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Abstract— We present a game-theoretical model of a
wireless communication system with multiple competing
users sharing a multiaccess fading channel. With a speci-
fied capture rule and a limited amount of energy available, a
user opportunistically adjusts its transmission power based
on its own channel state to maximize the user’s own indi-
vidual throughput. We derive an explicit form of the Nash
equilibrium power allocation strategy. Furthermore, this
Nash equilibrium power allocation strategy is unique under
certain capture rule. We also quantify the loss of efficiency
in throughput due to user’s selfish behavior. Moreover, as
the number of users in the system increases, the total system
throughput obtained by using a Nash equilibrium strategy
approaches the maximum attainable throughput.

I. I NTRODUCTION

A fundamental characteristic of a wireless, or satellite,
network is that the channel over which communication
takes place is often time-varying. This variation of chan-
nel quality is due to constructive and destructive interfer-
ence between multipaths and shadowing effects (fading).
When multiple users try to communicate with a satellite,
one can exploit the channel variation opportunistically by
allowing the user with the best channel condition to trans-
mit. This transmission scheme implies the performance
of the network is dictated by the best channel state rather
than the average one. Hence, the total throughput of such
a network tends to increase with number of users.

An important assumption in using this kind scheme is
that there is a centralized scheduler who knows each user’s
channel condition. To get information about user’s chan-
nel condition, the scheduler will require each user to es-
timate its channel fading and transmit this information
back. As the number of users in the network increases, the
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delay in conveying user’s channel conditions to the sched-
uler will limit the system’s performance. Hence, a dis-
tributive multi-access scheme with no centralized sched-
uler becomes an attractive alternative.

Distributed multi-access schemes such as the aloha ran-
dom access protocol have long been studied. Recently, a
variation on the aloha scheme that takes user’s channel
state into consideration (channel-aware aloha) has been
proposed by [3]. In their formulation, each user only has
knowledge of its own channel condition, but no knowl-
edge of the channel fading of the other users sharing
the communication link. Capture was not considered in
their paper. In [8], the authors studies multiple power
level aloha with the objective of maximizing total sys-
tem throughput when channels are time invariant. In this
paper, we allow the satellite to capture packet depending
on the received power and assume the channel is a time-
varying fading channel. To maximize their own individ-
ual throughput subject to the available energy, users op-
portunistically adjust their transmission power based on
their own channel condition. Also, all of the aforemen-
tioned work assume that users will implement the same
mandated algorithm and behave in a predictable manner.
However, in a distributive environment, users may want to
change their communication protocols in order to improve
their own performance, making it impossible to ensure a
particular algorithm will be adopted by all users in the net-
work. Rather than following some mandated algorithm, in
this paper users are assumed to act selfishly (i.e., choose
their own power allocation strategies) to further their own
individual interests.

The communication system considered in this paper
consists of multiple users competing to access a satellite,
or a base-station. Each user has an average power con-
straint. Time is slotted. During each time slot, each user
chooses a power level for transmission based on the chan-
nel state of current slot, which is only known to itself.
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Depending on the capture model and the received power
of that user’s signal, a transmitted packet may be captured
even if multiple users are transmitting at the same slot.

With each user wants to maximize its own expected
throughput, we obtain a Nash equilibrium power alloca-
tion strategy which determines the optimal transmission
power control strategy for each user. Nash equilibrium
of a game is a set of strategies (one for each user) from
which there is no profitable unilateral deviation. The ob-
tained optimal power control strategy specifies how much
power a user needs to use to maximize its own throughput
for any possible channel state. Users get different aver-
age throughput based on their average power constraint.
Hence, this transmission scheme can be viewed as mech-
anism for providing quality of service (QoS) differentia-
tion; whereby users are given different energy for trans-
mission. The obtained Nash equilibrium power alloca-
tion strategy is unique under certain capture rule. When
all users have the same energy constraint, we obtained a
symmetric Nash equilibrium.

Due to the selfish behavior of individual users, the over-
all system throughput will be less than that of a system
where users employ the same mandated algorithm. This
loss in efficiency is also quantified. In the multiple users’
case, as the number of user in the system increases, the
symmetric Nash equilibrium strategy approaches the op-
timal algorithm specified by a system designer (i.e., algo-
rithm that results in the largest total system throughput).
In this case, there is no loss of efficiency when users em-
ploy the symmetric Nash equilibrium.

Game theoretical approaches to Aloha random access
problems have been explored by a number of researchers
recently (e.g., [2][9]). In [2], the authors characterized
the stability region for a slotted Aloha system with mul-
tipacket reception and selfish users for the case of perfect
information. In [9], the authors considered the problem
of a node computing its own optimal channel access rate
in a random access network with two-way traffic. In their
setting, a node is interested in both receiving as well as
transmitting packets. The existence of Nash equilibrium
is shown for node without power constraint as well as
with battery power constraint. Our work attempts to apply
game theory to the access of a wireless fading channel. In
particular, we show that the Nash equilibrium strategy de-
rived is well suited to be used as a power control scheme
when there is a large number of users in the system. Other
papers dealing with the application of game theory to the
random access and resource allocation problems in wire-
less network include [11][15][16].

This paper is organized as follows. In Section II, we de-
scribe the communication system. In Section III, we start

by presenting the Nash equilibrium strategy pair for the
two users game when the channel state is uniformly dis-
tributed over[0, 1]. The uniqueness of the Nash equilib-
rium strategy is shown under certain capture rule. A sym-
metric Nash equilibrium is also obtained when users have
the same average power constraint. We then explore the
Nash equilibrium strategy for general channel state distri-
bution. In section IV, a symmetric Nash equilibrium strat-
egy is derived for the multiple users case. The throughput
obtained by using the Nash equilibrium strategy is shown
to approach the maximum attainable throughput. Finally,
Section V concludes the paper.

II. PROBLEM FORMULATION

We consider a communication environment with multi-
ple users sending data to a single base station or satellite
over multiple fading channels. We assume that each user
always has data to be sent to the base station. Time is
assumed to be discrete, and the channel state for a given
user changes according to a known probabilistic model
independently over time. The channels between the users
and the base station are assumed to be independent of each
other. LetXi be a random variable denoting the channel
state for the channel between useri and the base station.

When multiple users are transmitting during the same
time slot, it is still possible for the receiver to capture one
(or more) user’s data. The capture model can be described
as a mapping from the received power of the transmitting
users to the set{1, · · · , n, 0}, where0 indicates no packet
is successfully received. In this paper, we are going to
investigate two capture models which will be presented in
the later sections.

We assume that each individual user is energy con-
strained. Specifically, each useri has anaverageamount
of energyei available to itself during each time slot. We
assume that theei values are known to all users, and that
users know the distribution ofXi’s. However, the exact
value of the channel stateXi is known to useri only at the
beginning of each time slot.

With a given capture model and the energy constraint,
the objective for each user is to design a power alloca-
tion strategy to maximize itsownexpected throughput (or
probability of success) per time slot subject to the ex-
pected or average power constraint. The power alloca-
tion strategy will specify how a user will allocate power
in every time slot upon observing its channel state. Under
power allocation strategygi(·), useri transmits a packet
with power equal togi(x) when it sees its channel condi-
tion in this time slot isXi = x. The received power at the
base station is denoted asfi(x) = x · gi(x).
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Formally, letFi be the set of continuous and bounded
real-valued functions with finite first and second deriva-
tive over the support ofXi. Then, the strategy space for
user i (the set of all possible power allocation schemes),
saySi, is defined as follows:

Si =
{

gi ∈ Fi

∣∣∣ E[gi(Xi) ≤ ei

}
(1)

III. T WO USERSCASE

We start by investigating users’ strategies in a commu-
nication system consisting of exactly two users and one
base station. The analytical method used in this section
will help us in obtaining equilibrium power allocation
scheme in the multiple users case. We begin our analy-
sis with the assumption that channel stateXi is uniformly
distributed over[0, 1] for all i. The Nash equilibrium
power allocation strategy with general channel state dis-
tribution is presented in the subsequent section.

Suppose user 1 and user 2 choose their power allo-
cation strategies to beg1 and g2 respectively. Given a
time slot with channel state realization(x1, x2), user 1
and user 2 will transmit their packets using power lev-
elsg1(x1) andg2(x2) respectively. The corresponding re-
ceived power at the base station aref1(x1) = x1 · g1(x1)
and f2(x2) = x2 · g2(x2). As in [4] and [5], the
capture model used in this section is the following: if
[x1 · g1(x1)]/[x2 · g2(x2)] ≥ K whereK ≥ 1, user 1’s
packet will be captured. Likewise, user 2’s packet will be
captured if[x2 · g2(x2)]/[x1 · g1(x1)] ≥ K. Thus, given
a power allocation strategy pair(g1, g2), whereg1 ∈ S1

andg2 ∈ S2, the expected throughput for user 1 is defined
as the following:

G1(e1, e2) = EX1,X2 [1f1(X1)≥K·f2(X2)] (2)

where

1f1(X1)≥f2(X2) =
{

1 if f1(X1) ≥ K · f2(X2)
0 otherwise

Similarly, the throughput function for user 2:

G2(e1, e2) = EX1,X2 [1f2(X2)>K·f1(X1)] (3)

A. Nash equilibrium strategy

In this part, we present a Nash equilibrium power al-
location strategy pair(g∗1, g

∗
2). A strategy pair(g∗1, g

∗
2) is

said to be in Nash equilibrium ifg∗1 is the best response
for user 1 to user 2’s strategyg∗2, andg∗2 is the best re-
sponse for user 2 to user 1’s strategyg∗1. We consider here
the case where both users choose their strategies from the

strategy spaceS1 andS2 and the value ofe1 ande2 are
known to both users.

To get the Nash equilibrium strategy pair, we first ar-
gue that at equilibrium the received power functionf∗i (xi)
must be strictly increasing inxi.

Lemma1: Given a Nash equilibrium power alloca-
tion strategy pair(g∗1, g

∗
2) and its corresponding received

power function (f∗1 , f∗2 ), the received power function
f∗1 (x1) must be strictly increasing inx1. Similarly,f∗2 (x2)
must be strictly increasing inx2.

Proof: For an arbitrary received power functionf
which is not strictly increasing, we can always find an-
other received power function that will result in a larger
throughput gain. To see this, consider time slots with
channel state in the small intervals(a − δ, a + δ) and
(b− δ, b + δ) wherea < b. Whenδ is small, the received
power function is close tof(a) for time slots in the inter-
val (a− δ, a + δ). Likewise, the received power function
is close tof(b) for time slots in the interval(b− δ, b + δ).

For received power functionf such thatf(a) = a ·
g(a) > f(b) = b · g(b) for somea < b. The total amount
of transmission power used in time slots with channel
state in the two intervals is given by:

[g(a) + g(b)]2δ = [
f(a)

a
+

f(b)
b

]2δ.

Now, if user 1 employs a new power allocation strategy
ḡ such thatḡ(b) = f(a)

b and ḡ(a) = f(b)
a , user 1 will

achieve the same expected throughput as before. How-
ever, the amount of power used[ḡ(b) + ḡ(a)]2δ is less
than[g(a) + g(b)]2δ, and the extra power can be used to
get higher throughput. Hence, both equilibrium received
power functionf∗1 (x1) and f∗2 (x2) must be strictly in-
creasing inx1 andx2 respectively.

With one user’s power allocation strategy, sayg2, fixed,
we now seek the optimal power allocation scheme for user
1. From Lemma 1, we see that the inverse off1 andf2 are
well defined. With user 2’s strategyg2 fixed, let u(1)

g2 :
(x1, b) → R denote user 1’s expected throughput of a slot
conditioning on the following events:

• User 1’s channel state isX1 = x1.
• User 1’s allocated power isb.

For convenience, we will drop the termg2 in the expres-
sionu

(1)
g2 (x1, b), and simply write it asu1(x1, b). Specifi-

cally, we can the write the equation:

u1(x1, b) = P (f2(X2) ·K ≤ x1 · b) (4)

whereP (f2(X2) ·K ≤ x1 · b) is the probability that user
1’s packet gets captured in a time slot. Consequently, us-
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ing a strategyg1, user 1’s throughput is given by:

G1(e1, e2) =
∫ 1

0
u1(x1, g1(x1)) · pX1(x1) dx1

=
∫ 1

0
u1(x1, g1(x1)) dx1.

(5)

where the last equality results from the uniform distribu-
tion assumption.

With user 1’s strategyg1 fixed, similar terms for user 2
can be defined.

u2(x2, b) = u(2)
g1

(x2, b) = P (f1(X1) ·K ≤ x2 · b)

Then, user 2’s throughput is given by:

G2(e1, e2) =
∫ 1

0
u2(x2, g2(x2)) · pX2(x2) dx2

=
∫ 1

0
u2(x2, g2(x2)) dx2.

(6)

Due to the uniformly distributed channel state,
P (f2(X2) ·K ≤ x1 · b) is given by

P (f2(X2) ·K ≤ x1 · b) =P (X2 ≤ f−1
2 (

1
K

x1 · b))

=f−1
2 (

1
K

x1 · b)

wheref−1
2 is well defined. Thus, we can rewrite Eq. (4)

as

u1(x1, b) = f−1
2 (

1
K

x1 · b).
Hence we have,

G1(e1, e2) =
∫ 1

0
f−1
2 (

1
K

x1 · g1(x1)) dx1 (7)

G2(e1, e2) =
∫ 1

0
f−1
1 (

1
K

x2 · g2(x2)) dx2 (8)

We begin our analysis of the Nash equilibrium strat-
egy pair by first considering the power allocation on the
boundary points0 and1. For a pair of power allocation
functions(g∗1, g

∗
2) to be a Nash equilibrium, it is straight-

forward to see thatg∗1(0) = g∗2(0) = 0 since it does not
make sense to allocate power for a slot with zero chan-
nel state. Likewise, we must haveg∗1(1) ≤ K · g∗2(1) and
g∗2(1) ≤ K ·g∗1(1) since allocating powerg1(1) = Kg2(1)
or g1(1) = Kg2(1) + ε, whereε > 0, will result in the
same throughput for user 1. We call these properties the
boundary conditions of a Nash equilibrium strategy pair.

With the boundary conditions satisfied, the following
lemma gives a necessary and sufficient condition for a pair
of power allocation strategies to be a Nash equilibrium

strategy pair. For convenience, we denote the marginal
gain for user 1 whenX1 = x1 and the allocated power
b = b∗ as

∂u1(x1, b)
∂b

|||b=b∗
4
= Du1(x1, b

∗).

Lemma2: Given a power allocation strategy pair
(g∗1, g

∗
2) that satisfies the boundary conditions,(g∗1, g

∗
2)

is a Nash equilibrium strategy pair if and only if
Du1(x1, g

∗
1(x1)) = c1 and Du2(x2, g

∗
2(x2)) = c2, for

some constantsc1 and c2, for all x1 ∈ [0, 1] and all
x2 ∈ [0, 1].

Note that the above lemma does not depend on the as-
sumption of the uniformly distributed channel state. Thus,
it is quite general and will be used in the subsequent sec-
tion where channel states are not uniformly distributed.
To understand the lemma intuitively, suppose there exists
x 6= x̃ such thatDu1(x, g∗1(x)) > Du1(x̃, g∗1(x̃)). Re-
ducing the power allocated atx̃ tog∗1(x̃)−δ and increasing
the power atx to g∗1(x)+δ will result in an increase in the
throughput by(Du1(x, g∗1(x))−Du1(x̃, g∗1(x̃)))·δ. Thus,
user 1 has an incentive to change its allocation function,
and(g∗1, g

∗
2) cannot be a Nash equilibrium strategy pair in

this case.
Proof: The complete proof is given in the Appendix.

With Lemma 2, we are able to find the Nash equilibrium
strategy pair. The exact form of the equilibrium power
allocation strategies are presented in the following Theo-
rem.

Theorem1: Given the average power constrainte1 and
e2, the Nash equilibrium power allocation strategy pair
has the following form:

g∗1(x) = c1 · xγ (9)

g∗2(x) = c2 · x
1
γ (10)

where the constantsc1, c2 andγ are chosen such that

∫ 1

0
c1 · xγ dx = e1 (11)

∫ 1

0
c2 · x

1
γ dx = e2 (12)

Equations (11) and (12) impose the average power con-
straints.

Proof: We show here thatg∗1(x) = c1 · xγ and

g∗2(x) = c2 · x
1
γ is indeed a Nash equilibrium strat-

egy pair by using the sufficiency condition of Lemma 2.
Since both functions are strictly increasing, we can write
u1(x, b) = f∗−1

2 ( 1
K x · b) andu2(x, b) = f∗−1

1 ( 1
K x · b)
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wheref∗i (x) = x · g∗i (x). Also, since bothf∗1 andf∗2 are
differentiable, we haveu1(x, b) andu2(x, b) both differ-
entiable with respect tob. Therefore, using

f∗2
′(x) = c2(1 +

1
γ

)x
1
γ , f∗1

′(x) = c1(1 + γ)xγ

f∗−1
2 (x) = (

1
c2

x)
γ

1+γ , f∗−1
1 (x) = (

1
c1

x)
1

1+γ

we have

∂u1(x, b)
∂b

∣∣∣
∣∣∣
∣∣∣b=g∗1(x) =

1
K x

f∗2
′(f∗2

−1( 1
K xg∗1(x)))

=
1
K x

f∗2
′([ c1

Kc2
]

γ
1+γ xγ)

=
1
K

c2(1 + 1
γ )( c1

Kc2
)

1
1+γ

.

Similarly,

∂u2(x, b)
∂b

∣∣∣
∣∣∣
∣∣∣b=g∗2(x) =

1
K x

f∗1
′(f∗1

−1( 1
K xg∗2(x)))

=
1
K x

f∗1
′([ c2

Kc1
]

1
1+γ x1/γ)

=
1
K

c1(1 + γ)( c2
Kc1

)
γ

1+γ

.

From Lemma 2, we see that(f∗1 , f∗2 ) is indeed a Nash
equilibrium strategy pair because bothDu1(x, g∗1(x)) and
Du2(x, g∗2(x)) are constants.

From the above theorem, we see that equations (9) and
(10) specify the Nash equilibrium power allocation strat-
egy pair. Since there are two equations with three un-
knowns, the resulting Nash equilibrium may not be unique
in general. However, if a packet with stronger received
power can always be captured (i.e.,K = 1), the Nash
equilibrium power allocation strategy is unique.

Corollary 1: For K = 1, the unique Nash equilibrium
power allocation pair has the following form:

g∗1(x) = c · xγ (13)

g∗2(x) = c · x 1
γ (14)

where the constantsc andγ are chosen such that the aver-
age power constraints are satisfied.

To show the corollary, we first present the following
Lemma.

Lemma3: If (g∗1, g
∗
2) is a Nash equilibrium strategy

pair,g∗1(1) = g∗2(1).
Proof: Supposeg∗1(1) 6= g∗2(1). Without loss of

generality, let assume thatg∗1(1) > g∗2(1). Since both
g∗1 and g∗2 are continuous, there existsδ > 0 such that

g∗1(x) > g∗2(1) + g∗1(1)−g∗2(1)
2 ∀x ∈ [1 − δ, 1]. User 1

can devise a new allocation strategy, sayḡ1, by moving
a small amount of power, sayδ · g∗1(1)−g∗2(1)

2 , away from

the interval[1− δ, 1] to some other interval, thus resulting
in an increase in user 1’s throughput. Therefore, when
g∗1(1) > g∗2(1), the power allocation strategy pair(g∗1, g

∗
2)

cannot be in equilibrium since the strategy pair(ḡ1, g
∗
2)

gives a higher throughput for user 1. Similar result holds
for the caseg∗2(1) > g∗1(1). Thus, we must haveg∗1(1) =
g∗2(1) if (g∗1, g

∗
2) is an equilibrium strategy pair.

The condition thatg∗1(1) = g∗2(1) will be useful in proving
the uniqueness of the Nash equilibrium. The complete
proof of the corollary is shown in the appendix.

Fig. 1 shows an example of the Nash equilibrium power
allocation strategy pair whene1 = 1 ande2 = 2. Since
user 1 has less average power than user 2, user 1 con-
centrates its power on time slots with very good channel
state. Fig. 2 shows the capture result when both users em-
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Fig. 1. An example of Nash equilibrium strategy pair fore1 = 1 and
e2 = 2.

ploy the Nash equilibrium strategy shown in Fig. 1. For a
time slot with channel state realization that fall into the re-
gion above the curve, user 2’s packet will be successfully
captured since user 2’s received power is higher than that
of user 1 in this region. Here, user 2 has more successful
transmissions than user 1 since it has more power.

B. General Channel State Distribution

In this section, we specify the conditions that a general
channel state distribution has to satisfy in order for a Nash
equilibrium strategy pair to exist.

From Lemma 1, one can see thatf1 andf2 have to be
increasing functions regardless of the distribution of the
Xi’s. Let pXi(·) denote the probability density function
of Xi with the support over an interval starting at zero.
AssumingK = 1, the probability that user 1’s packet will
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Fig. 2. Results obtained when using the Nash equilibrium strategy
pair fore1 = 1 ande2 = 2.

be captured in a time slot withX1 = x1 andg1(x1) = b
can be written as the following:

u1(x1, b) = P (f2(X2) ≤ x1 · b)
= P (X2 ≤ f−1

2 (x1 · b))

=
∫ f−1

2 (x1·b)

0
pX2(x2) dx2

(15)

From the optimality condition stated in Lemma 2, we
must haveDu1(x1, b) = c1 wherec1 is some constant.
This condition can be expanded as follows:

∂u1(x1, b)
∂b

= pX2(f
−1
2 (x1 ·b)) x1

f ′2(f
−1
2 (x1b))

= c1 (16)

Now, let’s focus on finding a symmetric Nash equilibrium
power allocation strategy. Substitutingb = g1(x1), the
termf−1

2 (x1 · b) is equal tof−1
2 (f1(x1)) = x1 sincef1 =

f2. Thus, Eq.(16) can be reduced to the following:

pX2(x1)
x1

f ′2(x1)
= c1

⇒f ′2(x1) =
1
c1

x1 · pX2(x1)
(17)

The above equation provides a condition on the distribu-
tion of theXi such that there exists a Nash equilibrium
power allocation scheme. The condition can be restated
as the following:

x1 · g1(x1) =
∫

1
c1

x1 · pX2(x1) dx1 (18)

From the above condition, for example, we see that if
pX2(·) is a strictly increasing polynomial, there exist a
Nash equilibrium power allocation strategy.

IV. M ULTIPLE USERSEQUILIBRIUM STRATEGIES

In this section, we explore the Nash equilibrium power
allocation strategies whenn users are competing to access

the single base station. Useri’s power allocation function
is denoted asgi(·). Given a time slot with channel state
realization~x = (x1, · · · , xn), the transmitting power for
each user isgi(xi). The corresponding received power at
the base station is again denoted asfi(xi) = xi · gi(xi).
The new capture rule used in this section is given as the
following: a packet from user 1 will be successfully re-
ceived if the following holds:

f1(x1) ≥ (1 + ∆) max(f2(x2), · · · , fn(xn))

Similar capture model can be found in [7] (i.e., protocol
model). The quantity∆ models situations where a guard
zone is specified to prevent interference. Note also that
the capture rule used in the two users’ case can be viewed
as a special case the above capture rule.

We start with each user facing the same average power
constraint (i.e.,e1 = e2 = · · · = en). Since users are
identical, it is reasonable to seek a symmetric Nash equi-
librium power allocation strategy. Specifically, the set of
strategies(g1 = g, · · · , gn = g) is said to be a symmetric
Nash equilibrium strategies ifgi = g is the best power
allocation strategy for useri when all other users are also
employing the power allocation strategyg. For a power
allocation functiong to be a symmetric Nash equilibrium
strategy,f(x) = xg(x) must be a strictly increasing func-
tion using a similar argument as in the two users case. The
following theorem shows the existence and the form of a
symmetric Nash equilibrium power allocation strategy.

Theorem2: Given that each user has the same average
power constraint, there exists a symmetric Nash equilib-
rium power allocation strategy with the following form:

gi(xi) = c · xn−1
i ∀ i ∈ {1, · · · , n} (19)

wherec is chosen such that the average power constraint
is satisfied.

Proof: The complete proof is given in the Appendix.

With the symmetric Nash equilibrium power allocation
strategy given in Eq.(19), the expected throughput for
each user is given by:

P (f(X1) ≥ (1 + ∆) max(f(X2), · · · , f(Xn)))
= P (Xn

1 ≥ (1 + ∆) max(Xn
2 , · · · , Xn

n ))

= P (X1 ≥ (1 + ∆)
1
n max(X2, · · · , Xn))

(20)

To quantify the loss of efficiency due to users’ selfish be-
havior, we consider a system where all users implement
the same power allocation policy provided by a system
designer such that the overall system throughput is maxi-
mized. To find such scheme, we solve the following opti-



7

mization problem as in the two users’ case:

max
v∈S1

P (X1v(X1) ≥(1 + ∆)

·max(X2v(X2), · · · , Xnv(Xn))

By symmetry, we have the following upper bound for the
above probability:

P (X1v(X1) ≥ (1 + ∆) ·max(X2v(X2), · · · ,Xnv(Xn))

<
1
n

As in the two users’ case, we consider a series of func-
tions,vm(x) = xm for m ≥ 1. As m →∞, we have

P (Xm+1
1 ≥ (1 + ∆) ·max(Xm+1

2 , · · · , Xm+1
n ))

= P (X1 ≥ (1 + ∆)
1

m+1 max(X2, · · · , Xn)) → 1
n

Thus, there indeed exists a power allocation scheme that
will achieve the maximum possible throughput. In other
words, it is possible to have a packet successfully captured
in every time slot. Now, when users behave selfishly, the
expected throughput for each user is given as follows from
Eq.(20):

P (X1 ≥ (1 + ∆)
1
n max(X2, · · · , Xn)) (21)

As n increases, the above equation goes to1/n which
is the maximum attainable throughput. Therefore, as the
number of users becomes large, the symmetric Nash equi-
librium power allocation scheme is optimal in the sense
that the throughput obtained approaches the maximum at-
tainable throughput.

For the special case where∆ = 0, the capture rule be-
comes that the user with the largest received power get
captured. With this simple rule, a Nash equilibrium strat-
egy can be derived with general channel state distribution
(i.e., Xi has probability density functionpXi(·)). From
Eq.(37), we have

pZ(f−1(x1 · b)) x1

f ′(f−1(x1 · b)) = c

f ′(x1) =
1
c
x1pZ(x1)

(22)

where

pZ(z) = (n− 1)pX1(z)[
∫ z

0
pX1(x) dx]n−2.

Hence, we can write the received power function as the
following:

f(x) =
1
c

∫
xpZ(x) dx

From the above equation, one can get the optimal power
allocation function by usingg(x) = f(x)

x .

V. CONCLUSION

In this paper, we consider a communication system
with multiple users competing for the access of a single
satellite, or base station. With a specified capture rule
and an average power constraint, users opportunistically
adjust their transmission power based on their own chan-
nel state to maximize their own individual throughput.
Nash equilibrium power allocation strategy is character-
ized, and the resulting throughput efficiency loss is quan-
tified. As the number of users increases, the Nash equi-
librium power allocation strategy approaches the optimal
power allocation strategy.

In our analysis of the Nash equilibrium power alloca-
tion algorithm, users are assumed to be backlogged. In
practice, such assumption may not be appropriate. How-
ever, when users do not have data for transmission, one
can viewed it as a particular user having a bad channel.
Thus, it will be interesting to see whether a Nash equi-
librium exists for a channel distribution with significant
probability been zero.

APPENDIX

Proof of Lemmma 2

Proof: We first show that if(g∗1, g
∗
2) is a Nash

equilibrium strategy pair thenDu1(x1, g
∗
1(x1)) and

Du2(x2, g
∗
2(x2)) must be constants for allx1 ∈ [0, 1] and

x2 ∈ [0, 1]. From user 1’s perspective withg∗2 fixed, con-
sider a small variation of the functiong∗1. Specifically,
let gδ = g∗1 + δ(ĝ − g∗1) where ĝ is an arbitrary func-
tion in S1. Since botĥg andg∗1 are inS1, they are both
bounded (i.e.,|ĝ(x1)| ≤ B and |g∗1(x1)| ≤ B for all
x1 ∈ [0, 1]). Therefore, we have|gδ(x1)−g∗1(x1)| ≤ 2Bδ
for all x1 ∈ [0, 1]. Using the Lagrange’s form of Taylor’s
theorem, we get for anyx1 ∈ [0, 1], there exists a real
numberc[x1] ∈ [g∗1(x1), gδ(x1)] such that

u1(x1, gδ(x1)) = u1(x1, g
∗
1(x1))

+ δ(ĝ(x1)− g∗1(x1))
∂u1(x1, b)

∂b

∣∣∣
∣∣∣
∣∣∣b=g∗1(x1)

+
1
2
δ2(ĝ(x1)− g∗1(x1))2

∂2u1(x1, b)
∂b2

∣∣∣
∣∣∣
∣∣∣b=c[x1]

(23)

The last term is bounded byK · δ2 for someK since
bothĝ andg∗1 are bounded, andu1(x1, b) has finite second
derivative. Therefore, for small enoughδ, it is negligible
comparing with the other terms.

Now we show that ifDu1(x1, g
∗
1(x1)) is not a constant

for all x1 ∈ [0, 1], we can find a strategygδ which gives
user 1 a higher throughput thang∗1. To do that, we can
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write the following equations:

∫ 1

0
u1(x1, fδ(x1)) dx1 −

∫ 1

0
u1(x1, f

∗
1 (x1)) dx1

= δ

∫ 1

0
(ĝ(x1)− g∗1(x1))

∂u1(x1, b)
∂b

∣∣∣
∣∣∣
∣∣∣b=g∗1(x1) dx1

+ o(δ)

(24)

Now, sinceDu1(x1, g
∗
1(x1)) is not a constant for allx1 ∈

[0, 1], we can find âg such that the above equation is pos-
itive which implies that there is an incentive for user 1 to
usegδ. Hence,(g∗1, g

∗
2) is not a Nash equilibrium strategy

pair. Similarly, we can show thatDu2(x2, g
∗
2(x2)) is a

constant for allx2 ∈ [0, 1] if (g∗1, g
∗
2) is a Nash equilib-

rium strategy pair.
For the converse, consider again Eq.(24). Since

Du1(x1, g
∗
1(x1)) = ∂u1(x1,b)

∂b

∣∣∣
∣∣∣
∣∣∣b=g∗1(x1) equals to a con-

stantc1 for all x1 ∈ [0, 1]. We have

δ

∫ 1

0
(ĝ(x1)− g∗1(x1))

∂u1(x1, b)
∂b

∣∣∣
∣∣∣
∣∣∣b=g∗1(x1) dx1

= δc1

∫ 1

0
(ĝ(x1)− g∗1(x1)) dx1 = 0

(25)

for all ĝ ∈ S1 (i.e.,
∫ 1
0 ĝ(x1) dx1 = e1). Thus, there is no

incentive for user 1 to use strategyĝ. Therefore,(g∗1, g
∗
2)

is a Nash equilibrium strategy pair.

Proof of Corollary

We have established thatg∗1(1) = g∗2(1) is a necessary
condition for (g∗1, g

∗
2) to be an equilibrium strategy pair

from lemma 3. Combining withg∗1(0) = g∗2(0) = 0, we
will consider only the function pairg1 ∈ S1 and g2 ∈
S2 that satisfy the above two boundary conditions (i.e.,
g1(1) = g2(1) andg1(0) = g2(0) = 0).

Consider any Nash equilibrium strategy pair(g1, g2)
under the capture rule described in the two users’ case.
From previous discussion, we know that the inverse func-
tions,f−1

2 andf−1
1 wheref1 = xg1(x) andf2 = xg2(x),

are well defined. With user 2’s strategyg2 fixed, we have

u1(x1, b) = P (f2(X2) ≤ x1 · b) = f−1
2 (x1 · b)

Similarly, with user1’s strategyf1 fixed, we get

u2(x2, b) = P (f1(X1) ≤ x2 · b) = f−1
1 (x2 · b)

From Lemma 2, we know thatDu1(x1, g1(x1)) and
Du2(x2, g2(x2)) are two constants for allx1 ∈ [0, 1] and
x2 ∈ [0, 1] since(g1, g2) is a Nash equilibrium strategy
pair.

Now, consider the set of channel state pair(x1, x2) such
that f1(x1) = f2(x2) (i.e., two users’ received power
are equal). It forms a separation line in space span by
X1 andX2. Mathematically, this line can be defined as
h : [0, 1] → [0, 1] such thatx2 = h(x1) = f−1

2 (f1(x1)).
By the capture rule, a slot with channel state(x1, x

′
2) will

be successfully used by user 2 if(x1, x
′
2) is above the line

x2 = h(x1) and by user 1 if(x1, x
′
2) is below the separa-

tion line. Fig.2 shows an example ofh(x1). The following
lemma shows the uniqueness ofh(x1). We then derive the
uniqueness of the strategy pair(g1, g2) from the lemma.

Lemma4: If Du1(x1, g1(x1)) and Du2(x2, g2(x2))
are two constants,c1 andc2 respectively, for allx1 ∈ [0, 1]
andx2 ∈ [0, 1], thenh(x1) = x

c1/c2
1 .

Proof: Since Du1(x1, g1(x1)) = c1, from
u1(x1, b) = f−1

2 (x1, b), we have

Du1(x1, g1(x1)) =
∂u1(x1, b)

∂b

∣∣∣
∣∣∣
∣∣∣b=g1(x1)

=
x1

f ′2(f
−1
2 (x1 · g1(x1)))

=
x1

f ′2(f
−1
2 (f1(x1)))

= c1

f ′2(h(x1)) =
x1

c1
(26)

Similarly, for user 2, we get

Du2(x2, f2(x2)) =
∂u2(x2, b)

∂b

∣∣∣
∣∣∣
∣∣∣b=g2(x2)

=
x2

f ′1(f
−1
1 (f2(x2)))

= c2

f ′1(h
−1(x2)) =

x2

c2
(27)

We also know thatf1(x1) = f2(h(x1)) andf ′1(x1) =
f ′2(h(x1)) · h′(x1). Thus, we have

f ′1(h
−1(x2)) = f ′2(h(h−1(x2))) · h′(h−1(x2))

= f ′2(x2) · h′(x1)
= f ′2(h(x1)) · h′(x1)

(28)

By combining the equationsf ′1(h
−1(x2)) = x2

c2
and

f ′1(h
−1(x2)) = f ′2(h(x1)) · h′(x1), we get

x2

c2
= f ′2(h(x1)) · h′(x1).

Next we substitute Eq.(26) andx2 = h(x1) in the above
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equation to obtain,

x1 · dh(x1)
dx1

=
c1

c2
h(x1)

dh(x1)
h(x1)

=
c1

c2

dx1

x1

ln |h(x1)| =
c1

c2
ln |x1|+ c3

h(x1) = ec3 · x
c1
c2
1

Combined with fact thath(1) = 1, we geth(x1) = x
c1
c2
1 .

Now, we are in a position to derive the exact form of
the Nash equilibrium strategy pair. From the equations
f ′1(h

−1(x2)) = x2
c2

andx2 = h(x1), we getf ′1(x1) =
h(x1)

c2
= x

c1
c2
1 /c2. Combined with the condition that

f1(0) = 0, we havef1(x) = 1
c1+c2

x
c1
c2

+1
. Following the

similar method, we getf2(x) = 1
c1+c2

x
c2
c1

+1
. Let γ = c1

c2

andc = 1
c1+c2

, the received power of a Nash equilibrium
strategy pair must have the following form:

f∗1 (x1) = c · xγ+1
1 (29)

f∗2 (x2) = c · x
1
γ
+1

1 (30)

Consequently, we have the Nash equilibrium power allo-
cation strategy to be the form:

g∗1(x1) = c · xγ
1 (31)

g∗2(x2) = c · x
1
γ

1 (32)

The constantγ andc are chosen such that equations (11)
and (12) are satisfied. The uniqueness of the above Nash
equilibrium strategy comes from the fact that there is a
unique pair ofc andγ that satisfy equations (11) and (12).

Proof of Theorem 2

Proof: With all usersi 6= 1 using a fixed power
allocation strategyg, we now explore the optimal power
allocation strategy for user 1 which is denoted byg∗1. Let

u
(1)
g : (x1, b) → R denote user 1’s expected throughput

during a slot conditioning on the following events:
• User 1’s channel state isX1 = x1.
• User 1’s allocated power isb.

As before, we will drop the termg in the expression
u

(1)
g (x1, b), and simply write it asu1(x1, b). Specifically,

we can the write the equation:

u1(x1, b)
=P ((1 + ∆)max(f2(X2), · · · , fn(Xn)) ≤ x1 · b)
=P ((1 + ∆)Y ≤ x1 · b)

where Y = max(f2(X2), · · · , fn(Xn)). Since all
usersi 6= 1 use the same strategyg, we haveY =
max(f(X2), · · · , f(Xn)) wheref(Xi) = Xi · g(Xi) for
all i 6= 1. Moreover, sincef is strictly increasing, we can
write:

Y = max(f(X2), · · · , f(Xn)) = f(max(X2, · · · , Xn))

DenotingZ = max(X2, · · · , Xn), we have the follow-
ing:

u1(x1, b) = P ((1 + ∆)Y ≤ x1 · b)
= P (Z ≤ f−1(

1
1 + ∆

x1 · b))

=
∫ f−1( 1

1+∆
x1·b)

0
pZ(z) dz

(33)

wherepZ(·) denote the probability density function of the
random variableZ. The optimization problem that user 1
faces can be written as the following:

maxG1(e) =
∫ 1

0
u1(x1, g1(x1)) · pX1(x1) dx1

=
∫ 1

0
u1(x1, g1(x1)) dx1

subj.
∫ 1

0
g1(x1) dx1 ≤ e

(34)

Writing the Lagrangian function, we have

∫ 1

0
u1(x1, g1(x1)) dx1 − λ(

∫ 1

0
g1(x1) dx1 − e)

=
∫ 1

0
[u1(x1, g1(x1))− λg1(x1)] dx1 + λe

(35)

Therefore, for each fixedx1, we want to choose ag1(x1)
to maximize the termu1(x1, g1(x1))− λg1(x1). For con-
venience, letb = g1(x1). Then, we have

max
b

L(b) = u1(x1, b)− λb

= max
b

∫ f−1( 1
1+∆

x1·b)

0
pZ(z) dz − λb

(36)

Maximizing L(b) with respect tob yields the first order
condition:

∂L(b)
∂b

=pZ(f−1(
1

1 + ∆
x1 · b))

x1
1+∆

f ′(f−1( 1
1+∆x1 · b))

− λ = 0
(37)
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SinceZ = max(X2, · · · , Xn) andXi’s are i.i.d, we have

pZ(z) = (n− 1)zn−2.

Now, considerb = g1(x1) = cxm
1 . Since we are seeking

a symmetric Nash equilibrium power allocation strategy,
useri 6= 1 will adopt the same strategy as user 1. Thus,
we havef(x) = x ·g(x) = x ·cxm = cxm+1. The second
term in Eq.(37) can be written as the following:

f ′(f−1(
1

1 + ∆
x1 · b))

= f ′(f−1(
c

1 + ∆
x1 · xm

1 ))

= f ′((
1

1 + ∆
x1 · xm

1 )
1

m+1 )

= c(m + 1)(
1

1 + ∆
)

m
m+1 xm

1

(38)

Similarly,

pZ(f−1(
1

1 + ∆
x1 · b))

= pZ((
1

1 + ∆
)

1
m+1 x1)

= (n− 1)(
1

1 + ∆
)

n−2
m+1 xn−2

1

(39)

Eq.(37) can be re-written in the following form:

(n−1)(
1

1 + ∆
)

n−2
m+1 xn−2

1

x1
1+∆

c(m + 1)( 1
1+∆)

m
m+1 xm

1

−λ = 0

(40)
Since the above equality has to hold for allx1 ∈ [0, 1], the
following must be true

xn−2
1 · x1 · x−m

1 = 1

Thus, we havem = n − 1 andgi(x) = cxn−1 for all
i = 1, · · · , n.
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