
PROCEEDINGS OF IEEE INFOCOM — MARCH 2005 1

Fairness and Optimal Stochastic Control
for Heterogeneous Networks

Michael J. Neely , Eytan Modiano , Chih-Ping Li

Abstract— We consider optimal control for general networks
with both wireless and wireline components and time varying
channels. A dynamic strategy is developed to support all traffic
whenever possible, and to make optimally fair decisions about
which data to serve when inputs exceed network capacity. The
strategy is decoupled into separate algorithms for flow control,
routing, and resource allocation, and allows each user to make
decisions independent of the actions of others. The combined
strategy is shown to yield data rates that are arbitrarily close to
the optimal operating point achieved when all network controllers
are coordinated and have perfect knowledge of future events. The
cost of approaching this fair operating point is an end-to-end
delay increase for data that is served by the network. Analysis
is performed at the packet level and considers the full effects of
queueing.

Index Terms— Stochastic Optimization, Queueing Analysis,
Multi-Hop Wireless, Distributed Computing

I. I NTRODUCTION

Modern data networks consist of a variety of heterogeneous
components, and continue to grow as new applications are
developed and new technologies are integrated into the existing
communication infrastructure. While network resources are
expanding, the demand for these resources is also expanding,
and it is often the case that data links are loaded with more
traffic than they were designed to handle. In order to provide
high speed connectivity for future personal computers, hard-
ware devices, wireless units, and sensor systems, it is essential
to develop fair networking techniques that take full advantage
of all resources and system capabilities. Such techniques must
be implemented through simple, localized message passing
protocols between neighboring network elements.

In this paper, we design a set of decoupled algorithms
for resource allocation, routing, and flow control for general
networks with both wireless and wireline data links and time
varying channels. Specifically, we treat a network withN
nodes andL links. The condition of each link at a given timet
is described by alink state vector~S(t) = (S1(t), . . . , SL(t)),
whereSl(t) is a parameter characterizing the communication
channel for linkl. For example, ifl is a wireless link,Sl(t)
may represent the current attenuation factor or noise level.
In an unreliable wired link,Sl(t) may take values in the
two-element set{ON, OFF}, indicating whether linkl is
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APPENDIX B—PROOF OF THEOREM 2

Proof: Define the Lyapunov function L(U,Z) =∑
nc U (c)

n + 1
N

∑
nc Znc. The drift expression for this function

is given by summing the drift of the U (c)
n (t) queues and

the Znc(t) queues using the general formula (16), where the
queueing laws are given by (6) and (26). Omitting arithmetic

details for brevity, we have the following drift expression:

∆(U(t), Z(t)) ≤ NB + 2
∑

n

(Rmax
n )2 − Φ(U(t))

+2
∑
nc

E
{

U (c)
n (t)Rnc(t) + Ync(t)

Znc(t)
N

| U,Z

}
−

∑
nc

E
{

2
Znc(t)

N
γnc(t)− V hnc(γnc(t)) | U,Z

}
−

∑
nc

V E {hnc(γnc(t)) | U,Z}

where we have added and subtracted the optimization metric∑
nc V E {hnc(γnc(t)) | U,Z} in the right hand side of the

above expression. The CLC2 policy is designed to minimize

the third, fourth, and fifth terms on the right hand side

of the above expression over all possible policies. Indeed,

we already know that the routing and resource allocation

policy maximizes Φ(U(t)). The fourth term in the right

hand side is minimized by the strategy (28) that chooses

Rnc(t) (considering the definition of Ync(t) in (25)). The fifth
term is minimized by the strategy (29) that chooses γnc(t)
(considering the definition of hnc(γ) given in (27)).
For a given ε ∈ (0, µsym), a bound on Φ(U(t)) is given

by Lemma 2 in terms of values (r∗nc(ε) + ε). Now con-

sider the following alternative flow control strategies: Fix

γnc(t) = Rmax
n − r∗nc(ε)

!=γ∗nc(ε) for all slots t. Then, every
timeslot independently admit all new arrivals Anc(t) with
probability pnc = r∗nc(ε)/λnc (this is a valid probability (≤ 1)
by problem (21), and the admitted data satisfies the Rmax

n

constraint by the deterministic arrival bound). This yields

E {Rnc(t) | U,Z} = pncE {Anc(t)} = r∗nc(ε), and hence
E {Ync(t) | U,Z} = Rmax

n − r∗nc(ε)
!=γ∗nc(ε). Plugging these

expectations into the third, fourth, and fifth terms of the above

drift expression maintains the bound and creates many terms

that can be cancelled. The simplified drift expression becomes:

∆(U(t)) ≤ NB + 2
∑

n

(Rmax
n )2 − 2ε

∑
nc

U (c)
n (t)

+V
∑
nc

hnc(γ∗nc(ε))− V
∑
nc

E {hnc(γnc(t)) | U,Z}

Plugging in the definitions of γ∗nc(ε) and hnc(γ) yields:

∆(U(t)) ≤ NB + 2
∑

n

(Rmax
n )2 − V

∑
nc

gnc(r∗nc(ε))

−2ε
∑
nc

U (c)
n (t) + V

∑
nc

E {gnc(Rmax
n − γnc(t)) | U,Z}

The above expression is in the exact form for application of

Lemma 1, and it follows that unfinished work satisfies:∑
nc

U (c)
n ≤ NB + 2

∑
n(Rmax

n )2 + V NGmax

2ε

and performance satisfies:∑
nc

gnc(Rmax
n − γnc) ≥

∑
nc

gnc(r∗nc(ε))

−NB + 2
∑

n(Rmax
n )2

V

However, it can similarly be shown that all Znc(t) queues
are stable, and hence rnc ≥ Rmax

n − γnc must hold [recall

discussion after (27)]. The result of Theorem 2 follows by

optimizing the performance bounds over 0 < ε < µsym in a

manner similar to the proof of Theorem 1.
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Fig. 1. (a) A heterogeneous network with wireless and wireline data links,
and (b) a close-up of one node, illustrating the internal queues and the storage
reservoir for exogenous arrivals.

available for communication. For simplicity of exposition,
we consider a slotted system model with slots normalized
to integral unitst ∈ {0, 1, 2, . . .}. Channels hold their state
for the duration of a timeslot, and potentially change states
on slot boundaries. We assume there are a finite number of
channel state vectors~S. For each~S, let Γ~S denote the set
of link transmission rates available for resource allocation
decisions when~S(t) = ~S. In particular, every timeslott the
network controllers are constrained to choosing a transmission
rate vector~µ(t) = (µ1(t), . . . , µL(t)) such that~µ(t) ∈ Γ~S(t)

(where µl(t) is the transmit rate over linkl and has units
of bits/slot). Use of this abstract set of transmission rates
Γ~S maintains a simple separation between network layer and
physical layer concepts, yet is general enough to allow network
control to be suited to the unique capabilities of each data link.

As an example, consider the heterogeneous network of Fig.
1 consisting of three separate groups of linksA, B, and C:
Set A represents a wireless sensor system that connects to
a wired infrastructure through two uplink access points, set
B represents the wired data links, and setC represents the
two downlink channels of a basestation that transmits to two
different users1 and 2. For a given channel state~S, the set
of feasible transmission ratesΓ~S reduces to a product of rates
corresponding to the three independent groups:

Γ~S = ΓA
~SA
× ΓB × ΓC

~SC

Set ΓA
~SA

might contain a continuum of link rates associated
with the channel interference properties and power allocation
options of the sensor nodes, and depends only on the link



PROCEEDINGS OF IEEE INFOCOM — MARCH 2005 2

states ~SA of these nodes. SetΓB might contain a single
vector (C1, . . . , Ck) representing the fixed capacities of the
k wired links. SetΓC

~SC
might represent a set of two vectors

{(φS1 , 0), (0, φS2)}, whereφSi
is the rate available over link

i if this link is selected to transmit on the given timeslott
whenSi(t) = Si.

Data is transmitted from node to node over potentially
multi-hop paths to reach its destination. Let(λnc) represent
the matrix of exogenous arrival rates, whereλnc is the rate of
new arrivals to source noden intended for destination node
c (in units of bits/slot). Thenetwork layer capacity regionΛ
is defined as the closure of the set of all arrival matrices that
are stably supportable by the network, considering all possible
routing and resource allocation policies (possibly those with
perfect knowledge of future events). In [16], a routing and
power allocation policy was developed to stabilize a general
wireless network whenever the rate matrix(λnc) is within the
capacity regionΛ. The purpose of our current paper is to treat
heterogeneous networks and develop distributed algorithms
for flow control, routing, and resource allocation that provide
optimal fairness in cases when arrival rates areeither inside
or outside the network capacity region.

Specifically, we define a set ofutility functions gnc(r),
representing the ‘satisfaction’ received by sending data from
node n to nodec at a time average rate ofr bits/slot. The
goal is to support a fraction of the traffic demand matrix(λnc)
to achieve throughputs(rnc) that maximize the sum of user
utilities. We thus have the optimization:

Maximize:
∑

n,c gnc(rnc) (1)

Subject to: (rnc) ∈ Λ (2)

0 ≤ (rnc) ≤ (λnc) (3)

where the matrix inequality in (3) is considered entrywise.
Inequality (2) is thestability constraintand ensures that the
admitted rates are stabilizable by the network. Inequality (3) is
thedemand constraintthat ensures the rate provided to session
(n, c) is no more than the incoming traffic rate of this session.

Let (r∗nc) represent the solution of the above optimization.
Assuming that functionsgnc(r) are non-decreasing, it is clear
that (r∗nc) = (λnc) whenever(λnc) ∈ Λ. If (λnc) /∈ Λ there
must be at least one valuer∗nc that is strictly less thanλnc. The
above optimization could in principle be solved if the arrival
rates(λnc) and the capacity regionΛ were known in advance,
and all users could coordinate by sending data according to
the optimal solution. However, the capacity region depends
on the channel dynamics, which are unknown to the network
controllers and to the individual users. Furthermore, the in-
dividual users do not know the data rates or utility functions
of other users. In this paper, we develop a practical dynamic
control strategy that yields a resulting set of throughputs(rnc)
that are arbitrarily close to the optimal solution of (1)-(3). The
distance to the optimal solution is shown to decrease like1/V ,
whereV is a control parameter affecting a tradeoff in average
delay for data that is served by the network.

Previous work on network fairness and optimization is
found in [2]-[12]. In [2], an optimization problem similar
to (1)-(2) is considered for a static wireless downlink with

infinite backlog, and pricing schemes are developed to enable
convergence to a fair power allocation vector. Further static
resource allocation problems for wireless systems and sensor
networks are treated in [3]-[7], and game theory approaches for
wired flow networks are treated in [8]-[11]. These approaches
use convex optimization and Lagrangian duality to achieve
a fixed resource allocation that is optimal with respect to
various utility metrics. In [9] [10], pricing mechanisms are
constructed to enableproportionally fair routing. Related work
in [8] considersmax-min fairness, and recent applications to
the area of internet congestion control are developed in [12].

We note that fixed allocation solutions may not be appropri-
ate in cases when optimal control involvesdynamic resource
allocation. Indeed, in [14] it is shown that energy optimal
power allocation in a static ad-hoc network with interference
involves the computation of aperiodic transmission schedule.
A similar scheduling problem is shown to be NP-complete
in [28]. The capacity of a multi-user wireless downlink with
randomly varying channelsis established in [29], and utility
optimization in a similar system is treated in [13]. These
formulations do not consider stochastic arrivals and queueing,
and solutions require perfect knowledge of channel statistics
(approximate policies can be implemented based on long-term
measurements).

Stochastic control policies for wireless queueing networks
are developed in [15]-[21] based on a theory ofLyapunov drift.
This theory has been extremely powerful in the development of
stabilizing control laws for data networks [15]-[23], but cannot
be used to address performance optimization and fairness.
Dynamic algorithms for fair scheduling in wireless downlinks
are addressed in [24] [25] [26], but do not yield optimal
performance for all input rates, as discussed in the next section.
A wireless downlink with deterministic ON/OFF channels and
arbitrary input rates is developed in [27], and a modified
version of theServe-the-Longest-ON-Queuepolicy is shown
to yield maximum throughput. However, the analysis in [27]
is closely tied to the channel modeling assumptions, and does
not appear to offer solutions for more general networks or
fairness criteria.

The main contribution of our work is the development
of a novel control policy that yields optimal performance
for general stochastic networks and general fairness metrics.
The policy does not require knowledge of channel statistics,
input rates, or the global network topology. Our analysis
uses a new Lyapunov drift technique that enables stability
and performance optimization to be achieved simultaneously,
and presents a fundamental approach tostochastic network
optimization.

In the next section, we consider a simple wireless down-
link and describe the shortcomings of previously proposed
algorithms in terms of fairness. In Section III we develop
a fair scheduling algorithm for general networks under the
special case when all active input reservoirs are ‘infinitely
backlogged.’ In Section V we construct a modified algorithm
that yields optimal performance without the infinite backlog
assumption. Example simulations for wireless networks and
N ×N packet switches are presented in Section VI.
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II. A D OWNLINK EXAMPLE

Consider a wireless basestation that transmits data to two
downlink users1 and 2 over two different channels (as
illustrated by considering only the triangle-node of the network
in Fig. 1). Time is slotted and packets for each user arrive to
the basestation according to independent Bernoulli processes
with ratesλ1 andλ2. Let U1(t) andU2(t) represent the current
backlog of packets waiting for transmission to user1 and user
2, respectively. Channels independently vary between ON and
OFF states every slot according to Bernoulli processes, with
ON probabilitiesp1 and p2, and we assume thatp1 < p2.
Every timeslot, a controller observes the channel states and
chooses to transmit over either channel1 or channel2. We
assume that a single packet can be transmitted if a channel is
ON and no packet can be transmitted when a channel is OFF,
so that the only decision is which channel to serve when both
channels are ON.

The capacity regionΛ for this system is described by the
set of all rates(λ1, λ2) that satisfy:

λ1 ≤ p1 , λ2 ≤ p2

λ1 + λ2 ≤ p1 + (1− p1)p2

These conditions are necessary for stability because the
output rate from any channeli is at mostpi, and the maximum
sum rate out of the system isp1 +(1− p1)p2. Furthermore, it
is shown in [19] that the ‘Maximum Weight Match’ (MWM)
policy of serving the ON queue with the largest backlog
achieves stability whenever input rates are strictly interior to
the above region.

Now defineg1(r) = g2(r) = log(r), and consider thepro-
portional fairnesscontrol objective of maximizinglog(r1) +
log(r2), wherer1 and r2 are the delivered throughputs over
channels1 and 2 (see [10] for a discussion of proportional
fairness). We evaluate three well known algorithms with
respect to this fairness metric: The Borst algorithm [24], the
‘proportionally fair’ Max µi/ri algorithm [25] [26], and the
MWM policy [19].

The Borst algorithm chooses the non-empty channeli with
the largestµi(t)/µi index, whereµi(t) is the current channel
rate andµi is the average ofµi(t). This algorithm is shown in
[24] to provide optimal fairness for wireless networks with an
‘infinite’ number of channels, where each incoming packet is
destined for a unique user with its own channel. Although
the algorithm was not designed for the 2-queue downlink
described above, it is closely related to the Maxµi/ri policy,
and it is illuminating to evaluate its performance in this
context. Applied to the 2-queue downlink, the Borst algorithm
reduces to serving the non-empty ON queue with the largest
value of 1/pi. Becausep1 < p2, this algorithm effectively
gives packets destined for channel1 strict priority over channel
2 packets. Thus, the service of queue1 is independent of the
state of channel2, and conditioning on the event that a packet
is served from channel1 during a particular timeslot does not
change the probability that channel2 is ON. It follows that
the rate of serving channel1 packets while channel2 is ON is
given byλ1p2 (assuming queue1 is stable so that allλ1 traffic
is served). Thus, the stability region of the Borst algorithm is
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Fig. 2. The downlink capacity regionΛ and the stability regions of the Borst
policy and the Maxµi/ri policy. Input rates(λ1, λ2) are pushed toward point
(0.5, 1.0), and the simulated throughputs under the Borst, Maxµi/ri, and
MWM policies are illustrated.

given by:

λ1 ≤ p1 (4)

λ2 ≤ p2 − λ1p2 (5)

which is a strict subset of the capacity region (see Fig. 2).
Consider now the related policy of serving the non-empty

queue with the largest value ofµi(t)/ri(t), where ri(t)
is the empirical throughput achieved over channeli. This
differs from the Borst algorithm in that transmission rates
are weighted by the throughput actually delivered rather than
the average transmission rate that is offered. This Maxµi/ri

policy is proposed in [25] [26] and shown to have desirable
proportional fairness properties when all queues of the down-
link are infinitely backlogged. To evaluate its performance for
arbitrary traffic rates(λ1, λ2), suppose the running averages
r1(t) andr2(t) are accumulated over the entire timeline, and
suppose the system is stable so thatr1(t) andr2(t) converge
to λ1 andλ2. It follows that the algorithm eventually reduces
to giving channel1 packets strict priority ifλ1 < λ2, and
giving channel2 packets strict priority ifλ2 < λ1. Thus, if
λ1 < λ2 then these rates must also satisfy the inequalities
(4) and (5), whileλ2 < λ1 implies the rates must satisfy the
inverted inequalitiesλ2 ≤ p2 and λ1 ≤ p1 − λ2p1. Thus, at
first glance it seems that the stability region of this policy is a
subset of the stability region of the Borst algorithm. However,
its stability region has the peculiar property of including all
feasible rate pairs(λ, λ) (see Fig. 2).

In Fig. 2 we consider the special case whenp1 = 0.5, p2 =
0.6, and plot the achieved throughput of the Borst, Max
µi/ri, and MWM policies when the rate vector(λ1, λ2) is
scaled linearly towards the vector(0.5, 1.0), illustrated by the
ray in Fig. 2(a). One hundred different rate points on this
ray were considered (including example pointsa - e), and
simulations were performed for each point over a period of5
million timeslots. Fig 2(a) illustrates the resulting throughput
of the Borst algorithm, where we have included example points
d′ and e′ corresponding to input rate pointsd and e. Note
that the Borst algorithm always results in throughput that is
strictly interior to the capacity region, even when input rates
are outside of capacity. Fig. 2(b) illustrates performance of
the Max µi/ri and MWM policies. Note that the MWM



PROCEEDINGS OF IEEE INFOCOM — MARCH 2005 4

policy supports all(λ1, λ2) traffic when this rate vector is
within the capacity region. However, when traffic is outside
of the capacity region the achieved throughput moves along
the boundary in the wrong direction, yielding throughputs
that are increasingly unfair because it favors service of the
higher traffic rate stream. Like the Borst policy, the Maxµi/ri

policy leads to instability for all (stabilizable) input rates on
the ray segmentc-d, and yields throughput that is strictly
interior to the capacity region even when inputs exceed system
capacity (compare pointse and e′). However, the throughput
eventually touches the capacity region boundary, reaching
the proportionally fair point(0.4, 0.4) when input rates are
sufficiently far outside of the capacity region.

It is clear from this simple downlink example that there is
a need for a ‘universally fair’ algorithm, one that performs
well regardless of whether inputs are inside or outside of the
capacity region. For this example, such an algorithm would
yield throughput that increases toward the pointd of the figure,
and then moves on the boundary of the capacity region toward
the fair operating point thereafter. In the following, we develop
such an algorithm for general multihop networks.

III. C ONTROL OFHETEROGENEOUSNETWORKS

Consider a heterogeneous network withN nodes,L links,
and time varying channels~S(t), as shown in Fig. 1. Each
link l ∈ {1, . . . , L} represents a directed communication
channel for transmission from one node to another, and we
define tran(l) and rec(l) as the corresponding transmitting
and receiving nodes, respectively. Each node of the network
maintains a set of output queues for storing data according to
its destination. All data (from any source node) that is destined
for a particular nodec ∈ {1, . . . , N} is classified ascommodity
c data, and we letU (c)

n (t) represent the backlog of commodity
c data currently stored in noden (see Fig. 1). At the network
layer, a control algorithm makes decisions about routing,
scheduling, and resource allocation in reaction to current
channel state and queue backlog information. The objective
is to deliver all data to its proper destination, potentially by
routing over multi-hop paths.

As a general algorithm might schedule multiple commodi-
ties to flow over the same link on a given timeslot, we
define µ

(c)
l (t) as the rate offered to commodityc traffic

along link l during timeslot t. 1 The transmission rates
and routing variables are chosen by adynamic scheduling
and routing algorithm. Specifically, the network makes the
following control decisions every slot:
• Resource (Rate) Allocation: Choose ~µ(t) =

(µ1(t), . . . , µL(t)) such that~µ(t) ∈ Γ~S(t)

• Routing/Scheduling:For each linkl, chooseµ
(c)
l (t) to

satisfy the link rate constraint:∑
c

µ
(c)
l (t) ≤ µl(t)

A set of flow controllers act at every node to limit the
new data admitted into the network. Specifically, new data

1We find that the capacity achieving solution needs only route a single
commodity over any given link during a timeslot.

of commodityc that arrives to source noden is first placed
in a storage reservoir(n, c). A control valve determines
the amount of dataRnc(t) released from this reservoir on
each timeslot. TheRnc(t) process acts as the exogenous
arrival process affecting behavior of queue backlogU

(c)
n (t).

Endogenous arrivals consist of commodityc data transmitted
to noden from other network nodes. DefineΩn as the set of
all links l such thattran(l) = n, and defineΘn as the set
of all links such thatrec(l) = n. Every timeslot the backlog
U

(c)
n (t) changes according to the following queueing law:

U
(c)
n (t + 1) ≤ max

[
U

(c)
n (t)−

∑
l∈Ωn

µ
(c)
l (t), 0

]
+

∑
l∈Θn

µ
(c)
l (t) + Rnc(t) (6)

The expression above is an inequality rather than an equal-
ity because the endogenous arrivals may be less than∑

l∈Θn
µ

(c)
l (t) if nodes have little or no commodityc data to

transmit. The above dynamics hold for all node pairsn 6= c.
Data leaves the network when it reaches its destination, and
so we defineU (n)

n
M=0 for all n.

Definernc
M= limt→∞

1
t

∑t−1
τ=0 E {Rnc(τ)} as the time aver-

age admission rate of(n, c) data. The goal is to design a joint
strategy for resource allocation, routing, and flow control that
yields an admitted throughput matrix(rnc) that maximizes
the utility metric (1) subject to the stability constraint (2) and
the demand constraint (3). In order to limit congestion in the
network, it is important to restrict flow control decisions so
that

∑
c Rnc(t) ≤ Rmax

n for all nodesn and slotst, where
Rmax

n is defined as the largest possible transmission rate out
of node n (summed over all possible outgoing links ofn
that can be activated simultaneously). We note that any time
average rate matrix(rnc) that is within the capacity regionΛ
necessarily satisfies

∑
c rnc ≤ Rmax

n for all n. Indeed, rates
(rnc) violating this constraint cannot be supported, as they
would inevitably overload the source queues.

A. Dynamic Control for Infinite Demand

Here we develop a practical control algorithm that stabilizes
the network and ensures that utility is arbitrarily close to
optimal, with a corresponding tradeoff in network delay. Recall
that functionsgnc(r) represent the utility of supporting rater
communication from noden to nodec (we definegnc(r) = 0
if there is no active session of traffic originating at noden
and destined for nodec). To highlight the fundamental issues
of routing, resource allocation, and flow control, we assume
that all active sessions(n, c) have infinite backlog in their
corresponding reservoirs, so that flow variablesRnc(t) can
be chosen without first establishing that this much data is
available in the reservoir. Flow control is imperative in this
infinite backlog scenario, and the resulting problem is simpler
as it does not involve the demand constraint (3). A modified
algorithm is developed in Section V for the general case of
finite demand matrices(λnc) and finite buffer reservoirs.

The following control strategy is decoupled into separate
algorithms for resource allocation, routing, and flow control.
The strategy combines a novel flow control technique together
with a generalization of the DRPC power allocation strategy
of [16].
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Cross-Layer Control Algorithm 1 (CLC1):

• Flow Control —(algorithm FLOW) The flow controller at
each noden observes the current level of queue backlogs
U

(c)
n (t) for each commodityc ∈ {1, . . . , N}. It then sets

Rnc(t) = rnc, where thernc values are solutions to the
following optimization:

Maximize :
N∑

c=1

[
V gnc(rnc)− 2rncU

(c)
n (t)

]
(7)

Subject to:
N∑

c=1

rnc ≤ Rmax
n

where V > 0 is a chosen constant that effects the
performance of the algorithm.

• Routing and Scheduling —Each node n observes
the backlog in all neighboring nodesj to which it is
connected by a linkl (where tran(l) = n, rec(l) = j).
Let W

(c)
l = U

(c)
tran(l)(t) − U

(c)
rec(l)(t) represent the

differential backlog of commodity c data. Define
W ∗

l
M=maxc{W (c)

l , 0} as the maximum differential
backlog over linkl (maxed with 0), and letc∗l represent
the maximizing commodity. Data of commodityc∗l is
selected for (potential) routing over linkl whenever
W ∗

l > 0.

• Resource Allocation —The current channel state~S(t) is
observed, and a transmission rate vector~µ(t) is selected
by maximizing

∑
l W

∗
l µl(t) subject to the constraint

~µ(t) ∈ Γ~S(t). The resulting transmission rate ofµl(t)
is offered to commodityc∗l data on linkl. If any node
does not have enough bits of a particular commodity to
send over all outgoing links requesting that commodity,
null bits are delivered.

The flow control algorithm is decentralized, where the
control valves for each noden require knowledge only of
the queue backlogs in noden. The routing and scheduling
algorithm acts according to a differential backlog strategy
similar to the backpressure strategy developed in [15], and is
decentralized provided that each nodei knows the backlog
levels of its neighbors. The resource allocation strategy of
maximizing

∑
l W

∗
l µl(t) is the most complex part of the

algorithm, but can be distributed over the independent portions
of the network. Specifically, if the network links are grouped
into K independent components, the set constraint for each
channel state~S has the product form:

Γ~S = Γ1
~S1
× Γ2

~S2
× . . .× ΓK

~SK

Define βk as the set of links contained in componentk.
It follows that resource allocation is decoupled across net-
work components, where each componentk independently
chooses transmission rates for its own links to maximize∑

l∈βk
W ∗

l µl(t) subject to(µl(t)) | l∈βk
∈ Γk

~Sk
. In particular,

network components only require knowledge of the channel
conditions on their own links.

B. Intuitive Description of the Policy

The flow control policy (7) uses a parameterV that deter-
mines the extent to which utility optimization is emphasized.
Indeed, if V is large relative to the current backlog in the
source queues, then the admitted ratesRnc(t) will be large,
increasing the time average utility while consequently increas-
ing congestion. This effect is mitigated as backlog grows at
the source queues and flow control decisions become more
conservative.

The routing and scheduling algorithm uses backpressure
from neighboring nodes toequalize differential backlog. In-
deed, allocating resources to maximize a product of transmis-
sion rate and differential backlog ensures that highly congested
links receive larger transmission rates. This effect is most
pronounced when congestion is large, so that the algorithm
‘learns’ from any past scheduling mistakes. Note that in cases
when input rates are very low, there may be little information
contained in the differential backlog values, and hence delay
may be large even though overall congestion small. This
problem can be solved by either restricting routing options to
paths that make progress to the destination (which may also
restrict network capacity), or by using an enhanced algorithm
that weights differential backlog of each commodity by a hop-
count estimate of the distance to the destination. For simplicity
of exposition, here we analyze only the basic algorithm (see
[1] for details on the enhanced strategy).

C. Algorithm Performance

To analyze the performance of the above CLC1 algorithm,
we define the maximum transmission rate out of any node and
into any node as follows:

µout
max

M= max
[n,~S,~µ∈Γ~S ]

∑
l∈Ωn

µl , µin
max

M= max
[n,~S,~µ∈Γ~S ]

∑
l∈Θn

µl

We further define the valueµsym as the largest rate that is
simultaneously supportable by all sessions(n, c) :

µsym
M= Largest scalar such that(µsym) ∈ Λ (8)

While the parameterµsym does not appear to be related
to our design objectives, it will unexpectedly arise in the
delay analysis. For simplicity of exposition, we assume chan-
nel states are i.i.d. every timeslot,2 and let π~S represent
the probability that ~S(t) = ~S. Assume utilities gnc(r)
are non-negative, non-decreasing, and concave, and define
Gmax

M=max[n,
P

c rnc≤Rmax
n ]

∑
c gnc(rnc).

Theorem 1:If channel states are i.i.d. over timeslots and
all active reservoirs have infinite backlog, then for any flow
parameterV > 0 the CLC1 algorithm stabilizes the network
and yields time average congestion bound:

∑
nc

U
(c)
n ≤ N(B + V Gmax)

2µsym
(9)

2The algorithms developed in this paper yield similar results for general
ergodic channel processes, with modified but more involved expressions for
average delay [1].
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where:∑
nc U

(c)
n

M= limt→∞
1
t

∑t−1
τ=0

[∑
nc E

{
U

(c)
n (τ)

}]
B M=

(
µin

max + 1
N

∑N
n=1 Rmax

n

)2

+ (µout
max)2 (10)

Further, network performance satisfies:∑
nc

gnc(rnc) ≥
∑
nc

gnc(r∗nc)−
BN

V
(11)

where(r∗nc) is the optimal solution of (1) subject to constraint
(2).

The above result holds for allV > 0. Thus, the value
of V can be chosen so thatBN/V is arbitrarily small,
resulting in achieved utility that is arbitrarily close to optimal.
This performance comes at the cost of a linear increase in
network congestion with the parameterV . By Little’s theorem,
average queue backlog is proportional to average bit delay, and
hence performance can be pushed towards optimality with a
corresponding tradeoff in end-to-end network delay.

We note that although the CLC1 policy assumes all active
sessions have unlimited backlog in their reservoirs, in practice
the policy yields similar performance when input rate matrices
(λnc) are finite. This holds because for many networks the pol-
icy either stabilizes all queues and reservoirs (yielding optimal
throughput performance) or leads to instability in all active
reservoirs (creating an effective ‘infinite backlog’ scenario
because these unstable reservoirs always have sufficient data
to be scheduled).

The proof of Theorem 1 follows from a novel Lyapunov
drift argument, where the utility metric is incorporated into
the drift condition so that stability and utility optimization
can be simultaneously achieved. This analysis is provided in
Section IV. In the following we consider the implications of
this result.

D. Maximum Throughput and the Threshold Rule

Suppose utilities are linear, so thatgnc(r) = αncr for
some non-negative weightsαnc. The resulting objective is to
maximize the weighted sum of throughput, and the resulting
FLOW algorithm has a simple threshold form, where some
commodities receive as much of theRmax

n delivery rate as
possible, while others receive none. In the special case where
the user at noden desires communication with a single
destination nodecn (so thatgnc(r) = 0 for all c 6= cn), the
flow control algorithm (7) reduces to maximizingV αncn

r −
2U

(cn)
n r subject to0 ≤ r ≤ Rmax

n , and the solution is the
following threshold rule:

Rncn
(t) =

{
Rmax

n if U
(cn)
n (t) ≤ V αncn

2
0 otherwise

The qualitative structure of this flow control rule is intuitive:
When backlog in the source queue is large, we should refrain
from sending new data. The simple threshold form is quali-
tatively similar to the threshold scheduling rule developed in
[27] for server scheduling in a downlink with ON/OFF chan-
nels and deterministic constraints on the channel states and
packet arrivals. Specifically, the analysis of [27] demonstrates

that there exists a thresholdT such that serving the longest
queue maximizes throughput, where all queues with backlog
greater thanT are treated as having backlog that is equal to this
threshold. Although the structure of the downlink scheduling
problem in [27] is different from our problem structure, as are
the analytical techniques and resulting scheduling rules, the
objective of maximizing a weighted sum of throughput is the
same, and hence it is interesting that both sets of results yield
threshold-type policies.

E. Proportional Fairness and the1/U Rule

Consider now utility functions of the formgnc(r) = log(1+
rnc). It is shown in [10] that maximizing a sum of such utilities
over any convex setΛ leads toproportional fairness.3 In the
special case when there is only one destinationcn for each user
n, the flow control algorithm reduces to maximizingV log(1+
r) − 2U

(cn)
n r subject to0 ≤ r ≤ Rmax

n , which leads to the
following ‘1/U ’ flow control function:

Rncn(t) = min

[
max

[
V

2U
(cn)
n (t)

− 1, 0

]
, Rmax

n

]
Here we see that the flow control valve restricts flow according
to a continuous function of the backlog level at the source
queue, being less conservative in its admission decisions when
backlog is low and more conservative when backlog is high.

One drawback of this1/U policy is that the resulting flow
control variablesRnc(t) are real numbers (not necessarily
integers or integer multiples of a given packet length), and
hence it is implicitly assumed that packets can be fragmented
for admission to the network. This problem arises in the
CLC1 algorithm whenever the utility function is non-linear. In
Section V, a modified algorithm CLC2 is presented that over-
comes this problem by allowing admissions to be restricted to
integer multiples of a common packet length, without loss of
optimality.

F. Mechanism Design and Network Pricing

The flow control policy (7) has a simple interpretation in
terms of network pricing. Specifically, consider a scenario
where thegnc(r) functions are measured in units of dollars,
representing the amount the user at source noden is willing
to pay for rater service to destinationc. The social optimum
operating point(r∗nc) is defined as the point that maximizes
the sum of utilities

∑
nc gnc(rnc) subject to(rnc) ∈ Λ. Every

timeslot, each usern determines the amount of dataRnc(t)
it desires to send based on a per-unit pricePRICEnc(t)
charged by the network. The transaction between user and
network takes place in a distributed fashion at each noden. We
assume all users are ‘greedy’ and send data every timeslot by
maximizing total utility minus total cost, subject to anRmax

n

3Strictly speaking, the proportionally fair allocation seeks to maximizeP
nc log(rnc), leading to

P
nc

ropt
nc −rnc

r
opt
nc

≥ 0 for any other operating point

(rnc) ∈ Λ. We use non-negative utilitieslog(1 + r), and thereby obtain a
proportionally fair allocation with respect to the quantityropt

nc + 1, leading

to
P

nc
ropt

nc −rnc

r
opt
nc +1

≥ 0.
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constraint imposed by the network. That is, each usern selects
Rnc(t) = rnc, where thernc values solve:

Maximize :
∑

c [gnc(rnc)− PRICEnc(t)rnc] (12)

Subject to:
∑

c rnc ≤ Rmax
n

Consider now the following dynamic pricing strategy used
at each network noden:

PRICEnc(t) =
2U

(c)
n (t)
V

dollars/bit (13)

We note that this pricing strategy is independent of the par-
ticular gnc(r) functions, and so the network does not require
knowledge of the user utilities. Using this pricing strategy in
(12), it follows that users naturally send according to processes
Rnc(t) that exactly correspond to the FLOW algorithm (7),
and hence the performance bounds (9) and (11) are satisfied.

IV. PERFORMANCEANALYSIS

Here we prove Theorem 1. We first develop a novel Lya-
punov drift result enabling stability and performance optimiza-
tion to be performed using a single drift analysis.

A. Lyapunov Drift with Utility Metric

Let U(t) = (U (c)
n (t)) represent a process of queue backlogs,

and define theLyapunov functionL(U) =
∑

nc(U
(c)
n )2. Let

Rnc(t) represent the input process driving the system, and
suppose these values are bounded so that

∑
c gnc(Rnc(t)) ≤

Gmax for all n and all t (for some valueGmax). Assume
utility functions gnc(r) are non-negative and concave, and let
(r∗nc) represent a ‘target throughput’ matrix with ideal utility∑

nc gnc(r∗nc).
Lemma 1: (Lyapunov Drift) If there are positive constants

V, ε, B such that for all timeslotst and all unfinished work
matricesU(t), the Lyapunov drift satisfies:

∆(U(t))M=E {L(U(t + 1))− L(U(t)) | U(t)} ≤
B − ε

∑
nc U

(c)
n (t)− V

∑
nc gnc(r∗nc)

+V
∑

nc E {gnc(Rnc(t)) | U(t)}

then the system is stable, and time average backlog and time
average performance satisfies:∑

nc

U
(c)
n ≤ (B + V NGmax)/ε (14)∑

nc

gnc(rnc) ≥
∑
nc

gnc(r∗nc)−B/V (15)

where:
∑

nc U
(c)
n

M= limt→∞
1
t

∑t−1
τ=0

∑
nc E

{
U

(c)
n (τ)

}
rnc

M= lim
t→∞

1
t

t−1∑
τ=0

E {Rnc(τ)}

Proof: The proof is given in Appendix A.
To prove Theorem 1, we first develop an expression for

Lyapunov drift from the queueing dynamics (6). To start, note
that any general queue with backlogU(t) and queueing law

U(t + 1) = max[U(t)− µ(t), 0] + A(t) has a Lyapunov drift
given by:

E
{
U2(t + 1)− U2(t) | U(t)

}
≤ µ2

max + A2
max

−2U(t)E {µ(t)−A(t) | U(t)} (16)

where Amax and µmax are upper bounds on the arrival
and server variablesA(t) and µ(t). This well known fact
follows simply by squaring the queueing equation and taking
expectations. Applying the general formula (16) to the specific
queueing law (6) for queue(n, c) and summing the result over
all (n, c) pairs yields the following expression for Lyapunov
drift (see [1] [16] for details):

∆(U(t)) ≤ NB − 2
∑
nc

U (c)
n (t)E

{ ∑
l∈Ωn

µ
(c)
l (t)

−
∑
l∈Θn

µ
(c)
l (t)−Rnc(t) | U(t)

}
(17)

whereB is defined in (10).
Now define thenetwork functionΦ(U(t)) and the flow

functionΨ(U(t)) as follows:

Φ(U(t))M=2
∑
nc

U (c)
n E

{ ∑
l∈Ωn

µ
(c)
l −

∑
l∈Θn

µ
(c)
l | U

}
(18)

Ψ(U(t))M=
∑
nc

E
{

V gnc(Rnc)− 2U (c)
n Rnc | U

}
(19)

where we have representedU(t), µ(c)
l (t), and Rnc(t) as

U, µ
(c)
l , and Rnc for notational convenience. Adding and

subtracting the optimization metricV
∑

nc E {gnc(Rnc) | U}
to the right hand side of (17) yields:

∆(U(t)) ≤ NB − Φ(U(t))−Ψ(U(t))

+V
∑
nc

E {gnc(Rnc(t)) | U} (20)

The CLC1 policy is designed to minimize the second and
third terms on the right hand side of (20) over all possible
routing, resource allocation, and flow control policies. Indeed,
it is clear that the flow control strategy (7) maximizesΨ(U(t))
over all feasible choices of theRnc(t) values (compare (7) and
(19)). ThatΦ(U(t)) is maximized by CLC1 is proven in [1] by
switching the sums to expressΦ(U(t)) in terms of differential
backlog.

B. A Near-Optimal Operating Point

In order to use the Lyapunov drift result to establish the
performance of the CLC1 algorithm, it is important to first
compare performance to the utility of anear-optimalsolution
to the optimization problem (1)-(3). Specifically, for anyε > 0,
we define the setΛε as follows:

Λε
M= {(rnc) | (rnc + ε) ∈ Λ, rnc ≥ 0 for all (n, c) }

Thus, the setΛε can be viewed as the resulting set of rate
matrices within the network capacity region when an “ε-layer”
of the boundary is stripped away. Note that this set is non-
empty wheneverε < µsym, defined in (8). The near-optimal
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operating point(r∗nc(ε)) is defined as the optimal solution to
the following optimization problem:4

Maximize :
∑

nc gnc(rnc) (21)

Subject to: (rnc) ∈ Λε

(rnc) ≤ (λnc)

This optimization differs from the optimization in (1)-(3) in
that the setΛ is replaced by the setΛε. In [1] it is shown that
Λε → Λ as ε → 0, and that:∑

nc

gnc(r∗nc(ε)) →
∑
nc

gnc(r∗nc) as ε → 0 (22)

C. Derivation of Theorem 1

The proof of Theorem 1 relies on the following two lemmas.
Lemma 2 is proven in [1] [16], and Lemma 3 is proven at the
end of this subsection.

Lemma 2: If the channel process~S(t) is i.i.d. over times-
lots, then for anyε in the open interval(0, µsym), allocating
resources and routing according to CLC1 yields:

Φ(U(t)) ≥ 2
∑
nc

U (c)
n (t)(r∗nc(ε) + ε)

where(r∗nc(ε)) is the optimal solution of problem (21).
Lemma 3: If the channel process is i.i.d. over timeslots

and all reservoirs are infinitely backlogged, then for any
ε ∈ (0, µsym) the flow control algorithm of CLC1 yields:

Ψ(U(t)) ≥ V
∑
nc

gnc(r∗nc(ε))− 2
∑
nc

U (c)
n (t)r∗nc(ε)

Plugging the bounds of Lemmas 2 and 3 directly into the drift
expression (20) yields:

∆(U(t)) ≤ NB − 2
∑
nc

U (c)
n (t)(r∗nc(ε) + ε)

−V
∑
nc

gnc(r∗nc(ε)) + 2
∑
nc

U (c)
n (t)r∗nc(ε)

+V
∑
nc

E {gnc(Rnc(t)) | U}

Canceling common terms yields:

∆(U(t)) ≤ NB − 2ε
∑
nc

U (c)
n (t)− V

∑
nc

gnc(r∗nc(ε))

+V
∑
nc

E {gnc(Rnc(t)) | U}

The above drift expression is in the exact form specified by
Lemma 1. Thus, network congestion satisfies:∑

nc

U
(c)
n ≤ (NB + V NGmax)/(2ε) (23)

and time average performance satisfies:∑
nc

gnc(rnc) ≥
∑
nc

gnc(r∗nc(ε))−NB/V (24)

4Note that the final constraint(rnc) ≤ (λnc) is satisfied automatically
in the case of infinite traffic demand. We include the constraint here as this
optimization is also important in the treatment of general traffic matrices
(λnc) in Section V.

The performance bounds in (23) and (24) hold for any value
ε such that0 < ε < µsym. However, the particular choice of
ε only affects the bound calculation and does not affect the
CLC1 control policy or change any sample path of system
dynamics. We can thus optimize the bounds separately over
all possibleε values. The bound in (24) is clearly maximized
by taking a limit asε → 0, yielding by (22):

∑
nc gnc(rnc) ≥∑

nc gnc(r∗nc) − NB/V . Conversely, the bound in (23) is

minimized asε → µsym, yielding:
∑

nc U
(c)
n ≤ (NB +

V NGmax)/(2µsym). This proves Theorem 1.�
We complete the analysis by proving Lemma 3.
Proof. (Lemma 3) By definition, the flow control policy (7)

maximizesΨ(U(t)) over all possible strategies [compare (7)
and (19)]. Now plug into (19) the particular strategyRnc(t) =
r∗nc(ε) for all t. This is avalid strategybecause 1) all reservoirs
are assumed to be infinitely backlogged, so there are always
r∗nc(ε) units of data available, and 2)

∑
c r∗nc(ε) ≤ Rmax

n

(because(r∗nc(ε)) ∈ Λ). Thus:

Ψ(U(t)) ≥
∑
nc

[
V gnc(r∗nc(ε))− 2U (c)

n (t)r∗nc(ε)
]

�

V. SCHEDULING WITH ARBITRARY INPUT RATES

The algorithm CLC1 assumes there is always an amount
of data Rnc(t) available in reservoir(n, c), where the flow
variable Rnc(t) is chosen only with respect to theRmax

n

constraint. Here we assume that all reservoirs have a finite
(possibly zero) buffer for data storage, and letLnc(t) rep-
resent the current backlog in the reservoir buffer. The flow
control decisions are now subject to the additional constraint
Rnc(t) ≤ Lnc(t) + Anc(t) (where Anc(t) is the amount of
new commodityc data exogenously arriving to noden at slot
t). Any arriving data that is not immediately admitted to the
network is stored in the reservoir, or dropped if the reservoir
has no extra space.

Assume theAnc(t) arrivals are i.i.d. over timeslots with
arrival ratesλnc = E {Anc(t)}. It can be shown that for
any matrix (λnc) (possibly outside of the capacity region),
modifying the CLC1 flow algorithm to maximize (7) subject
to the additional reservoir backlog constraint yields the same
performance guarantees (9) and (11)when utility functions
are linear [1]. For nonlinear utilities, such a strategy can be
shown to maximize the time average of

∑
nc E {gnc(Rnc(t))}

over all strategies that make immediate admission/rejection
decisions upon arrival, but may not necessarily maximize∑

nc gnc(E {Rnc(t)}), which is the utility metric of interest.
We solve this problem with a novel technique of defining ad-
ditional flow state variablesZnc(t). The result can be viewed
as a general framework for stochastic network optimization.

Defineflow state variablesZnc(t) for each reservoir(n, c),
and assumeZnc(0) = V Rmax

n /2 for all (n, c). For each flow
control processRnc(t), we define a new processYnc(t) as
follows:

Ync(t)M=Rmax
n −Rnc(t) (25)

and note thatYnc(t) ≥ 0 for all t. The Ync(t) variables
represent the difference between the maximum value and
the actual value of admitted data on session(n, c). The
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Znc(t) state variables are updated every slot according to the
following ‘queue-like’ iteration:

Znc(t + 1) = max[Znc(t)− γnc(t), 0] + Ync(t) (26)

where{γnc(t)} are additional flow control decision variables.
Define the ‘cost’ function:

hnc(γ)M=gnc(Rmax
n )− gnc(Rmax

n − γ) (27)

Let γnc represent the time average value of the decision
variablesγnc(t). We design a policy to stabilize the network
queuesU

(c)
n (t) and the flow state ‘queues’Znc(t) while

minimizing the cost
∑

nc hnc(γnc). The intuitive interpretation
of this goal is as follows: If theZnc(t) queues are stabilized, it
must be the case that the time average of the ‘server process’
γnc(t) is greater than or equal to the time average of the
‘arrival process’Ync(t): Y nc ≤ γnc. From (25), this implies
rnc ≥ Rmax

n − γnc, and hence:∑
nc

hnc(γnc) =
∑
nc

gnc(Rmax
n )−

∑
nc

gnc(Rmax
n − γnc)

≥
∑
nc

gnc(Rmax
n )−

∑
nc

gnc(rnc)

Thus, minimizing
∑

nc hnc(γnc) over all feasibleγnc values
is intimately related to maximizing

∑
nc gnc(rnc) over all

feasiblernc values.
Cross Layer Control Policy 2 (CLC2): Every timeslot and

for each noden, chooseRnc(t) = rnc to solve:

Maximize:
∑

c[
Znc(t)

N − U
(c)
n (t)]rnc (28)

Subject to:
∑

c rnc ≤ Rmax
n

rnc ≤ Lnc(t) + Anc(t)

Additionally, the flow controllers at each noden chooseγnc(t)
for each session(n, c) to solve:

Maximize: V gnc(Rmax
n − γnc) + 2Znc(t)

N γnc (29)

Subject to: 0 ≤ γnc ≤ Rmax
n

The flow statesZnc(t) are then updated according to (26).
Routing and resource allocation within the network is the same
as in CLC1.

The optimization ofRnc(t) in (28) is solved by a simple
‘bang-bang’ control policy, where no data is admitted from
reservoir (n, c) if U

(c)
n (t) > Znc(t)/N , and otherwise as

much data as possible is delivered from the commodities of
noden with the largest non-negative values of[Znc(t)/N −
U

(c)
n (t)], subject to theRmax

n constraint. These bang-bang
decisions also enable the strategy to be implemented optimally
in systems where admitted data is constrained to integral
units, a feature that CLC1 does not have. Theγnc(t) variable
assignment in (29) involves maximizing a concave function
of a single variable, and can be solved easily by finding
the critical points over0 ≤ γnc ≤ Rmax

n . For example, if
gnc(r) = log(1 + r), it can be shown that:

γnc = min
[
max

[
1 + Rmax

n − V N

2Znc(t)
, 0

]
, Rmax

n

]
Suppose channels and arrivals are i.i.d. over timeslots, and

let λnc = E {Anc(t)}. For simplicity of exposition, we further

assume that new arrivals to noden are deterministically
bounded byRmax

n , so that
∑

c Anc(t) ≤ Rmax
n every slot.

Theorem 2:For arbitrary rate matrices(λnc) (possibly out-
side of the capacity region), for anyV > 0, and for any
reservoir buffer size (possibly zero), the CLC2 algorithm
stabilizes the network and yields a congestion bound:∑

nc

Unc ≤
NB + 2

∑
n(Rmax

n )2 + V NGmax

2µsym

Further, the time average utility satisfies:∑
nc

gnc(rnc) ≥
∑
nc

gnc(r∗nc)−
NB + 2

∑
n(Rmax

n )2

V

The proof is given in Appendix B. Although the reservoir
buffer size does not impact the above result, in practice a
large reservoir buffer helps to ‘smooth out’ any dropped data
(preferably by buffering all data corresponding to the same
file) so that FIFO admission can be maintained amongst the
various network flows.

VI. SIMULATION RESULTS

Here we simulate the CLC2 policy for three simple network
examples. We begin with the2-queue downlink example of
Section II. Packets arrive from each stream according to
Bernoulli processes, and we assume they are placed into infi-
nite buffer storage reservoirs. As before, we assume channel
probabilities are given byp1 = 0.5, p2 = 0.6, and consider one
hundred different rate pairs(λ1, λ2) that are linearly scaled
towards the point(0.5, 1.0). For each point we simulate the
CLC2 algorithm for3 million timeslots, usingV = 10000,
Rmax

n = 2, and g1(r) = g2(r) = log(1 + r). Note that in
this case, we haveµin

max = 0, µout
max = 1, so by (10) we have

B = 5. Thus, for V = 10000 we are ensured by Theorem
2 that the resulting utility associated with each rate vector
(λ1, λ2) differs from the optimum utility by no more than
(5+8)/V = 0.0013 (note thatN = 1 for this simple example,
as there is only1 transmitting node). The simulation results are
shown in Fig. 3(a), where the achieved throughput increases
to the capacity boundary and then moves directly to the fair
point (0.4, 0.4).

In Fig. 3(b) we treat the same situation with the exception
that utility for user2 is modified to1.28 log(1 + r). This
illustrates the ability to handlepriority service, as user2 traffic
is given favored treatment without starving user1 traffic. From
the figure, we see that as input rates are increased the resulting
throughput reaches the capacity boundary and thenmoves in
a new direction, settling and remaining on the new optimal
operating point(0.23, 0.57) once input rates dominate this
point.

Note that for this example, we haveµsym = 0.4 and
Gmax = 0.784. Thus, by Theorem 2, we know:

U1 + U2 ≤
13 + 0.784V

0.8
(30)

The above bound holds for any input rate vector(λ1, λ2),
including vectors that are far outside of the capacity region.
We next keep the same utility as in Fig. 3(b) but fix the
input rate to (λ1, λ2) = (0.5, 1.0), which dominates the
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Fig. 3. Simulation of CLC2: (a) Linearly increasing(λ1, λ2) to (0.5, 1.0)
for V = 10000 and g1(r) = g2(r) = log(1 + r). (b) Modifying utility
2 to: g2(r) = 1.28 log(1 + r). (c)-(d) Fixing (λ1, λ2) = (0.5, 1.0) and
illustrating delay and throughput versusV .

optimal operating point(0.23, 0.57) (so that utility optimal
control should achieve this point). In Fig. 3(c) we plot the
resulting average queue congestion asV is varied from 1
to 104, together with the bound (30). As suggested by the
bound, the delay grows linearly withV . In Fig. 3(d) we see
how the achieved throughput of CLC2 approaches the optimal
operating point(0.23, 0.57) asV is increased.

A. Packet Switches

Here we consider a simple3 × 3 packet switch with a
crossbar switch fabric [22] [23]. Packets arrive from three
different input ports, and each packet is destined for one of
three output ports. We letλij represent the rate of packets
arriving to inputi and destined for outputj. All packets are
stored invirtual input queuesaccording to their destinations,
and we letUij represent the current number of backlogged
packets waiting at inputi to be delivered to outputj. The
system is timeslotted, and the crossbar fabric limits scheduling
decisions topermutation matrices, where no input can transfer
more than one packet per slot, and no output can receive
more than one packet per slot. Thus, the followingfeasibility
constraintsare required for stability:

3∑
i=1

λij ≤ 1 ∀j ∈ {1, 2, 3} ,
3∑

j=1

λij ≤ 1 ∀i ∈ {1, 2, 3}

We consider i.i.d. Bernoulli arrivals, and apply the CLC2
algorithm usinglog(1 + r) utility functions, V = 100, and
Rmax = 3 (the maximum number of arrivals to a single input
during a slot). In this example we assume that all reservoirs
have zero buffers, so that admission/rejection decisions must
be made immediately upon packet arrival. In Fig. 4(a) we
present simulation results for a case when the sum rate to
every input port and every output port is exactly0.95. Note
that average queue backlog is kept very low, while the resulting
throughput is almost identical to the input rate. This illustrates
that the CLC2 algorithm accepts almost all packets into the

Rates(λij) Throughput(rij) Backlog (U ij)
.45 .1 .4
.1 .7 .15
.4 .15 .4

.450 .100 .399

.100 .695 .148

.399 .149 .400

3.3 2.4 3.6
2.4 2.9 2.7
3.6 2.7 3.4

(a) Simulation of a switch with feasible traffic

Rates(λij) Throughput(rij) Backlog (U ij)
.9 .2 .3
0 .4 .2
0 .5 0

.598 .100 .298
0 .399 .200
0 .500 0

31.6 45.3 32.1
0 14.1 .29
0 14.2 0

(b) Simulation of an overloaded switch

Fig. 4. Simulation results for the CLC2 algorithm withV = 100 and zero
reservoir buffers. Simulations were run over four million timeslots.

system, and accomplishes this without a-priori knowledge that
the input traffic is feasible.

We next apply the same CLC2 algorithm to a switch where
input port1 and output port2 are overloaded, as shown in Fig.
4(b). The resulting throughput from the simulation is given
in the figure, and is almost indistinguishable from the utility
maximizing solution of the optimization problem (1)-(3). The
average backlog in all queues is less than or equal to45.3
packets.

B. Heterogeneous Multi-hop Networks

Here we consider the multi-hop network of Fig. 1, consist-
ing of wireless sensor nodes (nodes{6, . . . , 9}), a wireline
network, and a wireless basestation that transmits to two
mobile users. All packets have fixed lengths. The wireline links
are bidirectional and can transmit3 packets in each direction
during a single slot. The basestation node0 can transmit to
only one mobile user per slot, and the downlinks to each user
independently vary between ON and OFF states according to
Bernoulli processes, with equal likelihood of being ON or
OFF. The wireless links of the sensor network are always ON,
and can support one packet transfer per slot. However, due to
interference between the various sensor nodes, we assume that
only one sensor link can be activated per slot (including the
outgoing wireless links of the access nodes4 and5).

We assume there are four independent sessions using the
network: Two sessions originate from node9 and consist of
packets destined for nodes3 and1, and two sessions originate
from node4 and consist of packets destined for nodes8 and
2. All arrival processes are i.i.d. and Bernoulli, with arrival
ratesλ93 = λ91 = λ48 = λ42 = 0.7.

These arrival rates are not supportable by the network.
Indeed, note that all packets originating at node9 must travel
over at least2 sensor links before reaching a wireline access
node. Likewise, all data from theλ48 stream requires at least
two hops through the sensor network. Because at most one
sensor link can be activated on any timeslot, it follows that
2r93 + 2r91 + 2r48 ≤ 1 is a necessary condition for network
stability, whererij is the throughput of(i, j) traffic. The
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basestation places the following additional constraints on the
network flows:r91 ≤ 1/2, r42 ≤ 1/2, andr91 + r42 ≤ 3/4.
It is not difficult to verify that these necessary conditions
describe the feasible flows for the network, as the wired
links to not impose further constraints. Assuming that all
sessions have identical utility functionsgij(r) = log(1 + r),
the optimally fair flows are thus given byr∗91 = r∗93 = r∗48 =
1/6 = 0.1667, r∗42 = 0.5.

We implement CLC2 for this network, usingV = 1000,
Rmax = 2, and assuming infinite buffer reservoirs. Note that
sensor link activations are determined every slot by choosing
the link with the largest differential backlog. The resulting
average queue length, summed over all queues in the system,
is 858.9 packets. The throughputs are:r91 = 0.1658, r93 =
0.1662, r48 = 0.1678, r42 = 0.5000. We note that this
performance is not possible unless almost all packets take their
optimal2-hop paths through the sensor network, and hence the
backpressure routing learns the optimal routes.

VII. C ONCLUSIONS

We have presented a fundamental approach to stochastic
network control for heterogeneous data networks. Simple
strategies were developed that perform arbitrarily close to
the optimally fair throughput point (regardless of the input
traffic matrix), with a corresponding tradeoff in end-to-end
network delay. The strategies involve resource allocation and
routing decisions that are decoupled over the independent
portions of the network, and flow control algorithms that are
decoupled over independent control valves at every node. Flow
controllers require knowledge only of the queue backlog in
their respective source nodes. We note that this technique
of implementing flow control only at the sources is crucial
to ensure no network resources are wasted transmitting data
that will eventually be dropped. It is remarkable that the
overall strategy does not require knowledge of input rates,
channel statistics, or the global network topology. Although
i.i.d. assumptions were made to simplify exposition, the same
policies can be shown to offer similar performance (with
modified delay expressions) for arbitrary ergodic arrivals and
channels, and are robust to cases when channel probabilities
or arrival rates change over time [1]. We believe that such
theory-driven networking strategies will impact the design and
operation of future data networks.

APPENDIX A—PROOF OFLEMMA 1

Proof: The drift condition for∆(U(t)) in Lemma 1 holds
for all timeslotst. Taking expectations over the distribution of
U(t) and summing overt ∈ {0, . . . ,M − 1} yields:

E {L(U(M))− L(U(0))} ≤ BM

−ε
∑M−1

τ=0

∑
nc E

{
U

(c)
n (τ)

}
− V M

∑
nc gnc(r∗nc)

+V
∑M−1

τ=0

∑
nc E {gnc(Rnc(τ))} (31)

Using non-negativity of the Lyapunov function and the utility
functions as well as the fact that

∑
nc gnc(Rnc(τ)) ≤ NGmax,

we rearrange the terms of (31) and divide byMε to yield:

1
M

M−1∑
τ=0

∑
nc

E
{

U (c)
n (τ)

}
− E {L(U(0))}

Mε
≤ B + V NGmax

ε

Taking limits asM →∞ yields the backlog bound (14). This
backlog bound implies stability of all queues [1].

The utility bound (15) is proved similarly. Indeed, we again
rearrange (31) and divide byMV to yield:∑

nc
1
M

∑M−1
τ=0 E {gnc(Rnc(τ))} ≥

∑
nc gnc(r∗nc)

−B+E{L(U(0))}/M
V (32)

By concavity of gnc(r) together with Jensen’s
inequality, it follows that 1

M

∑M−1
τ=0 E {gnc(Rnc(τ))} ≤

gnc

(
1
M

∑M−1
τ=0 E {Rnc(τ)}

)
. Using this fact in (32) and

taking limits asM →∞ yields the result.

APPENDIX B—PROOF OFTHEOREM 2

Proof: Define the Lyapunov functionL(U,Z) =∑
nc U

(c)
n + 1

N

∑
nc Znc. The drift expression for this function

is given by summing the drift of theU (c)
n (t) queues and

the Znc(t) queues using the general formula (16), where the
queueing laws are given by (6) and (26). Omitting arithmetic
details for brevity, we have the following drift expression:

∆(U(t), Z(t)) ≤ NB + 2
∑

n

(Rmax
n )2 − Φ(U(t))

+2
∑
nc

E
{

U (c)
n (t)Rnc(t) + Ync(t)

Znc(t)
N

| U,Z

}
−

∑
nc

E
{

2
Znc(t)

N
γnc(t)− V hnc(γnc(t)) | U,Z

}
−

∑
nc

V E {hnc(γnc(t)) | U,Z}

where we have added and subtracted the optimization metric∑
nc V E {hnc(γnc(t)) | U,Z} in the right hand side of the

above expression. The CLC2 policy is designedto minimize
the third, fourth, and fifth terms on the right hand side
of the above expression over all possible policies.Indeed,
we already know that the routing and resource allocation
policy maximizes Φ(U(t)). The fourth term in the right
hand side is minimized by the strategy (28) that chooses
Rnc(t) (considering the definition ofYnc(t) in (25)). The fifth
term is minimized by the strategy (29) that choosesγnc(t)
(considering the definition ofhnc(γ) given in (27)).

For a givenε ∈ (0, µsym), a bound onΦ(U(t)) is given
by Lemma 2 in terms of values(r∗nc(ε) + ε). Now con-
sider the following alternative flow control strategies: Fix
γnc(t) = Rmax

n − r∗nc(ε)
M=γ∗nc(ε) for all slots t. Then, every

timeslot independently admit all new arrivalsAnc(t) with
probabilitypnc = r∗nc(ε)/λnc (this is a valid probability (≤ 1)
by problem (21), and the admitted data satisfies theRmax

n

constraint by the deterministic arrival bound). This yields
E {Rnc(t) | U,Z} = pncE {Anc(t)} = r∗nc(ε), and hence
E {Ync(t) | U,Z} = Rmax

n − r∗nc(ε)
M=γ∗nc(ε). Plugging these

expectations into the third, fourth, and fifth terms of the above
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drift expression maintains the bound and creates many terms
that can be cancelled. The simplified drift expression becomes:

∆(U(t)) ≤ NB + 2
∑

n

(Rmax
n )2 − 2ε

∑
nc

U (c)
n (t)

+V
∑
nc

hnc(γ∗nc(ε))− V
∑
nc

E {hnc(γnc(t)) | U,Z}

Plugging in the definitions ofγ∗nc(ε) andhnc(γ) yields:

∆(U(t)) ≤ NB + 2
∑

n

(Rmax
n )2 − V

∑
nc

gnc(r∗nc(ε))

−2ε
∑
nc

U (c)
n (t) + V

∑
nc

E {gnc(Rmax
n − γnc(t)) | U,Z}

The above expression is in the exact form for application of
Lemma 1, and it follows that unfinished work satisfies:∑

nc

U
(c)
n ≤

NB + 2
∑

n(Rmax
n )2 + V NGmax

2ε

and performance satisfies:∑
nc

gnc(Rmax
n − γnc) ≥

∑
nc

gnc(r∗nc(ε))

−
NB + 2

∑
n(Rmax

n )2

V

However, it can similarly be shown that allZnc(t) queues
are stable, and hencernc ≥ Rmax

n − γnc must hold [recall
discussion after (27)]. The result of Theorem 2 follows by
optimizing the performance bounds over0 < ε < µsym in a
manner similar to the proof of Theorem 1.

REFERENCES

[1] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

[2] J. W. Lee, R. R. Mazumdar, and N. B. Shroff. Downlink power
allocation for multi-class cdma wireless networks.IEEE Proceedings of
INFOCOM, 2002.

[3] R. Berry, P. Liu, and M. Honig. Design and analysis of downlink
utility-based schedulers.Proceedings of the40th Allerton Conference
on Communication, Control, and Computing, Oct. 2002.

[4] P. Marbach and R. Berry. Downlink resource allocation and pricing for
wireless networks.IEEE Proc. of INFOCOM, 2002.

[5] D. Julian, M. Chiang, D. O’Neill, and S. Boyd. Qos and fairness
constrained convex optimization of resource allocation for wireless
cellular and ad hoc networks.Proc. INFOCOM, 2002.

[6] L. Xiao, M. Johansson, and S. Boyd. Simultaneous routing and resource
allocation for wireless networks.Proc. of the 39th Annual Allerton Conf.
on Comm., Control, Comput., Oct. 2001.

[7] B. Krishnamachari and F. Ordonez. Analysis of energy-efficient, fair
routing in wireless sensor networks through non-linear optimization.
IEEE Vehicular Technology Conference, Oct. 2003.

[8] P. Marbach. Priority service and max-min fairness.IEEE Proceedings
of INFOCOM, 2002.

[9] F.P. Kelly, A.Maulloo, and D. Tan. Rate control for communication
networks: Shadow prices, proportional fairness, and stability.Journ. of
the Operational Res. Society, 49, p.237-252, 1998.

[10] F. Kelly. Charging and rate control for elastic traffic.European
Transactions on Telecommunications, 1997.

[11] R. Johari and J. N. Tsitsiklis. Network resource allocation and a
congestion game.Submitted to Math. of Oper. Research, 2003.

[12] S. H. Low. A duality model of tcp and queue management algorithms.
IEEE Trans. on Networking, Vol. 11(4), August 2003.

[13] X. Liu, E. K. P. Chong, and N. B. Shroff. A framework for opportunistic
scheduling in wireless networks.Computer Networks, vol. 41, no. 4, pp.
451-474, March 2003.

[14] R. Cruz and A. Santhanam. Optimal routing, link scheduling, and
power control in multi-hop wireless networks.IEEE Proceedings of
INFOCOM, April 2003.

[15] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks.IEEE Transacations on Automatic Control,
Vol. 37, no. 12, Dec. 1992.

[16] M. J. Neely, E. Modiano, and C. E Rohrs. Dynamic power allocation and
routing for time varying wireless networks.IEEE Journal on Selected
Areas in Communications, vol. 23, no. 1, pp. 89-103, January 2005.

[17] M. J. Neely, E. Modiano, and C. E. Rohrs. Power allocation and routing
in multi-beam satellites with time varying channels.IEEE Transactions
on Networking, Feb. 2003.

[18] E. M. Yeh and A. S. Cohen. Throughput and delay optimal resource
allocation in multiaccess fading channels.Proceedings of the Interna-
tional Symposium on Information Theory, May 2003.

[19] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity.IEEE Trans. on Information
Theory, vol. 39, pp. 466-478, March 1993.

[20] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, and P. Whiting.
Providing quality of service over a shared wireless link.IEEE Commu-
nications Magazine, 2001.

[21] N. Kahale and P. E. Wright. Dynamic global packet routing in wireless
networks. IEEE Proceedings of INFOCOM, 1997.

[22] N. McKeown, V. Anantharam, and J. Walrand. Achieving100%
throughput in an input-queued switch.Proc. INFOCOM, 1996.

[23] E. Leonardi, M. Melia, F. Neri, and M. Ajmone Marson. Bounds on
average delays and queue size averages and variances in input-queued
cell-based switches.Proc. of IEEE INFOCOM, 2001.

[24] S. Borst. User-level performance of channel-aware scheduling algo-
rithms in wireless data networks.IEEE INFOCOM, 2003.

[25] D. N. Tse. Optimal power allocation over parallel broadcast channels.
Proceedings of the International Symposium on Information Theory,
June 1997.

[26] H. Kushner and P. Whiting. Asymptotic properties of proportional-fair
sharing algorithms.40th Annual Allerton Conference on Communica-
tion, Control, and Computing, 2002.

[27] V. Tsibonis, L. Georgiadis, and L. Tassiulas. Exploiting wireless channel
state information for throughput maximization.IEEE Proceedings of
INFOCOM, April 2003.

[28] U. C. Kozat, I. Koutsopoulos, and L. Tassiulas. A framework for cross-
layer design of energy-efficient communication with qos provisioning in
multi-hop wireless networks.INFOCOM, 2004.

[29] L. Li and A. Goldsmith. Capacity and optimal resource allocation for
fading broadcast channels: Part i: Ergodic capacity.IEEE Trans. Inform.
Theory, ppl. 1083-1102, March 2001.


