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Abstract— We compare the effectiveness of uniform versus

non-uniform waveband switching under the dual cost metrics of S
switching requirements and fiber capacity. We consider a star <,><—mir;-wa_vﬁband
topology and begin by characterizing the optimal performance _ /g algorithms
frontier achievable under no restrictions on waveband sizing, and mi,,'.’,,‘;:,?::,'a,,d achievable
provide algorithms employing non-uniform waveband sizing that algorithm performance
approach or achieve this optimum. We then consider the special region
case of uniform waveband sizing, and show that the performance isdeptis
compares very favorably. We also extend our results to general mi:;;v:r‘;;:i?gth
topologies.
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HE MAJORITY of the routing and switching literature forFig. 1. The region of achievable wavelength-waveband tradeoffs.
WDM networks has focused on how to minimize the to-

tal number of wavelengths [1], [2], [3], [4], [5], [6], [7]. [8].
since the number of wavelengths used specifies the amount of
capacity required on each fiber. However, this single-resource
approach does not take into account the switching necessarpatding algorithm. Reducing the requirement for either quan-
each node which routes each call to its destination. Switchitity reduces the costs in the network. Conceptually, every
costs can easily dominate bandwidth costs in systems witlbanding algorithm can be represented by a point in a two-
large number of calls. In a conventional WDM system, each idimensional performance space, as illustrated in Figure 1, in-
put fiber is typically demultiplexed into wavelengths, and eadaticating the number of wavelengths and wavebands required
wavelength relies on & x NN switch to route it to the appro- by the algorithm. The shaded area in the figure represents the
priate output fiber, wheré/ is the nodal degree. The numbemchievable region of performance over all possible algorithms.
of switches required is equal to the number of wavelengths. Fitie goal is to characterize the optimal frontier of achievable
large networks with many wavelengths, this approach can gerformance. This frontier would give the optimal tradeoff be-
quire many, often expensive switches. tween wavelengths and wavebands achievable.

Waveband switching, also known as band switching, at-
tempts to address this problem. The approach is based on th&here has been some work in the literature addressing the
observation that if the number of input wavelengths per fibsaveband switching problem. Many papers consider the prob-
is large relative to the number of output fibers, many of tHem of waveband allocation for static traffic. In [9], [10], [11],
wavelengths will need to be switched between the same fideieger linear programming formulations are given for a variety
pairs. Waveband switching tries to group the wavelengths i topologies, and the problem of optimal waveband allocation
wavebands such that all wavelengths in the same wavebahghown to be NP-complete. In [12], efficient algorithms for
can be switched together, allowing the processing to be péinamic traffic are considered under a simplified traffic model
formed at this coarser waveband level and reducing the nutfat limits traffic to a single source node and does not allow
ber of switches required. With waveband switching each fibévelength overprovisioning, even if it results in fewer wave-
would only be demultiplexed into wavebands, and the numbeands.
of switches required would equal the number of wavebands. ) ) ) ]
Since the number of wavebands required is typically much!n this paper, we consider dynamic traffic under the more
smaller than the number of wavelengths, this can greatly redigt&eral problem of determining the optimal tradeoff between
the processing and switching costs. wavelengths and Wavebands_ in band switching. Furthe_rmore,

In this paper, we consider the resources of interest to € allow a more general traffic model where every node is per-

the number of wavelengths and wavebands required by a gi\F@H’Fed to send trafflc into the lje'gwork. We first charag:tgnze the

optimal tradeoff with no restrictions on waveband sizing, and
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tion. T; is therefore either a unit vector (single-source case) or
a permutation matrix (multi-source).

Any set of wavebands specifying a valid decomposition is
sufficient to support the particular traffic matrix to which it
applies. We impose two additional constraints: we require that
B and{b; } must be fixed over all admissible traffic sets. Fixing
B is essential sinc® corresponds to the number of switches re-
Fig. 2. (a) Single-source case, where a single source node sends a total @fdﬂ’ed, a hardware requirement that should not depend on ran-
most P calls to up toN destinations. (b) Multi-source case, where eaciVof . . . .
nodes sends and receives a totaPofalls. dom changes in the traffic. Fixing the band sifég removes

the need for dynamically tunable filters, reducing costs. Un-
der these two constraints, we require that banding algorithms
A. System Model be charac.ter.ized by .fixed values Bf.and {_bi} such that for
) i each admissible traffic s€t, the algorithm is able to specify a

In this paper, we adopt th&-port traffic model from [4], gecomposition according to (1) with specific switch configura-

which assumes that transmitters and receivers are availablg,s 7 for each waveband Recall that the performance of

. 7
at each network node. This allows each node to send and &g, handing algorithm can be judged by the number of wave-
ceive a total of at mosP calls at any given time. If the in- jonqihs and wavebands it requires. The humber of wavebands

stantaneous traffic is represented by a matrix where each eri’é%iven directly byB, while the total number of wavelengths
(¢,7) consists of the number of calls sent from nade node 5 pe calculated aEB b,
i=1 """

j,» the P-port model constrains each row and column sum to
be at mostP. Any traffic set with a matrix obeying this con- As illustrated in Figure 1, our goal is to find the optimal
straint is termecadmissible and no calls in an admissible se@chievable frontier. The most general formulation of this prob-
may be blocked. Under this model, sufficient resources muem is to allow the waveband siz¢5; } to be non-uniform. Any
be provisioned to support any admissible set. Call arrivals aHtiiform-waveband algorithm will then be a valid special case.
departures may occur in arbitrary fashion, as long as the resdnder the general formulation, we can divide this problem into
tant traffic set remains admissible; these dynamic arrivals aifiee parts. Note that Figure 1 shows two asymptotes to the
departures are represented by transitions between different@ehievable region: one corresponding to the minimum possible
missible sets. This model is attractive because it limits traffic fumber of wavelengths required (thgénimum-wavelength as-
a realistic fashion based on hardware constraints, and alsoyanptote shown on the bottom of the achievable region), and
lows dynamic aspects of the traffic to be captured without mathe other corresponding to the minimum number of wavebands
ing assumptions about the call statistics. (the minimum-waveband asymptptghown to the left of the
We primar”y consider the star top0|ogy in this paper, WitﬁChieV&b'e region). The first two parts of the problem focus on
Section V describing extensions of our results to other topolthese asymptotes, and attempt to determine the optimal points
gies. This topology is representative of a hub or switch no@# these lines. Specifically, we denote any algorithm with per-
in a network. All nodes are connected via bidirectional fibef@rmance achieving the minimum possible number of wave-
to a central hub, which performs the switching. We assume Igngths to be aninimum-wavelength algorithniThe problem
wavelength conversion, so calls must use the same wavelergftfinding the best minimum-wavelength algorithm is known as
on all hops. To avoid collision, no two calls may use the sant@eminimum-wavelength problerSimilarly, any algorithm us-
wavelength in the same direction on the same fiber. We consiéied the minimum possible number of wavebands msiaimum-
both the single-source case, where only a single node transmitgveband algorithmfinding the best minimum-waveband al-
and the more general multi-source case, where every node rggyithm is theminimum-waveband problem

transmit. These situations are illustrated in Figure 2. Once solutions to the minimum-wavelength and minimum-
The problem of band switching under this model may be fofgayenand problems are obtained, two points on the optimal
mulated as a matrix decomposition. Under the banding probsptier are known. It then remains only to find the best trade-
lem, we are given a traffic matrig Wh‘?fe each entrﬁC]m‘ off between wavelengths and wavebands achievable between
represents the number of calls transmitted from source #Odgese two points. Ideally, such a tradeoff should present a curve
to destination nodg. In the single-source case, the traffic may hich adheres as closely as possible to the asymptotes, present-
trix is a vector of size x N; for multi-source traffic, the traffic ,; the pest possible tradeoff. Obtaining the best possible such

matrix is asquaré\f_x N matrix. Note that’’ may _change OVET tradeoff is the subject of the final component of the banding
time due to call arrivals and departures. For a fikedhe goal problem.

is to group the calls into bands such that calls within the same _ _ o _
band that have the same source node go to the same destinatioi. Section Il, the banding problem is investigated for the

This can be expressed mathematically by single-source traffic case. In Sections Il and IV, banding for
general multi-source traffic is considered. We will compare
C<biT14+bTo+...+bgTg (1) the special case of uniformly-sized wavebands to the more gen-

eral non-uniform case, and show that uniform waveband sizing
where eaclhb; is an integer representing the size of wavebarmbmpares very favorably. Finally, Section V describes extend-
1, and eachr; represents the corresponding switch configuréag the results of the paper to general network topologies.



(@)  4cals 4 (€)  4cals 2 optimal achievable performance frontier. We will defer the dis-
@: @:: cussion of obtaining good tradeoffs between these two points
2

@ until the multi-source case.

(b) 4cals 3 Legend:

A. The Minimum-Wavelength Problem

Recall that for the minimum-wavelength problem, we con-
) 1-wavelength band sider only banding algorithms that use the minimur_n_possible
@ number of wavelengths. Under tif&port model, a minimum
Fig. 3. The switching configurations for the 3 unique maximal traffic sets 8f P wavelengths are C'ea'f'y necessary and Slflﬁl?lem.: up to
Example 1. The traffic sets shown are: (a) [4,0] (b) [3,1] () [2,2]. P calls can be sent, and if each wavelength is individually
switched, P wavelengths can support all the calls. The goal
is to find the optimal algorithm that uses orfywavelengths.

Il. WAVEBAND SWITCHING FOR SINGLE-SOURCE TRAFFIC Since the number of wavelengths equals the maximum pos-
In this section, we consider the banding problem for the casible number of calls, given a maximal admissible traffic set,
of single-source traffic. Under this scenario, a single soureach wavelength must be used to support a call. Therefore, the
node sends up t@ units of traffic to be switched t&v pos- minimum-waveband problem is equivalent to finding a method

sible destination nodes. The primary purpose of investigatingpartitioning theP wavelengths into wavebands such that, for
the single-source model is to derive intuition for the design aihy admissible traffic set, there exists a method for assigning
good banding algorithms that will be beneficial in addressirglls to wavebands such that every wavelength is assigned a
the multi-source traffic case in the next section. The singleall. Furthermore, the optimal minimum-wavelength algorithm
source model also has some merit in cases of a one-to-mahypuld accomplish this while at the same time minimizing the
traffic scenario. total number of wavebands. We show in this section that the
Example 1:Consider the case d® = 4, N = 2. In this optimal minimum-wavelength banding algorithm is a greedy al-
example, the source sends 4 calls, distributed among 2 destigerithm. Specifically, the greedy algorithm chooses waveband
tions. There are only 5 possible maximal traffic sets, which (egizes recursively, where at each step a waveband is chosen to
pressed in vector form) afd, 0], [3,1],[2, 2], [1, 3], and[0,4]. be as large as possible subject to the constraint that every wave-
Clearly at least 4 wavelengths are required to support the traffiength in that band can always be assigned a call under any
since there are 4 calls. We can show that if we restrict ourselvaaximal admissible traffic set. (We say that in this case every
to using only 4 wavelengths (i.e. we consider the minimumvavelength can btully utilized)
wavelength problem), the minimum number of wavebands re-Defineb,,,...(N, P) to be the maximum waveband size that
quired is 3: one band of size 2, and two bands of size 1. Bye can guarantee will be fully utilized by any traffic set send-
exhaustive verification we can prove that this waveband siziimg P calls to N destinations. Since all calls in the waveband

@—' = 2-wavelength band

is sufficient for all possible traffic sets: must go to the same destination, this is equivalent to providing
a guarantee that a destination node can always be found (un-
[4,0] = 2-[1,0]+1-[1,0] +1-[1,0] der any admissibleP-port traffic set) which receives at least
= 2e1+e+e bmaz (N, P) calls. To illustrate, when considering the exam-
3,1] = 2e1+e1+ey ple in Figure 3, we note that over all admissible traffic sets, a
destination can always be found which receives at least 2 calls,
[2, 2} = 261 +e2 + €2

leading to the conclusion tha}, .. (N, P) = 2 in that case. In
wheree; is a unit vector with theé!" entry equal to 1. general, we can guarantee that at least one of the destinations

Note that, as required, the sizes of each band and total nugceives[ P/N] calls. Furthermore, this is the largest num-
ber of bands are fixed, and only the accompanying unit vectder for which we can make this guarantee; this follows from
(which correspond to the switch configurations for each bandle fact that one admissible traffic set is where the traffic is
change between traffic sets. The switching of each wavebadlidided evenly (up to a difference of one wavelength due to
for each scenario is illustrated in Figure 3. In this example, tfigteger constraints) among all destinations, and no destination
savings in switching is not large because the number of caleeives more thaj?/ N calls under this traffic set. Therefore
is not very large relative to the number of destinations. As tfe.az(N, P) = [P/N].
number of calls increases, the savings will increase as well. ~ Single-Source Greedy Algorithm

The number of wavebands can be further reduced if the use ofl) Let P, = P be the number of calls remaining andbe
additional wavelengths is permitted. One possibility is to have  the number of nodes. Lét= 1.
one band of size 3, and one band of size 2. This reduces th@) Let waveband be of sizeb; = by,a. (N, P;) = [P;i/N].
number of wavebands to two, and these two wavebands can stifB) Locate a destination receiving at leakt,...(N, P;)
support all 5 possible traffic sets. However, the total number  calls. Route wavebandto this destination, and assign
of wavelengths used has increased to 5. Efficient methods of  bmaz (XN, P;) calls to it. The number of calls remaining
making these sorts of tradeoffs will be discussed. becomes, ;1 = P; — binaz-

We consider the two special cases of the minimum-4) If Piyq >0, leti < i+ 1 and go to Step 2.
wavelength and minimum-waveband problems. Recall that theExample 2: We revisit Example 1 and show how the greedy
solutions to these two problems will provide two points on thalgorithm is used to obtain the minimum-wavelength waveband




sizes used in Figure 3. In that example,= P, = 4 and Since all wavelengths in the same waveband must be
N = 2. In the first iteration, the greedy algorithm chooseswitched to the same destination, and thereMgossible des-
the first waveband to be of siZe” /N] = [4/2] = 2. As tination, a minimum ofN wavebands are are necessary. One
a corollary, we are guaranteed that 2 calls can be assignedinefficient) approach that requires onlywavebands is to sta-
this waveband, leaving, = 2 calls unassigned. The next twotically switch one waveband to each destination, and provision
iterations partition the remaining wavelengths into bands of”awavelengths per waveband; since there are a total of Bnly
single wavelength each, for a final partition{&, 1, 1}. calls, this is sufficient to support any admissible traffic set. Our
We must now show that choosing the waveband sizes usgggl is to find a better, optimal algorithm using orlywave-
the greedy algorithm is optimal for the minimum-wavelengthands that minimizes the number of wavelengths used. We first
problem. The full proof, omitted here for brevity, is based onbtain a lower bound on the number of wavelengths required
establishing that the minimum number of wavebands requirading the following lemma.
to support a given number of calls is non-decreasing in the num-Lemma 1: Consider a banding algorithm that us€swvave-
ber of calls. It therefore follows that the optimal approach fdrvands, and order the wavebands from smallest to largest. Let
choosing each waveband size is to choose the band as largk; & the size of theé’" waveband. If the source sends upRo
possible, thereby minimizing the amount of traffic which reealls to theN destination node$; is bounded by
mains (and therefore the subsequent number of wavebands). _
The greedy algorithm provides a method for optimally de- b; > V"NHJ . i=1,....,N (4)
termining waveband sizes for the minimum-wavelength prob- B J
lem. This also implicitly provides a way of determining the Corollary: The total number of wavelength$ required is
minimum number of wavebands required (i.e. by running thsbunded by the sum of the bounds on the individual waveband
algorithm and counting the number of wavebands producedjzes, namely
We can also derive an explicit upper bound on the minimum
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number of wavebands required in the minimum-wavelength NP N+i
scenario. We proceed by relaxing the integer constraints on w2 Z LZJ (5)
bmaz(N, P). Let P, be the number of calls remaining after . =1 .
running thek!" iteration of the greedy algorithm. The seried Nis summation can be shown to increas€# log ).
progresses as follows: Proof:  The proof proceeds by constructing an admis-
sible traffic set which requires; to have at least =N+ |
1\* wavelengths. Consider the traffic set where the sofirsends
By = (1 - N> P ( | £=+1 | calls each to the firstnodes, and a single call to each
If P < N, then the number of bands is simply equal to remaining node. The total traffic in this construction is
P since each band is composed of only a single wavelength. | P=N+i )
Therefore consideP > N and determine the number of bands [ {ZJ +(N—-i)<P

k required to reduce the number of unassigned wavelengths hod therefore it is admissible. Sin h destination receiv
N. ltis straightforward to show that = 25/P)_ Then &Mt MEIEIOTe It IS admISSIVIE. SINGe Sach Cesunation Feceives

o log(1-1/N)" . at least one call, each of th€ wavebands goes to a different
the total number of wavebands is simply- N. Since relaxing destination

the ceiling constraints underestimates the size of each wavey,,

ithout | f lity, ign the largesveband
band, this gives an upper bound on the number of wavebareg%I OLIL105S O generaity, 've assign the ‘ar vebanas

odes 1 through. Each of these wavebands must support

B, namely: | L=t | calls. Therefore, > | =N+ [ ]
log () Since Lemma 1 is a lower bound, any minimum-waveband
N+ log(1-%) P>N algorithm which achieves the bound is optimal. We next present

B= (3) an algorithm that can support any admissible traffic set using

P , P<N wavebands of the minimal sizes specified by (4). Since this
From (3), we can also make the additional observation tHRinimum-waveband algorithm would use no more wavelengths
if P < N, the number of band® equals the number of than the lower bound, it is therefore optimal.
wavelengthsP, and there is no savings from banding in the Min-Band Algorithm
minimum-wavelength case as each wavelength continues to bd) Index the N waveband in order of decreasing size, so

switched individually. that waveband has sizeb; = |Z=N+i|, wherei =
1,..., N. Note that), is the largest waveband, abg is
- the smallest.
B. The Minimum-Waveband Problem 2) Leti = 1.

The optimal minimum-waveband algorithm is the one that 3) Locate the destination node with the greatest number of
requires the fewest wavelengths subject to using only the mini-  remaining calls. Switch wavebarido that node. Assign
mum number of wavebands. In addition to providing a second  up tob; calls to waveband, and remove these calls from
point on the optimal frontier, this will establish the minimum the traffic set.
cost in wavelengths required to obtain the maximum possible4) If no calls remain, the algorithm terminates. Otherwise,
reduction in switching. increment and return to Step 2.



By design, the algorithm uses only wavebands of the mintl. WAVEBAND SWITCHING FOR MULTI-SOURCETRAFFIC

imum size, and therefore meets the lower bound. It remainsyye now consider the more general case of multi-source traf-
only to show that it is able to support any admissible set. Firgf; | this scenarioN' nodes are connected to a central hub.
suppose that each destination receives at least a single calle}ah node is assumed to have a hardware limitatid? wéans-
this case, we can rank each destination in decreasing ordepffiers and receivers, and can therefore send and receive up to
number of calls received, so that the first destination receiveS.q)is. The hub must switch the calls, at a band level, from the
the most calls. Then the min-band algorithm allocatesithe appropriate source to destination nodes. In our discussion, we
waveband to the™ destination. Since each destination regi assume that self-traffic is allowed; the case without self-
ceives at least one call, the firstiestinations receive at mosty5tfic is similar and leads to comparable results. We will show
P—(N—i)=P-N +icalls, and the*" destination reCeIVes that many of the concepts in this scenario parallel those in the
atmost| (P — N +i)/i] calls. Since the'" waveband has size gingle-source case. (The primary differences are that the traf-
(P — N +1i)/i], it suffices to accommodate the calls. Thec set now consists of a traffic matrix rather than a vector, and
proof in the case where some destinations do not receive clls switching configuration for each waveband will now con-
is more cumbersome but follows the same approach. sist of a permutation matrix rather than a unit vector.) We will
Example 3:Consider the case where = 22 calls are dis- again begin by considering two special cases, the minimum-
tributed amongV = 4 destinations. The optimum minimum-yayelength and minimum-waveband problems, followed by in-

waveband algqrithm require; 4 wgvebands. According {Rstigating algorithms that provide a tradeoff between these two
Lemma 1, the first waveband is of sigg = [P — N + 1] = (ages.

|22 — 4 4 1] = 19. Similarly, by = 10, b5 = 7, andby = 5.
These wavebands can support afyport admissible traf-
fic set, P = 22. For example, consider the traffic 36t =
[5,8,7,2]. The first waveband is assigned to node 2, the des-Recall that for the minimum-wavelength problem, we con-
tination with the most traffic, and carries all 8 calls. Similarlystrain ourselves to the domain of banding algorithms which use
b, is assigned to node B; is assigned to node 1, ahg is as- only the minimum possible number of wavelengths. Since each
signed to node 4. Using the matrix decomposition notation Bpde may send up t& calls, it is clear that at leadt wave-

A. The Minimum-Wavelength Problem

(1), this can be written as lengths are necessary. In [13] it is shown that this is also suffi-
cient. The challenge is therefore to first partition tAevave-
5,8,7,2] < 19e + 10es + Tey + Hey Iength; into yvavebands, and second, to develop an algorif[hm
— [7,19,10,5] that will provide a valid wavelength assignment for any admis-

sible traffic set using these wavebands.

Note that here, the total number of wavelengths available toWe first address the partitioning of the wavebands. We con-

L . sider the cases of interest to be maximal traffic sets, since we

each destination (represented by the vector on the right-han N .

. . : ___tan add fictitious calls to any non-maximal set to construct a
side of the equation) is greater than the number of calls: mari€ _. ) - .
e . maximal one. We define a wavelength tofody utilized if it

wavelengths were provisioned than absolutely required for this ; . L

. . ; T 1S used to carry a call on every link. Mathematically, this is

particular traffic set. This over-provisioning in wavelengths is

necessary in order to guarantee thhtadmissible traffic sets €quivalent to stating that the T”a”'x Of. calls supported by that
wavelength forms a permutation matrix. We say that a wave-
can be accommodated.

. . . . . band is fully utilized if every wavelength in that waveband is
Itis instructive to compare this to the decomposition obtamq lly utilized

by the greedy algorithm of Section II-A. The first waveban Every minimum-wavelength algorithm must be able to fully

for the greedy algorithm consists 0P/N| = [22/4] =6 yjipe every waveband under any admissible maximal traffic
wavelengths. The remaining waveband sizes can be show ? We have already seen in Section II-A that a greedy ap-

]E)e Eﬁ’3’3’2’ 1’%’ Ldl}: Ong .possmle switching Comclguratlonproach is optimal for this type of problem. Recall that the
orihese waveband SIzes 1S. greedy algorithm worked recursively by partitioning, at each
step, the largest waveband size possible subject to the con-

[5,:8,7,2] = Gea+des +3er + 3es + 261 + €2 straint that it could be fully utilized by any admissible traffic
+ext+eqtey set. Intuitively, this was because the number of wavebands re-
= [5,8,7,2] quired turned out to be non-increasing in the amount of traffic;

therefore at each step the optimal solution was to minimize the

The greedy algorithm, since it is a minimum-wavelengtfesidual amount of traffic. The only remaining problem is that
algorithm, did not over-provision any wavelengths; howevegrgest fully utilizable waveband siz&,,...(V, P), must be de-
more wavebands were required. This example also illustraté&d for the multi-source case.
an important point. In the decomposition given by (1), equality We can viewb,,,.. (N, P) as the largest number of identical
is guaranteed to hold for all if and only if the wavebands were Permutation matrices that we are guaranteed to be able to find
allocated using a minimum-wavelength algorithm (such as tMéthin any N x N matrix with row and column sums equal to
greedy algorithm). Algorithms such as the min-band algorithdi- This is equivalent to stating that sufficiently many calls must
allow some overprovisioning of wavelengths in order to furthéxist within any admissible traffic set with parametaraind P
decrease the number of wavebands required. to fully utilize the waveband.



Example 4:Consider the case whete = 9 and N = 3. of the greedy algorithm, we are guaranteed that this is the min-
One admissible maximal traffic set satisfying these constraimtsum possible number of wavebands subject to the minimum-

is given by wavelength constraint.
L s s In principle, with the greedy algorithm, we can obtain
1 = { 2 } the exact minimum number of wavebands required under the

. . minimum-wavelength constraint simply by iterating through
. The Iarggst wgveband that could be fully utilized by this Pafre algorithm and counting the number of wavebands produced.
ticular traffic set is 4 wavelengths, as shown below:

We can also obtain in closed form an upper bound on the num-
c, = 4. [ PO } + [ PO } ber of wavebands by relaxing the integer constraints. Using ar-

oo guments analogous to the single-source case, we can show that
The first term consists of 4 identical permutation matrices repn upper bound on the number of wavebaBds given by

resenting calls that can be used to fully utilize a waveband of (N41)2

size 4 or less; the second term forms the remaining calls. Note (N+1)? [T} P> (N+1)?

that this shows only thal,,., must beat most4; it may be g 1 log[1- iz | 1 7)
possible that some other traffic set may require an even smaller

waveband for full utilization. The challenge will be to obtain in P . P< (N+1)?

. . . . 4
closed form an equation f@¥,.. without performing this sort |t can be show from (7) that the number of wavebands re-

of exhaustive examination of all possible maximal admissibig,ired grows a®) (N2 log(P/N?)). Since the number of wave-

traffic sets. This is given by the following lemma. bands required by the greedy algorithm is the minimum pos-
Lemma 2:For anyN x N matrix with row and column sums sjple for any minimum-wavelength algorithm, this allows us

at mostP, there exist at least,,.., identical permutation matri- o quantify the maximum switching reduction possible without

ces within the matrix, witlb,,,,.. given by wavelength inefficiency.
4P
[N(N+2)W , IV even B. The Minimum-Waveband Problem
bmam = (6)

P Recall that a minimum-waveband algorithm is defined to be

[WW , N odd a banding algorithm that uses the minimum possible number of

wavebands. Since all wavelengths in the same waveband must

go to the same destination, and there Arg@ossible different

destinations, a minimum oWV wavebands are required. One
ay to achieve this is to statically provisidhwavelengths be-

The relation in (6) can be used in conjunction with the gree Y een each source-destination pair, using a tota? bf wave-

algorithm tq 9pt”.’“"?‘”y partition the wavepands. Slmce the gths. The minimum-waveband problem is therefore to find
waveband sizing is independent of the particular traffic set an

a better, dynamic algorithm that uses fewer wavelengths. Since
depends only on the network parametarand P, wavebands : Y gor . ) 9 )
g . . e single-source traffic model is a special case of the multi-
of constant size can be used for any admissible traffic set. i
. . ’ source model, we can also use (5) to provide a lower bound on
using the expressiohy,,...(N, P) to size each waveband, we

have guaranteed that a permutation of the appropriate size Eréennumber of wavelengths required:
P—-N+ 7J

Furthermore, there exists at least afiex N matrix where no
more thar,,,... identical permutations can be found.
Proof: See Appendix A.

be found to fully utilize each waveband. N
Example 5:We continue with the 3-node network from Ex- W= Z { i

— i i =1
ample 4 where” = 9. Using the greedy algorithm, we WOUIdHowever, in this case it is possible to show that the bound is

determine that the largest waveband should[l@ﬁ%” = not tight. We therefore do not know the achievable minimum

CIC)N g number of wavelengths, only that it cannot be less than that
(4)? - I .
specified by (5).

o i B e e XL p0pose . wlengivefcent minmum-ancing
been assigned to bands. The final waveband partition ﬁgomhm which require©(P+/N) total wavelengths, which

{3.2,1,1,1,1}. By choice ofb this partitioning can be improves on th& (P N) worst case. The algorithm operates by

fully utilized by any admissible traffic set. For example, co decomposing the traffic set iny sub-matrices, and attempts

! : : to group entries with heavy weights and light weights into sep-
sider the traffic se€’, from Example 4. One possible decom arate sub-matrices. This will allow some wavebands to use less

position is than the worst case d@f. The algorithm relies on the following
[338] =3 [s s i)+ [0 0] lemma: | |
522 oo o0 Lemma 3: Consider aP-port traffic set on anV-node star.
1. { 5 1 o } 1. [ T o o } For any value of: such thatl < k < N, there exists a decom-
R co position satisfying (1) where
+1- [ o 1 o0 } +1- |: o o0 1 :|
o o0 1 1 0 o0 bl = ... = bk —

P
Note that the equality in this decomposition indicates that all b B b — P
wavelengths are fully utilized. Furthermore, by the optimality kbl = e TN T



Proof: See Appendix B. | 1
Corollary: Any P-port N-node traffic set can be routed using o0 |
k bands of sizeP and N — k bands of size 2 |. wof |
The proof of Lemma 3 forms the basis of the SQRT(N) al- 2 | | SORT(N algoritim
gorithm. Since it holds for any value @f it is logical to use 2
the value ofk: which results in the fewest total number of wave- A dual algorithm tradeoft
lengths used. To determine this, we write down the expression g _
for the number of wavelengths required: greedy algorithm |
P ol / B e
Wk =kP + (N - k) <k‘—|—1> (8) uniform waveband sizing approach
It can be shown that this expression is minimizedkat= 0 % o
) A ) wavebands B
v N +1—1. If we relax the integer constraint dnand substi-
tute this back into the equation, we obtain; Fig. 4. Performance of the non-uniform banding algorithms of Section IlI
W op (\/ﬁ ) compared to the uniform banding algorithm of Section IV in a star With=
= +1- ) 10, P = 1000.

leading to the observation that the SQRT(N) algorithm requires
O(P+/N)wavelengths. The results of this section show that the
maximum amount of switching reduction can be achieved by, at
worst, a factor of/N increase in the number of wavelengths. Thus far in discussing multi-source traffic, we have allowed
Example 6:We examine the case of Example 5 under th@avebands to be non-uniformly sized. Here we consider fixing
minimum-waveband restriction. Using the SQRT(N) algaall wavebands to a constant sizeand derive the number of
rithm, we see that fo’v = 3 and P = 9, we should choose wavelengths and wavebands required. By varying family
k =+N +1—1 = 1. We therefore require only 1 wavebanddf banding algorithms with varying numbers of wavebands and
of size 9 andNV — 1 = 2 bands of sizd P/(k + 1)] = 5, wavelengths can be obtained. Somewhat surprisingly, we will
producing a final waveband sizing §9, 5, 5}, for a total of 19 see that in the multi-source case, by using uniform waveband
wavelengths and 3 bands. We can compare this with the @izes, most of the maximum banding gain can be obtained at a
timal minimum-wavelength solution df3,2,1,1,1,1}, which  very small cost in additional wavelengths.
uses the minimum of 9 wavelengths but requires 6 wavebandsWe begin by first deriving the minimum number of wave-
Shown below is one possible call assignment using thelsands required for a fixed waveband size

IV. THE UNIFORM WAVEBAND APPROACH

waveband sizes for the specific traffic 64t Theorem 1:Given a fixed band siz the necessary and suf-
[ s } < 9. [ 0o 1 } 15, [ °o o 1 } ficient m_ini_mum number of v_vavebands required to supgport
52z o toooo o 10 port traffic in anN-node star is

+5 [ 1 0 o0 ] |: 5 9 5 }
. 0 1 0 = 5 5 9
P—-N
0 0 1 o 9 5. 5 | Bunifm,m:N%» (9)
Note that wavelengths were overprovisioned in this case for b
some source-destination pairs. However, the additional WaVeorollary: The corresponding necessary and sufficient mini-
lengths are required to guarantee that all admissible traffic SElSm number of wavelengths required is
can be accommodated by the 3 wavebands.
P—-N
C. Hybridization: Wavelength-Waveband Tradeoffs Wuniform = bN + b {bJ (10)

To obtain a tradeoff in performance between the greedy algo\Ne first prove necessity of (9) by providing an example

rithm (which has minimal wavelength usage) and the SQRT(lhjch requires at least this number of wavelengths. Sufficiency

algorithm (which has minimal waveband usage), we can Ugg he shown by construction. (10) then follows directly from
hybrid algorithms that size some wavebands using the gregl¥ ¢t that each band is of size

algorithm and the remaining using SQRT(N). By varying how Consider the traffic set where node 1 sends a single call to
many wavebands are sized using each algorithm, a family @fyoc 1 tov — 1 andP — (N — 1) calls to nodeN. In this

hybrid algorithms can be obtained that can be shown t0 havgse N _ 1 pands are required to support traffic to the first

the following wavelength-waveband tradeoff: ) _(N— .
g g N — 1 nodes, while) ==L | bands are required to support
4

Bauai—N
Waiwar = |1+2VN (1 — > . P traffic to nodeN. This gives a lower bound on the number of

_ (N+1)2) wavebands of
Figure 4 shows the performance of this approach for a

star with N = 10, P = 1000. The two asymptotes

represent the SQRT(N) and greedy algorithms, which op-
erate in the minimum-waveband and minimum-wavelength P_N
regimes, respectively. The dual-algorithm approach essentially = N+ { b J
interpolates between the minimum-waveband and minimum-

wavelength cases to produce algorithms with intermedia ere the last step follows from the observation that
. P—(N-1)| _ | P=N
waveband and wavelength requirements. ) W = { b J + 1.

Buniform > (N—1)+ FD(ND—‘

b




We will show using a bipartite matching approach that these Similar arguments can be used to show that the number of
quantities are sufficient as well. We will first construct a bipaedges adjacent to each destination néges given by
tite multigraph. A multigraph differs from a graph in that it al- N
lows multiple edges between the same two nodes. We consider Z [QJW < N4 {P — NJ
two sets of node¥; = {s1,...,sy}andVa = {dy,...,dn}. — 1 b b
For a given admissible traffic set, define the number of Ca"STherefore each node has at mo&t-

) . i | £52 | edges adjacent
from node: to node; to bec; ;. Then creatg =* | €dges con- 1, it The following lemma will now prove useful.

necting nodes; to d;. The complete set of edgésrepresents | emma 4:1n a bipartite multigraph where each node is ad-

the traffic to be carried, now in units of wavebands (each of Sifa?cent to at mosk edges, a partitioning exists that divides the

b) instead of wavelengths. edges into at most matchings.
The number of edges adjacent to each source spdan be Proof: See [14]. m

obtained by summing .| overj. Let the number of desti-
nations receiving non-zero traffic from nodée N;. Without
loss of generality, assume these are nodésrough ;. We
decompose the traffic to these destinations by

By Lemma 4, at most an equal number of matchings are re-
quired. Since calls in each matching can share the same wave-
band, at mosV +| £ | wavebands are required. The number
of wavelengths follows directly from the fact that each wave-
band is of sizé.

Example 7:Consider a star witiv. = 10 and P = 1000,
wherer; ; is chosen such that; ; is a nonnegative integer mul-and consider uniform band sizes of= 40. By Theorem 1,

tiple of b, andl < r; ; < b. We can then express the summatioV + | £5% | = 10 + | 1900=10| = 29 wavebands are required.

Cij = Wij +Tij (11)

of interest as Since each waveband consist$0fwavelengths, a total Gf0 -
N N 29 = 1711 wavelengths are used as well.
[Cm} - Z P’m’ + ”Jw We now have a method for obtaining necessary and sufficient
—~1b —1 b conditions on the number of wavebands and wavelengths are
N; N; necessary and sufficient. By ignoring the integrality constraints,
= V“ﬂ + Z Wi we can solve for the number of wavelengths as a function of the
—=1b = b number of wavebands and obtain an approximate characteri-
L zation of the waveband-wavelength tradeoff using uniformly-
= N, + . ; Wi j (12) sized wavebands:
where the second step relies 8nbeing integer, and the third Waniform = P+ (B P—-N . 1) N 13)
on the fact that; < b. uniform —
By summing (11) ovei and noting thab"\', ¢, ; = P, we Figure 4 illustrates the performance of the uniform waveband
can obtain the following useful relation: algorithm for a star withV'- = 10, P = 1000. The two as-
N, N, ymptotes represent the SQRT(N) and greedy algorithms, which
p - sz' - Z” _ operate in the minimum-waveband and minimum-wavelength
pn " P 7 regimes, respectively. Note that although the uniform wave-
N, N, band algorithm performs poorly in the minimum-waveband
N Zwm‘ - p_ Zrm‘ regime (where it requires many more wavelengths than the
= vl SQRT(N) algorithm), the performance improves dramatically
< P—N, once a few additional wavebands are introduced. By around

40 wavebands, it requires only slightly more wavelengths than
where the last line results from observing tha > 1. Using the greedy algorithm, which uses 121 wavebands. We observe

this result, (12) becomes that by allowing slightly more wavelengths than the minimum-
N wavelength case, the fixed-waveband algorithm can greatly
3 {CLJW < N+ P—N; reduce the number of wavebands required, approaching the
pecll b minimum-waveband bound significantly.
1 P From this graph, two observations can be made:
= (1 - b) Ni + B 1) As the number of wavebands increases, the performance
1 p of the uniform-waveband algorithm appears to approach
< (1 — ) N+ — the optimal performance of the greedy algorithm. In
b b particular, at the right endpoint, it appears to be almost
_ Ny PN wavelength-efficient.
b 2) Because of the slow increase in the number of wave-
Since both the summation on the left addon the right are lengths required as the number of wavebands decreases,
integers, by taking the floor of both sides we can conclude it appears that the majority of the reduction in the num-
N ber of wavebands can be achieved at very little cost in
Cij P-N wavelength inefficiency (as compared to the greedy algo-
3 { ] < N+ { J _ 9 y ( p greedy alg
—~1b b rithm).



The first observation can be verified by comparing the num- Routing algorithms for permutation traffic exist in the liter-
ber of wavelengths used by the uniform-waveband algorithmature for rings with [8] and without [4] conversion, trees [13],
the greedy algorithm. FaP large we can approximat8,..qs, and torus networks [7].
by 2 log (4%). For this number of bands, the number of For example, in the case of a ring, [4] provides an optimal
wavelengths used by the uniform-waveband algorithm is aBWA algorithm for the bidirectional ring topology without con-

proximately version using the minimum number of wavelengths. Specifi-
PN cally, it shows thaf N/3] wavelengths are necessary and suf-
Wauniform =~ P+ 3 ficient to support any single-port traffic set. SiriEeis a per-
mutation matrix, it can be supported usifiy/3] wavelengths.
— |1s 1 P Each set of calls; T; from the decomposition of (14), can there-
M log (42) fore be supported usingV/3] wavebands, each consisting of

b; wavelengths.

Using this approach, the entire traffic §¢tan be supported
whereq is a term that goes to zero &sincreases. Recall that using B sets of wavebands, where each suchisainsists of
the greedy algorithm, which was wavelength-efficient, uses th&//3] wavebands ob; wavelengths. The total numbers of
minimum of P wavelengths. Therefore the performance of th#avebands and wavelengths are

= (I+a)-P

uniform-waveband algorithm approaches the optimum asymp- N
totically in the minimum-wavelength regime. Biotat = B {w
It is also possible to show analytically by slope analysis that 3
Wauniform approaches its final value very quickly; this gives N1 E N
rise to the second observation, which is extremely significant Wiotal = LJ Zbi =W [J
=1

from a practical perspective. If we are interested in building an

actual implementation, it indicates that a majority of the gain

from using banding can be achieved with very little wavelength VI. CONCLUSION
inefficiency. For example, in the graph of Figure 4, the process-
ing granularity can be reduced from 1000 wavelengths (with
banding) to 30 wavebands, a reductior®@¥;, at a cost of only
a50% increase in the number of wavelengths.

In this paper, we considered waveband switching as a method
Oty reducing overall network costs. We provide wavelength-
efficient algorithms that use the minimum possible number
of wavebands, and show that the optimal approach is to use
a greedy algorithm. We provided minimum-waveband algo-
V. BANDING ON GENERAL TOPOLOGIES rithms that allow for small wavelength inefficiencies in return
Thus far all our results have been for the star topology. for reducing the number of wavebands down to just the nodal
this section we extend the preceding banding results to genefegree. We use these results to help characterize the optimal
topologies for which routing algorithms fdp-port traffic are performance frontier. We also provided a uniform waveband
known. approach that compares very favorably to the optimal perfor-
Recall that we have shown that banding can be consideredhasnce frontier and achieves large reductions in switching re-
a matrix decomposition problem, where for a given admissibigiirements at very little cost in wavelength inefficiency. Fi-
traffic setC, our goal is to decompose it into the sum of a fixedally, we extend our results to general topologies where permu-
numberB of weighted permutation matrices: tation traffic routing algorithms are known.

C<bTy+bTo+...+bpTB

where the band sizel®; } and the total number of wavebands
B are constant for all traffic sets. The goal was to minimize, The proof of Lemma 2 relies on bipartite graphs. Any
over all possible admissible traffic sets, the two cost parameté¥sx N matrix C' can be represented by a bipartite graph
corresponding to the number of wavebarfgignd the number consisting of two sets ofV nodes,S = {si,...,sy} and
of wavelengthii1 b;. D = {di,...,dn}. An edge exists between nodgsandd; if
In the star, each permutatidh could be accommodated us-the corresponding matrix entf¢]; ; is non-zero, and the edge
ing a single waveband consisting iyf wavelengths. This ap- is labelled with the valuéCT; ;.
proach can be extended to other topologies in a straightforward>efine amaximal matchingo be a set ofV edges such that
manner, with the main difference being that each permutatiexactly one edge is incident on each node. Itis straightforward
T; may now require multiple wavebands of sizeto support to show that any maximal matching corresponds to a permu-
it. In general, if the RWA algorithm requireg N) wavelengths tation matrix. Furthermore, the number of such permutation
for permutation traffic on the topology, and a banding algorithmatrices that exist withig' is equal to the weight of the small-
is considered which uses wavebands antd” wavelengths on est edge in the matching. Therefore, to prove the lemma, it is
a star, then the extension of that banding algorithm to the newfficient to show that (1) for any admissible traffic set, there
topology requires: always exists a matching with minimum edge weight at least
bmaz, and (2) for any value ob > b,,,., there exists some
Biotal B-¢(N) traffic set for which no maximal matching with minimum edge
Wiotar = W -¢(N) weightb exists.

APPENDIXA



We make use of Hall’s Theorem in the proof. Hall's Theorenhan

is stated as follows:

Hall's Theorem[14]: In a bipartite graph{.S, D, £), wheref
is the set of edges, define the neighborhood of a subsetS
to be those nodes i which are connected via some edge i
£ to some node in. Then there exists a maximal matching i
and only if, for every subset € S, its neighborhoodV (v) has
size|N(v)| > |v|.

Applying this to our problem, Hall's Theorem states that
maximal matching with minimum edge weightexists if and
only if no subset of source nodesexists such that thé-

neighborhoodV,,(v), consisting of destination nodes connecteg

to some source node invia an edge of at least weight has
size less tharw|. Supposing for a moment that| = » and

Ny(v) = m, a maximal matching exists for a given traffic seiC

iff m > n for all possiblev in that traffic set. Furthermore,
since we require the waveband to be fully utilizable dtirad-
missible traffic sets, we must hawe > n for all possiblev for
all possible admissible traffic sets

We can consider, for any fixed andm, when it is possible
to find an admissible traffic set where < n. Consider the
maximal admissible traffic set where the maximun® calls
are sent fromw to nodes inN,(v), leaving (n — m)P calls
being sent to theV — m non-b-neighborhood nodes. If the
(n —m)P calls are divided evenly among th¢ N — m) edges
going to noné-neighborhood nodes, the largest edge weight

’7 (r—m)P
r(N—m)

be of weight less thai, this construction is valid whenever _ T
]. We have therefore shown that the conditioff@n SUPPOIT'., using at mostV — & wavebands of S'Z%m]

(r—m)P
b> ’77‘(me)

b < [("_’”)PW is necessary.

r(N—m)
Itis possible to show that, for a fixedandm, this is a neces-
sary and sufficient constraint @ We can therefore minimize
this expression over all andm and choosé,,, ., to be equal

e o)

=
P

n—m)P

n(N —m)

|
|

min
m

min
n

bm ax

min
n

{mé“nw—m—m

where in the last line, the minimization can be brought insid
due to the monotonicity of the floor function. Ignoring integral-

ity constraints, the right-hand size is minimizedaat= 231,
If N is odd, then®+! is integer and a valid choice far. If N

is even, then sinc%m is convex, the minimizing value

must be eithey or & + 1; both result in the same value of the

minimizing function. This gives the final value 6f,,, from

(6).

APPENDIXB

The proof of Lemma 3 will be by construction. We will

first decompose the traffic matrX into two sub-matrices: the

“heavy” matrix C'y, containing all entries with weight greater

W. Since all edges to non-neighborhood nodes mL{st

10

P

k=

greater thar{kL_;J.

We first assign any entry i’ greater than[

1, and the “light” matrixC,, containingno entries

D

k+1—‘ to Cy.

?\Iote that at this point each row and column(fg; contains at

mostk entries. (If any row or column exceedsentries, then

that row or column inC' must have had a sum greater th@an

meaningC' is not an admissible traffic set.) We next continue

gssigning entries i’ to C'y until each row and column af'y

has exactlyt entries.

Suppose there exists a row @y that contains fewer than

entries. Then there must also be a column that has fewer

thank entries. (This follows from the fact thdt is square;

f all columns havek entries, and each row has no more than

entries, then all rows must also hakeentries.) Locate the

entry corresponding to that row and columndh and assign

it to Cy. Repeat until each row hdsentries. By the same

reasoning as before, all columns must now hiamtries also.

It is well known that any such matrix can be decomposed into

at mostk matrices with only one non-zero entry per row and

column. Therefore, by performing this further decomposition

and noting that all entries i@y are at mos#, we have shown

thatCy can be supported by at mdstvavebands of siz&.
Assign all remaining entries i@ to Cy; this givesC, there-

fore has exactlyv — k entries per row and column. This can

é?milarly be decomposed inty — & matrices with only one en-

ry per row and column; since each entry is at mﬁ)ﬁ%} , we
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