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Abstract— We present a game-theoretical model of a delay in conveying user’s channel conditions to the sched-
wireless communication system with multiple competing uler will limit the system’s performance. Hence, a dis-
users sharing a multiaccess fading channel. With a speci- tripytive multi-access scheme with no centralized sched-
fied capture rule and a limited amount of energy available, a uler becomes an attractive alternative.

user opportunistically adjusts its transmission power based _ .
i S ) o Distributed multi-access schemes such as the aloha ran-
on its own channel state to maximize the user’s own indi-

vidual throughput. We derive an explicit form of the Nash dom gccess protocol have long been studied. Becently, a
equilibrium power allocation strategy. Furthermore, this Variation on the aloha scheme that takes user's channel

Nash equilibrium power allocation strategy is unique under State into consideration (channel-aware aloha) has been
certain capture rule. We also quantify the loss of efficiency proposed by [3]. In their formulation, each user only has
in throughput due to user’s selfish behavior. Moreover, as knowledge of its own channel condition, but no knowl-
the number of users in the system increases, the total systemedge of the channel fading of the other users sharing
throughput obtained by using a Nash equilibrium strategy o' mmunication link. Capture was not considered in
approaches the maximum attainable throughput. . ' . .
their paper. In [8], the authors studies multiple power
level aloha with the objective of maximizing total sys-
tem throughput when channels are time invariant. In this
|. INTRODUCTION paper, we allow the satellite to capture packet depending
A fundamental characteristic of a wireless, or satellitt(—:‘-),n the recglved power and assume the channel_ls at Ime-
yarying fading channel. To maximize their own individ-

network is that the channel over which communicatio [th hout subiect to th ilabl
takes place is often time-varying. This variation of chafi! througnput subject 1o Ihe available energy, Users op-

nel quality is due to constructive and destructive interfe?ortun'StIcally adjust their transmission power based on

ence between multipaths and shadowing effects (fadinB}Je'r own channel condition. Also, all of the aforemen-
When multiple users try to communicate with a satellite,

ned work assume that users will implement the same
one can exploit the channel variation opportunistically b@;'

andated algorithm and behave in a predictable manner.

allowing the user with the best channel condition to tran5ioWever, in a distributive environment, users may want to

mit. This transmission scheme implies the performan Qangethelrcommunlcatlon protocols in order to improve

of the network is dictated by the best channel state rat pir own perfo_rmanc_e, making it impossible tq ensure a

than the average one. Hence, the total throughput of SLE)Cq,{t|cular algorithm will be adopted by all users in the net-

a network tends to increase V\;ith number of users. work. Rather than following some mandated algorithm, in
An important assumption in using this kind scheme this paper users are assumed to act selfishly (i.e., choose

that there is a centralized scheduler who knows each us{%’e'r own power allocation strategies) to further their own

ers. . )
. . . individual inter .
channel condition. To get information about user’s chan-g dual inte e?ts : . . .

The communication system considered in this paper

nel condition, the scheduler will require each user to es- . . . .
consists of multiple users competing to access a satellite,

timate its channel fading and transmit this information .
r a base-station. Each user has an average power con-

back. As the number of users in the network increases, the . . : ) .
straint. Time is slotted. During each time slot, each user

IThis research is supported by NASA Space Communication Proj&di00Ses a power level for transmission based on the chan-
grant number NAG3-2835. nel state of current slot, which is only known to itself.



Depending on the capture model and the received povigr presenting the Nash equilibrium strategy pair for the
of that user’s signal, a transmitted packet may be captuitew users game when the channel state is uniformly dis-
even if multiple users are transmitting at the same slot. tributed over|0, 1]. The uniqueness of the Nash equilib-
With each user wants to maximize its own expectdtlm strategy is shown under certain capture rule. A sym-
throughput, we obtain a Nash equilibrium power allocdnetric Nash equilibrium is also obtained when users have
tion strategy which determines the optimal transmissidée same average power constraint. We then explore the
power control strategy for each user. Nash equilibriutdash equilibrium strategy for general channel state distri-
of a game is a set of strategies (one for each user) frétion. In section 1V, a symmetric Nash equilibrium strat-
which there is no profitable unilateral deviation. The otegy is derived for the multiple users case. The throughput
tained optimal power control strategy specifies how mueétptained by using the Nash equilibrium strategy is shown
power a user needs to use to maximize its own throughp@tpproach the maximum attainable throughput. Finally,
for any possible channel state. Users get different av&ection V concludes the paper.
age throughput based on their average power constraint.
Hence, this transmission scheme can be viewed as mech-
anism for providing quality of service (QoS) differentia-

tion; whereby users are given different energy for trans-\we consider a communication environment with multi-
mission. The obtained Nash equilibrium power allocgje users sending data to a single base station or satellite
tion strategy is unique under certain capture rule. WheRer multiple fading channels. We assume that each user
all users have the same energy constraint, we obtainegl\gays has data to be sent to the base station. Time is
symmetric Nash equilibrium. assumed to be discrete, and the channel state for a given
Due to the selfish behavior of individual users, the ovetiser changes according to a known probabilistic model
all system throughput will be less than that of a systeimdependently over time. The channels between the users
where users employ the same mandated algorithm. Thisd the base station are assumed to be independent of each
loss in efficiency is also quantified. In the multiple usergther. LetX; be a random variable denoting the channel
case, as the number of user in the system increases, dtage for the channel between usend the base station.
symmetric Nash equilibrium strategy approaches the op-wWhen multiple users are transmitting during the same
timal algorithm specified by a system designer (i.e., algeime slot, it is still possible for the receiver to capture one
rithm that results in the largest total system throughputbr more) user’s data. The capture model can be described
In this case, there is no loss of efficiency when users e a mapping from the received power of the transmitting
ploy the symmetric Nash equilibrium. users to the sdftl, - - - ,n, 0}, where0 indicates no packet
Game theoretical approaches to Aloha random accéssuccessfully received. In this paper, we are going to
problems have been explored by a number of researchekgstigate two capture models which will be presented in
recently (e.g., [2][9]). In [2], the authors characterizethe later sections.
the stability region for a slotted Aloha system with mul- We assume that each individual user is energy con-
tipacket reception and selfish users for the case of perfetined. Specifically, each usehas anaverageamount
information. In [9], the authors considered the problewf energye; available to itself during each time slot. We
of a node computing its own optimal channel access ratesume that the; values are known to all users, and that
in a random access network with two-way traffic. In thewsers know the distribution ok;’s. However, the exact
setting, a node is interested in both receiving as well aalue of the channel staf€; is known to usei only at the
transmitting packets. The existence of Nash equilibriubeginning of each time slot.
is shown for node without power constraint as well as Wwith a given capture model and the energy constraint,
with battery power constraint. Our work attempts to applyte objective for each user is to design a power alloca-
game theory to the access of a wireless fading channelsitih strategy to maximize itswnexpected throughput (or
particular, we show that the Nash equilibrium strategy dprobability of success) per time slot subject to the ex-
rived is well suited to be used as a power control scherpécted or average power constraint. The power alloca-
when there is a large number of users in the system. Otkieh strategy will specify how a user will allocate power
papers dealing with the application of game theory to theevery time slot upon observing its channel state. Under
random access and resource allocation problems in wiggwer allocation strategy;(-), useri transmits a packet
less network include [11][15][16]. with power equal tgy;(z) when it sees its channel condi-
This paper is organized as follows. In Section Il, we déion in this time slot isX; = x. The received power at the
scribe the communication system. In Section Ill, we stavase station is denoted sx) = = - g;(x).

[l. PROBLEM FORMULATION



Formally, letF; be the set of continuous and boundesitrategy spacé; and S, and the value ok, andes are
real-valued functions with finite first and second derivdnown to both users.
tive over the support ok;. Then, the strategy space for To get the Nash equilibrium strategy pair, we first ar-
user i (the set of all possible power allocation schemeglie that at equilibrium the received power functjitz; )

say.S;, is defined as follows: must be strictly increasing in;.
Lemmal: Given a Nash equilibrium power alloca-
Si = {gi €I | Elgi(X;) < ei} (1) tion strategy pai g, g5) and its corresponding received

power function (f;, f5), the received power function
fi (x1) mustbe strictly increasing im . Similarly, f5(x2)

_ o o must be strictly increasing in.

We start by investigating users’ strategies in a commu-  p, oo For an arbitrary received power functigh

hication system consisting of exactly two users and ofgich, is not strictly increasing, we can always find an-
bgse statlon.. The apglytlcal r'n'ethod used in this S?Ct'BfP\er received power function that will result in a larger
will help us in obtaining equilibrium power allocationy, . ,ghput gain. To see this, consider time slots with
scheme in the multiple users case. We begin our analy-. -~ state in the small intervals — d,a + ¢) and
sis with the assumption that channel stateas uniformly (b— 4,b+ 8) wherea < b. Whend is small, the received

distributed over(0, 1] for all .. The Nash equilibrium .o er fynction is close tg(a) for time slots in the inter-
power allocation strategy with general channel state d(ﬁil (a — 8,a+6). Likewise, the received power function

tribution is presented in the subsequent sect_ion. is close tof (b) for time slots in the intervalb — 8, b + &).
Suppose user . i)nd uszr 2 choosg thlelr nger aIIO'For received power functiorf such thatf(a) = a -
cation strategies to bg, and g, respectively. Given a g(a) > f(b) = b- g(b) for somea < b. The total amount

time slot with channel state realizatiqmy, z2), USer 1 ¢ yonsmission power used in time slots with channel
and user 2 will transmit their packets using power Ie\é’tate in the two intervals is given by:

elsgi(x1) andgs(z2) respectively. The corresponding re-

ceived power at the base station g{éxr;) = x1 - g1(x1)

and fo(z2) = x2 - ga(x2). As ifr[Z] and [5], the [9(a) + g(b)]20 = [fia) +f§)b)
capture model used in this section is the following: if

[z1 - g1(z1)]/ ][22 - g2(x2)] > K whereK > 1, user 1's Now, if user 1 employs a new power allocation strategy
packet will be captured. Likewise, user 2’s packet will bg such thatg(b) = @ andg(a) = @ user 1 will
captured iffzg - g2(x2)]/[z1 - g1(x1)] > K. Thus, given achieve the same expected throughput as before. How-
a power allocation strategy pdiy1, g2), Wwhereg; € S;  ever, the amount of power uséd(b) + g(a)]20 is less
andgs € S9, the expected throughput for user 1 is definetian[g(a) + g(b)]20, and the extra power can be used to

Il. Two USERSCASE

2.

as the following: get higher throughput. Hence, both equilibrium received
power function f{(x1) and f;(z2) must be strictly in-
Gi(er,e2) = Ex, x,[1f (x1)> K- f2(X2)] (2) creasing inz; andz, respectively. [

With one user’s power allocation strategy, gayfixed,

where we now seek the optimal power allocation scheme for user
1 it f1(X1) > K - fo(X2) 1. From Lemma 1, we see that the invers¢gohnd f, are
L= i) = { 0 otherwise well defined. With user 2's strategy; fixed, Ietuéﬁ) :
(z1,b) — R denote user 1's expected throughput of a slot
Similarly, the throughput function for user 2: conditioning on the following events:
o User 1's channel state i%; = z.
G2(€1, 62) = EX17X2[1f2(X2)>K-f1(X1)] (3)

o User 1's allocated power is

For convenience, we will drop the terga in the expres-

sion ufé) (x1,b), and simply write it as:; (z1,b). Specifi-
In this part, we present a Nash equilibrium power akally, we can the write the equation:

location strategy paifg;, g5). A strategy pai(g;, g5) is

said to be in Nash equilibrium i is the best response ui(z1,b) = P(f2(X2) - K <1 -b) 4)

for user 1 to user 2's strategy;, andg3 is the best re-

sponse for user 2 to user 1's stratggy We consider here whereP(f>(X32) - K < x; - b) is the probability that user

the case where both users choose their strategies fromlisepacket gets captured in a time slot. Consequently, us-

A. Nash equilibrium strategy



ing a strategyy;, user 1's throughput is given by: strategy pair. For convenience, we denote the marginal
gain for user 1 whenX; = xz; and the allocated power

1
G1(€1,€2) = / Ul(l‘l,gl(l‘l)) -le(xl)dxl b=10b"as
0
®) Ouq(z1,b) A
1 1\41, %
—— b=t =D b*).
:/ ui(z1,g1(x1)) dy. ab o=t uq(z1,b)
0
i . - LemmaZ2: Given a power allocation strategy pair
where the last equality results from the uniform dIStI’IbU(-gT’g;) that satisfies the boundary conditiorig;, g3)

tion assumption. _ o is a Nash equilibrium strategy pair if and only if
With user 1's strategy; fixed, similar terms for userzpul(ag1 gi(z1)) = c1 and Duy(za, gi(22)) = e, for

can be defined. some constants; and c,, for all z; € [0,1] and all

_ (2 _ ) < ) T9 € [0, 1].
u2(w2,b) = ug(v2,0) = P(f(X1) - K < 22 - D) Note that the above lemma does not depend on the as-
Then, user 2’s throughput is given by: sumption of the uniformly distributed channel state. Thus,

it is quite general and will be used in the subsequent sec-
tion where channel states are not uniformly distributed.
To understand the lemma intuitively, suppose there exists
1 ©) 4 2  such thatDu: (z, g (x)) > Duy (7, g7 (7). Re-
= / u (w2, g2(v2)) ds. ducing the power allocated ato ¢* (#)—d and increasing
0 . . . .
the power at: to g7 (=) + ¢ will result in an increase in the
Due to the uniformly distributed channel statethroughputby(Du,(z,g;(z))—Duy(Z,g}(2)))-6. Thus,
P(f2(X2) - K <z - b) is given by user 1 has an incentive to change its allocation function,
] and(gj, g5) cannot be a Nash equilibrium strategy pair in
P(f2(X2) - K <21 -b) =P(Xa < f;l(?cl -b)) this case.
1 Proof: The complete proofis given in the Appendix.
-1
With Lemma 2, we are able to find the Nash equilibrium
where f, ! is well defined. Thus, we can rewrite Eq. (4ptrategy pair. The exact form of the equilibrium power

1
Ga(e1, €2) :/0 uz (w2, g2(22)) - Px, (T2) dro

as ) allocation strategies are presented in the following Theo-
ui(21,0) = f5 (7721 -b). rem.
K Theoreml: Given the average power constraéntand
Hence we have, e2, the Nash equilibrium power allocation strategy pair
1 . has the following form:
Gi(er,e2) = / oY (=1 - gi(z1))dzr  (7)
1(e1, e2) | 2 (721~ 91(21)) da @) = 2 ©)
L 1 « 1
Ga(er,e2) = / ffl(ﬁﬂ% - g2(z2)) dry  (8) 9o (@) = ca - a7 (10)
0

. . here th nstan n re chosen h that
We begin our analysis of the Nash equilibrium straty 1o'C e consta 5, c2 andy are chosen such tha

egy pair by first considering the power allocation on the 1

boundary point$) and1. For a pair of power allocation /0 ¢ -aldr = e (11)

functions(g;, ¢g5) to be a Nash equilibrium, it is straight- 1 )

forward to see thag; (0) = g¢5(0) = 0 since it does not / co-x7 dr = ey (12)

make sense to allocate power for a slot with zero chan- y

nel state. Likewise, we must hayg(1) < K - ¢;5(1) and

g5(1) < K-g%(1) since allocating powey; (1) = Kga(1) Equ.ations (11) and (12) impose the average power con-

or gi(1) = Kgo(1) + ¢, wheree > 0, will result in the Straints.

same throughput for user 1. We call these properties the Proof: We show here thag;(x) = c; - 27 and

boundary conditions of a Nash equilibrium strategy pairg;(z) = ¢z - 7 is indeed a Nash equilibrium strat-
With the boundary conditions satisfied, the following@gy pair by using the sufficiency condition of Lemma 2.

lemma gives a necessary and sufficient condition for a p&ince both functions are strictly increasing, we can write

of power allocation strategies to be a Nash equilibrium (z,b) = f37' (£ - b) andus(z,b) = f; ' (&2 - b)



wheref’(z) = z - g} (x). Also, since bothf] and f5 are the interval[l — 4, 1] to some other interval, thus resulting
differentiable, we have:; (x,b) anduy(z, b) both differ- in an increase in user 1's throughput. Therefore, when

entiable with respect tb. Therefore, using g5 (1) > ¢5(1), the power allocation strategy pay;, g5)
) cannot be in equilibrium since the strategy p@ir, g5)
1 . . . .
S(x) = co(1+ D), fi(x) = c1(147)z” gives a higher throughput for user 1. Similar result holds
. v ) - for the caseg;(l_) > g}‘(l)_._Thus, we must hqvgf(l) =
) = (=)™, 7Y (2) = (—a)T g5(1) if (g7, g5) is an equilibrium strategy pair. [ |
€2 “ The condition thag} (1) = g4 (1) will be useful in proving
we have the uniqueness of the Nash equilibrium. The complete
. proof of the corollary is shown in the appendix.
Qur(z,b)| ® Fig. 1 shows an example of the Nash equilibrium power
b |=ei® 5'(f35 N Eagi(2)) allocation strategy pair when = 1 andes = 2. Since
1. 1 user 1 has less average power than user 2, user 1 con-
= b = = - centrates its power on time slots with very good channel
C(#S1Ta) e+ D) ()™ i
2 \UKcy 2 Y\ Kea state. Fig. 2 shows the capture result when both users em-
S I m iIarIy, , power allocation strategy for user 1 with average power = 1
Ous(z,b) %x 257
T ap =@ T e " .
9b e P 1(%3592(55))) Sis
_ ol _ 4 S
(L) a(l4)() T o
1 ([Kcl] TT ) Cl +/y KC1 0 1 1 1 1 1 1 1
0 01 02 0.3 04 0.5 06 07 0.8 0.9 1
.. channel coefficient
From Lemma 2, we see thafl*, f2*) is indeed a Nash power allocation strategy for user 2 with average power = 2
equilibrium strategy pair because bdth; (z, g7 (x)) and z:f T L~
Dus(z, g5(x)) are constants. [ | il

From the above theorem, we see that equations (9) and g
(10) specify the Nash equilibrium power allocation strat- G|

egy pair. Since there are two equations with three un- 0s}

knowns, the resulting Nash equilibrium may not be unique el 0z w3 od o5 o5 o7 oF o8 1

in general. However, if a packet with stronger received channel coeffcient

power can always be captured (i.&, = 1), the Nash Fig. 1. An example of Nash equilibrium strategy pair égr= 1 and

equilibrium power allocation strategy is unique. ey = 2.
Corollary 1. For K = 1, the unique Nash equilibrium

power allocation pair has the following form: ploy the Nash equilibrium strategy shown in Fig. 1. For a

*(oN v time slot with channel state realization that fall into the re-
gi(z) =c-x (13) :
N gion above the curve, user 2's packet will be successfully
93(x) =c- a7 (14)  captured since user 2’s received power is higher than that
of user 1 in this region. Here, user 2 has more successful

where the constantsand~ are chosen such that the avely . oemissions than user 1 since it has more power.

age power constraints are satisfied.
To show the corollary, we first present the following

Lemma. B. General Channel State Distribution
Lemma3: If (¢7,93) is a Nash equilibrium strategy | this section, we specify the conditions that a general
pair, gi (1) = g3(1). channel state distribution has to satisfy in order for a Nash

Proof: Supposeyj(1) # g5(1). Without loss of gquilibrium strategy pair to exist.
generality, let assume that (1) > g¢5(1). Since both  From Lemma 1, one can see thatand f, have to be
g1 andg; are continuous, there exists> 0 such that jncreasing functions regardless of the distribution of the
gi(z) > g5(1) + M Vo € [1 —4,1]. User 1 X;s. Letpy,(-) denote the probability density function
can devise a new allocation strategy, gy by moving of x; with the support over an interval starting at zero.
a small amount of power, say- M away from Assumingk = 1, the probability that user 1's packet will



Result of the throughput with e = land €,= 2

the single base station. Us#s power allocation function

is denoted ag;(-). Given a time slot with channel state
realization? = (z1,--- ,z,), the transmitting power for
each user ig;(z;). The corresponding received power at
the base station is again denotedfgs:;) = z; - gi(x;).

The new capture rule used in this section is given as the
following: a packet from user 1 will be successfully re-
ceived if the following holds:

-

channel coefficient of user 2
o o 9o o o o o o
o o B o > N » ©

o
o

o

0 0.2 04 06 0.8 1

channel coefficient of user 1 fl (l‘l) 2 (1 —+ A) maX(fz(l’g), e ,fn(xn))

Fig. 2. Results obtained when using the Nash equilibrium strate

pait fore: — 1 andes = 2 Similar capture model can be found in [7] (i.e., protocol

model). The quantityhA models situations where a guard
zone is specified to prevent interference. Note also that
be captured in a time slot with; = z; andg;(x;) = b the capture rule used in the two users’ case can be viewed

can be written as the following: as a special case the above capture rule.
We start with each user facing the same average power
uy(z1,b) = P(f2(X2) < 21 -b) constraint (i.e.g;y = e3 = --- = ¢,). Since users are
= P(Xy < fy ' (z1- b)) 15 identical, it is reasonable to seek a symmetric Nash equi-
5 (a1 b) (15) librium power allocation strategy. Specifically, the set of
= / px,(T2) dzo strategiesg1 = g, , gn = ¢) iS said to be a symmetric
0

Nash equilibrium strategies if; = ¢ is the best power

From the optimality condition stated in Lemma 2, weéllocation strategy for usérwhen all other users are also
must haveDu, (x1,b) = ¢; wherec, is some constant. employing the power allocation strategy For a power

This condition can be expanded as follows: allocation functiorny to be a symmetric Nash equilibrium
strategy,f(xz) = zg(x) must be a strictly increasing func-
Oua(w1,b) _ ~L(p b 1 — + (16) tion using a similar argument as in the two users case. The
b sz(f2 (xl )) T i1 C1 ( ) ) .
fo(fy (z10)) following theorem shows the existence and the form of a

n§ymmetric Nash equilibrium power allocation strategy.
Theorem2: Given that each user has the same average
power constraint, there exists a symmetric Nash equilib-

rium power allocation strategy with the following form:

Now, let’s focus on finding a symmetric Nash equilibriu
power allocation strategy. Substitutibg= g;(x;), the

term f, ! (xy - b) is equal tof, ' (f1(21)) = x; sincef; =

f2. Thus, Eq.(16) can be reduced to the following:

px, (1) 1 _ o gi(x;) = c-m?fl Vie{l,---,n} (29)
2 !/
fo(x1)
) 21 (17) wherec is chosen such that the average power constraint
= foz1) = o TP (1) is satisfied.
Proof. The complete proofis given in the Appendix.
The above equation provides a condition on the distribu- [

tion of the X; such that there exists a Nash equilibriunyith the symmetric Nash equilibrium power allocation
power aIIoca_tlon scheme. The condition can be restatgqq;lategy given in Eq.(19), the expected throughput for
as the following: each user is given by:

1
x1-g1(z1) = / e “px, (1) day (18)  P(f(X1) = (1 + A)max(f(Xz), -, f(Xn)))
= P(X{ > (1 +A)max(Xy, -+, X)) (20)
From the above condition, for example, we see that if A 1
px,(+) is a strictly increasing polynomial, there exist a (X1 2 (1+A)n max(X, -, Xn))

Nash equilibrium power allocation strategy. To quantify the loss of efficiency due to users’ selfish be-

havior, we consider a system where all users implement

IV. MULTIPLE USERSEQUILIBRIUM STRATEGIES  the same power allocation policy provided by a system

In this section, we explore the Nash equilibrium powetesigner such that the overall system throughput is maxi-
allocation strategies whenusers are competing to accesmized. To find such scheme, we solve the following opti-



mization problem as in the two users’ case: V. CONCLUSION

max P(X1v(X1) >(1+ A) In this paper, we consider a communication system
vEs with multiple users competing for the access of a single
~max(Xpv(X2), -+, Xpv(Xn))  gatellite, or base station. With a specified capture rule
By symmetry, we have the following upper bound for thand an average power constraint, users opportunistically
above probability: adjust their transmission power based on their own chan-
nel state to maximize their own individual throughput.
P(X1v(X1) = (1+A) - max(X0(Xy), -, Xnv(Xn))  Nash equilibrium power allocation strategy is character-

< 1 ized, and the resulting throughput efficiency loss is quan-

n tified. As the number of users increases, the Nash equi-

As in the two users’ case, we consider a series of furldrium power allocation strategy approaches the optimal
tions, vy, (z) = 2™ for m > 1. Asm — oo, we have power allocation strategy.

S il b1 In our analysis of the Nash equilibrium power alloca-
PXTT 2 (1+ A) - max(Xy", - X3') tion algorithm, users are assumed to be backlogged. In
—P(X;>(1+ A)m%l max(Xa, -, Xp)) — 1 practice, such assumption may not be appropr_iatg. How-

n ever, when users do not have data for transmission, one

Thus, there indeed exists a power allocation scheme than viewed it as a particular user having a bad channel.

will achieve the maximum possible throughput. In othéfhus, it will be interesting to see whether a Nash equi-

words, it is possible to have a packet successfully captuddatium exists for a channel distribution with significant

in every time slot. Now, when users behave selfishly, tiobability been zero.

expected throughput for each user is given as follows from

Eq.(20):
APPENDIX

1
P(Xy 2 (1+A)» max(Xp, -+, X)) (21) Proof of Lemmma 2

As n increases, the above equation goed te which Proof: We first show that if(g},95) is a Nash
is the maximum attainable throughput. Therefore, as tBSuiIibrium strategy pair thenDu,(z1, gt (z1)) and
number of users becomes large, the symmetric Nash e%%(m,gg(m)) must be constants for ath € [0, 1] and
librium power allocation scheme is optimal in the sense [0, 1]. From user 1's perspective wit} fixed, con-
thfat the throughput obtained approaches the maximum gl 5 small variation of the functiogt. Specifically,
tainable throughput. let gs = g7 + 0(g — ¢7) whereg is an arbitrary func-

For the special case whefe = 0, the capture rule be- i o, ™ since bothy andg? are ins:, they are both
comes that the user with the largest received power $unded (.e.[g(z1)] < B and|gi(z1)| < B for all
DA -~ 1

captured. With this simple rule, a Nash equilibrium stragc-1 € [0,1]). Therefore, we havkigg(ml)—g*(_xm < 98§
egy can be derived with general channel state distributigp) :1;1 6' 0,1] Usin’g the Lagrange’s florm of_Taonr’s

(i.e., X; hashprobability density functiopx, (1))- From 4 ooem we get for any; < [0,1], there exists a real
Eq.(37), we have numberey,,| € g7 (21), g5(x1)] such that

-1 -b . n =
pz(f (xl ))f/(f—l(xl b)) C (22) ul(l'l,g&(xl)) = ul(ml,gf(xﬁ)
fe) = Tepa(e) Foe) - i@ )y g

where

pa(2) = (n = U, () | (o) da]" 2,
0 The last term is bounded bif - 42 for some K since
Hence, we can write the received power function as thethg andg;] are bounded, and (x1, b) has finite second

following: derivative. Therefore, for small enoughit is negligible

flz) = l/xpz(x) dx comparing with the other terms.

¢ Now we show that ifDu; (z1, g7 (x1)) is not a constant
From the above equation, one can get the optimal power all z; € [0, 1], we can find a strategy; which gives
allocation function by using(x) = f@) user 1 a higher throughput thagi. To do that, we can

T

1,5, . O%ui(x1,b
1820t - gl
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write the following equations: Now, consider the set of channel state gair, z2) such
that f1(z1) = fa(z2) (i.e., two users’ received power

1 1 . . .
wr (1, f5(21)) day — wr (21, f5(z1)) da are equal). It forms a separation line in space span by
/ e, fol@)) dm /0 e fila)) do X1 and X,. Mathematically, this line can be defined as
_; Ouy (z1,b) PO [0,1] — [0,1] such thatey = h(z1) = f5 ' (fi(x1)).
= - gi(21)) b '|b=gf(m1) 1 By the capture rule, a slot with channel state, «%) will

be successfully used by user 2if;, z,) is above the line

x9 = h(x1) and by user 1 ifxy, 24) is below the separa-
Now, sinceDu; (1, g} (x1)) is not a constant for alt; € tionline. Fig.2 shows an example ofz;). The following
[0, 1], we can find & such that the above equation is pogdemma shows the uniquenessigf:; ). We then derive the
itive which implies that there is an incentive for user 1 tgniqueness of the strategy péif, g») from the lemma.
usegs. Hence (g7, g5) is not a Nash equilibrium strategy Lemmad: If Duy(x1,91(21)) and Dug (2, g2(2))
pair. Similarly, we can show thabus(z2, g5(72)) is @ are two constants; andc, respectively, for alk:; € [0, 1]
constant for allz; & [0,1] if (g7, g5) is a Nash equilib- and, € [0,1], thenh(z;) = x?/”
rium strategy pair.

For the converse, consider again Eq.(24). Since Proof: Since Duléxl’gl(ml)) = o from
] D (zn.) Ui (z1,b) = fy (:1:1, b), we have
Duq(z1,97(z1)) = T|b=g{(w1) equals to a con-
stantc; for all z; € [0, 1]. We have Ou(z1,b
Dus(er () = 290LD)
8U1($1,b) I
0 -9 $1))T|b=g{(:¢1)d$1 = —
(25) folfy (21 g1(21)))
x1
—50/ J(x gi(x1))dxy =0 = - =c
L), W) = gite)) de AT
/ -
forall g € 51 (i.e. fO (x1) dz1 = e1). Thus, there is no fa(h(z1)) = 1 (26)

incentive for user 1 to use strategy Therefore (g7, ¢3)

is a Nash equilibrium strategy pair. Similarly, for user 2, we get

Proof of Corollary Ous(z2,b)
_ o Dug(xa, fa(22)) = —— = [v=ga(a2)
We have established thaf(1) = ¢5(1) is a necessary b
condition for (g7, g5) to be an equilibrium strategy pair = — 71552 = ¢y
from lemma 3. Combining witly:(0) = ¢3(0) = 0, we [l (fa(22)))
will consider only the function paig; € S; andgs € A a) = 2 (27)
S, that satisfy the above two boundary conditions (i.e., €2

91(1) = g2(1) andg: (0) = g2(0) = 0).
Consider any Nash equilibrium strategy péif, g-) We also know thaffy (z1) = fa(h(21)) and fi(x1) =
under the capture rule described in the two users’ cagé(h(z1)) - h'(x1). Thus, we have
From previous discussion, we know that the inverse func-
tions, f, " and f; " wheref = zgi(x) andfo = xg2(x).  f (A (wy)) = fH(A(h (w2))) - B (h™ " (2)
are well defined. With user 2’s strategyfixed, we have — fh(wa) - W (1) (28)

ur(w1,0) = P(fo(Xs) < @1 -0) = fy (a1 - b) = fa(h(z1)) - 1 (1)

Similarly, with userl’s strategy; fixed, we get By combining the equationg! (h~(zs)) = %22 and

us(x2,b) = P(f1(X1) < 29 -b) = f (22 - b) fi(h=(z2)) = fo(h(z1)) - W (21), we get

€T
From Lemma 2, we know thaDu;(z1,g:1(z1)) and 2 _ {1 (h(w)) - B ().
Dus(x9, g2(x2)) are two constants for alt; € [0,1] and 2
xo € [0,1] since(g1,g2) is a Nash equilibrium strategy

pair. Next we substitute Eq.(26) angh = h(x;) in the above



equation to obtain, where Y = max(f2(X2), -+, fn(Xyn)). Since all
usersi # 1 use the same strategy we haveY =

dh(x c
x1 - d(xl) = fh(xl) max(f(Xz), -, f(Xy)) wheref(X;) = X, - g(X;) for
! 2 all i # 1. Moreover, since is strictly increasing, we can
dh(a) _ adn write:
h(z1) C2 T1
Infh(en)| = ol + e Y = max(F(Xa), -+ f(X,)) = f(max(Xa, - . X))
h(zy) = € a:{% i[?]gr']OtingZ = max(Xy,---,X,), we have the follow-

€1

Combined with fact thak(1) = 1, we geth(z;) = :ﬂ:2 wr(z1,b) = P((1+ A)Y < a1 - b)

|
Now, we are in a position to derive the exact form of =PZ<fY 1 z1 - b))
the Nash equilibrium strategy pair. From the equations i b1)+ A (33)
—1 _ =z _ _ ToALL:
filh™Hzg)) = 2 andxzy = h(z1), we getfi(z1) = :/ +A ps(2) dz
h(z1) 0

c1
e = xy? /ca. Combined with the condition that

£1(0) = 0, we havef; (z) = —L sttt Following the wherep(-) denote the probability density function of the
' crtes random variableZ. The optimization problem that user 1

1

c2
similar method, we gefa(z) = za Tl Lety = &

c1tcz « faces can be written as the following:
andc = ﬁ the received power of a Nash equilibrium
strate air must have the following form: !
P g max G1(e) =/ u1 (21, 91(71)) - pxy (71) day
fi(a) = c-af™! (29) o
£ (z2) =c- xf“ (30) :/0 uy (1, 91(21)) do (34)
crer . 1
Consequently, we have the Nash equilibrium power allo- subj./ gi(z1)dar < e
cation strategy to be the form: 0
gi(z1) =c- (31) Writing the Lagrangian function, we have
1
g(w2) =c -z (32)

1 1
/0 ui(z1, g1(21)) doy — A(/O g1(z1) dzy —e)

1
[uy (1, g1(21)) — Agi(x1)] dzy + Ne

The constanty andc are chosen such that equations (11)

and (12) are satisfied. The uniqueness of the above Nash
equilibrium strategy comes from the fact that there is a
unique pair ok and+ that satisfy equations (11) and (12). (35)

Proof of Theorem 2 Therefore, for each fixed;, we want to choose & (z1)

Proof: With all usersi # 1 using a fixed power {0 maximize the term, (1, g1(x1)) — Agi(z1). For con-

allocation strategy;, we now explore the optimal powerVenience, leb = g;(x1). Then, we have
allocation strategy for user 1 which is denoteddy Let
ugl) : (x1,b) — R denote user 1's expected throughput
during a slot conditioning on the following events: F (g anb) (36)

« User 1's channel state i§; = z;. = ml?x/o pz(z)dz — b

o User 1's allocated power is
As before, we will drop the terny in the expression Maximizing L(b) with respect tob yields the first order

ugl)(xl, b), and simply write it asi; (21, b). Specifically, condition:

max L(b) = ui(z1,b) — b

we can the write the equation: OL(b) L1 S
ur(1,0) R T )
=P((1+ A)max(f2(X2), -+, fu(Xn)) < z1-D) ~A=0

=P((1+A)Y < 21 -b) (37)



SinceZ = max(Xy, -+, X,) andX;’s are i.i.d, we have [6]

= (n—1)z""2
paz) = (n 1) .

Now, consideh = g;(x1) = cx*. Since we are seeking
a symmetric Nash equilibrium power allocation strateg
useri # 1 will adopt the same strategy as user 1. Thus,
we havef(z) = z-g(x) = z-cx™ = ca™*+!. The second

term in Eq.(37) can be written as the following: (]

(38)

Similarly,

(39)

Eq.(37) can be re-written in the following form:

z1
+A

1
c(m +1)(1i5) *1a]

1 n—2 n—2

A “A=0

(n=1)(

(40)
Since the above equality has to hold forall [0, 1], the
following must be true

n—2 —-m __
xy Trrpewy =1

n — 1 andg;(z) = cz™ ! for all
|

Thus, we haven
i=1,--,n.
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