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Abstract— We consider a queueing system with controllable
service rate; for example, a transmitter whose rate can be
controlled by varying the transmission power. For such a system
we obtain optimal data transmission policies that satisfy given
quality of service (QoS) constraints and also minimize the total
transmission energy expenditure. First, we consider the deter-
ministic case of known arrivals and present a formulation based
on a calculus approach using arrival and minimum departure
curves. The problem is posed as a continuous time optimization
and an optimal solution is obtained for general arrival curves and
QoS constraints. In the latter half of the paper, we consider a
stochastic arrival process (Poisson process) and a single deadline
constraint. The objective is to obtain a transmission policy
that minimizes the expected energy expenditure. The problem
is formulated as a stochastic optimal control problem and
an explicit solution is obtained with some relaxation. Finally,
simulation results comparing various policies are presented.

I. INTRODUCTION

Energy efficiency is of prime importance in many wireless
systems such as sensor and ad-hoc networks. In general,
transmission energy forms a significant proportion of the
total energy expenditure and hence, one way to maximize
battery lifetime is by reducing transmission energy. This can
be achieved by employing low rate transmissions. It has been
argued in [1], [7] that transmitting an amount of data at a
low rate but over a longer duration has less energy cost as
compared to a fast rate transmission over a shorter duration.
Mathematically, this means that the power required to transmit
at a certain rate is a convex function of the rate. Such a convex
power-rate relationship is widely used in the literature [2], [3],
[4], [7].

In addition to energy concerns, data arriving to a queue is
bursty with varying QoS requirements. In principle, one can
meet these QoS requirements by transmitting at higher rates
subject to causality constraints imposed by the arrival process.
This requires higher transmission power and an increased
energy expenditure. On the contrary, a lower rate transmission
may not always be able to meet the QoS constraints. Thus,
by choosing the transmission rate correctly we can reduce
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the transmission energy expenditure and also satisfy the QoS
constraints.

Most of the work on QoS has been related to average
guarantees such as throughput, average delay and average
packet drop [7], [8], [9]. These quantities are measured over
an infinite horizon and do not directly translate into any QoS
guarantees over finite time intervals. Some of the recent work
that deals with strict constraints includes [1], [2], [3], [4]. Our
goal in this work is guaranteeing QoS over a finite time interval
with minimum energy expenditure.

Our main contributions in this work are as follows. We
present a novel formulation based on the new concept of a
minimum departure curve. We show that for a given arrival
curve the QoS constraints can be translated into a minimum
departure curve constraint. Such an approach helps in mod-
elling a wide variety of QoS constraints. These ideas are ex-
plained in detail in Section II-A. Some of the early work on the
notions of arrival and departure curves includes [5], [6]. Using
a calculus approach we formulate an energy optimization
problem in continuous time and obtain the optimal solution.
The graphical visualization of the problem is very appealing
and helps understand the optimal solution in a simple and
intuitive way. In Section III-B, we present a few examples
that can be modelled with this approach and also point out a
heuristic online policy that can constructed without any future
knowledge or statistical information of the arrival curve. While
these are illustrative examples, many other applications can be
easily modelled within our framework.

We, then, extend the formulation and introduce stochasticity
in the arrival process. We consider a queue with some initial
data, a Poisson arrival process and a single deadline by which
the queue must be empty. The problem has motivations in
a polling system [11] (eg. sensor network) where a central
entity polls individual transmitters for finite durations during
which the transmitter empties its buffer and any new arrivals.
It can also be viewed as a system offering service with a
convex cost over a finite duration by which the unfinished
work must be zero. We model the problem using continuous-
time stochastic optimal control theory as illustrated in the self-
contained presentation in Section IV. The framework we adopt
demonstrates an approach different from discrete dynamic
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Fig. 1. Data flow model; (a) Continuous arrival model, (b) Packetized arrival
model

programming and it leads to a simple and elegant solution
for this otherwise difficult problem. This provides promise for
future formulations based on other QoS constraints.

The rest of the paper is organized as follows. In Sec-
tion II, we present the data flow model and the transmission
model followed by the problem description. In Section III,
we consider the deterministic case and present the optimal
transmission policy. Section IV presents the results for the
stochastic case. Finally, Section V concludes the work and
gives future research directions.

II. PROBLEM SETUP

A. Data Flow Model

We consider a continuous time system model that incor-
porates both the continuous and the packetized data flow
scenarios. The data flows are described using the notions of
arrival and departure curves while the QoS constraints are
abstracted with the new concept of a minimum departure
curve. For uniformity, all functions in this paper are assumed
to be right-continuous. This assumption conforms with the
packetized data arrival model.

Definition 1: An arrival curve A(t), t ≥ 0, t ∈ R is a right-
continuous function defined as the number of bits that have
arrived in time interval [0, t].

In case of a fluid data model A(t) is a continuous function,
whereas, for a packet arrival model A(t) is a stair-case function
as depicted in Figure 1.

Definition 2: Given an arrival curve A(t), a departure curve
D(t), t ≥ 0, t ∈ R is a right-continuous function defined as
the number of bits that have departed in time interval [0, t].

Similar to the arrival curve, a departure curve D(t), t ≥ 0 is
a non-decreasing function of time t and satisfies the causality
constraint D(t) ≤ A(t),∀t.

To model the QoS constraints we introduce the notion of a
minimum departure curve.

Definition 3: Given an arrival curve A(t), a minimum de-
parture curve Dmin(t) is a right-continuous function such that
Dmin(t) ≤ A(t),∀t ≥ 0 and is defined as the minimum
number of bits that must depart by time t to satisfy the quality
of service requirements.

Thus, Dmin(t) is the constraint function and to meet the
QoS requirements the actual departure curve D(t) must satisfy
D(t) ≥ Dmin(t) with the additional causality constraint

D(t) ≤ A(t),∀t. We, next, present a few illustrative examples
of commonly used QoS constraints that can be modelled
within this framework.

Delay Constraint: Consider an arrival curve A(t) and a
constant delay constraint d on all the data. In this case
Dmin(t) = 0, t ∈ [0, d) and Dmin(t) = A(t − d), t ≥ d.

Next consider a continuous data flow and a general deadline
function d(t); where d(t) is the deadline for data arriving at
time t. Assuming that h(s) = s + d(s) is a monotonically in-
creasing function, the minimum departure curve is Dmin(t) =
0, t ∈ [0, d(0)) and Dmin(t) = A(h−1(t)), t ≥ d(0). We can
similarly construct Dmin(t) for the case of packetized arrivals
and variable deadline.

Buffer Constraint: Consider a buffer constraint of B, i.e. the
queue size must not exceed B,∀t ≥ 0. For an arrival curve
A(t) and a departure curve D(t) the buffer size at any time
t is given by b(t) = A(t) − D(t). Since b(t) ≤ B, we have
D(t) ≥ max[A(t)−B, 0]. This gives the minimum departure
curve as Dmin(t) = max[A(t)−B, 0]. It is easy to incorporate
a time varying buffer constraint B(t) as well.

Service-Curve Constraint: The notion of service curves
forms an integral part of network calculus theory [6] and is
defined as follows.

Definition 4: Consider a system S and a flow through S
with arrival and departure curves A(t) and D(t). We say that
S offers to the flow a service curve β(t) if and only if β(t)
is wide sense increasing, β(0) = 0 and,

D(t) ≥ inf
s≤t

(A(s) + β(t − s))�=A(t) ⊗ β(t) (1)

Given a service curve β(t) and an arrival curve A(t), the
minimum departure curve can be obtained as Dmin(t) =
A(t)⊗β(t), where ⊗ is the convolution in the min-plus algebra
as defined in (1).

Thus, a wide variety of QoS constraints can be abstracted
by constructing the appropriate minimum departure curve.

B. Transmission Model

To each departure curve, D(t), we associate an energy
cost based on the following model. The power P required to
reliably transmit at a certain rate r is assumed to be a convex
increasing function of the rate, i.e. P = g(r) where g(.) is a
convex function such that g(r) ≥ 0 and strictly increasing for
r ≥ 0. This assumption is common in the literature [1], [2],
[3], [4], [7] and is a good model for practical coding schemes.
Physically, this means that as the transmission rate increases
the required power has a faster increase and hence lower rate
transmissions are preferable. One of the examples that justify
this claim is the Shannon capacity formula over an AWGN
channel. The capacity is a concave function of the power and
is given as,

C =
1
2

log(1 +
P

N
) bits/transmission (2)

Re-writing the above equation it easily follows that the ex-
pended power is a convex function of the transmission rate.
The reader is referred to [7], [1] for other coding schemes that



support the convexity assumption. Note that in our formulation
we do not restrict ourselves to any specific function but rather
assume any general convex relationship between power and
transmission rate.

Using the above model we now compute the energy ex-
penditure of departure curves that are continuous in time. For
any such curve the rate of transmission at any time t is its
derivative at t, i.e. r = D′(t). If at t the derivative does not
exist then we take r as the right-derivative at that point. This
notation will be followed throughout the paper for derivatives
of other functions as well1. The energy spent in time interval
[0, T ] is then given by,

E(D(t)) =
∫ T

0

g(D′(t))dt (3)

The average power expended is simply E(D(t))/T . In the rest
of the paper we focus our attention over the interval [0, T ] for
any finite T . Thus, we deal with energy minimization over
a finite time interval rather than in an average sense over an
infinite time horizon.

C. Problem Definition

We begin by first considering the deterministic case for
which the arrival curve is known over time interval [0, T ].
Based on the QoS requirements, one can then construct the
minimum departure curve as outlined in Section II-A. We
call a departure curve feasible if it satisfies both the causality
and the QoS constraint; i.e. Dmin(t) ≤ D(t) ≤ A(t), t ∈
[0, T ]. We consider only continuous departure curves as any
discontinuity would imply instantaneous transmission of non-
zero amount of data which is practically infeasible. Let Γ be
the set of all non-decreasing continuous curves in [0, T ] that
start at the origin. The energy minimization problem can now
be stated as follows,

min
D(t)

E(D(t)) =
∫ T

0

g(D′(t))dt

subject to Dmin(t) ≤ D(t) ≤ A(t), t ∈ [0, T ]
D(t) ∈ Γ (4)

with the following natural conditions,

(a) Dmin(0) = 0; and (b) Dmin(T ) = A(T ) (5)

As we are only concerned with the interval [0, T ], condition
(b) simply states that all the data must depart by time T . If
one makes the natural assumption that there is no data that
arrives and needs to be transmitted instantaneously then there
exists a solution to the above problem; i.e. a non-decreasing
continuous feasible D(t) exists.

The above formulation assumes that the rate can be adjusted
continuously in time. This is a good mathematical model for
practical systems in which the slot duration is small compared
to the time scales of data flow. A departure curve specifies the
transmission rate at time t and hence we will use the terms
departure curve and transmission policy interchangeably.

1By right-continuity of curves the right-derivative exists at all points.

In the latter half of the paper we introduce stochasticity into
the arrival process. The general problem definition remains
the same as the deterministic case with the exception that
the instantaneous transmission rate is chosen to minimize the
expected energy expenditure. As noted earlier, in this case,
we consider a Poisson arrival process and a single deadline
constraint. The mathematical formulation and the solution are
presented in Section IV in a self-contained manner.

III. TRANSMISSION POLICY - DETERMINISTIC CASE

A. Optimality Criterion

We assume that A(t) > Dmin(t), 0 < t < T ; otherwise
say at some time te there is equality then the problem can be
divided into two sub-problems over time intervals [0, te] and
[te, T ]. The following lemma is an integral version of Jensen’s
inequality and will be used later in proving the optimality
criterion.

Lemma 1: Let f(x), p(x) be two functions defined for a ≤
x ≤ b such that α ≤ f(x) ≤ β and p(x) > 0, with p(x) �≡ 0.
Let φ(u) be a convex function defined on the interval α ≤
u ≤ β; then

φ

(∫ b

a
f(x)p(x)dx∫ b

a
p(x)dx

)
≤
∫ b

a
φ(f)p(x)dx∫ b

a
p(x)dx

(6)

with strict inequality if φ() is strictly convex and a �= b, α �= β.
Proof: See [10].

The following Theorem presents the necessary condition for
any feasible departure curve to be optimal.

Theorem I: (Optimality Criterion) Let D(t) ∈ Γ be a
feasible departure curve and L(t) be a straight line segment
over [a, b] that joins points D(a) and D(b); 0 ≤ a < b ≤ T . If
L(t) is feasible, i.e. Dmin(t) ≤ L(t) ≤ A(t) and L(t) �≡ D(t)
then the new departure curve D̃(t) constructed as,

D̃(t) = D(t), t ∈ [0, a)
= L(t), t ∈ [a, b]
= D(t), t ∈ (b, T ]

satisfies E(D̃(t)) ≤ E(D(t)) where the inequality is strict if
g(.) is strictly convex.

The above Theorem states that for the optimal curve Dopt(t)
there does not exist any two points on the curve that can
be joined by a straight line without violating the feasibility
constraints and with the straight line not being part of Dopt(t).
The implication of this is that, if feasible, it is optimal to
transmit at a constant rate. Henceforth, we refer to this as the
optimality criterion.

Proof: Let D(t) be a given feasible departure curve and
suppose that there exists an interval [a, b], b > a and feasible
L(t) such that L(t) �≡ D(t); where L(t) is the straight line
joining D(a) and D(b). Construct the departure curve D̃(t) as
stated in the Theorem. Its clear that D̃(t) is non-decreasing,
continuous and feasible. The slope of L(t) is L′ = D(b)−D(a)

b−a .
The energy difference between D(t) and D̃(t) is given by,

E(D̃(t)) − E(D(t)) =
∫ b

a

g(L′)dt −
∫ b

a

g(D′(t))dt
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=
∫ b

a

g

(
D(b) − D(a)

b − a

)
dt −

∫ b

a

g(D′(t))dt (7)

= (b − a)g
(

D(b) − D(a)
b − a

)
−
∫ b

a

g(D′(t))dt (8)

Using Lemma 1 with the following substitution; p() = 1,
φ() = g(), f() = D′() and x = t we get,

g

(∫ b

a
D′(t)dt∫ b

a
dt

)
≤

∫ b

a
g(D′(t))dt∫ b

a
dt

(9)

g

(
D(b) − D(a)

b − a

)
≤

∫ b

a
g(D′(t))dt

b − a
(10)

Combining (8) and (10) we get,

E(D̃(t)) − E(D(t)) ≤ 0 (11)

with strict inequality if g(.) is strictly convex.
The optimality criterion suggests that transmitting at a

constant rate is more energy efficient as compared to a
variable rate transmission. However, a constant transmission
rate cannot always be maintained due to feasibility constraints.
In what follows we consider the properties of the points at
which the rate changes (slope of Dopt(t) changes). These
implications fall out of Theorem I and are instrumental in
constructing the optimal curve. The notation x+ means x+εn

and x− means x − εn with εn > 0, εn → 0.
Let Dopt(t) be the optimal departure curve and t0 be a point

at which its slope changes, i.e. (Dopt)′(t−0 ) �= (Dopt)′(t+0 ).
Corollary I.1: At t0, the optimal curve either intersects

A(t) or it intersects Dmin(t); i.e. we have Dopt(t0) = A(t0)
or Dopt(t0) = Dmin(t0). Note that if there is a discontinuity
in A(t) at t0 (stair-case jump for packetized data) then
Dopt(t0) = A(t−0 ).

Corollary I.2: Suppose at t0, we have Dopt(t0) =
Dmin(t0) then the change in slope must be negative.

Corollary I.3: Suppose at t0, we have Dopt(t0) = A(t0)
(or A(t−0 )) then the change in slope must be positive.

The proofs of the above corollaries are straightforward and
omitted for brevity. They can be easily understood from Fig-
ure 2. Point t = a corresponds to a violation of Corollary I.1
and it is easy to see that around t = a, the optimality criterion

is violated. Similarly, points t = b and t = c correspond to a
violation of Corollaries I.2 and I.3 respectively.

Remark 1: In the special case when the power-rate relation-
ship is linear, i.e. P = cr, it follows from Theorem I that all
feasible departure curves have the same energy expenditure as
the inequality in Lemma 1 becomes an equality. Henceforth,
we consider the more interesting case of strictly convex g().

The following theorem proves the uniqueness of Dopt(t)
when g(.) is strictly convex. Combined with Theorem I this
shows that the optimality criterion is necessary and sufficient.

Theorem II: (Uniqueness) Consider the optimization prob-
lem stated in (4) with the boundary condition in (5) and
g(.) being strictly convex. Then, the optimal departure curve
Dopt(t) is unique.

Proof: Let us assume that the optimal departure curve
is not unique. Let D1(t) and D2(t) be two distinct optimal
curves. By the assumption of optimality both these curves
must satisfy the optimality criterion and Corollaries I.1-I.3.
We also have the boundary conditions D1(0) = D2(0) = 0
and D1(T ) = D2(T ) = Dmin(T ). Since D1(t) �≡ D2(t) the
two curves must differ over some time interval in [0, T ]. Let
t = a be the first instant after which the two curves differ and
t = b be the first time instant after t = a at which they are
equal again. Note that b ≤ T as at time T , D1(T ) = D2(T ).
Without loss of generality let D1(t) > D2(t), t ∈ (a, b). From
the feasibility of the two curves we have,

Dmin(t) ≤ D2(t) < D1(t) ≤ A(t), t ∈ (a, b) (12)

As D1(t) is strictly greater than Dmin(t) in t ∈ (a, b) it
follows from Corollaries I.1-I.3 that its slope cannot decrease
in (a, b). This implies that D1(t) is convex (it could be linear
as well) in (a, b). Similarly as D2(t) is strictly less than A(t)
in t ∈ (a, b), its slope cannot increase and hence it must
be concave in (a, b). Its clear that D1(t) convex and D2(t)
concave in t ∈ (a, b) (and D1(a) = D2(a)) cannot be equal
again at t = b which leads to a contradiction. Finally, if both
curves are linear in (a, b) (with equality at t = a, t = b) then
it would violate the assumption D1(t) �= D2(t), t ∈ (a, b).

We next present a few interesting properties of the optimal
curve. Among the set of D(t) ∈ Γ that are feasible, the optimal
departure curve is such that it requires the least maximum
transmission power and has the smallest Euclidean length.

Theorem III: (Minimal Maximum Power) Consider the
optimization problem in (4) with the boundary condition in
(5) and g(.) being strictly convex. The optimal departure curve
Dopt(t) satisfies,

max
t∈[0,T )

(Dopt)′(t) ≤ max
t∈[0,T )

D′(t) (13)

Equivalently, maxt∈[0,T ) P opt(t) ≤ maxt∈[0,T ) P (t), where
P (.) denotes the power expenditure over time.

Proof: See Appendix II
Remark 2: The above theorem is very significant if we

impose an additional maximum power constraint in (4). In this
case we first solve the problem without the power constraint.
If the optimal solution satisfies the maximum power constraint
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then we are done; otherwise from Theorem III it follows that
there does not exist any other feasible departure curve that can
satisfy the power constraint and the constrained optimization
problem has no solution. Thus, this implies that Dopt(t) is the
unique curve that satisfies the QoS constraints with the least
average power and the least maximum power requirement.

Theorem IV: (Shortest Length) Consider the optimization
problem in (4) with the boundary condition in (5) and g(.)
being strictly convex. The optimal departure curve Dopt(t)
has the shortest length among feasible curves. Specifically it
minimizes the metric,

len(D(t))�=
∫ T

0

√
(1 + (D′(t))2)dt (14)

Proof: We know that Dopt(t) minimizes the integral
in (3) for any strictly convex increasing function g(.). As√

(1 + (D′(t))2) is a strictly convex increasing function, the
result follows by replacing g(.) with this function.

Remark 3: Based on the properties of Dopt(t) we have
the following very insightful and intuitive visualizations of
the optimal curve. First, it is the shortest length feasible
continuous curve between 0 and Dmin(T ) as outlined in
Theorem IV. Second, consider a string that is restricted to
lie between A(t) and Dmin(t). Tie its one end at the origin
and pass the other end through Dmin(T ). Now if we make
the string taut, its trajectory is the same as the optimal curve2.

B. Examples

Before we present the mathematical details of the optimal
policy, it is instructive to consider a few illustrative scenarios
that can be modelled within this framework. The solutions
to these examples can be understood based on the optimality
criterion and the intuitive visualization in Remark 3. Some
of these examples have been studied earlier in the literature
for which the solutions were obtained using classical discrete
optimization techniques. Here, we re-formulate those problems
as special cases to our general solution.

Example 1: This problem was studied in [1] and the opti-
mal offline solution was obtained using discrete convex opti-
mization approach. Consider N packets of unit size arriving
in time [0, T ) with known inter-arrival times τ1,.., τN−1 and

2This observation was pointed out by Rene L. Cruz

the first packet arrival at time 0. The τ ′
is are such that

τ1 + .. + τN−1 < T and all packets must depart by time T
(common deadline). Let τN = T −∑N−1

1 τi. The curves A(t)
and Dmin(t) for this problem are depicted in Figure 3(a).
From the optimality criterion and the string interpretation it
is easy to see that the optimal curve consists of piecewise
linear segments with increasing slopes. At points where the
slope changes, the optimal policy just empties the buffer. The
intuition is that the optimal policy attempts to transmit at a
constant rate subject to causality constraints. It empties the
buffer at points (of slope change) where the future arrivals are
such that relative to the deadline the transmission rate must
be higher. It can be directly verified that such a curve satisfies
the optimality criterion. Algebraically, the slopes of the linear
segments {s0, .., sl} can be computed recursively as follows.
Let k0 = 0, then,

sm = min
j∈{1,..,N−km}

j∑j
i=1 τi+km

(15)

km+1 = km + arg min
j∈{1,..,N−km}

j∑j
i=1 τi+km

(16)

The final segment is the one for which km+1 = N .
Example 2: Consider a stream of N regular packet arrivals

of size B and constant inter-arrival time τ . Each packet has
a deadline d before which it must depart (Figure 3(b)). Such
an arrival process closely models the voice traffic and other
applications that send data at regular intervals. The solution
is obvious from the figure and is given as follows. If d < τ
then the solution is trivial and the packet must be transmitted
before the next arrival. If d ≥ τ then the optimal curve is a
straight line with slope NB/(d+(N −1)τ). Thus the optimal
policy in this case is to transmit at a constant rate and the rate
is chosen such that feasibility constraints are met.

Example 3: This problem was considered in [3]. We gen-
eralize it so that the deadlines need not be integral multiples
and re-formulate it with our framework. Consider an amount
B of data in the buffer at time 0 and no new arrivals. Let the
data have discrete deadlines with bk amounts having deadline
dk, for k = 1, .., N ; dN = T and

∑N
1 bi = B; the data

being arranged in the earliest deadline first order. The curves
A(t) and Dmin(t) for this system are shown in Figure 4(a).
From the figure it is clear that the optimal curve consists
of linear segments with decreasing slopes as depicted in the
figure. Note, the opposite nature of this problem as compared
to Example 1. In this case the points at which the slope
changes the optimal curve just meets the deadline constraints.
Algebraically, the slopes {s0, .., sl} can be obtained as follows.
Let γk = dk − dk−1, k = 2, .., N ; γ1 = d1 and k0 = 0.

sm = max
j∈{1,..,N−km}

∑j
i=1 bi+km∑j
i=1 γi+km

(17)

km+1 = km + arg max
j∈{1,..,N−km}

∑j
i=1 bi+km∑j
i=1 γi+km

(18)

At the last segment km+1 = N .
Example 4: Consider continuous arrival and minimum de-

parture curves as shown in Figure 4(b). The optimal departure
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curve is shown in the figure and it consists of some segments
that have a continuously changing slope.

We now complete the discussion of the known arrival case
with a mathematical description of the algorithm to construct
the optimal curve.

C. Construction of the Optimal Policy

In this section, we present an iterative algorithm to obtain
the optimal curve. To describe this algorithm we need a few
properties that are presented next.

Definition 5: A tangent to Dmin(t) at t = t0 is a line
passing through (t0,Dmin(t0)) and slope D′

min(t0).
A similar definition follows for a tangent to A(t). Next, we

need the notion of intersection of curves. As the arrival model
also includes stair-case functions (packet arrivals) that have
discontinuities we need to define what it means to intersect
such curves. This is done next.

Consider a line L(t) of non-negative slope starting from
a feasible point (t0, α); where feasibility of a point means
0 ≤ t0 < T and Dmin(t0) ≤ α ≤ A(t0).

Definition 6: We say that beyond t0, L(t) intersects
Dmin(t) if for some point t̃ > t0, called the point of
intersection, one of the following holds; (a) either L(t̃) =
Dmin(t̃) or, (b) the function L(t) − Dmin(t) changes sign at
t̃ (here t̃ could be a discontinuity point).

Definition 7: We say that L(t) intersects Dmin(t) first if
L(t) intersects Dmin(t) at t̃ (> t0) and L(t) < A(t), t ∈
(t0, t̃) (that is, L(t) does not intersect A(t) in (t0, t̃)).

Similarly, we say that L(t) intersects A(t) first if L(t)
intersects A(t) at t̃ and L(t) > Dmin(t), t ∈ (t0, t̃). Now,
to obtain the optimal curve, we need to figure out what the
optimal slope should be starting at some feasible point. We
proceed next to obtain this slope.

Consider straight lines with non-negative slopes passing
through a feasible point (t0, α). Among these choose those
lines that starting at (t0, α) remain feasible for some finite
duration3 and denote this set as F . Note that the set F depends
on the starting point (t0, α) but to make the notations simple
we drop the explicit dependence. The following lemmas sum-
marize the properties of set F .

3There exists ε > 0 such that the straight line is feasible in t ∈ [t0, t0+ε).

Lemma 2: The slopes of the lines in F lie in a continuous
interval.

Proof: See Appendix IV.
The set F has the following possibilities. For A(t0) >

Dmin(t0) we have the following three cases (i) If Dmin(t0) <
α < A(t0) then due to right continuity of the curves all points
in a small region around α are feasible. Hence, all lines with
slopes lying in [0,∞) are feasible for some finite duration
starting at (t0, α). (ii) If α = Dmin(t0), all lines with slope
less than the tangent at Dmin(t0) (say slope c) are infeasible
while lines with slope greater than the tangent are feasible
for some finite duration. If the tangent itself is feasible then
the slopes of F lie in [c,∞); else they lie in (c,∞). (iii) If
α = A(t0) then lines with slopes less than the tangent at A(t0)
belong to F . If the tangent is feasible then the slopes of F lie
in [0, l]; else the slopes belong to [0, l).

Finally, at t0 = 0 if we have A(0) = Dmin(0), the set
F consists of lines with slopes lying between the tangents to
each curve.

Lemma 3: The lines in F must intersect A(t) first or
intersect Dmin(t) first.

Proof: The proof is straightforward and omitted for
brevity.

Let the set F be partitioned into a set of lines that intersect
A(t) first and those that intersect Dmin(t) first. Denote these
sets as FA and FDm

respectively. The following lemma states
that the slopes of the lines in FA and FDm

lie in non-
overlapping continuous intervals.

Lemma 4: (a) Let LD(t) ∈ FDm
then any L(t) ∈ F

that has slope less than L′
D intersects Dmin(t) first. (b) Let

LA(t) ∈ FA then any L(t) ∈ F that has slope greater than
L′

A intersects A(t) first.
Proof: See Appendix IV.

The above lemma has the following implications. First, the
slopes of the lines in FA and FDm

lie in non-overlapping
continuous intervals which we denote as SA and SDm

respec-
tively. Second, the slopes in FA are greater than in FDm

. The
optimal line is the one with slope βo at the boundary of the
two intervals4; i.e. βo is given as,

βo = inf SA = supSDm
(19)

The equality of inf and sup above follows from continuity as
in Lemma 2. If either SA or SDm

is empty, it is neglected. We
call βo the optimal slope and the line with slope βo the optimal
line. It is denoted as Lo. The line Lo forms the building
block of the optimal departure curve as illustrated later in
the algorithm. Since βo is unique, Lo is also unique which
conforms with the result that the optimal curve is unique.

Optimal Policy

We have Dopt(0) = 0 and Dopt(T ) = Dmin(T ). We know
that the slope of Dopt(t) changes at specific points (Corollaries

4A case of singularity occurs at t0 = 0 if A(0) = Dmin(0), A′(0) =
D′

min(0) and both the sets SA,SDm are empty. Here, simply define βo =
A′(0).
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I.1-I.3), hence, we can compute the segments of Dopt(t) in
a recursive fashion starting at (0, 0). Let us denote t0 as a
generic starting time.

1) Obtain βo as in (19) and the optimal line Lo. This can
be done by a bi-sectioning algorithm.

2) If Lo is not tangent to Dmin(t) (or A(t)) at t0 then obtain
the first instant t1 such that, (a) Lo(t1) = Dmin(t1)
(constraint is just met); or (b) Lo(t1) = A(t1) or
Lo(t1) = A(t−1 ) (buffer is just empty). Let Dopt(t) =
Lo(t), t ∈ (t0, t1]. Note that t1 is the first instant on
Lo at which the slope can change in accordance with
Corollary I.1.

3) If Lo is tangent to Dmin(t) (or A(t)) at t0 then let
t1 = min{t̃, T} where t̃ is the first instant at which
the tangent is no more the optimal line. Let Dopt(t) =
Dmin(t) (or A(t)), t ∈ (t0, t1].

If t1 = T terminate; else repeat the above steps with the new
starting point as (t1,Dopt(t1)). The correctness and optimality
of the above algorithm is shown in Appendix I.

Consider A(t) and Dmin(t) shown in Figure 5 for which
the algorithm executes as follows. Start at the origin (0, 0)
and note that L1 is the optimal line as defined above and t1
is the first instant at which it equals Dmin(t). Thus, segment
L1 from t = [0, t1] is the first part of the optimal curve. Note
that lines with slope > L′

1 intersect A(t) first and lines with
slope < L′

1 intersect Dmin(t) first. L1 is the line with slope
at the boundary (as defined in (19)). Next, starting from the
new point (t1,Dmin(t1)), L2 is the optimal line and t2 is the
first instant such that L2(t2) = A(t−2 ). The segment L2 from
t = [t1, t2] forms part of the optimal curve. Finally, L3 is the
last segment as t = T is reached. Consider next the example
shown in Figure 4(b). Here, the first line segment terminates
at t = a. Then, starting at t = a, the tangent to Dmin(t) is the
optimal line and t = b is the first instant at which the tangent
is no more the optimal line. Thus, here we get a continuously
changing slope of Dopt(t) in t ∈ (a, b). Along similar lines
we have Dopt(t) = A(t) in t ∈ [c, d]. It can be easily verified
that in both the examples above, the constructed curve satisfies
the optimality criterion and the interpretation in Remark 3.

Using the intuition gained from the optimal solution in the
off-line known arrival case one can easily construct application
specific heuristic online policies when the future arrivals are

unknown. We present below one such policy for packetized
data model.

Online Policy: This policy is based on the solution of
Example 3 presented earlier. Let t be a packet arrival instant
then the buffer at t+ (immediately after the packet arrival)
consists of (a) earlier packets with their deadlines and (b) the
new packet with its own deadline. Re-arranging the data in
the Earliest-deadline first order, we can view the buffer as
consisting of some total data B with different deadlines. This
is identical to Example 3 and hence we can obtain an optimal
solution. This optimal policy is followed until a new arrival
occurs at which point the optimization is re-done.

The above heuristic policy does not take into account
any knowledge of the arrival statistics and its obvious that
including such information will only improve the performance.
In the next section we present a formulation with stochastic
arrivals and obtain an online policy. The simulation results in-
deed show very significant improvements when such statistical
information is included.

IV. TRANSMISSION POLICY - STOCHASTIC CASE

We have, until now, obtained the optimal policy for trans-
mitting data with a known arrival and minimum departure
curve. Now, we extend the formulation to a stochastic arrival
process. We consider a Poisson arrival data stream with a
single deadline by which all the data must be transmitted.
This problem is the stochastic version of Example 1 where
the unknown arrival curves are now the sample paths of
the Poisson process. The problem models a system offering
service with a convex cost over a finite duration by which the
unfinished work must be zero; for example, a polling system
[11] where a central entity polls individual transmitters for
finite durations during which the transmitter empties its buffer
and any new arrivals.

A. Problem Definition

Consider a queue with a Poisson arrival process of rate λ
and packet size B over time interval [0, T ). The arrivals occur
in time [0, T ) and the deadline constraint is that all this data
must depart by time T + τ0; where τ0 > 0 is fixed. There are
no arrivals in [T, T + τ0] and any remaining data at time T is
simply transmitted at a constant rate over the next τ0 duration.
Thus in terms of buffer occupancy, the constraint is that the
buffer size must be zero at time T + τ0.

Let the system state be defined as (x, t); where time t is
included as an explicit variable and x is the buffer size at time
t. Let rt be the controllable transmission rate at time t. We
say that a policy rt is feasible if rt ≥ 0 and x ≥ 0,∀t ∈ [0, T ].
These are natural constraints and imply that the transmission
rate and the buffer size must be non-negative. As the rate can
be adjusted continuously, starting from a non-negative buffer,
the constraint x(t) ≥ 0 can be achieved by setting rt = 0 if
x(t) = 0. Thus, for any feasible policy the state space is the
region x ≥ 0, t ∈ [0, T ]. The two boundaries of this region
are (x = 0, 0 ≤ t < T ) and (x ≥ 0, t = T ). Let us denote
the interior of this region as G; G ≡ (x > 0, 0 ≤ t < T )



and let ∂G denote its two above stated boundaries. It can be
shown that among the set of measurable feasible policies the
optimal policy is Markov, i.e. it depends only on the present
state of the system. This follows from the memoryless property
of the Poisson process. Hence, we will consider only Markov
policies which correspond to a map of the region G onto R

+,
i.e. the transmission rate depends only on the present state
(x, t) and we will denote such a policy as r(x, t). Under policy
r(x, t), the buffer x at time t evolves as a poisson stochastic
differential equation (SDE) and is given as,

dx = −r(x, t)dt + Bdq (20)

The above equation5 can be understood by viewing dx as the
change in the buffer size over a small interval dt. The term
dq is the poisson differential and can be viewed as equal to 1
with probability λdt, in which case B gets added to the buffer,
and 0 with probability 1 − λdt.

Let g(r) be the amount of power required to reliably
transmit at rate r. Then, for any feasible policy r(x, t) the
expected energy cost is,

Jr(x0) = E

[∫ T

0

g(r(x, t))dt + τ0g

(
x(T )
τ0

)]
(21)

where x0 is the buffer size at time 0 and τ0g (x(T )/τ0) is
the terminal energy cost for the data remaining in the buffer
at T . The optimization problem is to obtain the minimum
expected energy expenditure over feasible policies and a
feasible r∗(x, t) that attains the minimum.

J(x0) = min
r(x,t)

Jr(x0), r(x, t) feasible (22)

We assume g(.) to be strictly convex, smooth differentiable,
strictly increasing function and g(r) ≥ 0, ∀r ≥ 0.

B. Optimality Equations

A classical approach to the optimization in (22) is to dis-
cretize the system, partition the time interval [0, T ] and apply
dynamic programming (DP). However, the reader can easily
verify that while one might be able to formally write down
the discrete-time DP recursion, it cannot be solved analytically.
Any numerical solution would be parameter specific and would
not provide much insights into the problem. Thus, here we take
a continuous time approach based on the theory of stochastic
integration which corresponds to taking the partition size to
zero. For a rigorous treatment of the topic see [12], [13], [14].

We, now, digress briefly and present the concept of a differ-
ential generator for a Markov process. Consider a stochastic
process, Xt, then the differential generator of the process is
defined as,

Lf(x, t) = lim
h↓0

E [f(Xt+h, t + h)] − f(x, t)
h

(23)

where the expectation is conditioned on Xt = x and f() is
any general function for which the limit exists. The differential

5It is a formal representation of x(t) = x(0)+
∫ t
0 −r(x, τ−)dτ +

∫ t
0 Bdq

where the integral is defined path-wise. See [13], [14] chap 1.

generator can be understood as the average time rate of change
of the function f(Xt, t). It is a natural generalization of the
ordinary time derivative. For the process that follows the SDE
in (20), the differential generator can be computed ([12], [13]
chap 3) and is given as,

Lf(x, t) =
∂f(x, t)

∂t
− r(x, t)

∂f(x, t)
∂x

+λ{f(x + B, t) − f(x, t)} (24)

Coming back to the optimization problem in (22), let J(x, t)
be the optimal energy expenditure starting at time t with buffer
size x. The function J() can be viewed as the cost-to-go
function and can be written as,

J(x, t) = min
rt

E

[∫ T

t

g(r(xτ , τ))dτ + τ0g

(
x(T )
τ0

)]
(25)

Under some technical requirements and differentiability of
J(x, t)6 it can be shown that J(x, t) is the solution of
the Hamilton-Jacobi-Bellman (HJB) equation ([12]-chap.4,
Theorem 2, 5) with the appropriate boundary conditions.
Conversely, a smooth differentiable (and uniformly integrable)
solution of the HJB equation satisfying the boundary con-
ditions is the optimal cost function. Specializing this to our
problem, the optimal cost function J(x, t) and the optimal
rate r∗(x, t) satisfy the following equation,

min
r

{g(r) + LJ(x, t)} = 0, ∀(x, t) ∈ G (26)

where LJ() is the differential generator as given in (24), i.e.

LJ(x, t) =
∂J(x, t)

∂t
− r(x, t)

∂J(x, t)
∂x

+λ{J(x + B, t) − J(x, t)} (27)

and r∗(x, t) is the value that minimizes the expression in
(26). First, the constraint r ≥ 0 can be neglected as by strict
convexity of g(.), it follows that r∗(x, t) > 0, if x > 0.
Second, the minimizing r in (26) is unique as g(r)− r ∂J(x,t)

∂x
is strictly convex for fixed (x, t) ∈ G.

To understand why (26) must be satisfied by the optimal
cost function for (x, t) ∈ G, we present below a heuristic
proof based on the dynamic programming equation and then
making the step size tend to zero.

Heuristic Proof of (26): Consider the system described in
Section IV-A and consider a uniform partition of [0, T ] with
step size dt. Then, over an interval [t, t + dt] the dynamic
programming equation gives,

J(x, t) = min
r

{g(r)dt + (1 − λdt)J(x − rdt, t + dt)

+λdtJ(x − rdt + B, t + dt)} (28)

Assuming J(x, t) is differentiable, we can take a first order
Taylor series expansion. Collecting the terms in dt we get,

min
r

{g(r)dt +
(
−r

∂J(x, t)
∂x

+
∂J(x, t)

∂t

)
dt

+λdt(J(x + B, t) − J(x, t)) + o(dt)} = 0 (29)

6For this problem these include all practical policies of interest.



Dividing by dt and taking the limit dt → 0 gives (26).
Now, consider the boundary conditions on J(x, t), i.e. when

(x, t) ∈ ∂G. For the boundary (x = 0, 0 ≤ t < T ) we get the
following condition from the analysis in Appendix III,

g(0) +
∂J(0, t)

∂t
+ λ{J(B, t) − J(0, t)} = 0 (30)

The boundary condition for (x, T ) is simply the terminal
energy cost over [T, T + τ0] and is given as,

J(x, T ) = τ0g(x/τ0) (31)

Thus, J(x, t) satisfies (26) with the boundary conditions (30)
and (31) and r∗(x, t) is the value that attains the minimum in
(26) for a given (x, t) ∈ G. Applying the first order condition
for the minimum in (26) we get,

∂

∂r
(g(r) + LJ(x, t)) |{r=r∗} = 0 (32)

Using the differential generator of (27) and simplifying gives,

g′(r∗) =
∂J(x, t)

∂x
(33)

Thus r∗ = g′−1
(

∂J(x,t)
∂x

)
and substituting back in (26) we can

eliminate r∗ and obtain a partial differential equation involving
a single function J(x, t). Collecting all the above expressions
the optimality equations for (x, t) ∈ G with the boundary
conditions can now be summarized as,

g′(r∗) =
∂J(x, t)

∂x
(34)

g(r∗) + LJ(x, t)|r=r∗ = 0 (35)

g(0) +
∂J(0, t)

∂t
+ λ(J(B, t) − J(0, t)) = 0, t ∈ [0, T )(36)

J(x, T ) = τ0g

(
x

τ0

)
, x ≥ 0 (37)

C. Constraint Relaxation

The optimality equations, (34)-(37), apply to any general
strictly convex differentiable function g(.). These equations
can be solved numerically using a finite difference method as
outlined in Section IV-D. For a rigorous treatment of numerical
methods to solve stochastic control problems see [14]. Our aim
in this section is to obtain a closed form analytical solution
and point out the significant insights into the problem.

We specialize to the case g(r) = αr − 1, α > 1 7. We
also consider a relaxation of the problem by eliminating the
boundary condition of (36). In terms of the original problem
this relaxation corresponds to ignoring the non-negativity
constraints on x(t) and rt. Thus, the relaxed solution (which
would be optimal for a system without such constraints) is
infeasible for the original problem but it can be made feasible
by setting r(x, t) = 0, if x = 0. In Section IV-D (Fig. 7)
we compare this solution to the optimal solution obtained by

7This function with a constant multiplicative factor also models the Shannon
result of (2). A constant multiplicative factor to g(r) does not affect the
optimal rate but simply scales the optimal cost function J(x, t).
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Fig. 6. Plot of f(t) for T = 10, τ0 = 1, λ = 1, B = 1 and g(r) = er−1.

numerically solving (34)-(37) and show that the policy indeed
performs very close to the optimal solution.

We now proceed to solve the optimality equations without
the boundary condition (36) and with g(r) = αr − 1, α > 1.
Let us take the solution r(x, t) as,

r(x, t) =
x

T + τ0 − t
+ f(t) (38)

where f(t) is a function that needs to be determined. Substi-
tuting this in (34) and integrating we get,

J(x, t) = αf(t)(T + τ0 − t)α
x

T+τ0−t + c(t) (39)

where c(t) is the constant of integration that depends on t.
Incorporating the boundary condition in (37) we get,

f(T ) = 0 and c(T ) = −τ0 (40)

Next, substituting J(x, t) in (35) and simplifying we get,

c′(t) − 1 + αf(t)(T + τ0 − t) ln(α)α
x

T+τ0−t

×
{

f ′(t) − f(t)
T + τ0 − t

+
λ

ln(α)

(
α

B
T+τ0−t − 1

)}
= 0 (41)

Since the above equation holds for all values of x the
coefficients must equate to zero. Thus we get the following
set of ordinary differential equations (ODE).

c′(t) = 1 (42)

f ′(t) − f(t)
T+τ0−t + λ

ln(α)

(
α

B
T+τ0−t − 1

)
= 0 (43)

Combining (42) and (40) we get c(t) = t−T − τ0 while f(t)
can be obtained from the following lemma.

Lemma 5: Let f(t) satisfy the ODE as in (43) and the
boundary condition f(T ) = 0 then denoting βt = T + τ0 − t
we can write f(t) as,

f(t) = λ/ ln(α)
βt

(
B ln(α)(T − t) + (B ln(α))2

2 ln
(

βt

τ0

))
+λ/ ln(α)

βt

(∑∞
n=3

(B ln(α))n

n!(n−2)

(
1

τn−2
0

− 1
βn−2

t

))
(44)

Proof: Appendix IV
The plot of function f(t) for g(r) = er−1, T = 10, τ0 = 1,

λ = 1 and B = 1 is shown in Figure 6. The solution thus
obtained by combining (44) and (38) is an optimal solution
for the problem without the non-negativity constraints on rt

and x(t). It satisfies r(x, t) > 0, if x > 0 but does not satisfy



r(x, t) = 0, if x = 0. However, a feasible solution can be
easily constructed as follows.

r∗(x, t) =
x

T + τ0 − t
+ f(t), if x > 0

= 0, if x = 0 (45)

We refer to this policy as Relaxed Optimal Policy (ROP).
The above solution has some interesting and intuitive fea-

tures. First, the transmission rate at time t for buffer size x
equals x/(T +τ0−t), which is the least constant rate required
to serve x amounts of data by time T + τ0, plus an additional
rate f(t). This is natural as there is anticipation of future
arrivals and the convexity of the cost function dictates that
these (expected) future arrivals should be taken into account.
Second, f(t) depends on the underlying function g(.) (as
observed by the dependence on α). The intuition behind this is
that if g(.) has a very fast increasing slope then its beneficial to
reduce the buffer at a higher rate as data arriving close to the
deadline will incur a lot of energy expenditure. Third, r(x, t)
depends only on the remaining time T + τ0 − t. This follows
from the fact that the Poisson process is memoryless and the
future arrival statistics depends only on the remaining time.

Thus far, we have assumed g(r) = αr−1, α > 1. Proceed-
ing as above we can also obtain solutions for other convex
functions as well. One such example is g(r) = r2 whose
derivative is linear. For this function, the above methodology
leads to a very intuitive solution and for which f(t) is,

f(t) =
λB(T − t)
T + τ0 − t

(46)

λB(T −t) is the expected future amount of data and T +τ0−t
is the time left. Thus the excess rate can be interpreted as the
constant rate required to drain the future expected amount of
data in the remaining time.

D. Simulation Results

We first compare the numerically obtained optimal solution
and the ROP policy in (45). We, then, present simulation re-
sults comparing ROP with a non-anticipative policy, presented
in Section III-C, that does not take into account the arrival
statistics. Such a policy would simply drain the buffer at a rate
x(t)/(T − t + τ0). We call it the Simple Drain (SD) policy.
This comparison shows the performance gains achieved by
adjusting the rate in anticipation of future arrivals.

The optimality equations in (34)-(37) are solved numerically
using a finite difference method. The partial differentials are
approximated with a finite difference and the functions evalu-
ated numerically starting from the boundaries. For a rigorous
treatment of the convergence to the optimal solution see [14].
We know that J(x, T ) = τ0g(x/τ0), x ≥ 0. Approximating
the partial differentials the optimality equations become,

g′(r∗(x, t)) =
J(x, t + δt) − J(x − δx, t + δt)

δx
(47)

J(0, t) = g(0)δt + λδtJ(B, t + δt)
+ (1 − λδt)J(0, t + δt) (48)
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(r∗/δx + 1/δt)J(x, t) = g(r∗) + λ{J(x + B, t + δt)

−J(x, t + δt)} + r∗
J(x − δx, t)

δx
+

J(x, t + δt)
δt

(49)

where δx and δt are the step sizes for x and t respectively.
Starting at t = T and iterating backwards, each time decre-
menting t by δt, we can evaluate J(0, t), r∗(x, t) and J(x, t)
for x = (δx, ..,Mδx). For the purposes of this paper we
used the following parameters in the numerical evaluation;
T = 10, τ0 = 1, B = 1, g(r) = exp(r) − 1, δx =
0.01, δt = 0.02. Figure 7(a) compares the optimal energy
cost evaluated numerically with the expected energy cost for
ROP at t = 0 and x0 = 1. The expected energy cost for ROP is
obtained using simulations as explained later. As we see from
the plot, ROP performs very close to the optimal. Figure 7(b)
compares the optimal rate and the ROP rate (Eqn 45) as a
function of the buffer size at t = 0 and λ = 1. As seen from
the figure, at moderate buffer sizes the two rates are close
and converge as x increases but at very low buffer values the
optimal rate is reduced as the boundary x = 0 is closer and
the boundary effect becomes prominent. The asymptotic (large
x) convergence of the two rates is quite intuitive as the buffer
non-negativity constraint becomes less important for large x.

We now present simulation results comparing ROP and SD
policies with the following parameters. T = 10, τ0 = 1, B =
1, g(r) = exp(r) − 1 and the initial buffer size x0 = 1.
The time interval [0, T = 10] is divided into discrete intervals
of length dt = 10−3; thus, having 10, 000 time slots. The
arrival rate λ is varied between λ = 0.2 − 1.6 in steps of
0.2. The Poisson arrival process is simulated using a Bernoulli
model. In each time slot an arrival occurs with probability
λdt and there are no arrivals with probability 1− λdt. At the
beginning of each time slot the buffer size x and the time t is
known. The rate of transmission in that slot for ROP is chosen
from (45)8 while the rate of transmission for SD as mentioned
earlier is chosen as x

T−t+τ0
. The same set of sample paths are

applied for both the policies and the energy cost is computed
as
∑

i 10−3(exp(ri) − 1) + (exp(x(T )) − 1) (note τ0 = 1).
The average is then taken over a set of 104 sample paths.

8If x is very small then the rate chosen might make the buffer go negative.
In this case the rate is simply taken as x/10−3.
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Fig. 8. Plot comparing the expected energy expenditure of ROP and SD and
the percentage gain ((SDcost-ROPcost)*100/SDcost).
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Figure 8 compares the expected energy expenditure of the
two policies for the set of λ considered. As shown in the
gain plot, ROP significantly outperforms SD policy and in
fact the curve is upward sloping. Figure 9(a) plots the energy
expenditure for the first 100 sample paths for λ = 1. It is
clear from the figure that ROP has lower energy cost than
SD for almost all sample paths. Thus even on a sample
path comparison ROP performs better. Finally, Figure 9(b)
compares the average buffer size at time t of the two policies
for λ = 1. As seen from the figure ROP tends to have a more
uniform and much smaller average buffer size as compared to
SD. Observe that for λ = 1, on average a packet arrives in
unit time and starting from x0 = 1, ROP tends to transmit at
that rate in an average sense. This conforms with the policy
that would be optimal in case the arrivals were deterministic
and uniform. As SD does not adjust rate in anticipation of
arrivals, it transmits at low rates initially and hence the buffer
tends to increase. Then, as the deadline gets closer the rate
increases and the average buffer size drops.

V. CONCLUSION

We considered the problem of minimizing transmission
energy over a finite time horizon with quality of service
constraints. We formulated the problem using a calculus
approach and posed it as a continuous time optimization. Our
model encompasses both the packetized and continuous arrival
flows. We obtained the optimal policy in the deterministic

case and characterized its properties. We, then, considered a
Poisson arrival process with a single deadline and modelled
it as a stochastic optimal control problem. Based on the
theory of stochastic differential equations and optimal control
we obtained the optimality equations that can be solved
numerically. Using a constraint relaxation we also obtained
an elegant policy that outperformed a simple drain policy as
shown by the simulations. Our novel formulation led us to
obtain elegant solutions for an otherwise difficult problem.
We believe that the approach holds great promise for future
investigation. Incorporating other QoS constraints into the
stochastic problem is actively pursued and extensions are
investigated to other stochastic models as well.
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APPENDIX I
PROOF OF OPTIMALITY OF THE ALGORITHM

From Theorem II we know that Dopt(t) is unique. Hence it
suffices to prove that (a) at every iteration one of the steps of
the algorithm is satisfied and (b) the constructed curve satisfies
the optimality criterion.

Proof of claim (a): At every feasible point (t0, α), β0 is
defined as in Section III-C. Line L0 is either tangent to
A(t)(orDmin(t)) or not. If it is not tangent then by Lemma 3
it must intersect A(t) or Dmin(t) first and step (2) of the
algorithm is then satisfied. If L0 is tangent then step (3)
is followed. Finally the new point (t1, γ) obtained from the
algorithm is also feasible.

Proof of claim (b): Let Dc(t) denote the constructed curve.
Its obvious from the construction that at all points where the
slope changes Corollary I.1 is satisfied. We next show that
Corollaries I.2-I.3 are also satisfied. Let t0 be the starting



instant at some iteration. Let step 2 be satisfied at t0 then the
sets FDm

and FA are non-empty and Lo lies in F . Suppose
Lo intersects Dmin(t) first, i.e. at t1 (as in the algorithm)
we have Lo(t1) = Dmin(t1) (and Lo(t1) �= A(t−1 )). Since
Lo does not intersect A(t) in [t0, t1], if we pick a L1 ∈ FA

with slope close to L′
o (= βo) then L1 would intersect A(t)

beyond t1. More precisely, there exist lines L1 ∈ FA with
slope βo < L′

1 < βo + ε for some ε > 0 such that L1

intersects A(t) first at t̃ > t1. It then follows that at the
next iteration starting at t1 the optimal line cannot have slope
greater than βo and Corollary I.2 is satisfied at t1. Similarly,
if at t1 we have Lo(t1) = A(t1)(or A(t−1 )) then we can show
that Corollary I.3 is satisfied at t1. Note that if at t1 we have
Lo(t1) = Dmin(t1) = A(t−1 ) then it does not matter how the
slope changes beyond t1. Now, instead let step 3 be satisfied at
t0 then Lo is tangent to Dmin(t)(orA(t)) and by an analogous
argument as above we can show that the result holds for all
t ∈ (t0, t1]. Finally, as t0 is arbitrary, starting at (0, 0), it
follows that Corollaries I.1-I.3 are all satisfied. This implies
that in a small interval around every point where the slope
of Dc(t) changes we cannot construct a feasible line segment
and hence Dc(t) satisfies the optimality criterion.

APPENDIX II
PROOF OF THEOREM III

Consider a feasible departure curve D(t) ∈ Γ that is not
optimal. Let [a, b] be the interval over which the optimality
criterion is violated. Then, based on the construction in The-
orem I we obtain a new curve D̃(t) that continues to satisfy
the non-decreasing, continuity and feasibility properties. The
line segment L(t) between [a, b] in D̃(t) always has a slope
that is less than the maximum slope of D(t) between [a, b).
As D̃(t) = D(t), t �∈ (a, b), the overall maximum slope of
D̃(t) cannot exceed that of D(t).

max
t∈[0,T )

D̃′(t) ≤ max
t∈[0,T )

D′(t) (50)

If D̃(t) = Dopt(t) then we are done. If not then repeat the
process for D̃(t) now. For g(.) strictly convex, the energy
expenditure strictly decreases at each iteration. Thus, we
obtain a sequence of curves with decreasing energy metric that
is lower bounded by the optimal cost. As the optimal curve
that achieves the lower bound is unique, it follows that the
above sequence eventually converges to Dopt(t). The result
then follows from a repeated application of (50).

APPENDIX III
BOUNDARY CONDITION

To satisfy the non-negativity constraints the rate, r(x, t),
must be zero when x = 0. Start at some point (x = 0, t <
T ) on the boundary. Let γ > t be the first packet arrival
instant after t. Let τ = γ ∧ T , where ∧ denotes the minimum
operation. Consider δ > 0 and let t̃ = t + δ, then, from the
Markov property of the process we can write J(0, t) as,

J(0, t) = E

[∫ t̃∧τ

t

g(0)ds + J(xt̃∧τ , t̃ ∧ τ)

]
(51)

Using the indicator functions I(τ≤t̃) and I(τ>t̃) = 1 − I(τ≤t̃)

to condition on the respective events we can re-write (51) as,

g(0) +
E
[
J(xt̃, t̃)

]− J(0, t)
δ

+
1
δ
E
[
h(t̃, τ)I(τ≤t̃)

]
= 0

where h(t̃, τ) = J(xτ , τ)−J(xt̃, t̃)−
∫ t̃

τ
g(0)ds. Consider the

event τ ≤ t̃, then, as δ ↓ 0, Eh(t̃, τ) → 0 and P (t<τ≤t̃)
δ → λ.

Hence, the third term in the above expression goes to zero.
Also in the limit δ ↓ 0, the second term is the differential
generator as in (27) with x = 0 and r = 0. Thus we get,

g(0) +
∂J(0, t)

∂t
+ λ{J(B, t) − J(0, t)} = 0, t ∈ [0, T )

APPENDIX IV
PROOFS OF LEMMAS

Proof of Lemma 2: Take two lines L1(t), L2(t) ∈ F with
slopes s1, s2 respectively. Without loss of generality, let s1 >
s2. Let ε1 and ε2 be the respective durations over which they
are feasible. Take ε = min[ε1, ε2], then, over [t0, t0 + ε) we
can view L1(t), L2(t) equivalently as new A(t) and Dmin(t)
respectively. Any line with slope s such that s2 ≤ s ≤ s1 is
then feasible for duration ε and hence belongs to F .

Proof of Lemma 4: (a) Let t̃ be the point at which LD(t)
intersects Dmin(t) first. By definition, LD(t) < A(t),∀t ∈
(t0, t̃). The proof now follows in two parts. First, we show
that any line in F with slope less than L′

D must intersect
Dmin(t) before t̃ and second that this line does not intersect
A(t) in (t0, t̃). Consider L(t) ∈ F with slope less than L′

D

then L(t) < LD(t),∀t > t0. Hence, at time t̃ we have
L(t̃) < LD(t̃) = Dmin(t̃)9 and this implies that L(t) becomes
infeasible and below Dmin(t) at t̃. Therefore L(t) must
intersect Dmin(t) before t̃. Next, since L(t) < LD(t) < A(t)
in t ∈ (t0, t̃), the line L(t) cannot intersect A(t) first. Along
similar lines we can prove (b). Its proof is omitted for brevity.

Proof of Lemma 5: We can re-write (43) as,

d

dt
((T − t + τ0)f(t)) = −λ(T − t + τ0)

ln(α)

(
α

B
T+τ0−t − 1

)
(52)

Taking a Taylor series expansion of α
B

T+τ0−t − 1 and using
Monotone Convergence Theorem we get,

(T−t+τ0)f(t) =
∞∑

n=1

∫
− (λ/ ln(α))(B ln(α))n

n!(T − t + τ0)n−1
dt+c (53)

where c is the constant of integration. Integrating each term
and substituting f(T ) = 0 we get the result. The series term in
(44) which is denoted as Sm has non-negative terms and hence
is non-decreasing. For t ≤ T , Sm ≤ ∑m

n=3
(B ln(α))nτ2

0
n!τn

0
≤∑m

n=0
(B ln(α))nτ2

0
n!τn

0

m→∞−−−−→ τ2
0 exp(B ln(α)/τ0). Thus the se-

ries is convergent.

9If t̃ is the discontinuity point then LD(t) − Dmin(t) changes sign at t̃
and so L(t) − Dmin(t) must have changed sign earlier at t ≤ t̃.


