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Uniform vs. Non-uniform Band Switching in
WDM Networks

Li-Wei Chen, Poompat Saengudomlert, Eytan Modiano

Abstract— We compare the effectiveness of uniform versus
non-uniform waveband switching under the dual cost metrics of
switching requirements and fiber capacity. We consider a star
topology and begin by characterizing the optimal performance
frontier achievable under no restrictions on waveband sizing, and
provide algorithms employing non-uniform waveband sizing that
approach or achieve this optimum. We then consider the special
case of uniform waveband sizing, and show that the performance
compares very favorably. We also extend our results to general
topologies.

I. I NTRODUCTION

THE MAJORITY of the routing and switching literature for
WDM networks has focused on how to minimize the to-

tal number of wavelengths [1], [2], [3], [4], [5], [6], [7], [8],
since the number of wavelengths used specifies the amount of
capacity required on each fiber. However, this single-resource
approach does not take into account the switching necessary at
each node which routes each call to its destination. Switching
costs can easily dominate bandwidth costs in systems with a
large number of calls. In a conventional WDM system, each in-
put fiber is typically demultiplexed into wavelengths, and each
wavelength relies on aN × N switch to route it to the appro-
priate output fiber, whereN is the nodal degree. The number
of switches required is equal to the number of wavelengths. For
large networks with many wavelengths, this approach can re-
quire many, often expensive switches.

Waveband switching, also known as band switching, at-
tempts to address this problem. The approach is based on the
observation that if the number of input wavelengths per fiber
is large relative to the number of output fibers, many of the
wavelengths will need to be switched between the same fiber
pairs. Waveband switching tries to group the wavelengths into
wavebands such that all wavelengths in the same waveband
can be switched together, allowing the processing to be per-
formed at this coarser waveband level and reducing the num-
ber of switches required. With waveband switching each fiber
would only be demultiplexed into wavebands, and the number
of switches required would equal the number of wavebands.
Since the number of wavebands required is typically much
smaller than the number of wavelengths, this can greatly reduce
the processing and switching costs.

In this paper, we consider the resources of interest to be
the number of wavelengths and wavebands required by a given
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Fig. 1. The region of achievable wavelength-waveband tradeoffs.

banding algorithm. Reducing the requirement for either quan-
tity reduces the costs in the network. Conceptually, every
banding algorithm can be represented by a point in a two-
dimensional performance space, as illustrated in Figure 1, in-
dicating the number of wavelengths and wavebands required
by the algorithm. The shaded area in the figure represents the
achievable region of performance over all possible algorithms.
The goal is to characterize the optimal frontier of achievable
performance. This frontier would give the optimal tradeoff be-
tween wavelengths and wavebands achievable.

There has been some work in the literature addressing the
waveband switching problem. Many papers consider the prob-
lem of waveband allocation for static traffic. In [9], [10], [11],
integer linear programming formulations are given for a variety
of topologies, and the problem of optimal waveband allocation
is shown to be NP-complete. In [12], efficient algorithms for
dynamic traffic are considered under a simplified traffic model
that limits traffic to a single source node and does not allow
wavelength overprovisioning, even if it results in fewer wave-
bands.

In this paper, we consider dynamic traffic under the more
general problem of determining the optimal tradeoff between
wavelengths and wavebands in band switching. Furthermore,
we allow a more general traffic model where every node is per-
mitted to send traffic into the network. We first characterize the
optimal tradeoff with no restrictions on waveband sizing, and
derive efficient algorithms for achieving it. We then consider
imposing the restriction that all wavebands must be uniformly
sized, and show that the performance of uniform waveband al-
gorithms compare very favorably with the optimum.
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Fig. 2. (a) Single-source case, where a single source node sends a total of at
mostP calls to up toN destinations. (b) Multi-source case, where each ofN
nodes sends and receives a total ofP calls.

A. System Model

In this paper, we adopt theP -port traffic model from [4],
which assumes thatP transmitters and receivers are available
at each network node. This allows each node to send and re-
ceive a total of at mostP calls at any given time. If the in-
stantaneous traffic is represented by a matrix where each entry
(i, j) consists of the number of calls sent from nodei to node
j, the P -port model constrains each row and column sum to
be at mostP . Any traffic set with a matrix obeying this con-
straint is termedadmissible, and no calls in an admissible set
may be blocked. Under this model, sufficient resources must
be provisioned to support any admissible set. Call arrivals and
departures may occur in arbitrary fashion, as long as the resul-
tant traffic set remains admissible; these dynamic arrivals and
departures are represented by transitions between different ad-
missible sets. This model is attractive because it limits traffic in
a realistic fashion based on hardware constraints, and also al-
lows dynamic aspects of the traffic to be captured without mak-
ing assumptions about the call statistics.

We primarily consider the star topology in this paper, with
Section V describing extensions of our results to other topolo-
gies. This topology is representative of a hub or switch node
in a network. All nodes are connected via bidirectional fibers
to a central hub, which performs the switching. We assume no
wavelength conversion, so calls must use the same wavelength
on all hops. To avoid collision, no two calls may use the same
wavelength in the same direction on the same fiber. We consider
both the single-source case, where only a single node transmits,
and the more general multi-source case, where every node may
transmit. These situations are illustrated in Figure 2.

The problem of band switching under this model may be for-
mulated as a matrix decomposition. Under the banding prob-
lem, we are given a traffic matrixC where each entry[C]i,j
represents the number of calls transmitted from source nodei
to destination nodej. In the single-source case, the traffic ma-
trix is a vector of size1×N ; for multi-source traffic, the traffic
matrix is a squareN ×N matrix. Note thatC may change over
time due to call arrivals and departures. For a fixedC, the goal
is to group the calls into bands such that calls within the same
band that have the same source node go to the same destination.
This can be expressed mathematically by

C ≤ b1T1 + b2T2 + . . . + bBTB (1)

where eachbi is an integer representing the size of waveband
i, and eachTi represents the corresponding switch configura-

tion. Ti is therefore either a unit vector (single-source case) or
a permutation matrix (multi-source).

Any set of wavebands specifying a valid decomposition is
sufficient to support the particular traffic matrixC to which it
applies. We impose two additional constraints: we require that
B and{bi}must be fixed over all admissible traffic sets. Fixing
B is essential sinceB corresponds to the number of switches re-
quired, a hardware requirement that should not depend on ran-
dom changes in the traffic. Fixing the band sizes{bi} removes
the need for dynamically tunable filters, reducing costs. Un-
der these two constraints, we require that banding algorithms
be characterized by fixed values ofB and{bi} such that for
each admissible traffic setC, the algorithm is able to specify a
decomposition according to (1) with specific switch configura-
tions Ti for each wavebandi. Recall that the performance of
each banding algorithm can be judged by the number of wave-
lengths and wavebands it requires. The number of wavebands
is given directly byB, while the total number of wavelengths
can be calculated as

∑B
i=1 bi.

As illustrated in Figure 1, our goal is to find the optimal
achievable frontier. The most general formulation of this prob-
lem is to allow the waveband sizes{bi} to be non-uniform. Any
uniform-waveband algorithm will then be a valid special case.
Under the general formulation, we can divide this problem into
three parts. Note that Figure 1 shows two asymptotes to the
achievable region: one corresponding to the minimum possible
number of wavelengths required (theminimum-wavelength as-
ymptote, shown on the bottom of the achievable region), and
the other corresponding to the minimum number of wavebands
(the minimum-waveband asymptote, shown to the left of the
achievable region). The first two parts of the problem focus on
these asymptotes, and attempt to determine the optimal points
on these lines. Specifically, we denote any algorithm with per-
formance achieving the minimum possible number of wave-
lengths to be aminimum-wavelength algorithm. The problem
of finding the best minimum-wavelength algorithm is known as
theminimum-wavelength problem. Similarly, any algorithm us-
ing the minimum possible number of wavebands is aminimum-
waveband algorithm; finding the best minimum-waveband al-
gorithm is theminimum-waveband problem.

Once solutions to the minimum-wavelength and minimum-
waveband problems are obtained, two points on the optimal
frontier are known. It then remains only to find the best trade-
off between wavelengths and wavebands achievable between
these two points. Ideally, such a tradeoff should present a curve
which adheres as closely as possible to the asymptotes, present-
ing the best possible tradeoff. Obtaining the best possible such
tradeoff is the subject of the final component of the banding
problem.

In Section II, the banding problem is investigated for the
single-source traffic case. In Sections III and IV, banding for
general multi-source traffic is considered. We will compare
the special case of uniformly-sized wavebands to the more gen-
eral non-uniform case, and show that uniform waveband sizing
compares very favorably. Finally, Section V describes extend-
ing the results of the paper to general network topologies.
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Fig. 3. The switching configurations for the 3 unique maximal traffic sets of
Example 1. The traffic sets shown are: (a) [4,0] (b) [3,1] (c) [2,2].

II. WAVEBAND SWITCHING FOR SINGLE-SOURCETRAFFIC

In this section, we consider the banding problem for the case
of single-source traffic. Under this scenario, a single source
node sends up toP units of traffic to be switched toN pos-
sible destination nodes. The primary purpose of investigating
the single-source model is to derive intuition for the design of
good banding algorithms that will be beneficial in addressing
the multi-source traffic case in the next section. The single-
source model also has some merit in cases of a one-to-many
traffic scenario.

Example 1:Consider the case ofP = 4, N = 2. In this
example, the source sends 4 calls, distributed among 2 destina-
tions. There are only 5 possible maximal traffic sets, which (ex-
pressed in vector form) are[4, 0], [3, 1], [2, 2], [1, 3], and[0, 4].
Clearly at least 4 wavelengths are required to support the traffic,
since there are 4 calls. We can show that if we restrict ourselves
to using only 4 wavelengths (i.e. we consider the minimum-
wavelength problem), the minimum number of wavebands re-
quired is 3: one band of size 2, and two bands of size 1. By
exhaustive verification we can prove that this waveband sizing
is sufficient for all possible traffic sets:

[4, 0] = 2 · [1, 0] + 1 · [1, 0] + 1 · [1, 0]
= 2e1 + e1 + e1

[3, 1] = 2e1 + e1 + e2

[2, 2] = 2e1 + e2 + e2

whereei is a unit vector with theith entry equal to 1.
Note that, as required, the sizes of each band and total num-

ber of bands are fixed, and only the accompanying unit vectors
(which correspond to the switch configurations for each band)
change between traffic sets. The switching of each waveband
for each scenario is illustrated in Figure 3. In this example, the
savings in switching is not large because the number of calls
is not very large relative to the number of destinations. As the
number of calls increases, the savings will increase as well.

The number of wavebands can be further reduced if the use of
additional wavelengths is permitted. One possibility is to have
one band of size 3, and one band of size 2. This reduces the
number of wavebands to two, and these two wavebands can still
support all 5 possible traffic sets. However, the total number
of wavelengths used has increased to 5. Efficient methods of
making these sorts of tradeoffs will be discussed.

We consider the two special cases of the minimum-
wavelength and minimum-waveband problems. Recall that the
solutions to these two problems will provide two points on the

optimal achievable performance frontier. We will defer the dis-
cussion of obtaining good tradeoffs between these two points
until the multi-source case.

A. The Minimum-Wavelength Problem

Recall that for the minimum-wavelength problem, we con-
sider only banding algorithms that use the minimum possible
number of wavelengths. Under theP -port model, a minimum
of P wavelengths are clearly necessary and sufficient: up to
P calls can be sent, and if each wavelength is individually
switched,P wavelengths can support all the calls. The goal
is to find the optimal algorithm that uses onlyP wavelengths.

Since the number of wavelengths equals the maximum pos-
sible number of calls, given a maximal admissible traffic set,
each wavelength must be used to support a call. Therefore, the
minimum-waveband problem is equivalent to finding a method
of partitioning theP wavelengths into wavebands such that, for
any admissible traffic set, there exists a method for assigning
calls to wavebands such that every wavelength is assigned a
call. Furthermore, the optimal minimum-wavelength algorithm
should accomplish this while at the same time minimizing the
total number of wavebands. We show in this section that the
optimal minimum-wavelength banding algorithm is a greedy al-
gorithm. Specifically, the greedy algorithm chooses waveband
sizes recursively, where at each step a waveband is chosen to
be as large as possible subject to the constraint that every wave-
length in that band can always be assigned a call under any
maximal admissible traffic set. (We say that in this case every
wavelength can befully utilized.)

Definebmax(N, P ) to be the maximum waveband size that
we can guarantee will be fully utilized by any traffic set send-
ing P calls toN destinations. Since all calls in the waveband
must go to the same destination, this is equivalent to providing
a guarantee that a destination node can always be found (un-
der any admissibleP -port traffic set) which receives at least
bmax(N, P ) calls. To illustrate, when considering the exam-
ple in Figure 3, we note that over all admissible traffic sets, a
destination can always be found which receives at least 2 calls,
leading to the conclusion thatbmax(N, P ) = 2 in that case. In
general, we can guarantee that at least one of the destinations
receivesdP/Ne calls. Furthermore, this is the largest num-
ber for which we can make this guarantee; this follows from
the fact that one admissible traffic set is where the traffic is
divided evenly (up to a difference of one wavelength due to
integer constraints) among all destinations, and no destination
receives more thandP/Ne calls under this traffic set. Therefore
bmax(N, P ) = dP/Ne.

Single-Source Greedy Algorithm:
1) Let P1 = P be the number of calls remaining andN be

the number of nodes. Leti = 1.
2) Let wavebandi be of sizebi = bmax(N,Pi) = dPi/Ne.
3) Locate a destination receiving at leastbmax(N, Pi)

calls. Route wavebandi to this destination, and assign
bmax(N, Pi) calls to it. The number of calls remaining
becomesPi+1 = Pi − bmax.

4) If Pi+1 > 0, let i ← i + 1 and go to Step 2.
Example 2:We revisit Example 1 and show how the greedy

algorithm is used to obtain the minimum-wavelength waveband
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sizes used in Figure 3. In that example,P = P1 = 4 and
N = 2. In the first iteration, the greedy algorithm chooses
the first waveband to be of sizedP1/Ne = d4/2e = 2. As
a corollary, we are guaranteed that 2 calls can be assigned to
this waveband, leavingP2 = 2 calls unassigned. The next two
iterations partition the remaining wavelengths into bands of a
single wavelength each, for a final partition of{2, 1, 1}.

We must now show that choosing the waveband sizes using
the greedy algorithm is optimal for the minimum-wavelength
problem. The full proof, omitted here for brevity, is based on
establishing that the minimum number of wavebands required
to support a given number of calls is non-decreasing in the num-
ber of calls. It therefore follows that the optimal approach for
choosing each waveband size is to choose the band as large as
possible, thereby minimizing the amount of traffic which re-
mains (and therefore the subsequent number of wavebands).

The greedy algorithm provides a method for optimally de-
termining waveband sizes for the minimum-wavelength prob-
lem. This also implicitly provides a way of determining the
minimum number of wavebands required (i.e. by running the
algorithm and counting the number of wavebands produced).
We can also derive an explicit upper bound on the minimum
number of wavebands required in the minimum-wavelength
scenario. We proceed by relaxing the integer constraints on
bmax(N, P ). Let Pk be the number of calls remaining after
running thekth iteration of the greedy algorithm. The series
progresses as follows:

Pk =
(

1− 1
N

)k

· P (2)

If P ≤ N , then the number of bandsB is simply equal to
P since each band is composed of only a single wavelength.
Therefore considerP > N and determine the number of bands
k required to reduce the number of unassigned wavelengths to
N . It is straightforward to show thatk = log(N/P )

log(1−1/N) . Then
the total number of wavebands is simplyk + N . Since relaxing
the ceiling constraints underestimates the size of each wave-
band, this gives an upper bound on the number of wavebands
B, namely:

B ≤





N +
log(N

P )
log(1− 1

N ) , P > N

P , P ≤ N

(3)

From (3), we can also make the additional observation that
if P ≤ N , the number of bandsB equals the number of
wavelengthsP , and there is no savings from banding in the
minimum-wavelength case as each wavelength continues to be
switched individually.

B. The Minimum-Waveband Problem

The optimal minimum-waveband algorithm is the one that
requires the fewest wavelengths subject to using only the mini-
mum number of wavebands. In addition to providing a second
point on the optimal frontier, this will establish the minimum
cost in wavelengths required to obtain the maximum possible
reduction in switching.

Since all wavelengths in the same waveband must be
switched to the same destination, and there areN possible des-
tination, a minimum ofN wavebands are are necessary. One
(inefficient) approach that requires onlyN wavebands is to sta-
tically switch one waveband to each destination, and provision
P wavelengths per waveband; since there are a total of onlyP
calls, this is sufficient to support any admissible traffic set. Our
goal is to find a better, optimal algorithm using onlyN wave-
bands that minimizes the number of wavelengths used. We first
obtain a lower bound on the number of wavelengths required
using the following lemma.

Lemma 1:Consider a banding algorithm that usesN wave-
bands, and order the wavebands from smallest to largest. Let
bi be the size of theith waveband. If the source sends up toP
calls to theN destination nodes,bi is bounded by

bi ≥
⌊

P −N + i

i

⌋
, i = 1, . . . , N (4)

Corollary: The total number of wavelengthsW required is
bounded by the sum of the bounds on the individual waveband
sizes, namely

W ≥
N∑

i=1

⌊
P −N + i

i

⌋
(5)

This summation can be shown to increase asO(P log N).
Proof: The proof proceeds by constructing an admis-

sible traffic set which requiresbi to have at least
⌊

P−N+i
i

⌋
wavelengths. Consider the traffic set where the sourceS sends⌊

P−N+i
i

⌋
calls each to the firsti nodes, and a single call to each

remaining node. The total traffic in this construction is

i ·
⌊

P −N + i

i

⌋
+ (N − i) ≤ P

and therefore it is admissible. Since each destination receives
at least one call, each of theN wavebands goes to a different
destination.

Without loss of generality, we assign the largesti wavebands
to nodes 1 throughi. Each of these wavebands must support⌊

P−N+i
i

⌋
calls. Thereforebi ≥

⌊
P−N+i

i

⌋
.

Since Lemma 1 is a lower bound, any minimum-waveband
algorithm which achieves the bound is optimal. We next present
an algorithm that can support any admissible traffic set using
wavebands of the minimal sizes specified by (4). Since this
minimum-waveband algorithm would use no more wavelengths
than the lower bound, it is therefore optimal.

Min-Band Algorithm:
1) Index theN waveband in order of decreasing size, so

that wavebandi has sizebi =
⌊

P−N+i
i

⌋
, wherei =

1, . . . , N . Note thatb1 is the largest waveband, andbN is
the smallest.

2) Let i = 1.
3) Locate the destination node with the greatest number of

remaining calls. Switch wavebandi to that node. Assign
up tobi calls to wavebandi, and remove these calls from
the traffic set.

4) If no calls remain, the algorithm terminates. Otherwise,
incrementi and return to Step 2.
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By design, the algorithm uses only wavebands of the min-
imum size, and therefore meets the lower bound. It remains
only to show that it is able to support any admissible set. First,
suppose that each destination receives at least a single call. In
this case, we can rank each destination in decreasing order of
number of calls received, so that the first destination receives
the most calls. Then the min-band algorithm allocates theith

waveband to theith destination. Since each destination re-
ceives at least one call, the firsti destinations receive at most
P − (N − i) = P −N + i calls, and theith destination receives
at mostb(P −N + i)/ic calls. Since theith waveband has size
b(P − N + i)/ic, it suffices to accommodate the calls. The
proof in the case where some destinations do not receive calls
is more cumbersome but follows the same approach.

Example 3:Consider the case whereP = 22 calls are dis-
tributed amongN = 4 destinations. The optimum minimum-
waveband algorithm requires 4 wavebands. According to
Lemma 1, the first waveband is of sizeb1 = bP − N + 1c =
b22− 4 + 1c = 19. Similarly, b2 = 10, b3 = 7, andb4 = 5.

These wavebands can support anyP -port admissible traf-
fic set, P = 22. For example, consider the traffic setC =
[5, 8, 7, 2]. The first waveband is assigned to node 2, the des-
tination with the most traffic, and carries all 8 calls. Similarly,
b2 is assigned to node 3,b3 is assigned to node 1, andb4 is as-
signed to node 4. Using the matrix decomposition notation of
(1), this can be written as

[5, 8, 7, 2] ≤ 19e2 + 10e3 + 7e1 + 5e4

= [7, 19, 10, 5]

Note that here, the total number of wavelengths available to
each destination (represented by the vector on the right-hand
side of the equation) is greater than the number of calls: more
wavelengths were provisioned than absolutely required for this
particular traffic set. This over-provisioning in wavelengths is
necessary in order to guarantee thatall admissible traffic sets
can be accommodated.

It is instructive to compare this to the decomposition obtained
by the greedy algorithm of Section II-A. The first waveband
for the greedy algorithm consists ofdP/Ne = d22/4e = 6
wavelengths. The remaining waveband sizes can be shown to
be{4, 3, 3, 2, 1, 1, 1, 1}. One possible switching configuration
for these waveband sizes is:

[5, 8, 7, 2] = 6e2 + 4e3 + 3e1 + 3e3 + 2e1 + e2

+e2 + e4 + e4

= [5, 8, 7, 2]

The greedy algorithm, since it is a minimum-wavelength
algorithm, did not over-provision any wavelengths; however,
more wavebands were required. This example also illustrates
an important point. In the decomposition given by (1), equality
is guaranteed to hold for allC if and only if the wavebands were
allocated using a minimum-wavelength algorithm (such as the
greedy algorithm). Algorithms such as the min-band algorithm
allow some overprovisioning of wavelengths in order to further
decrease the number of wavebands required.

III. WAVEBAND SWITCHING FOR MULTI-SOURCETRAFFIC

We now consider the more general case of multi-source traf-
fic. In this scenario,N nodes are connected to a central hub.
Each node is assumed to have a hardware limitation ofP trans-
mitters and receivers, and can therefore send and receive up to
P calls. The hub must switch the calls, at a band level, from the
appropriate source to destination nodes. In our discussion, we
will assume that self-traffic is allowed; the case without self-
traffic is similar and leads to comparable results. We will show
that many of the concepts in this scenario parallel those in the
single-source case. (The primary differences are that the traf-
fic set now consists of a traffic matrix rather than a vector, and
the switching configuration for each waveband will now con-
sist of a permutation matrix rather than a unit vector.) We will
again begin by considering two special cases, the minimum-
wavelength and minimum-waveband problems, followed by in-
vestigating algorithms that provide a tradeoff between these two
cases.

A. The Minimum-Wavelength Problem

Recall that for the minimum-wavelength problem, we con-
strain ourselves to the domain of banding algorithms which use
only the minimum possible number of wavelengths. Since each
node may send up toP calls, it is clear that at leastP wave-
lengths are necessary. In [13] it is shown that this is also suffi-
cient. The challenge is therefore to first partition theP wave-
lengths into wavebands, and second, to develop an algorithm
that will provide a valid wavelength assignment for any admis-
sible traffic set using these wavebands.

We first address the partitioning of the wavebands. We con-
sider the cases of interest to be maximal traffic sets, since we
can add fictitious calls to any non-maximal set to construct a
maximal one. We define a wavelength to befully utilized if it
is used to carry a call on every link. Mathematically, this is
equivalent to stating that the matrix of calls supported by that
wavelength forms a permutation matrix. We say that a wave-
band is fully utilized if every wavelength in that waveband is
fully utilized.

Every minimum-wavelength algorithm must be able to fully
utilize every waveband under any admissible maximal traffic
set. We have already seen in Section II-A that a greedy ap-
proach is optimal for this type of problem. Recall that the
greedy algorithm worked recursively by partitioning, at each
step, the largest waveband size possible subject to the con-
straint that it could be fully utilized by any admissible traffic
set. Intuitively, this was because the number of wavebands re-
quired turned out to be non-increasing in the amount of traffic;
therefore at each step the optimal solution was to minimize the
residual amount of traffic. The only remaining problem is that
largest fully utilizable waveband size,bmax(N, P ), must be de-
rived for the multi-source case.

We can viewbmax(N, P ) as the largest number of identical
permutation matrices that we are guaranteed to be able to find
within anyN × N matrix with row and column sums equal to
P . This is equivalent to stating that sufficiently many calls must
exist within any admissible traffic set with parametersN andP
to fully utilize the waveband.
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Example 4:Consider the case whereP = 9 andN = 3.
One admissible maximal traffic set satisfying these constraints
is given by

C1 =
[

1 5 3
3 2 4
5 2 2

]

The largest waveband that could be fully utilized by this par-
ticular traffic set is 4 wavelengths, as shown below:

C1 = 4 ·
[

0 1 0
0 0 1
1 0 0

]
+

[
1 1 3
3 2 0
4 2 2

]

The first term consists of 4 identical permutation matrices rep-
resenting calls that can be used to fully utilize a waveband of
size 4 or less; the second term forms the remaining calls. Note
that this shows only thatbmax must beat most4; it may be
possible that some other traffic set may require an even smaller
waveband for full utilization. The challenge will be to obtain in
closed form an equation forbmax without performing this sort
of exhaustive examination of all possible maximal admissible
traffic sets. This is given by the following lemma.

Lemma 2:For anyN×N matrix with row and column sums
at mostP , there exist at leastbmax identical permutation matri-
ces within the matrix, withbmax given by

bmax =





⌈
4P

N(N+2)

⌉
, N even

⌈
4P

(N+1)2

⌉
, N odd

(6)

Furthermore, there exists at least oneN × N matrix where no
more thanbmax identical permutations can be found.

Proof: See Appendix A.
The relation in (6) can be used in conjunction with the greedy

algorithm to optimally partition the wavebands. Since the
waveband sizing is independent of the particular traffic set and
depends only on the network parametersN andP , wavebands
of constant size can be used for any admissible traffic set. By
using the expressionbmax(N,P ) to size each waveband, we
have guaranteed that a permutation of the appropriate size can
be found to fully utilize each waveband.

Example 5:We continue with the 3-node network from Ex-
ample 4 whereP = 9. Using the greedy algorithm, we would

determine that the largest waveband should be
⌈

4P
(N+1)2

⌉
=⌈

(4)(9)
(4)2

⌉
= 3.

After this step,9 − 3 = 6 wavelengths remain to be par-
titioned. We repeat this process until all wavelengths have
been assigned to bands. The final waveband partition is
{3, 2, 1, 1, 1, 1}. By choice ofbmax, this partitioning can be
fully utilized by any admissible traffic set. For example, con-
sider the traffic setC1 from Example 4. One possible decom-
position is

[
1 5 3
3 2 4
5 2 2

]
= 3 ·

[
0 1 0
0 0 1
1 0 0

]
+ 2 ·

[
0 0 1
1 0 0
0 1 0

]

+1 ·
[

0 0 1
0 1 0
1 0 0

]
+ 1 ·

[
0 1 0
1 0 0
0 0 1

]

+1 ·
[

1 0 0
0 1 0
0 0 1

]
+ 1 ·

[
0 1 0
0 0 1
1 0 0

]

Note that the equality in this decomposition indicates that all
wavelengths are fully utilized. Furthermore, by the optimality

of the greedy algorithm, we are guaranteed that this is the min-
imum possible number of wavebands subject to the minimum-
wavelength constraint.

In principle, with the greedy algorithm, we can obtain
the exact minimum number of wavebands required under the
minimum-wavelength constraint simply by iterating through
the algorithm and counting the number of wavebands produced.
We can also obtain in closed form an upper bound on the num-
ber of wavebands by relaxing the integer constraints. Using ar-
guments analogous to the single-source case, we can show that
an upper bound on the number of wavebandsB is given by

B ≤





(N+1)2

4 +
log

[
(N+1)2

4P

]

log
[
1− 4

(N+1)2

] , P > (N+1)2

4

P , P ≤ (N+1)2

4

(7)

It can be show from (7) that the number of wavebands re-
quired grows asO(N2 log(P/N2)). Since the number of wave-
bands required by the greedy algorithm is the minimum pos-
sible for any minimum-wavelength algorithm, this allows us
to quantify the maximum switching reduction possible without
wavelength inefficiency.

B. The Minimum-Waveband Problem

Recall that a minimum-waveband algorithm is defined to be
a banding algorithm that uses the minimum possible number of
wavebands. Since all wavelengths in the same waveband must
go to the same destination, and there areN possible different
destinations, a minimum ofN wavebands are required. One
way to achieve this is to statically provisionP wavelengths be-
tween each source-destination pair, using a total ofPN wave-
lengths. The minimum-waveband problem is therefore to find
a better, dynamic algorithm that uses fewer wavelengths. Since
the single-source traffic model is a special case of the multi-
source model, we can also use (5) to provide a lower bound on
the number of wavelengths required:

W ≥
N∑

i=1

⌊
P −N + i

i

⌋

However, in this case it is possible to show that the bound is
not tight. We therefore do not know the achievable minimum
number of wavelengths, only that it cannot be less than that
specified by (5).

We next propose a wavelength-efficient minimum-banding
algorithm which requiresO(P

√
N) total wavelengths, which

improves on theO(PN) worst case. The algorithm operates by
decomposing the traffic set intoN sub-matrices, and attempts
to group entries with heavy weights and light weights into sep-
arate sub-matrices. This will allow some wavebands to use less
than the worst case ofP . The algorithm relies on the following
lemma:

Lemma 3:Consider aP -port traffic set on anN -node star.
For any value ofk such that1 ≤ k ≤ N , there exists a decom-
position satisfying (1) where

b1 = . . . = bk = P

bk+1 = . . . = bN =
⌈

P

k + 1

⌉



7

Proof: See Appendix B.
Corollary: Any P -portN -node traffic set can be routed using

k bands of sizeP andN − k bands of size
⌈

P
k+1

⌉
.

The proof of Lemma 3 forms the basis of the SQRT(N) al-
gorithm. Since it holds for any value ofk, it is logical to use
the value ofk which results in the fewest total number of wave-
lengths used. To determine this, we write down the expression
for the number of wavelengths required:

Wk = kP + (N − k)
(

P

k + 1

)
(8)

It can be shown that this expression is minimized atk =√
N + 1− 1. If we relax the integer constraint onk and substi-

tute this back into the equation, we obtain:

W = 2P
(√

N + 1− 1
)

leading to the observation that the SQRT(N) algorithm requires
O(P

√
N ) wavelengths. The results of this section show that the

maximum amount of switching reduction can be achieved by, at
worst, a factor of

√
N increase in the number of wavelengths.

Example 6:We examine the case of Example 5 under the
minimum-waveband restriction. Using the SQRT(N) algo-
rithm, we see that forN = 3 andP = 9, we should choose
k =

√
N + 1 − 1 = 1. We therefore require only 1 waveband

of size 9 andN − 1 = 2 bands of sizedP/(k + 1)e = 5,
producing a final waveband sizing of{9, 5, 5}, for a total of 19
wavelengths and 3 bands. We can compare this with the op-
timal minimum-wavelength solution of{3, 2, 1, 1, 1, 1}, which
uses the minimum of 9 wavelengths but requires 6 wavebands.

Shown below is one possible call assignment using these
waveband sizes for the specific traffic setC1.[

1 5 3
3 2 4
5 2 2

]
≤ 9 ·

[
0 1 0
0 0 1
1 0 0

]
+ 5 ·

[
0 0 1
1 0 0
0 1 0

]

+5 ·
[

1 0 0
0 1 0
0 0 1

]
=

[
5 9 5
5 5 9
9 5 5

]

Note that wavelengths were overprovisioned in this case for
some source-destination pairs. However, the additional wave-
lengths are required to guarantee that all admissible traffic sets
can be accommodated by the 3 wavebands.

C. Hybridization: Wavelength-Waveband Tradeoffs

To obtain a tradeoff in performance between the greedy algo-
rithm (which has minimal wavelength usage) and the SQRT(N)
algorithm (which has minimal waveband usage), we can use
hybrid algorithms that size some wavebands using the greedy
algorithm and the remaining using SQRT(N). By varying how
many wavebands are sized using each algorithm, a family of
hybrid algorithms can be obtained that can be shown to have
the following wavelength-waveband tradeoff:

Wdual =

[
1 + 2

√
N

(
1− 4

(N + 1)2

)Bdual−N
]
· P

Figure 4 shows the performance of this approach for a
star with N = 10, P = 1000. The two asymptotes
represent the SQRT(N) and greedy algorithms, which op-
erate in the minimum-waveband and minimum-wavelength
regimes, respectively. The dual-algorithm approach essentially
interpolates between the minimum-waveband and minimum-
wavelength cases to produce algorithms with intermediate
waveband and wavelength requirements.
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Fig. 4. Performance of the non-uniform banding algorithms of Section III
compared to the uniform banding algorithm of Section IV in a star withN =
10, P = 1000.

IV. T HE UNIFORM WAVEBAND APPROACH

Thus far in discussing multi-source traffic, we have allowed
wavebands to be non-uniformly sized. Here we consider fixing
all wavebands to a constant sizeb and derive the number of
wavelengths and wavebands required. By varyingb, a family
of banding algorithms with varying numbers of wavebands and
wavelengths can be obtained. Somewhat surprisingly, we will
see that in the multi-source case, by using uniform waveband
sizes, most of the maximum banding gain can be obtained at a
very small cost in additional wavelengths.

We begin by first deriving the minimum number of wave-
bands required for a fixed waveband sizeb.

Theorem 1:Given a fixed band sizeb, the necessary and suf-
ficient minimum number of wavebands required to supportP -
port traffic in anN -node star is

Buniform = N +
⌊

P −N

b

⌋
(9)

Corollary: The corresponding necessary and sufficient mini-
mum number of wavelengths required is

Wuniform = bN + b

⌊
P −N

b

⌋
(10)

We first prove necessity of (9) by providing an example
which requires at least this number of wavelengths. Sufficiency
will be shown by construction. (10) then follows directly from
the fact that each band is of sizeb.

Consider the traffic set where node 1 sends a single call to
nodes 1 toN − 1, andP − (N − 1) calls to nodeN . In this
case,N − 1 bands are required to support traffic to the first

N − 1 nodes, while
⌈

P−(N−1)
b

⌉
bands are required to support

traffic to nodeN . This gives a lower bound on the number of
wavebands of

Buniform ≥ (N − 1) +
⌈

P − (N − 1)
b

⌉

= N +
⌊

P −N

b

⌋

where the last step follows from the observation that⌈
P−(N−1)

b

⌉
=

⌊
P−N

b

⌋
+ 1.
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We will show using a bipartite matching approach that these
quantities are sufficient as well. We will first construct a bipar-
tite multigraph. A multigraph differs from a graph in that it al-
lows multiple edges between the same two nodes. We consider
two sets of nodesV1 = {s1, . . . , sN} andV2 = {d1, . . . , dN}.
For a given admissible traffic set, define the number of calls
from nodei to nodej to beci,j . Then created ci,j

b e edges con-
necting nodesi to dj . The complete set of edgesE represents
the traffic to be carried, now in units of wavebands (each of size
b) instead of wavelengths.

The number of edges adjacent to each source nodesi can be
obtained by summing

⌈ ci,j

b

⌉
over j. Let the number of desti-

nations receiving non-zero traffic from nodei beNi. Without
loss of generality, assume these are nodes1 throughNi. We
decompose the traffic to these destinations by

ci,j = ωi,j + ri,j (11)

whereri,j is chosen such thatωi,j is a nonnegative integer mul-
tiple of b, and1 ≤ ri,j ≤ b. We can then express the summation
of interest as

N∑

i=1

⌈ci,j

b

⌉
=

N∑

i=1

⌈
ωi,j + ri,j

b

⌉

=
Ni∑

i=1

⌈ri,j

b

⌉
+

Ni∑

i=1

ωi,j

b

= Ni +
1
b

Ni∑

i=1

ωi,j (12)

where the second step relies onωi

b being integer, and the third
on the fact thatri ≤ b.

By summing (11) overi and noting that
∑Ni

i=1 ci,j = P , we
can obtain the following useful relation:

P =
Ni∑

i=1

ωi,j +
Ni∑

i=1

ri,j

⇒
Ni∑

i=1

ωi,j = P −
Ni∑

i=1

ri,j

≤ P −Ni

where the last line results from observing thatri,j ≥ 1. Using
this result, (12) becomes

N∑

i=1

⌈ci,j

b

⌉
≤ Ni +

P −Ni

b

=
(

1− 1
b

)
Ni +

P

b

≤
(

1− 1
b

)
N +

P

b

= N +
P −N

b

Since both the summation on the left andN on the right are
integers, by taking the floor of both sides we can conclude

N∑

i=1

⌈ci,j

b

⌉
≤ N +

⌊
P −N

b

⌋

Similar arguments can be used to show that the number of
edges adjacent to each destination nodedj is given by

N∑

j=1

⌈ci,j

b

⌉
≤ N +

⌊
P −N

b

⌋

Therefore each node has at mostN +
⌊

P−N
b

⌋
edges adjacent

to it. The following lemma will now prove useful.
Lemma 4: In a bipartite multigraph where each node is ad-

jacent to at mostk edges, a partitioning exists that divides the
edges into at mostk matchings.

Proof: See [14].
By Lemma 4, at most an equal number of matchings are re-

quired. Since calls in each matching can share the same wave-
band, at mostN+

⌊
P−N

b

⌋
wavebands are required. The number

of wavelengths follows directly from the fact that each wave-
band is of sizeb.

Example 7:Consider a star withN = 10 andP = 1000,
and consider uniform band sizes ofb = 40. By Theorem 1,
N +

⌊
P−N

b

⌋
= 10 +

⌊
1000−10

50

⌋
= 29 wavebands are required.

Since each waveband consists of50 wavelengths, a total of50 ·
29 = 1711 wavelengths are used as well.

We now have a method for obtaining necessary and sufficient
conditions on the number of wavebands and wavelengths are
necessary and sufficient. By ignoring the integrality constraints,
we can solve for the number of wavelengths as a function of the
number of wavebands and obtain an approximate characteri-
zation of the waveband-wavelength tradeoff using uniformly-
sized wavebands:

Wuniform = P +
(

P −N

Buniform −N
− 1

)
N (13)

Figure 4 illustrates the performance of the uniform waveband
algorithm for a star withN = 10, P = 1000. The two as-
ymptotes represent the SQRT(N) and greedy algorithms, which
operate in the minimum-waveband and minimum-wavelength
regimes, respectively. Note that although the uniform wave-
band algorithm performs poorly in the minimum-waveband
regime (where it requires many more wavelengths than the
SQRT(N) algorithm), the performance improves dramatically
once a few additional wavebands are introduced. By around
40 wavebands, it requires only slightly more wavelengths than
the greedy algorithm, which uses 121 wavebands. We observe
that by allowing slightly more wavelengths than the minimum-
wavelength case, the fixed-waveband algorithm can greatly
reduce the number of wavebands required, approaching the
minimum-waveband bound significantly.

From this graph, two observations can be made:
1) As the number of wavebands increases, the performance

of the uniform-waveband algorithm appears to approach
the optimal performance of the greedy algorithm. In
particular, at the right endpoint, it appears to be almost
wavelength-efficient.

2) Because of the slow increase in the number of wave-
lengths required as the number of wavebands decreases,
it appears that the majority of the reduction in the num-
ber of wavebands can be achieved at very little cost in
wavelength inefficiency (as compared to the greedy algo-
rithm).
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The first observation can be verified by comparing the num-
ber of wavelengths used by the uniform-waveband algorithm to
the greedy algorithm. ForP large we can approximateBgreedy

by N2

4 log
(

4P
N2

)
. For this number of bands, the number of

wavelengths used by the uniform-waveband algorithm is ap-
proximately

Wuniform ≈ P +
PN

B

=

[
1 +

1
N2

4 log
(

4P
N2

)
]
· P

= (1 + α) · P
whereα is a term that goes to zero asP increases. Recall that
the greedy algorithm, which was wavelength-efficient, uses the
minimum ofP wavelengths. Therefore the performance of the
uniform-waveband algorithm approaches the optimum asymp-
totically in the minimum-wavelength regime.

It is also possible to show analytically by slope analysis that
Wuniform approaches its final value very quickly; this gives
rise to the second observation, which is extremely significant
from a practical perspective. If we are interested in building an
actual implementation, it indicates that a majority of the gain
from using banding can be achieved with very little wavelength
inefficiency. For example, in the graph of Figure 4, the process-
ing granularity can be reduced from 1000 wavelengths (without
banding) to 30 wavebands, a reduction of97%, at a cost of only
a50% increase in the number of wavelengths.

V. BANDING ON GENERAL TOPOLOGIES

Thus far all our results have been for the star topology. In
this section we extend the preceding banding results to general
topologies for which routing algorithms forP -port traffic are
known.

Recall that we have shown that banding can be considered as
a matrix decomposition problem, where for a given admissible
traffic setC, our goal is to decompose it into the sum of a fixed
numberB of weighted permutation matrices:

C ≤ b1T1 + b2T2 + . . . + bBTB

where the band sizes{bi} and the total number of wavebands
B are constant for all traffic sets. The goal was to minimize,
over all possible admissible traffic sets, the two cost parameters
corresponding to the number of wavebandsB and the number
of wavelengths

∑B
i=1 bi.

In the star, each permutationTi could be accommodated us-
ing a single waveband consisting ofbi wavelengths. This ap-
proach can be extended to other topologies in a straightforward
manner, with the main difference being that each permutation
Ti may now require multiple wavebands of sizebi to support
it. In general, if the RWA algorithm requiresφ(N) wavelengths
for permutation traffic on the topology, and a banding algorithm
is considered which usesB wavebands andW wavelengths on
a star, then the extension of that banding algorithm to the new
topology requires:

Btotal = B · φ(N)
Wtotal = W · φ(N)

Routing algorithms for permutation traffic exist in the liter-
ature for rings with [8] and without [4] conversion, trees [13],
and torus networks [7].

For example, in the case of a ring, [4] provides an optimal
RWA algorithm for the bidirectional ring topology without con-
version using the minimum number of wavelengths. Specifi-
cally, it shows thatdN/3e wavelengths are necessary and suf-
ficient to support any single-port traffic set. SinceTi is a per-
mutation matrix, it can be supported usingdN/3e wavelengths.
Each set of callsbiTi from the decomposition of (14), can there-
fore be supported usingdN/3e wavebands, each consisting of
bi wavelengths.

Using this approach, the entire traffic setT can be supported
usingB sets of wavebands, where each such seti consists of
dN/3e wavebands ofbi wavelengths. The total numbers of
wavebands and wavelengths are

Btotal = B

⌈
N

3

⌉

Wtotal =
⌈

N

3

⌉ B∑

i=1

bi = W

⌈
N

3

⌉

VI. CONCLUSION

In this paper, we considered waveband switching as a method
for reducing overall network costs. We provide wavelength-
efficient algorithms that use the minimum possible number
of wavebands, and show that the optimal approach is to use
a greedy algorithm. We provided minimum-waveband algo-
rithms that allow for small wavelength inefficiencies in return
for reducing the number of wavebands down to just the nodal
degree. We use these results to help characterize the optimal
performance frontier. We also provided a uniform waveband
approach that compares very favorably to the optimal perfor-
mance frontier and achieves large reductions in switching re-
quirements at very little cost in wavelength inefficiency. Fi-
nally, we extend our results to general topologies where permu-
tation traffic routing algorithms are known.

APPENDIX A

The proof of Lemma 2 relies on bipartite graphs. Any
N × N matrix C can be represented by a bipartite graph
consisting of two sets ofN nodes,S = {s1, . . . , sN} and
D = {d1, . . . , dN}. An edge exists between nodessi anddj if
the corresponding matrix entry[C]i,j is non-zero, and the edge
is labelled with the value[C]i,j .

Define amaximal matchingto be a set ofN edges such that
exactly one edge is incident on each node. It is straightforward
to show that any maximal matching corresponds to a permu-
tation matrix. Furthermore, the number of such permutation
matrices that exist withinC is equal to the weight of the small-
est edge in the matching. Therefore, to prove the lemma, it is
sufficient to show that (1) for any admissible traffic set, there
always exists a matching with minimum edge weight at least
bmax, and (2) for any value ofb > bmax, there exists some
traffic set for which no maximal matching with minimum edge
weightb exists.
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We make use of Hall’s Theorem in the proof. Hall’s Theorem
is stated as follows:

Hall’s Theorem[14]: In a bipartite graph(S,D, E), whereE
is the set of edges, define the neighborhood of a subsetv ∈ S
to be those nodes inD which are connected via some edge in
E to some node inv. Then there exists a maximal matching if
and only if, for every subsetv ∈ S, its neighborhoodN(v) has
size|N(v)| ≥ |v|.

Applying this to our problem, Hall’s Theorem states that a
maximal matching with minimum edge weightb exists if and
only if no subset of source nodesv exists such that theb-
neighborhoodNb(v), consisting of destination nodes connected
to some source node inv via an edge of at least weightb, has
size less than|v|. Supposing for a moment that|v| = n and
Nb(v) = m, a maximal matching exists for a given traffic set
iff m ≥ n for all possiblev in that traffic set. Furthermore,
since we require the waveband to be fully utilizable forall ad-
missible traffic sets, we must havem ≥ n for all possiblev for
all possible admissible traffic sets.

We can consider, for any fixedn andm, when it is possible
to find an admissible traffic set wherem < n. Consider the
maximal admissible traffic set where the maximummP calls
are sent fromv to nodes inNb(v), leaving (n − m)P calls
being sent to theN − m non-b-neighborhood nodes. If the
(n−m)P calls are divided evenly among then(N −m) edges
going to non-b-neighborhood nodes, the largest edge weight is⌈

(r−m)P
r(N−m)

⌉
. Since all edges to non-neighborhood nodes must

be of weight less thanb, this construction is valid whenever

b >
⌈

(r−m)P
r(N−m)

⌉
. We have therefore shown that the condition

b ≤
⌈

(r−m)P
r(N−m)

⌉
is necessary.

It is possible to show that, for a fixedn andm, this is a neces-
sary and sufficient constraint onb. We can therefore minimize
this expression over alln andm and choosebmax to be equal
to this value:

bmax = min
n

{
min

m

⌈
(n−m)P
n(N −m)

⌉}

= min
n

⌈
P

n[N − (n− 1)]

⌉

=
⌈
min

n

P

n[N − (n− 1)]

⌉

where in the last line, the minimization can be brought inside
due to the monotonicity of the floor function. Ignoring integral-
ity constraints, the right-hand size is minimized atn∗ = N+1

2 .
If N is odd, thenN+1

2 is integer and a valid choice forn. If N

is even, then since P
n[N−(n−1)] is convex, the minimizing value

must be eitherN2 or N
2 + 1; both result in the same value of the

minimizing function. This gives the final value ofbmax from
(6).

APPENDIX B

The proof of Lemma 3 will be by construction. We will
first decompose the traffic matrixC into two sub-matrices: the
“heavy” matrixCH , containing all entries with weight greater

than
⌈

P
k+1

⌉
, and the “light” matrixCL, containingno entries

greater than
⌈

P
k+1

⌉
.

We first assign any entry inC greater than
⌈

P
k+1

⌉
to CH .

Note that at this point each row and column inCH contains at
mostk entries. (If any row or column exceedsk entries, then
that row or column inC must have had a sum greater thanP ,
meaningC is not an admissible traffic set.) We next continue
assigning entries inC to CH until each row and column ofCH

has exactlyk entries.
Suppose there exists a row inCH that contains fewer than

k entries. Then there must also be a column that has fewer
thank entries. (This follows from the fact thatCH is square;
if all columns havek entries, and each row has no more than
k entries, then all rows must also havek entries.) Locate the
entry corresponding to that row and column inC, and assign
it to CH . Repeat until each row hask entries. By the same
reasoning as before, all columns must now havek entries also.
It is well known that any such matrix can be decomposed into
at mostk matrices with only one non-zero entry per row and
column. Therefore, by performing this further decomposition
and noting that all entries inCH are at mostP , we have shown
thatCH can be supported by at mostk wavebands of sizeP .

Assign all remaining entries inC to CL; this givesCL there-
fore has exactlyN − k entries per row and column. This can
similarly be decomposed intoN−k matrices with only one en-

try per row and column; since each entry is at most
⌈

P
k+1

⌉
, we

can supportCL using at mostN − k wavebands of size
⌈

P
k+1

⌉
.
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