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Fairness and Optimal Stochastic Control
for Heterogeneous Networks

Michael J. Neely , Eytan Modiano , Chih-Ping Li

Abstract—We consider optimal control for general networks
with both wireless and wireline components and time varying
channels. A dynamic strategy is developed to support all traffic
whenever possible, and to make optimally fair decisions about
which data to serve when inputs exceed network capacity. The
strategy is decoupled into separate algorithms for flow control,
routing, and resource allocation, and allows each user to make
decisions independent of the actions of others. The combined
strategy is shown to yield data rates that are arbitrarily close to
the optimal operating point achieved when all network controllers

are coordinated and have perfect knowledge of future events. The exogenous input to node 1

cost of approaching this fair operating point is an end-to-end ] Rc(t) T U
delay increase for data that is served by the network. Analysis P n > T (1)
is performed at the packet level and considers the full effects of n

queueing. - valve node n

Index Terms— Stochastic Optimization, Queueing Analysis,
Multi-Hop Wireless, Distributed Computing Fig. 1. (a) A heterogeneous network with wireless and wireline data links,
and (b) a close-up of one node, illustrating the internal queues and the storage
reservoir for exogenous arrivals.

I. INTRODUCTION

Modern data networks consist of a variety of heterogeneous._. o Lo .

. o available for communication. For simplicity of exposition,
components, and continue to grow as new applications are id lotted del with sl lized
developed and new technologies are integrated into the existv}/]%. consicer a slotted system model with slots normaiize

1 integral unitst € {0,1,2,...}. Channels hold their state

communication infrastructure. While network resources agr the duration of a timeslot, and potentially change states

expa_nqllng, the demand for these resources 1s also e.)(pandbnrg’slot boundaries. We assume there are a finite number of
and it is often the case that data links are loaded with mor;

. : . S. S, let 'z
traffic than they were designed to handle. In order to prowc?ﬁannel state vectorS. For eachS, let 'y denote the set

. o 0f link transmission rates available for resource allocation
high speed connectivity for future personal computers, harg- . . = = . .

: : . o egisions wherS(t) = S. In particular, every timeslot the
ware devices, wireless units, and sensor systems, it is essent

; : . network controllers are constrained to choosing a transmission
to develop fair networking techniques that take full advantagggt vectorji(t) — (u1(¢) (#)) such thati(t) € I's
of all resources and system capabilities. Such techniques mwstfere uz(t/;L i %eﬂtlranjs.rﬁ.it’ lrﬁte over link aﬁd has fj(rﬁts
b?otlgz:zllinz)irt]\federtlh:()a?ghhbc?rlmpl?]’etlv?/gilrzggmn;ifsage passor}gbits/slot). Use of this abstract set of transmission rates
P 9 9 ’ Fﬁ maintains a simple separation between network layer and

In this paper, we design a set of decoupled algorithmg . .
for resource allocation, routing, and flow control for generﬁ ysical layer concepts, yetis general enough to allow network
' ' control to be suited to the unique capabilities of each data link.

networks with both wireless and wireline data links and time As an examol nsider the heterogen network of Fi
varying channels. Specifically, we treat a network with S an example, consider tne Neterogeneous NEtwork ot Fig.
1 consisting of three separate groups of links B, and C:

nodes and. links. The condition of each link at a given time .
Set A represents a wireless sensor system that connects to

is described by dink state vectorS(t) = (Sy(t),...,SL(t)), : : , .
. . R ' . a wired infrastructure through two uplink access points, set
where S;(t) is a parameter characterizing the communicatio . .
) P 9 represents the wired data links, and sétrepresents the

channel for linkl. For example, ifl is a wireless link,S;(¢) downlink channels of a b tation that transmits to tw
may represent the current attenuation factor or noise leveto 90 channels of a basestation that transmits to two
ifferent usersl and 2. For a given channel stat§, the set

In an unreliable wired link,S;(t) may take values in the . o
two-element se{ON, OF F}, indicating whether linkl is of feasible transmission ratés; reduces to a product of rates
’ ' corresponding to the three independent groups:
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states S, of these nodes. Sef? might contain a single infinite backlog, and pricing schemes are developed to enable
vector (C1,...,Cy) representing the fixed capacities of theonvergence to a fair power allocation vector. Further static
k wired links. Setl“g might represent a set of two vectorgesource allocation problems for wireless systems and sensor
{(6s,,0), (0, 6s,)}, Wheregs, is the rate available over link networks are treated in [3]-[7], and game theory approaches for
i if this link is selected to transmit on the given timestot wired flow networks are treated in [8]-[11]. These approaches
when S;(t) = S;. use convex optimization and Lagrangian duality to achieve
Data is transmitted from node to node over potentiall§ fixed resource allocation that is optimal with respect to
multi-hop paths to reach its destination. Lt,.) represent various utility metrics. In [9] [10], pricing mechanisms are
the matrix of exogenous arrival rates, whevg. is the rate of constructed to enablgroportionally fair routing. Related work
new arrivals to source node intended for destination nodein [8] considersmax-min fairnessand recent applications to
¢ (in units of bits/slot). Thenetwork layer capacity regioh the area of internet congestion control are developed in [12].
is defined as the closure of the set of all arrival matrices thatwe note that fixed allocation solutions may not be appropri-
are stably supportable by the network, considering all possikige in cases when optimal control involvegnamic resource
routing and resource allocation policies (possibly those witlllocation Indeed, in [14] it is shown that energy optimal
perfect knowledge of future events). In [16], a routing angower allocation in a static ad-hoc network with interference
power allocation policy was developed to stabilize a genefialolves the computation of periodic transmission schedule
wireless network whenever the rate matfl,.) is within the A similar scheduling problem is shown to be NP-complete
capacity region\. The purpose of our current paper is to tregh [28]. The capacity of a multi-user wireless downlink with
heterogeneous networks and develop distributed algorithpagidomly varying channels established in [29], and utility
for flow control, routing, and resource allocation that providgptimization in a similar system is treated in [13]. These
optimal fairness in cases when arrival rates eiteer inside formulations do not consider stochastic arrivals and queueing,
or outside the network capacity region and solutions require perfect knowledge of channel statistics
Specifically, we define a set aftility functions g,..(r), (approximate policies can be implemented based on long-term
representing the ‘satisfaction’ received by sending data fromeasurements).

noden to nodec at a time average rate of bits/slot. The  gycnastic control policies for wireless queueing networks
goal |s_to support a fraction of the trafflc_ demand mafrix..) are developed in [15]-[21] based on a theory g&punov drift
to achieve throughputer,,.) that maximize the sum of USer g theory has been extremely powerful in the development of
utilities. We thus have the optimization: stabilizing control laws for data networks [15]-[23], but cannot
Maximize: 32 . gne(rnc) 1) be use_d to a(_jdress performance _opti_mizqtion and fai_rness.
Subject to: (T’ )e A @) Dynamic algorlthms for fair scheduling in W|rele§s downllmks
' ne are addressed in [24] [25] [26], but do not yield optimal
0 < (rne) < (Ane) (3) performance for all input rates, as discussed in the next section.

where the matrix inequality in (3) is considered entrywisep.‘ wireless downlink with deterministic ON/OFF channels and

Inequality (2) is thestability constraintand ensures that thearblt_rary llcnrr)]utsrates r']s EevelopegNm [271, If’md. a lT odified
admitted rates are stabilizable by the network. Inequality (3) ¥§~'°" © theServe-the-Longest-ON-Quepelicy is shown
thedemand constrairthat ensures the rate provided to SeSSiQtR yield maximum throughput. Howgver, the anegS|s in [27]
(n, c) is no more than the incoming traffic rate of this sessiof closely tied to the chanpel modeling assumptions, and does
Let (r},) represent the solution of the above optimizatior?.qt appear to offer solutions for more general networks or
Assuming that functiong,,.(r) are non-decreasing, it is clear airness cr!terla. o )
that (r%.) = (Ane) Whenever(\,.) € A. If (An) € A there The main contnbutpn of ouriwork |s.the development
must be at least one valug, that is strictly less than,,.. The ©f @ novel control policy that yields optimal performance
above optimization could in principle be solved if the arrivaior general stochastic networks and general fairness metrics.
rates(\,..) and the capacity regioh were known in advance, The policy does not require knowledge of channel statistics,
and all users could coordinate by sending data accordingifut rates, or the global network topology. Our analysis
the optimal solution. However, the capacity region depend§e€s & new Lyapunov drift technique that enables stability
on the channel dynamics, which are unknown to the netwodkd performance optimization to be achieved simultaneously,
controllers and to the individual users. Furthermore, the iANd presents a fundamental approachstchastic network
dividual users do not know the data rates or utility function@Ptimization
of other users. In this paper, we develop a practical dynamicln the next section, we consider a simple wireless down-
control strategy that yields a resulting set of throughgats) link and describe the shortcomings of previously proposed
that are arbitrarily close to the optimal solution of (1)-(3). Thalgorithms in terms of fairness. In Section Ill we develop
distance to the optimal solution is shown to decreaselliié, a fair scheduling algorithm for general networks under the
whereV is a control parameter affecting a tradeoff in averagspecial case when all active input reservoirs are ‘infinitely
delay for data that is served by the network. backlogged. In Section V we construct a modified algorithm
Previous work on network fairness and optimization ithat yields optimal performance without the infinite backlog
found in [2]-[12]. In [2], an optimization problem similar assumption. Example simulations for wireless networks and

to (1)-(2) is considered for a static wireless downlink withV x N packet switches are presented in Section VI.
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I1. A DOWNLINK EXAMPLE A, . A, ., MWM path
Consider a wireless basestation that transmits data to & g
downlink users1 and 2 over two different channels (¢ *° ] e N\ et ] W path
illustrated by considering only the triangle-node of the netw - Lol { - VAR
in Fig. 1). Time is slotted and packets for each user arriv | . .
the basestation according to independent Bernoulli proce
with ratesA; and\,. LetU; (t) andUs(t) represent the currer 7 = _ 7 s _
backlog of packets waiting for transmission to usend user o.1 0.1
2, respectively. Channels independently vary between ON .
OFF states every slot according to Bernoulli processes, o1 o o5 M o1 | o3 | os M

ON probabilitiesp; and p,, and we assume that; < po.

Every timeslot, a controller observes the channel states afigl 2. The downlink capacity regiof and the stability regions of the Borst

chooses to transmit over either chaniebr channel2. We Policy and the Max.; /r; policy. Input rateg A1, A2) are pushed toward point
. . . 0.5,1.0), and the simulated throughputs under the Borst, Maxr;, and

assume that a single packet can be transmitted if a channg};jigy policies are illustrated.

ON and no packet can be transmitted when a channel is OFF,

so that the only decision is which channel to serve when both

channels are ON. given by:
The capacity region\ for this system is described by the
set of all rateg\1, \2) that satisfy: A< (4)
A2 < p2—Aip2 (5)

AM<pt, X<p o _ _ _ _
A+ Ao < pr+ (1—p1)pe which is a strict subset of the cgpacﬂy region (see Fig. 2).
Consider now the related policy of serving the non-empty
These conditions are necessary for stability because tigeue with the largest value qof;(t)/r;(t), where r;(¢)
output rate from any channgls at mostp;, and the maximum is the empirical throughput achieved over channelThis
sum rate out of the systemis + (1 — p1)p=. Furthermore, it differs from the Borst algorithm in that transmission rates
is shown in [19] that the ‘Maximum Weight Match’ (MWM) are weighted by the throughput actually delivered rather than
policy of serving the ON queue with the largest backlothe average transmission rate that is offered. This Mgk,
achieves stability whenever input rates are strictly interior fmlicy is proposed in [25] [26] and shown to have desirable
the above region. proportional fairness properties when all queues of the down-
Now defineg; (r) = g2(r) = log(r), and consider th@ro- link are infinitely backlogged. To evaluate its performance for
portional fairnesscontrol objective of maximizindog(r1) + arbitrary traffic rateg\;, \2), suppose the running averages
log(r2), wherer; andr, are the delivered throughputs over; () andr,(t) are accumulated over the entire timeline, and
channelsl and 2 (see [10] for a discussion of proportionalsuppose the system is stable so thdt) andry(t) converge
fairness). We evaluate three well known algorithms witto A; and ). It follows that the algorithm eventually reduces
respect to this fairness metric: The Borst algorithm [24], the giving channell packets strict priority ifA; < X, and
‘proportionally fair Max p;/r; algorithm [25] [26], and the giving channel2 packets strict priority ifA; < A;. Thus, if
MWM policy [19]. A1 < A then these rates must also satisfy the inequalities
The Borst algorithm chooses the non-empty charneth (4) and (5), whilehy < A; implies the rates must satisfy the
the largestu;(t)/z; index, whereu;(t) is the current channel inverted inequalities\s < ps and Ay < p; — Ag9p;1. Thus, at
rate andg, is the average of;;(¢). This algorithm is shown in first glance it seems that the stability region of this policy is a
[24] to provide optimal fairness for wireless networks with asubset of the stability region of the Borst algorithm. However,
‘infinite’ number of channels, where each incoming packet its stability region has the peculiar property of including all
destined for a unique user with its own channel. Althougteasible rate pair$A, ) (see Fig. 2).
the algorithm was not designed for the 2-queue downlink In Fig. 2 we consider the special case whgn= 0.5, p; =
described above, it is closely related to the Maxr; policy, 0.6, and plot the achieved throughput of the Borst, Max
and it is illuminating to evaluate its performance in thig;/r;, and MWM policies when the rate vect@h;, \2) is
context. Applied to the 2-queue downlink, the Borst algorithracaled linearly towards the vect@.5, 1.0), illustrated by the
reduces to serving the non-empty ON queue with the largeay in Fig. 2(a). One hundred different rate points on this
value of 1/p;. Becausep; < po, this algorithm effectively ray were considered (including example points ¢), and
gives packets destined for chanadtrict priority over channel simulations were performed for each point over a period of
2 packets. Thus, the service of queligs independent of the million timeslots. Fig 2(a) illustrates the resulting throughput
state of channel, and conditioning on the event that a packetf the Borst algorithm, where we have included example points
is served from channdl during a particular timeslot does notd’ and ¢’ corresponding to input rate points and e. Note
change the probability that channilis ON. It follows that that the Borst algorithm always results in throughput that is
the rate of serving channélpackets while channé&is ON is strictly interior to the capacity region, even when input rates
given by \1p, (assuming queugis stable so that all; traffic are outside of capacity. Fig. 2(b) illustrates performance of
is served). Thus, the stability region of the Borst algorithm ihe Max p;/r; and MWM policies. Note that the MWM
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policy supports all(A1, A2) traffic when this rate vector is of commodity ¢ that arrives to source node is first placed
within the capacity region. However, when traffic is outsidin a storage reservoir(n,c). A control valve determines
of the capacity region the achieved throughput moves alottge amount of dataR,.(¢) released from this reservoir on
the boundary in the wrong direction, yielding throughputsach timeslot. TheR,.(t) process acts as the exogenous
that are increasingly unfair because it favors service of tiagrival process affecting behavior of queue backidf’ ().
higher traffic rate stream. Like the Borst policy, the Maxr; Endogenous arrivals consist of commoditylata transmitted
policy leads to instability for all (stabilizable) input rates ono noden from other network nodes. Defirfe,, as the set of
the ray segment-d, and yields throughput that is strictlyall links I such thattran(l) = n, and define®,, as the set
interior to the capacity region even when inputs exceed systeiall links such thatrec(l) = n. Every timeslot the backlog
capacity (compare poinis and ¢’). However, the throughput 17{°) () changes according to the following queueing law:
eventually touches the capacity region boundary, reaching © © ©
the proportionally fair point(0.4,0.4) when input rates are ~ Un (¢ +1) <max |Un"(t) = > icq, iy (£),0
sufficiently far outside of the capacity region. (c)

It is clear from this simple downlink example that there is + 2o, i (1) + Fnelt) ©)
a need for a ‘universally fair algorithm, one that performdhe expression above is an inequality rather than an equal-
well regardless of whether inputs are inside or outside of tit¥ because the endogenous arrivals may be less than
capacity region. For this example, such an algorithm would;c¢ ul(c) (t) if nodes have little or no commodity data to
yield throughput that increases toward the pdiof the figure, transmit. The above dynamics hold for all node pairg- c.
and then moves on the boundary of the capacity region towdvdta leaves the network when it reaches its destination, and
the fair operating point thereafter. In the following, we developo we definel/{™ 20 for all n.

such an algorithm for general multihop networks. Definer, 2 1im; o + r_y E{Rn.(r)} s the time aver-
age admission rate dh, c) data. The goal is to design a joint
I1l. CONTROL OFHETEROGENEOUSNETWORKS strategy for resource allocation, routing, and flow control that

yields an admitted throughput matri¥,.) that maximizes
h the utility metric (1) subject to the stability constraint (2) and
II1he demand constraint (3). In order to limit congestion in the
gtwork, it is important to restrict flow control decisions so
gt aty  Rn.(t) < R;e* for all nodesn and slotst, where

Consider a heterogeneous network withnodes,L links,
and time varying channel§(t), as shown in Fig. 1. Eac
link I € {1,...,L} represents a directed communicatio
channel for transmission from one node to another, and
define tran(l) and rec(l) as the corresponding transmitting " < ) : o
and receiving nodes, respectively. Each node of the netw is defined as the largest pos_3|ble trans_m|ss_|on rate out
maintains a set of output queues for storing data according% node n (summed over all possible outgoing links of

its destination. All data (from any source node) that is desting&"’lt can be actlvgted S|mult§me0_us_ly). We notg that any time
for a particular node € {1, ..., N} is classified asommodity average rate matrig, ) that is within the capacity region

1 1 1 max
c data, and we IetUT(f) () represent the backlog of Commoditynecessarlly satisfiey r,. < R;** for all n. Indeed, rates

¢ data currently stored in node (see Fig. 1). At the network (7ne) v_|olat_|ng this constraint cannot be supported, as they
: L ._would inevitably overload the source queues.

layer, a control algorithm makes decisions about routing,

scheduling, and resource allocation in reaction to curreﬂt

channel state and queue backlog information. The objective Dynamic Control for Inf.|n|te Demand . .

is to deliver all data to its proper destination, potentially b%/ Here we develop a practical control algorithm that stabilizes

routing over multi-hop paths. he. netwo_rk and ensures that ut|I|ty. is arbitrarily close to
As a general algorithm might schedule multiple commodfRptimal, Wlth a corresponding tradeoff'ln network dglay. Recall

ties to flow over the same link on a given timeslot, w&hat functionsg,.(r) represent the utility of supporting rate

define Mc) (t) as the rate offered to commodity traffic _commun_lcatlon frpm noda_ to nodec (we Qe_fme_gm(r) =0

along link I during timeslott. © The transmission rates'f there is no active session of traffic originating at node

and routing variables are chosen bydgnamic scheduling and destined for node). To highlight the fundamental issues

and routing algorithm Specifically, the network makes theOf routing, resource allocation, and flow control, we assume

following control decisions every slot: that all active sessionén,c) have infinite backlogin their

. . _ corresponding reservoirs, so that flow variables.(t) can
« Resource (Rate) Allocation: Choose /i(t) ~  be chosen without first establishing that this much data is

(p1(t),., ne () such thai(t) FS?‘(t) available in the reservoir. Flow control is imperative in this
« Routing/SchedulingFor each linkl, choosex{” (t) to  infinite backlog scenario, and the resulting problem is simpler
satisfy the link rate constraint: as it does not involve the demand constraint (3). A modified
Z“l(C) (t) < u(t) e_llg_orithm is develqped in Sectio_n_V for the genera_ll case of
- finite demand matrice§\,,.) and finite buffer reservoirs.

The following control strategy is decoupled into separate
q algorithms for resource allocation, routing, and flow control.
new daitg,q strategy combines a novel flow control technique together

lwe find that the capacity achieving solution needs only route a sing\ﬁé'th a generalization of the DRPC power allocation strategy
commodity over any given link during a timeslot. of [16].

A set of flow controllersact at every node to limit the
new data admitted into the network. Specifically,
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Cross-Layer Control Algorithm 1 (CLC1) B. Intuitive Description of the Policy

« Flow Control —(algorithm FLOW) The flow controllerat  The flow control policy (7) uses a parametérthat deter-
each node: observes the current level of queue backlogsines the extent to which utility optimization is emphasized.

Ul (t) for each commodity: € {1,..., N}. It then sets Indeed, if V is large relative to the current backlog in the
R,..(t) = rne, Where ther,,. values are solutions to thesource queues, then the admitted ralgs(t) will be large,
following optimization: increasing the time average utility while consequently increas-
ing congestion. This effect is mitigated as backlog grows at
o N © the source queues and flow control decisions become more
Maximize : [Vgnc(rm) — 21, U (1) (M) conservative.
0;1 The routing and scheduling algorithm uses backpressure
Subject to: Zrm < gmas from nelghbqnng nodes tequallze_ d_|fferent|al backlogin- _
gt deed, allocating resources to maximize a product of transmis-

sion rate and differential backlog ensures that highly congested
where V. > 0 is a chosen constant that effects théinks receive larger transmission rates. This effect is most
performance of the algorithm. pronounced when congestion is large, so that the algorithm
‘learns’ from any past scheduling mistakes. Note that in cases
« Routing and Scheduling —Each noden observes when input rates are very low, there may be little information
the backlog in all neighboring nodes to which it is contained in the differential backlog values, and hence delay
connected by a link (wheretran(l) = n,rec(l) = j). may be large even though overall congestion small. This
Let Wl(c) - Ut(’rcg,n(l t) — Ur(?c »(t) represent the problem can be solved by either restricting routing options to
differential backlog of commodity ¢ data. Define paths that make progress to the destination (which may also
Wl*émaxc{Wl(c),O} as the maximum differential restrict _networ_k capa_city), or by using an enhanc_ed algorithm
backlog over linkl (maxed with 0), and let; represent that weights differential backlog of each commodity by a hop-
the maximizing commodity. Data of commodity is count estimate of the distance to the destination. For simplicity

selected for (potential) routing over link whenever Of exposition, here we analyze only the basic algorithm (see
Wy > 0. [1] for details on the enhanced strategy).

« Resource Allocation —Fhe current channel staf#(t) is
observed, and a transmission rate veg¢i@t) is selected
by maximizing 3=, W (t) subject to the constraint To analyze the performance of the above CLC1 algorithm,
[i(t) € Tg,. The resulting transmission rate pf(t) We define the maximum transmission rate out of any node and
is offered to commodity:; data on linki. If any node into any node as follows:
does not have enough bits of a particular commodity to .,
send over all outgoing links requesting that commodity, #maz=
null bits are delivered.

The flow control algorithm is decentralized, where th¥Ve further define the valug.,., as the largest rate that is
control valves for each node require knowledge only of Simultaneously supportable by all sessignsc) :
the queue backlogs in node The routing and scheduling
algorithm acts according to a differential backlog strategy
similar to the backpressure strategy developed in [15], andyigile the parameter..,,, does not appear to be related
decentralized provided that each nodé&nows the backlog to our design objectives, it will unexpectedly arise in the
levels of its neighbors. The resource allocation strategy gélay analysis. For simplicity of exposition, we assume chan-
maximizing >, Wy'uu(t) is the most complex part of thene| states are ii.d. every timesfotand let 7s represent
algorithm, but can be distributed over the independent portiofpg, probability that§(t) — § Assume utilities g (r)

of the network. Specifically, if the network links are grouped, o non-negative, non-decreasing, and concave, and define

into K independent components, the set constraint for eagl?rmémax[ S o< imes] Yo GnelTne)-

channel stateS' has the product form: Theorem 1:If channel states are i.i.d. over timeslots and
1 9 % all active reservoirs have infinite backlog, then for any flow
Pg=T5 xIg x...xI'g paramete’’ > 0 the CLC1 algorithm stabilizes the network

and yields time average congestion bound:

C. Algorithm Performance

n A
max M s Mynae= Max E I

[n.5.i€ 5] jeqy., [.5.7€05] ca,,

psym= Largest scalar such théis,,) € A (8)

Define 8, as the set of links contained in componegnt

It follows that resource allocation is decoupled across net- =0 _ N(B+VGnaz)

work components, where each componénindependently ZUn < T 9)
chooses transmission rates for its own links to maximize ne s

W (t) subject to(u (¢ € I'%. . In particular,
Eleﬁk K L M( ) ) | (M( ))| lef(’" | Sa ? h h 2The algorithms developed in this paper yield similar results for general
netW(.)r Compon?nts 0“}’ require knowledge of the ¢ am@bodic channel processes, with modified but more involved expressions for
conditions on their own links. average delay [1].
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where: that there exists a thresholfl such that serving the longest
p— s | i1 () gqueue maximizes throughput, where all queues with backlog
e P [ch E {Un (T)H greater tharT are treated as having backlog that is equal to this

BL (M%z + LYy szz)z +(uevt )2 (10) threshold. Although the structure of the downlink scheduling
B problem in [27] is different from our problem structure, as are

Further, network performance satisfies: the analytical techniques and resulting scheduling rules, the
BN objective of maximizing a weighted sum of throughput is the
> nelFe) =D Gnelrie) — A (11) same, and hence it is interesting that both sets of results yield

threshold-type policies.

where(r} ) is the optimal solution of (1) subject to constraint
2. E. Proportional Fairness and thé/U Rule

The above result holds for aV > 0. Thus, the value ) - )
of V can be chosen so thaBN/V is arbitrarily small, ~ Consider now utility functions of the form,.(r) = log(1+
resulting in achieved utility that is arbitrarily close to optimal”nc)- Itis shown in [10] that maximizing a sum of such utilities
This performance comes at the cost of a linear increase Q4er any convex sed leads toproportional f§1|rnes§ In the
network congestion with the parameiér By Little’s theorem, SPecial case when there is only one destinatjpfor each user
average queue backlog is proportional to average bit delay, dhdhe flc()\c{v)contro_l algorithm reduces to ma>.<|m|2|i[7(glog(1+
hence performance can be pushed towards optimality witd"a— 2Un "'r subject to0 < r < R7***, which leads to the

corresponding tradeoff in end-to-end network delay. following *1/U" flow control function:

We note that although the CLC1 policy assumes all active
sessions have unlimited backlog in their reservoirs, in practice  R,,. (t) = min [max ey~ Lo R
the policy yields similar performance when input rate matrices 20U, ™ (t)

(Anc) are finite. This holds because for many networks the pQliare we see that the flow control valve restricts flow according
icy either stabilizes all queues and reservoirs (yielding opti

_ IR mf?:l a continuous function of the backlog level at the source
throughput performance) or leads to instability in all activg e \e, peing less conservative in its admission decisions when

reservoirs (creating an effective ‘infinite backlog’ Sce”ariBacklog is low and more conservative when backlog is high.
because these unstable reservoirs always have sufficient da@ne drawback of thid /U policy is that the resulting flow

to be scheduled). control variablesR,.(t) are real numbers (not necessarily

The proof of Theorem 1 follows from a novel Lyapunovyeqers or integer multiples of a given packet length), and
drift argument.,_where the u““ty, .metrlc IS !ncorporat_ed ,'mchence it is implicitly assumed that packets can be fragmented
the drift condition so that stability and utility optimizations;, 5qmission to the network. This problem arises in the
can be simultaneously achieved. This analysis is provided #} 1 41gorithm whenever the utility function is non-linear. In
S(_ectlon IV. In the following we consider the implications ofgqqign V, a modified algorithm CLC2 is presented that over-
this result. comes this problem by allowing admissions to be restricted to

integer multiples of a common packet length, without loss of

D. Maximum Throughput and the Threshold Rule optimality.

Suppose utilities are linear, so thak.(r) = ay.r for
some non-negative weights,.. The resulting objective is to F. Mechanism Design and Network Pricing
maximize the weighted sum of throughput, and the resulting . . . L
. : The flow control policy (7) has a simple interpretation in
FLOW algorithm has a simple threshold form, where some . e . .
2 . - . erms of network pricing. Specifically, consider a scenario
commodities receive as much of t&*** delivery rate as

ossible, while others receive none. In the special case thrhere theg.(r) functions are measured in units of dollars,
b ’ . - 1 fhe spec . FeSresenting the amount the user at source nodewilling
the user at noden desires communication with a single

L for r. rvi ination. Th ial imum
destination node,, (so thatg,.(r) = 0 for all ¢ # ¢,), the to pay for rater service to destination esocial optimu

: all ¢ . it ) i defi h it th .
flow control algorithm (7) reduces to maximizifiga,... r — operating point(r:.) is defined as the point that maximizes

the sum of utilities rne) Subject to(r A. Ever
2U7(LC")_T subject to0 < r < R7**, and the solution is the ;oqiot each use%%cegtgifn;ﬁgs th(ja amo(wz:tC)mce dal%,w(t)y
following threshold rule: it desires to send based on a per-unit prie&RICE,,.(t)
Rmaz jf U,(f")(t) < Vane, charged by the network. The transaction between user and
Bine, (t) = { 0 " otherwise 2 network takes place in a distributed fashion at each modge
o ) . assume all users are ‘greedy’ and send data every timeslot by
The qualitative structure of this flow control rule is '”tu'“Ve'maximizing total utility minus total cost, subject to @je*
When backlog in the source queue is large, we should refrain
from sending new data. The simple threshold form is quali-3strictly speaking, the proportionally fair allocation seeks to maximize

Fopt _

tatively similar to the threshold scheduling rule developed BT log(rn.), leading toY", . "2 > 0 for any other operating point

nc =opt
[27] for server scheduling in a downlink with ON/OFF chan¢r,.) € A. We use non-negativernuctilitie]s;g(l +r), and thereby obtain a
nels and deterministic constraints on the channel states armportionally fair allocation with respect to the quantitii.” + 1, leading

packet arrivals. Specifically, the analysis of [27] demonstrat®s>_,,. “2&5r =< > 0.

—opt
ne FoRi4
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constraint imposed by the network. That is, each usselects U(¢ + 1) = max[U(t) — u(t),0] + A(t) has a Lyapunov drift
R,.(t) = rne, where ther,. values solve: given by:

Maximize : 3, [gne(rnc) — PRICE,c(t)rne]  (12)  E{UP(t+1) = U*() | U()} < biae + Ataa

Subject to: Y oeTne < RprO” —2UE{p()—A@)|U®)} (16)
Consider now the following dynamic pricing strategy use@here Anq, and jimq, are upper bounds on the arrival
at each network node: and server variablesi(t) and p(t). This well known fact
© follows simply by squaring the queueing equation and taking
PRICE,.(t) = 205 (1) dollars/bit (13) expectations. Applying the general formula (16) to the specific
|4 queueing law (6) for queugr, ¢) and summing the result over

We note that this pricing strategy is independent of the pall (n,c) pairs yields the following expression for Lyapunov
ticular g,,.(r) functions, and so the network does not requirdrift (see [1] [16] for details):

knowledge of the user utilities. Using this pricing strategy in
(12), it follows that users naturally send according to processes A(U(t)) < NB—2» U\ (t)E { > 189 (t)
R,.(t) that exactly correspond to the FLOW algorithm (7), ne 1€,
and hence the performance bounds (9) and (11) are satisfied.
= >0 () = Rue(t) | U<t>} (17)
leo,

IV. PERFORMANCEANALYSIS
) where B is defined in (10).
Here we prove Theorem 1. We first develop a novel Lya- \iow define thenetwork function®(U(t)) and the flow

punov drift result enabling stabi.lity and .performa.nce optimizag nction W(U(1)) as follows:
tion to be performed using a single drift analysis.

dU)22Y ULE w9 = ST uut @as)
A. Lyapunov Drift with Utility Metric (L) %: {zgz: : zezen e

LetU(t) = (U,(f) (t)) represent a process of queue backlogs, ¥ (U(t))& ZE {Vgnc(Rm) —2U9R,.. | Q} (19)
and define the.yapunov functionZ.(U) = ZM(UTSC))? Let ne

R,.(t) represent the input process driving the system, amthere we have represente(g(t),ul(c)(t), and R,.(t) as
suppose these values are bounded so ¥ia,.(Rnc(t)) < U, u{”, and R, for notational convenience. Adding and
Gmaz for all » and allt (for some valueGq.). Assume subtracting the optimization metrit' >, E {gn.(Rne) | U}
utility functions g,,.(r) are non-negative and concave, and leg the right hand side of (17) yields:

(rk.) represent a ‘target throughput’ matrix with ideal utility

S Gnele)- A(U(t) < NB - S(U(1)) - L(U(1))
Lemma 1:(Lyapunov D_rift) If there are pos?ti\_/e constants +VZE{9M( R,.())| U} (20)
V,e, B such that for all timeslot¢ and all unfinished work ne

matricesU (), the Lyapunov drift satisfies: The CLC1 policy is designed to minimize the second and

AU)EE LUt +1)) — LU®) | U1)} < th|ro! terms on the”rlght_ hand Sl(fjle of (20) Iovelr_ {;\II plosd5|blg
© v § routing, resource allocation, and flow control policies. Indeed,
B =€) n Un () =V 200 Gne(ric) it is clear that the flow control strategy (7) maximizB&U (t))
V3 e E{gne(Rnc(t)) | U(1)} over all feasible choices of the,,..(t) values (compare (7) and

) , (19)). That®(U(t)) is maximized by CLC1 is proven in [1] by
then the system is stable, and time average backlog and t'&)\ﬁtching the sums to expredgU (1)) in terms of differential
average performance satisfies: backlog. -

SUK < (B4 VNGuar)/e (14)
ne B. A Near-Optimal Operating Point
ng(?m) > ng(r:‘m) - B/V (15) In order to use the Lyapunov drift result to establish the
ne ne performance of the CLC1 algorithm, it is important to first
_ compare performance to the utility ofreear-optimalsolution
where: 3, UV Ll LU E { ) (T)} to the optimization problem (1)-(3). Specifically, for any 0,

- we define the sel. as follows:

1
Tne2 Jim > E{Rn.(r)} A2 {(rne) | (rne +€) € A,rye > 0 for all (n,c) }

Proof: The proof is given in Aoppendix A. 0 Thus, the setA. can be viewed as the resulting set of rate

To prove Theorem 1, we first develop an expression famatrices within the network capacity region when addyer”
Lyapunov drift from the queueing dynamics (6). To start, notef the boundary is stripped away. Note that this set is non-
that any general queue with backldgt) and queueing law empty whenevee < (5, defined in (8). The near-optimal
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operating point(r*_.(e)) is defined as the optimal solution to The performance bounds in (23) and (24) hold for any value

the following optimization problerfi: e such thatd < e < psym. However, the particular choice of
. e only affects the bound calculation and does not affect the
Maximize : > gnc(Tne) (21) cLc1 control policy or change any sample path of system
Subject to: (1) € Ac dynamics. We can thus optimize the bounds separately over
(The) < (Ane) all possiblee values. The bound in (24) is clearly maximized

by taking a limit ase — 0, yielding by (22):>", . gne(Tne) >
This optimization differs from the optimization in (1)-(3) mz L gne(ri.) — NB/V. Conversely, the bound in (23) is
that the set\ is replaced by the sét.. In [1] it is shown that = (0

A, — A ase — 0, and that: minimized ase — figyn, Yielding: 35, Un” < (NB +

VNGmaz)/(2psym). This proves Theorem L1
Zgnc(r:;c(e)) = Zgnc(r;‘w) ase — 0 (22) We complete the analysis by proving Lemma 3.

nc Proof. (Lemma 3) By definition, the flow control policy (7)
maximizesW¥ (U (t)) over all possible strategies [compare (7)
C. Derivation of Theorem 1 and (19)]. Now plug into (19) the particular strateBy,.(t) =

dne(e) forall ¢. This is avalid strategybecause 1) all reservoirs

The proof of Theorem 1 relies on the following two lemma
P d are assumed to be infinitely backlogged, so there are always

Lemma 2 is proven in [1] [16], and Lemma 3 is proven at th
end of this sﬂbsection[ J116] P r).(€) units of data available, and 2)°_r’_.(e) < R;*®
Lemma 2:If the channel procesS(¢) is i.i.d. over times- (because(ry,.(¢)) € A). Thus:

lots, then for anye in the open interval0, 1, ), allocating ) > Z [Vg — U (¢ (6)] 0
resources and routing according to CLC1 yields: ne(Tne( "ne

> c) *
- 22 Un ne(€) +¢) V. SCHEDULING WITH ARBITRARY INPUT RATES
The algorithm CLC1 assumes there is always an amount

Lemma 3:If the channel process is i.i.d. over timesloté)f data R,..(t) available in reservoif(n, c), where the flow

and all reservoirs are infinitely backlogged, then for anX/a riable R"CI_(I> is chosen onI);] W'th” respect_to r:han” fini
¢ € (0, tsym) the flow control algorithm of CLC1 yields: onstraint. Here we assume that all reservoirs have a finite

(possibly zero) buffer for data storage, and Iet.(t) rep-
) > Vzgnc (r* (e)) — 2ZU(C) r resent the current backlog in the reservoir buffer. The flow
control decisions are now subject to the additional constraint

Plugging the bounds of Lemmas 2 and 3 directly into the drift (t) < L,.(t) + An.(t) (Where A,.(t) is the amount of

expression (20) yields: new commodityc data exogenously arriving to nodeat slot
¢ t). Any arriving data that is not immediately admitted to the

< _ (t

AlU®) < NB 2ZU Jre(e) +¢) network is stored in the reservoir, or dropped if the reservoir

. . . has no extra space.
VY gne(rie(€)) + 2> UV (#)rs.(e)

where(r}:.(¢)) is the optimal solution of problem (21).

Assume theA,..(t) arrivals are i.i.d. over timeslots with
arrival rates),. = E{A,.(t)}. It can be shown that for

VY E{gne(Ruc(t) | U} any matrix (\,.) (possibly outside of the capacity region),
modifying the CLC1 flow algorithm to maximize (7) subject
Canceling common terms yields: to the additional reservoir backlog constraint yields the same
performance guarantees (9) and (Mhen utility functions
AlU(t) = NB — 2€ZU(C Vzgm(ric(@) are linear [1]. For nonlinear utilities, such a strategy can be
ne shown to maximize the time average )}, . E {gnc(Rnc(t))}
V> B {gne(Rnc(t)) | U} over all strategies that make immediate admission/rejection

decisions upon arrival, but may not necessarily maximize
The above drift expression is in the exact form specified BY.,,. gnc(E {Rnc(t)}), which is the utility metric of interest.

Lemma 1. Thus, network congestion satisfies: We solve this problem with a novel technique of defining ad-
- ditional flow state variablesZ,,.(t). The result can be viewed
Z Ul < (NB 4+ VNGaz)/(2€) (23) as a general framework for stochastic network optimization.
ne Defineflow state variable<Z,.(t) for each reservoifn, c),

and time average performance satisfies: and assumeZ,,.(0) = V R;*** /2 for all (n,c). For each flow

control processR,.(t), we define a new process,.(t) as
> neTne) 2D gne(rhele) = NB/V (24)  follows:
nc nc nc( ) Rma$ _ Rnc(t) (25)

“Note that the final constraintr,.) < (Anc) is satisfied automatically gnd note thatY,,.(t) > 0 for all t. The Y,.(t) variables
in the case of infinite traffic demand. We include the constraint here as this t the diff betw th | d
opt|m|zat|on is also important in the treatment of general traffic matricd€Presen € dierence between e maximum value an

(Ane) in Section V. the actual value of admitted data on sessienc). The
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Znc(t) state variables are updated every slot according to tassume that new arrivals to node are deterministically
following ‘queue-like’ iteration: bounded byR;**, so that) A, (t) < R;*** every slot.
B Theorem 2:For arbitrary rate matrice\,,.) (possibly out-
Zne(t +1) = max[Zne(t) = ne(t), 0] 4+ Yne(t) (26) side of the capacity region), for any > 0, and for any
where{v,.(t)} are additional flow control decision variablesreservoir buffer size (possibly zero), the CLC2 algorithm

Define the ‘cost’ function: stabilizes the network and yields a congestion bound:
A max _ max _ NB 2 R’H’L(L.’L‘ 2 VNGma$
sym

Let 7,,. represent the time average value of the decision nc
variablesy,.(t). We design a policy to stabilize the networkFurther, the time average utility satisfies:
queuesUr(f)(t) and the flow state ‘queuesZ,.(t) while NB 49 pmasy2
minimizing the cos}", . hnc(7,,.). The intuitive interpretation ng(ﬁw) > ng(r;c) - + 2‘:/"( n")
of this goal is as follows: If theZ,,.(t) queues are stabilized, it “nc . pc . ) ,
must be the case that the time average of the ‘server process! '€ Proof is given in Appendix B. Although the reservoir
me(t) is greater than or equal to the time average of ifpuffer size dpes not impact t‘he above r?sult, in practice a
‘arrival process'Yy.(t): Yne < 7,.. From (25), this implies large reservoir buffer_ helps to ‘smooth out any dropped data

= (preferably by buffering all data corresponding to the same

Tne > R — 7, and hence: ! 0 " o
ne n ne file) so that FIFO admission can be maintained amongst the

> hne(Tne) = Y gne(RP™) =Y gne(RJ* —7,.)  various network flows.
> > e B) =D gne(Fac) VI. SIMULATION RESULTS

o _ Here we simulate the CLC2 policy for three simple network
Thus, minimizing)_,,. hne(7,.) over all feasibley,. values examples. We begin with the-queue downlink example of
is intimately related to maximizing_,.gnc(Tnc) Over all gection 1. Packets arrive from each stream according to

feasibler,,. values. _ _ Bernoulli processes, and we assume they are placed into infi-

Cross Layer Control Policy 2 (CLC2)Every timeslot and nite buffer storage reservoirs. As before, we assume channel
for each node, chooseR,,.(t) = ry. to solve: probabilities are given by, = 0.5, p, = 0.6, and consider one
Maximize: EC[Zn]%(t) B U,(f)(t)]rm (28) hundred different rate pair6\1, A2) that are linearly scaled

) towards the poin{0.5,1.0). For each point we simulate the
Subject to: 2eTne < RO CLC2 algorithm for3 million timeslots, using’ = 10000,
Tne < Lne(t) + Ane(t) R = 2, andgi(r) = g2(r) = log(1 + r). Note that in
this case, we have!”, =0, u2“ =1, so by (10) we have
B = 5. Thus, forV = 10000 we are ensured by Theorem
2 that the resulting utility associated with each rate vector
Maximize: Vgno(RT — y,0) + 2Zoe@y  (29) (A1, \o) differs from the optimum utility by no more than
Subject to: 0 < Ype < RMa2 (548)/V = 0.0013 (note thatlV = 1 for this simple example,
as there is only transmitting node). The simulation results are
The flow statesZ,.(t) are then updated according to (26)shown in Fig. 3(a), where the achieved throughput increases
Routing and resource allocation within the network is the samg the capacity boundary and then moves directly to the fair
asin CLC1L. _ _ _ point (0.4,0.4).

The optimization ofR,..(¢) in (28) is solved by a simple ' |5 Fig. 3(b) we treat the same situation with the exception
‘bang-bang’ control policy, where no data is admitted frohat utility for user2 is modified to1.28log(1 + r). This
reservoir (n,c) if U\ (t) > Zu.(t)/N, and otherwise as jllustrates the ability to handlgriority service as usee traffic
much data as possible is delivered from the commodities igfgiven favored treatment without starving useraffic. From
noden with the largest non-negative values [,.(t)/N — the figure, we see that as input rates are increased the resulting
(1)), subject to theR7** constraint. These bang-banghroughput reaches the capacity boundary and thewes in
decisions also enable the strategy to be implemented optimallynew direction settling and remaining on the new optimal
in systems where admitted data is constrained to integeerating point(0.23,0.57) once input rates dominate this
units, a feature that CLC1 does not have. Fhe(t) variable point.
assignment in (29) involves maximizing a concave function Note that for this example, we have,,, = 0.4 and
of a single variable, and can be solved easily by finding,,,, = 0.784. Thus, by Theorem 2, we know:
the critical points ovel) < v, < R™*. For example, if

Additionally, the flow controllers at each nodechoosey,,..(t)
for each sessiofin, ¢) to solve:

gne(r) =log(1 + ), it can be shown that: Ui +Us < % (30)
Yne = min {max {1 + Rmaw _ VNJ)} ’R;naw] The above bound holds for any input rate vectaq, \s),
27 (1) including vectors that are far outside of the capacity region.

Suppose channels and arrivals are i.i.d. over timeslots, avg next keep the same utility as in Fig. 3(b) but fix the
let A, = E{A,.(t)}. For simplicity of exposition, we further input rate to (A;,A\2) = (0.5,1.0), which dominates the
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(a) Throughput region (b) Throughput region

06— Proportional 06l . Optimal point Rates()\;;) Throughput(r;;) Backlog (U ;)
0s 2rper 0s 45] 1 | 4 450 | .100 | 399 | | 33| 24| 36
: 1] 7]15]| | 100] .695]| .148| [24]29] 27
02 02 4] .15] 4 399 149 | 400| [ 36] 27|34

0.3 > 0.3

o o1 02 03 o4 o8 o o1 02 03 o4 o8 (a) Simulation of a switch with feasible traffic
A, M

(c) Average backlog v.s. V. (d) Throughput region

_ o _vei000 Rates()\;;) Throughput(r;;) Backlog (U ;)

H . /‘\::i\l\[iglo 9| .2].3 .598 | .100 | .298 316 | 45.3| 321

= *2"| Optimal point 0] .4l .2 0 |.399] .200 0 [141] 29

S 0.4 RN

E] 0|.5|0 0 500 O 0 142 0
02 (b) Simulation of an overloaded switch

10° 10" 10° 10° 10* 0.1 0.2 0.3 0.4 0.5
V (log scale) A

) . . . ) ) Fig. 4. Simulation results for the CLC2 algorithm with = 100 and zero
Fig. 3. Simulation of CLC2: (a) Linearly increasir{d1, A2) to (0.5,1.0)  reservoir buffers. Simulations were run over four million timeslots.
for V.= 10000 and g1 (r) = g2(r) = log(1 + r). (b) Modifying utility
2 to: g2(r) = 1.28log(1 + r). (c)-(d) Fixing (A1,A2) = (0.5,1.0) and
illustrating delay and throughput versiis
system, and accomplishes this without a-priori knowledge that

the input traffic is feasible.

optimal operating poin{0.23,0.57) (so that utility optimal ~ We next apply the same CLC2 algorithm to a switch where
control should achieve this point). In Fig. 3(c) we plot théput portl and output porg are overloaded, as shown in Fig.
resulting average queue congestion lasis varied from1 4(b). The resulting throughput from the simulation is given
to 104, together with the bound (30). As suggested by th@ the figure, and is almost indistinguishable from the utility
bound, the delay grows linearly with. In Fig. 3(d) we see maximizing solution of the optimization problem (1)-(3). The
how the achieved throughput of CLC2 approaches the optingyerage backlog in all queues is less than or equalstd
operating point0.23,0.57) asV is increased. packets.

A. Packet Switches B. Heterogeneous Multi-hop Networks

Here we consider a simplg x 3 packet switch with a  Here we consider the multi-hop network of Fig. 1, consist-
crossbar switch fabric [22] [23]. Packets arrive from threlg of wireless sensor nodes (nods ..., 9}), a wireline
different input ports’ and each packet is destined for one @?twork, and a wireless basestation that transmits to two
three output ports. We |et” represent the rate of packetg’nOb”e users. All packets have fixed Iengths. The wireline links
arriving to inputi and destined for output. All packets are are bidirectional and can transnditpackets in each direction
stored invirtual input queuesaccording to their destinations,during a single slot. The basestation ndtlean transmit to
and we letU;; represent the current number of backlogge@lnly one mobile user per slot, and the downlinks to each user
packets waiting at input to be delivered to outpuj. The independently vary between ON and OFF states according to
system is timeslotted, and the crossbar fabric limits scheduliRgrnoulli processes, with equal likelihood of being ON or
decisions tgermutation matriceswhere no input can transfer OFF. The wireless links of the sensor network are always ON,

more than one packet per slot, and no output can recefid can support one packet transfer per slot. However, due to
more than one packet per slot. Thus, the followfegsibility interference between the various sensor nodes, we assume that

constraintsare required for stability: only one sensor link can be activated per slot (including the
, ; outgoing Wireleshs links offthe ac(;:ess r:joeleand 5). )
) . We assume there are four independent sessions using the
Z)‘ij <1vje{l23}, Z)‘ij <1Vvie{l,2,3} network: Two sessions originate from nofleand consist of
=t =1 packets destined for nod8sand1, and two sessions originate
We consider i.i.d. Bernoulli arrivals, and apply the CLCZrom node4 and consist of packets destined for nodeand
algorithm usinglog(1 + ) utility functions, V' = 100, and 2. All arrival processes are i.i.d. and Bernoulli, with arrival
R = 3 (the maximum number of arrivals to a single inputatesigs = Ag1 = Az = Ag2 = 0.7.
during a slot). In this example we assume that all reservoirsThese arrival rates are not supportable by the network.
have zero buffers, so that admission/rejection decisions mustieed, note that all packets originating at n@deust travel
be made immediately upon packet arrival. In Fig. 4(a) waver at leas sensor links before reaching a wireline access
present simulation results for a case when the sum ratenmde. Likewise, all data from th&,s stream requires at least
every input port and every output port is exadily5. Note two hops through the sensor network. Because at most one
that average queue backlog is kept very low, while the resultisgnsor link can be activated on any timeslot, it follows that
throughput is almost identical to the input rate. This illustrate®-gs + 2r9; + 2r45 < 1 iS @ necessary condition for network
that the CLC2 algorithm accepts almost all packets into tistability, wherer;; is the throughput of(s, j) traffic. The
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basestation places the following additional constraints on the rearrange the terms of (31) and divide hie to yield:
network flows:rg; < 1/2, r4o < 1/2, andrg; + r42 < 3/4. Mot

It is not difficult to verify that these necessary conditions! 3 ZE{U(C) (T)} _E{LT0)} _ B+ VNGmaz
describe the feasible flows for the network, as the wired/ " Me - €

links to not impose further constraints. Assuming that all = ] )
sessions have identical utility functions; (r) = log(1 + r), Taking limits asM — oo yields the backlog bound (14). This

the optimally fair flows are thus given by, = iy = ris = backlog bound implies stability of all queues [1].

1/6 = 0.1667, ri, = 0.5. The utility bound (15) is proved similarly. Indeed, we again
We implement CLC2 for this network, using — 1000, 'earange (31) and divide hy/V" to yield:

Rpnaz =|_2i(an(il_ ast_summg Ir:jflr:lte t_)uffgr reservclnlrtsb No';]e th(_';\t ) ﬁ Ziw:?)l E {gne(Bne(T)} > X2, gne(re)

sensor link activations are determined every slot by choosing  BLE{LWO)}/M (32)

7=0 nc

the link with the largest differential backlog. The resulting v
average queue length, summed over all queues in the syst%ry, concavity of gn.(r) together with Jensen's
is 858.9 packets. The throughputs arg;; = 0.1658,r93 = inequality, it follows that ﬁzﬂglE{gm(Rm(ﬂ)} <

0.1662,155 = 0.1678,755 = 0.5000. We note that this i r=0 = ,
performance is not possible unless almost all packets take tHéir (ﬁ 2r=0 E{Rnc(7>})' Using this fact in (32) and

optimal2-hop paths through the sensor network, and hence t##&ing limits asM — oo yields the result. O
backpressure routing learns the optimal routes.
APPENDIX B—PROOF OFTHEOREM 2

VII. CONCLUSIONS Proof:  Define the Lyapunov functionL(U,Z) =
;@C Ul + % > ne Zne- The drift expression for this function
B given by summing the drift of thé]éc)(t) gueues and

e Z,.(t) queues using the general formula (16), where the
ueueing laws are given by (6) and (26). Omitting arithmetic
etails for brevity, we have the following drift expression:

We have presented a fundamental approach to stocha
network control for heterogeneous data networks. Simd
strategies were developed that perform arbitrarily close
the optimally fair throughput point (regardless of the inp
traffic matrix), with a corresponding tradeoff in end-to-en
netvyork delgy. The strategies involve resource aII_ocation and AU(), Z(t)) < NB + 2Z(RZW)2 —BU1))
routing decisions that are decoupled over the independent -
portions of the network, and flow control algorithms that are Ze(t)
decoupled over independent control valves at every node. Flow+2 > E {U,(f) (#) Bne(t) + Ynelt) == | U, Z}
controllers require knowledge only of the queue backlog in ne
their respective source nodes. We note that this techni_que_Z]E{2ch(t) me(t) = Vne(yme (1)) | U,Z}
of implementing flow control only at the sources is crucial N
to ensure no network resources are wasted transmitting data
that will eventually be dropped. It is remarkable that the
overall strategy does not require knowledge of input rates,
channel statistics, or the global network topology. AIthoquhere we have added and subtracted the optimization metric
i.i.d. assumptions were made to simplify exposition, the samenc VE {finc(1nc(t)) | U, Z} in the right hand side of the
policies can be shown to offer similar performance (witRPove expression. The CLC2 policy is desigriedminimize
modified delay expressions) for arbitrary ergodic arrivals ad@e third, fourth, and fifth terms on the right hand side
channels, and are robust to cases when channel probabiliiéghe above expression over all possible policieaieed,
or arrival rates change over time [1]. We believe that sud4e already know that the routing and resource allocation

theory-driven networking strategies will impact the design arRPlicy maximizes ®(U(t)). The fourth term in the right
operation of future data networks. hand side is minimized by the strategy (28) that chooses

R,.(t) (considering the definition of;,.(¢) in (25)). The fifth
term is minimized by the strategy (29) that choosgs(t)
APPENDIXA—PROOF OFLEMMA 1 (considering the definition ofi,,.(v) given in (27)).

Proof: The drift condition forA(U(¢)) in Lemma 1 holds O @ givene & (0, yisym), @ bound on®(U(t)) is given

for all timeslotst. Taking expectations over the distribution oY Lémma 2 in terms of valuegr; (¢) + ). Now con-
U(t) and summing ovet € {0,..., M — 1} yields: sider the following alternative flow control strategies: Fix

Yne(t) = RMa® — p* (e)2~% (e) for all slotst. Then, every

nc

nc

~ S VE {hne(1ne(®) | U, 2}

nc

E{L(U(M)) - L(U(0))} < BM timeslot independently admit all new arrivals,,.(¢) with

M1 © . probability p,. = 7% .(€)/Ane (this is a valid probability € 1)

g chE{ n (T)} — VMY e gne(rrc) by problem (21), and the admitted data satisfies Hjg*”
+V 3 e E{gne(Rue(7))} (31) constraint by the deterministic arrival bound). This yields

E{Rn.(t)|U,Z} = pnE{An.(t)} = r.(e), and hence
Using non-negativity of the Lyapunov function and the utilityt {Y,,.(t)| U, Z} = R — r* .(€)2~:.(e). Plugging these
functions as well as the fact that, . gne(Rnc(7)) < NGasz,  €Xpectations into the third, fourth, and fifth terms of the above
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drift expression maintains the bound and creates many termg R. Cruz and A. Santhanam. Optimal routing, link scheduling, and
that can be cancelled. The simplified drift expression becomes:

VY hae(1e(€) =V Y E{huc(yne(0) | U, Z}

Plugging in the definitions of;}.(e) and h,,.(v) yields:
AU®) S NB+2Y (R =V gne(rie(e)

—2¢Y U )+ VY E{gnc( R — yne(t)) | U, Z}

AWU) < NB+2Y (Rre)? —2¢ Y U (1) [15]

[16]
(17]
(18]

nc

(19]

The above expression is in the exact form for application of

Lemma 1, and it follows that unfinished work satisfies:

and performance satisfies:

(20]

Yol <

nc

NB+2 ZH(R;”‘”)Q + VNGmaz
2¢

[21]
(22]

(23]

Z an(RZlM - Wnc) 2 Z gnC(T;:c(e))

NB+2Y, (Rmaz)?
\%

(24]

[25]

However, it can similarly be shown that alf,,.(t) queues
are stable, and hengg,. > R]'** — 7,. must hold [recall [26]
discussion after (27)]. The result of Theorem 2 follows by

optimizing the performance bounds oWgK € < figym iN @
manner similar to the proof of Theorem 1.

(1]

[2

(3]

[4]
(5]

(6]
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