—2)N " de = L-a)” _1-7 19) .
0

N -~ N obtained an optimal policy that serves these users with the




least time-slot utilization, thereby, maximizing the time-slot; X| =X

allocation to the BE users. This work opens up interesting 8 & -

guestions about QoS guarantees over wireless channels. k» Sez S >z
While we considered long-term rate guarantee as a QoS - v , v
measure, future work seeks to address scheduling over a| s;e z @J S3>7Z.

wireless channel with more general QoS requirements, foti 'j

example, strict delay constraints on the data such as those _ s,e 7, S S, 7

that arise in video streaming and multimedia applications. N

a; Xj a; Xj
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PROOF OFLEMMA 2 =1 ' =
hewhere {a;} is the threshold vector for policy’. Note that

C}He second term in (23) is zero. Re- arranglng (23) we get,
suppose that for the optimal policyy — Z; such that

N
ZE[L] —B |} (1_) +Zi
. > 2 We now give a re-mapping of the regions such

i=1 i=1
that the objective function decreases or equivalently theor any vectofr we have the following two cases.
probability onf region increases, thereby, showing that the Case 1 Supposer; < a;,Vi, then, policyI' does not
earlier mapping cannot be optimal. As the lemma involveghoose any QoS user (Equation (9)) ahd = 0,Vi =
only the i and j"* component, we will focus only on 1,...,N. Now, sincer; < a;, we have(l — 7*) > 0,Vi.
these components. Let the neighborhood arodnthat is This implies that whetheF chooses or does not choose a
mapped toZ; be denoted asS;. We can represen$; as QoS user we have the following inequality,
S ={x:%x€Q|x-T| < d} for some0d < §; < " N N
where 07" is the largestd; such thatS; € Z;. By the Z (1 _ ) I;>0= Z (1 _ ”) I (25)
assumptionr — Z,, there existsy7* > 0. Now, since the im1 a; =1 @
optimal policy satisfies Lemma 1 we know thaf is the
infimum value of thei*” component among — Z;. Thus,
there exists a pointm with m; = a; and a region aroun

- ki) (23)

For brevity, we simply outline the steps involved in t
proof and omit the technical steps. The proof is based

a contradiction argument. To begin, consideg Z; and (24)
4

Case 2 Supposer; > a; for some index. Let j be the
d chosen index for policy’, then, from (9) we see that /a;

m, denotedS,, that maps toZ;. The regionS, can be Nas the maximum value. Thugl — 2*) < (1 — ), i and
represented as, = {X : X € Z;,0 < (z; — m;) < 0y} also(l — L’) < 0. Again |rrespect|ve of whaF chooses,
for 4, > 0. Finally, sinceR does not lie on the boundary of

N
feasible throughput vectors there existsvith n; = a; > 0 Z (1 _ ) I > ( j) — Z (1 _ 7"1) I, (26)
and a region aroundi, denotedSs, that maps toZ;. The ] a; a; = a;
region Sz is S3 = {X: X € Z;,0 < (n; — ;) < 3} for oy (24), (25) and (26) we get,
S1 = Zi, S2 = Zy and S3 = Z; as shown in Figure 5(b). (1 N 2) I
By appropriately choosing th&s one can ensure that the

03 > 0. Thus, we have regions,, S,, S3 that are not null and
as defined above. Now re-map these regions as follows. MaIX:E f > B

throughput constraints are satisfied and also show that tiéiere the last equahty follows from (23) replacidg with
objective function is smaller under the new mapping. I;. This completes the proof.

i=1



