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Abstract— In a WDM-based network, a single physical link
failure may correspond to multiple logical link failures. As a
result, 2-connected logical topologies, such as rings routed on a
WDM physical topology, may become disconnected after a single
physical link failure. We consider the design of physical topologies
that ensure logical rings can be embedded in a survivable manner.
First, we develop necessary conditions on the physical topology
to be able to embed all logical rings in a survivable manner. We
then use these conditions to provide lower bounds on the number
of physical links that an N-node physical topology must have in
order to support all logical rings for even sizes K. For example,
we show that when K > 4 the physical topology must have at
least 4N/3 links, and that when K > 6 the physical topology
must have at least 3V/2 links, and when K > 8 the physical
topology must have at least 1.6V links. Furthermore, we show
that for K > N — 2 the physical topology must have at least
2N — 4 links. Finally, we design a physical topology that meets
the above bound for K = N — 2. We then modify this physical
topology to embed rings of size K = N —1 and K = N.

I. INTRODUCTION

The ring is the simplest network topology that remains
connected in the event of a single link failure. Hence it is also
one of the most widely used topologies. In Wavelength Di-
vision Multiplexed (WDM) networks, logical ring topologies
(nodes connected by lightpaths) can be embedded on arbitrary
connected physical topologies (nodes connected by fiber links)
to provide protection at the logical layer against physical layer
failures. However, since multiple logical links can be carried
by a single physical link, the failure of a single fiber link can
lead to multiple logical link failures. Hence, although both the
logical and physical topologies are independently tolerant to
single link failures, once the logical topology is embedded on
the physical topology, the logical topology may no longer be
survivable to single physical link failures. In order to retain its
protection capabilities, each logical ring must be routed on the
physical topology in a manner that ensures that each physical
link carries only one link of each logical ring [1], [8].

One of the key results observed in [1] is that for many
physical topologies it is not possible to embed ring logical
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topologies in a survivable manner. For example, almost 50%
of 9-node rings cannot be embedded in a survivable manner
in the 11-node NJLATA network. Similar results were also
obtained for other commonly used physical topologies. In this
paper we focus on designing the physical topology so that it
can support logical rings in a survivable manner. In particular,
we investigate properties of physical topologies that enable
multiple logical rings to be embedded in a survivable manner
and use these properties to design suitable physical topologies.
Such a design is particularly useful for service providers that
design their network infrastructure in order to serve customer
requests for lightpath connections.

While there has been a great deal of work in the area of
optical layer protection [2], [3], [4], [5], [6], [7], [8], [9], this
survivable routing formulation is a new approach to network
protection that has significant implications on the design of
future WDM-based networks. Most previous work in WDM
network protection is focused on restoration mechanisms that
restore all lightpaths in the event of a physical link failure.
Link based restoration recovers from a link failure by restoring
the failed physical link, hence simultaneously restoring all of
the associated lightpaths [3], [4], [7]. This is often done using
optical loop-back protection [3], [4], [6]. In contrast, path
based protection restores each of the lightpaths independently,
by finding an alternative end-to-end path for each lightpath
[31, [4], [9]. In many cases it is indeed necessary to restore
all failed lightpaths. However, in other cases some level of
protection is provided in the electronic layer and restoration
at the physical layer may not be necessary. For example,
when the electronic layer consists of SONET rings, single link
failures can be recovered through loopback protection at the
electronic layer. In this case, providing protection at both the
optical and electronic layers is somewhat redundant. Another
less obvious example is that of packet traffic in the Internet
where multiple electronic layer paths exist between the source
and destination and the Internet Protocol (IP) automatically
recovers from link failures by rerouting packets. In such
cases, a less stringent requirement may be imposed on the
network. For example, we may require that the network remain
connected in the event of a physical link failure. This approach
is, of course, not suitable for all situations. For instance, when
a network is carrying high priority traffic with Quality of



Service and protection guarantees, it may still be necessary
to provide full restoration. However, when a network is used
to support best effort internet traffic, guaranteeing connectivity
may suffice.

We consider the design of N-node physical topologies that
can support survivable routings of ring logical topologies
of size K < N. Since rings of size 3 can be trivially
embedded in a survivable manner on any 2-connected physical
topology, we focus on the problem of embedding rings of size
K > 4. We begin by developing necessary conditions on the
physical topology for ensuring all K node ring permutations
can be embedded in a survivable manner. These conditions
lead to lower bound requirements on the number of physical
links. We then design physical topologies that can support all
ring permutations in a survivable manner using the minimum
number of physical links. These designs are all hub based.

II. LOWER BOUNDS ON PHYSICAL LINK REQUIREMENTS

We consider a bidirectional physical topology with nodes
N and edges & (we define N = |\ as the number of nodes
in the physical topology). Similarly, each bidirectional logical
topology consists of a set of nodes AN, and edges £;,. A cut
is a partition of the set A into subsets S and N\ S.! The
cut-set corresponds to the set of edges in £ that have one
endpoint in S and the other in A"\ S. For any cut {S, N\ S}
of the physical topology, let [C'Sp (S, N\ S)| be the number
of physical links along this cut and |CS, (S,N \ S)| be the
number of logical links traversing the same cut.

In [1] we showed that the routing of a logical topology is
survivable if and only if no single physical link is shared by all
logical links belonging to a cut-set of the logical topology. For
ring logical topologies, each pair of logical links is a cut-set,
thus no pair of logical links can be routed on the same physical
link, or equivalently each logical link must be routed on a
separate physical link. In order to be able to route each logical
link along disjoint physical paths the number of physical links
in each cut must be greater than the number of logical links in
each cut, i.e., |CSp (S,N'\S)| > |CSL (S,N '\ S)| for each
cut. Hence, as proven in [1], the routing requirement leads
to the following necessary condition on a physical topology
capable of embedding all possible K-node rings in in a
survivable manner.

Theorem 2.1: For a physical topology to support any pos-
sible K -node ring logical topology in a survivable manner the
following must hold. For any cut {S, N\ S} of the physical
topology, [CSp (S, N'\ )| > 2min{|S|, [N\ S|, [K/2]}.

In other words, for all cuts of the physical topology, the
number of physical links in the cut set must be greater than
or equal to twice the minimum of the number of nodes on the
smaller side of the cut and | K /2], where | K/2| corresponds
to the maximum number of nodes in a K-node ring logical
topology that can be on both sides of the cut. Note that this
is a necessary but not sufficient condition.

'For sets A and B, the set A\ B is defined as AN BY, where BY is the
complement of the set B

TABLE I
Lower bounds on the number of physical links required to embed logical
topologies of size K.

Logical Ring | Physical Link Result
Size Requirement
K =4 4N/3 Theorem 2.2
K=6 3N/2 Theorem 2.2
K =38 1.6 N Theorem 2.2
K =10 1.625N Theorem 2.2
K=N-2 2N — 4 Theorem 2.3

Fig. 1. Cut-set consisting of a degree 2 node connected to a degree 4 node.

Using this necessary condition we establish requirements
on the physical topology which show that nodes of low
degree must be connected to nodes of larger degree. These
requirements are summarized in the lemmas below and are
used to design appropriate physical topologies in Section III.
Furthermore, using these lemmas we develop lower bounds on
the number of physical links needed to embed rings of size K
for even-valued K > 4. We also show in Theorem 2.3, that
to embed rings of size K = N — 2, a minimum of 2N — 4
physical links are needed. A summary of several of the lower
bound results is given in Table I.

Lemma 2.1: Any node of degree D must have physical
links to nodes having degree at least 4 for D = 2 and at
least 3 for D =3 when K >4 and N > 4.

Proof: To prove the lemma, we consider 2-node cuts
where one of the two nodes has degree D. Theorem 2.1
requires that there are at least 4 edges crossing the cut (this
follows since |S| = 2 implies 2min {|S|, |V \ S|, | K/2]} =
4). Consider first the case D = 2; the other node in the
cut must have degree at least 4 to satisfy this requirement.
This is illustrated in Fig. 1: note that if the node of degree 2
were connected instead to a node of degree 2 or 3, then an
insufficient number of links would cross the cut. Next consider
the case D = 3. The same requirement of 4 edges crossing
the cut holds here, which implies that the second node must
have degree at least 3. O

Next we introduce a lemma that restricts the interconnec-
tions allowed between groups of nodes. Following the lemma,
we provide three clarifying examples.

Definition 2.1: Define a grouping as a set of ks + k3 nodes,
ko of which have degree 2 and k3 of which have degree 3.
Further, these nodes may be interconnected, but each node
must have at least one single link free to connect to nodes
outside of the grouping. For consistency in naming, we define
the degree of this object by the pair (ks, k3). O

Lemma 2.2: Suppose a node of degree D connects to n
groupings, each of degree (ks, k3), in the sense that the node
of degree D has a physical link to every node in each grouping.



For K and N sufficiently large,
D -2
< |=—]. 1
"= \‘2]62 + ng M
Proof: The total number of nodes in a cut including
n groupings and the node of degree D is |S| = n(ks +
k3) + 1. Assume |S| achieves the minimum value in the set
{IS],|IN'\' S|, [ K/2]}. Then Theorem 2.1 requires that

2(1 + nks + nks) < |CSp(S, N\ S)| @)
< (nks + 2nks) +
(D — ’nkz — ’nkg)

Here, the right hand side of (3) is obtained by considering the
maximum number of edges crossing the cut. This value occurs
when all edges, excluding the edges connecting the node of
degree D to the nodes of the groupings, cross the cut. Thus, the
node of degree D contributes D —n(ks + k3) edges that cross
the cut (this is the first term in (3)). The n groupings contribute
an additional n (k2 4 2ks3) edges that cross the cut, since nodes
of degree 2 contribute one edge each, and nodes of degree 3
contribute 2 edges each (this is the second term in (3)). Simple
algebraic manipulation of (3) yields n < m Since n
is an integer, the bound in (1) is established.

We note that Lemma 2.2 holds for values of K and NV that
are sufficiently large to test for and to find the upper bound
on n, while maintaining |S| as the minimizing element of the
set {|S], [N\ S|, [ K/2]}. The details of the conditions on K
and N are given in [10]. O

We will now provide three examples that demonstrate
the usefulness and flexibility of Lemma 2.2. The first two
examples consider the very important cases of groupings of
degree (1,0) and (0,1). The third example serves to clarify
the notion of a grouping. The examples all assume that K and
N are sufficiently large for Lemma 2.2 to apply.

Example 2.1: Consider a grouping of degree (1,0); each
grouping consists of one degree 2 node. For a node of degree
D = 6, we will use Lemma 2.2 to determine how many of
these groupings the degree 6 node may connect to without
violating Theorem 2.1. In other words, we will determine the
maximum number of nodes of degree 2 that may be connected
to a node of degree 6 node. By Lemma 2.2, this value is
|4/2] = 2. We demonstrate this bound in Fig. 2: Fig. 2(a)
shows that when the degree 6 node connects to two nodes of
degree 2, the minimum requirement of 6 edges may cross the
cut. Fig. 2(b) adds an additional node of degree 2, which leaves
a maximum of 6 edges crossing the cut (as shown). However,
Theorem 2.1 requires a minimum of 8 edges crossing a cut
of 4 nodes. Thus, we have shown that a degree 6 node may
connect to at most two nodes of degree 2. O

Example 2.2: Consider a grouping of degree (0,1); each
grouping consists of one degree 3 node. In this case, Lemma
2.2 sets a limit of [4/1] = 4 nodes of degree 3 that may be
connected to a node of degree D = 6. This is illustrated in Fig.
3: Fig. 3(a) shows that when a degree 6 node is connected to
four nodes of degree 3, the minimum requirement of 10 edges

3)

(a) two degree 2 nodes (b) three degree 2 nodes

Fig. 2. A node of degree 6 connecting to nodes of degree 2.

(a) four degree 3 nodes

(b) five degree 3 nodes

Fig. 3. A node of degree 6 connecting to nodes of degree 3.

may cross the cut. Fig. 3(b) adds a fifth degree 3 node to the
cut, which leaves a maximum of 11 edges crossing the cut
(as shown). However, Theorem 2.1 requires a minimum of 12
edges cross a cut of 6 nodes. Thus, we have shown that a node
of degree 6 may connect to at most four nodes of degree 3.0

Example 2.3: The last example clarifies the notion of a
grouping. Consider a grouping of degree (1, 1); each grouping
consists of one node of degree 2 and one node of degree 3.
In this case, Lemma 2.2 sets a limit of |[4/3| = 1 groupings
of degree (1, 1) that a node of degree D = 6 may connect to.
This is illustrated in Fig. 4 where each grouping is shaded by
a box: Fig. 4(a) shows that when the degree 6 node connects
to one grouping of degree (1,1), as many as seven edges may
cross the cut. Fig. 4(b) shows that when the degree 6 node
connects to two groupings of degree (1,1), a maximum of
eight edges cross the cut. However, Theorem 2.1 requires a
minimum of 10 edges crossing a cut of 5 nodes. O

Using Lemma 2.1 and Lemma 2.2, we can establish the
following theorem on the number physical links required to
support rings of size K.

Theorem 2.2: Let d; be the number of degree ¢ nodes in
the physical topology. For K > 4 even, to support all logical
rings of size K, the number of physical links L must satisfy

3 K—1 i 1 K—1 i 3

d3

L > max{ 2do+ —> Z 2V d: Z Vd
3{22 2 ;(4 2> ¢ ;(4 4> v

i even % odd
K/2 K-1
) KN 1
2y + Sds + Y di, ——— = > (K —i)d; 4
d> + 2d3 + 2 d;, 2 2 l-:2( Z)dz}; 4)



(a) one grouping having
degree (1,1)

(b) two groupings, each
having degree (1,1)

Fig. 4. A node of degree 6 connecting to groupings of degree (1, 1).

Fig. 5. Plot of lower bound on L (normalized by N) versus K.

for N > K.
Proof: The proof of Theorem 2.2 may be found in the
appendix. O

Equation (4) becomes increasingly complex as K increases.
As such, a linear program may be employed to minimize
over (4) and establish lower bounds for any even K. Table
I summarizes the lower bounds on physical link requirements
L for K = 4,6,8,10. Of note is that the bound does not
change when K is increased from 10 to 12. In fact, for even
values of K up to K = 20, no change in the lower bound
occurs. The values obtained by minimizing (4) up to K = 20
are plotted in Fig. 5. Though the bound established in Theorem
2.2 appears to saturate for ' > 10, we have not established
that this bound is tight. In [10] we present a class of physical
topologies that achieves the bound of L = 4N/3 for K = 4.

Theorem 2.2 establishes link requirements for embedding
survivable rings of constant size /. Next we present a lower
bound on link requirements for establishing rings where K is
of order N. In particular we consider the case of K = N —2.

Theorem 2.3: The minimum number of physical links nec-
essary to support all logical rings of size greater than or equal
to N — 2 in a survivable manner is 2(N — 2).

Proof: The proof of Theorem 2.3 proceeds by showing
that for any physical topology with fewer than 2(N —2) links,
we can find an (N — 2)-node ring logical topology where each
logical link requires at least two physical links (for a total
of 2(N — 2) links). Hence a physical topology with fewer
than 2(IN — 2) links cannot support all (N — 2)-node logical

topologies. The detailed proof may be found in [10]. O

The results of this section provide us with lower bounds
on the number of physical links that the physical topology re-
quires. They also give us some insights regarding the structure
of the topology. In Section III we use these insights to design
physical topologies that meet the above bounds.

III. PHYSICAL TOPOLOGIES THAT ENSURE SURVIVABLE
RING ROUTING

In this section we present two hubbed architectures that
were designed based on our observation that nodes of low
degree must be connected to nodes of large degree. The Dual
Hub Architecture achieves the bound of Theorem 2.3 for K =
N — 2, and with a single additional link, the Modified Dual
Hub Architecture can support rings of size K = N — 1 and
K=N.

Dual Hub Architecture: Consider a physical topology with
N nodes, two of which are hub nodes. Each non-hub node has
degree 2 and is connected to both hub nodes. The hub nodes
each have degree IV — 2. Fig. 6 depicts the physical topology
for a Dual Hub Architecture having N nodes. This physical
topology has 2N — 4 links, which is the lower bound on the
number of links a physical topology needs to route all logical
rings of size K = N — 2 established in Theorem 2.3.

Fig. 6.

Dual Hub Architecture.

The Dual Hub Architecture can support survivable routings
of all logical rings of size K = N — 2 for N even and
K < N — 3 for N odd. To show this we divide the possible
logical ring configurations into three cases, corresponding to
the number of hubs in the logical ring. The three different
cases are considered below.

Case 3.1: Suppose we wish to route the logical ring defined
by (1,2,...,N — 2). That is, all non-hub nodes appear in
order on the ring with no hub nodes included. Then, starting
at node 1, the logical ring may be routed as follows: node
1 connects to node 2 through hub h;, and node 2 connects
to node 3 through hub hy. We continue alternating between
hub nodes in reaching the remaining nodes. Since NV is even,
when we reach node NV — 2, we have reached it from hub hq,
which means we may complete the ring by traversing to node
1 through hub h,. Clearly any ordering of the non-hub nodes
in the ring can be supported. O

Case 3.2: Suppose we wish to route the logical ring defined
by (h1,1,2,...,N — 3). Here, only hub h; appears on the
ring, followed by nodes 1 through N — 3 in order. Starting
at hub hq, the logical ring may be routed as follows: hub h;



connects to node 1 directly, and node 1 connects to node 2
through hub h,. Continuing to alternate between hub nodes in
reaching the remaining nodes as before, we reach node N — 3
from h;. Since the direct link back to h; has been used, we
route the last logical link from node IV — 3 through nodes h-
and NV — 2 to hub h;. Again, any ordering of the non-hub and
hub nodes can be accomplished in a similar manner. O

Case 3.3: Suppose we wish to route the logical ring defined
by (hi,h2,1,2,... ,N — 4). Here, the hubs are adjacent in
the logical topology, followed by nodes 1 through N — 4
in order. Starting at hub h;, the logical ring may be routed
as follows: hub h; connects to hub hs by traversing node
N — 3. Then, node 1 is reached directly from hub h,, and
the remaining nodes are reached in the alternating manner
described in Examples 3.1 and 3.2. This implies that node
N — 4 is reached from hub h;. Thus, the last logical link is
routed from node N — 4 through nodes h, and N — 2 to hub
h1. To complete the proof we must consider the case where
there are a number of non-hub nodes between the two hub
nodes. The detailed proof may be found in [10]. O

Modified Dual Hub Architecture: Larger rings can be em-
bedded survivably by modifying the Dual Hub Architecture
with the addition of a single link directly joining the two
hub nodes. The Modified Dual Hub Architecture with N
nodes supports all (N — 1)-node logical rings in a survivable
manner. Furthermore, the Modified Dual Hub Architecture
with IV nodes supports all N-node logical rings in a survivable
manner when N is odd. In the case of an even number of
nodes, if an odd number of nodes separate h; and hy in
the clockwise direction and in the counterclockwise direction,
then the Dual Hub Architecture is sufficient to route any such
logical ring of size K = N. In general however, when NV is
even, the Modified Dual Hub Architecture is not sufficient
to route all rings of size N. It can be shown that adding
a second disjointly routed physical link connecting the hub
nodes allows all logical rings of size N to be embedded
survivably. Detailed proofs for these results follow routing
arguments similar to those provided in the examples above
for the Dual Hub Architecture and may be found in [10].

IV. SYMMETRIC PHYSICAL TOPOLOGIES

Designing physical topologies to embed survivable logical
rings while minimizing the number of physical links required
led to the creation of physical topologies with multiple hubs.
An additional property of these multiple hub topologies is
that the physical topology is now also survivable to node
failures. The physical network will always remain connected
as long as one of the hub nodes is functioning. Hub physical
topologies are generally easier to implement in local and metro
area network environments. However, as the physical area of
the network increases and due to other physical restrictions
(such as right of ways, etc.) it may be impractical to deploy to
multiple hubs. In this section we present preliminary results on
the design of physical topologies that are more symmetric, i.e.,
where the degree of each node is similar. This topic remains
as an important area of future research.

In [1], a 10-node 4-connected symmetric physical topology
was shown that is capable of carrying all rings of size K < 9
in a survivable manner. This physical topology contains 20
physical links and each node has degree 4. For comparison,
the Dual Hub Architecture would require 16 physical links
in order to carry all logical rings of size K < 9 on a 10-
node physical topology. Unfortunately, it is not possible to
generalize this symmetric physical topology to all values of
N such that all rings of size K < N — 1 can be routed
survivably [10].

One method of generating physical topologies that are
provably capable of supporting survivable rings is to select the
physical links to form interconnected Hamiltonian cycles. For
example, if the physical topology contains two interconnected
Hamiltonian cycles, all rings of size K < 5 can be supported.
One of the Hamiltonian cycles is used to connect the first three
nodes and the second Hamiltonian cycle is used to connect the
remaining two nodes in the logical topology. This is shown
in Fig. 7, with only the nodes included in a 5-node logical
topology shown. The solid lines represent logical links mapped
on the first Hamiltonian cycle, and the dashed lines represent
logical links mapped on the second Hamiltonian cycle. This
results in a 4-connected physical topology which uses 2V
physical links. Comparing this design to our lower bounds
on physical links required, we have shown using Theorem 2.2
that to embed all rings of size K > 6, a minimum of 3N/2
physical links are required. Thus, the interconnected pair of
Hamiltonian cycles may not be a very efficient design.

Fig. 7. Two interconnected Hamiltonian cycles can support all logical rings
of size 5 in a survivable manner.

In general, designing a physical topology by interconnecting
M Hamiltonian cycles results in a 2M-connected physical
topology that is capable of supporting rings of size 2M + 1
in a survivable manner.

V. CONCLUSIONS

We have considered the problem of physical topology
design for embedding logical rings in a survivable manner.
This problem is particularly important for service providers
that design their fiber infrastructure in order to support future
customer requests for lightpath connections. Since rings are a
very commonly used logical topology (due to their ability to
recover from failures), we focused in this paper on physical
topology design for embedding ring logical topologies. Of
course, a natural extension of this work is general design for
arbitrary (2-connected) logical topologies.

We obtained some basic necessary conditions on the phys-
ical topology in order to be able to route logical rings in a



survivable manner. We also developed lower bounds on the
number of links that the physical topology must contain in
order to be able to support all possible logical links of size
K (for various values of K). We designed dual-hub physical
topologies to suit these bounds: for the case of K = N — 2,
the lower bounds are met exactly by the physical topology.
Since hub architectures may be impractical in some scenarios,
we provided preliminary results relating to physical topologies
where each node has equal degree.

APPENDIX

PROOF OF THEOREM 2.2
The proof of Theorem 2.2 will proceed by proving that each
individual term from (4) serves as a lower bound on L. We
begin by rewriting the expression for number of links in the
physical topology L as
~id; | N~ id;
L= -+ - 5
i=1 2 ;( 2 ©
Combining the fact (from Lemma 2.1) that nodes of degree
2 must have physical links to nodes of degree 4 or higher, with
the bound of Lemma 2.2 for groupings of degree (1, 0), which
restricts the number of connections a node of degree D can
have to degree 2 nodes, we obtain the following restriction on
the number of nodes of degree 2:

2dy < (dy +ds) +2(ds + dr) + 3(dg +dy) + - -
N-1
+ (K/2=2)(dx—2 +dg 1) + Z id;.  (0)
i=K
Equation (5) may be used to eliminate the final term of (6),
which provides the first restriction on L,

3, (i 1 ~ /i 3
L > 2dy + 5ds + Z <Z+§>di+ Z <Z+Z>di‘
iZ;/gn izitfd

(N
To achieve this bound, we applied Lemma 2.1 which requires
N >4, and Lemma 2.2 for D € {1,2,...,K —1}. Using the
bounds on K and N, for a grouping of degree (1,0) and K
even, we find that (7) holds when and N > K.

Next we establish an upper bound on the value of 2ds + 3ds.
From Lemma 2.2, we have that a degree D node connects to
at most

D -2
\‘21@ + k3

nodes, when these nodes necessarily belong to groupings of
degree (k2, k3). Note that (kz, k3) = (0, 1) maximizes (8) over
all possible groupings. To prove this, suppose that (k3,k3)
achieves the maximum in (8). If k5 > 0, then note that (0, k5 +
k%) achieves a higher value by decreasing the denominator
term while having no effect on the numerator terms of (8).
Next, suppose k5 > 1 and k5 = 0. Then we have immediately
{D -2

Z 2k <D-2
ILE

J (k2 + k3) ®)

Of course, this inequality is satisfied with equality when k3 =
1. Then the maximum number of nodes of degree 2 or 3 that
a node of degree D can reach is given by D — 2. This implies
that the following bound holds,

2dy + 3ds < ds + 2d4 + 3d5 + - - -
N-1
+(K/2=2)dgpp+ D idi. (9)
K/2+1

Applying (9) to (5), we obtain the second bound on L,

5
L22d2+§d3+d4+d5+"'+dK/2. (10)

To achieve this bound, we employed Lemma 2.2. Since (9)
is derived based on a grouping of degree (0,1) and the
assumption that K is even, the bounds on K and N require
that N > K.

Finally, the third bound on L is obtained as follows. We
lower bound the second term of (5) as

Nfll.d. N—1 d
;{7’21(;{; (11)

Using (5) and combining the fact that Z,A;l d; = N with
(11) provides the lower bound

1Kfl K K-1
L > EZidmL?(N—Zdi) (12)
=2 =2
K-1
KN 1
= — - ) (K —i)d 13
2 2,-:2( i)d; (13)

The bounds of equations (7), (10), and (13) in combination
correspond to the desired bound (4), which holds for all N >
K, as desired. U
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