
Dynamic Wavelength Assignment for
WDM All-Optical Tree Networks

Poompat Saengudomlert, Eytan H. Modiano, and Robert G. Gallager∗

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139

tengo@mit.edu, modiano@mit.edu, gallager@mit.edu

Abstract
We develop an on-line wavelength assignment (WA) algorithm for a WDM tree

network with N end nodes. The algorithm dynamically supports all k-port traffic
matrices, where k denotes an integer vector [k1, ..., kN] and end node i, 1 ≤ i ≤ N ,
can transmit at most ki wavelengths and receive at most ki wavelengths. Our
algorithm is rearrangeably nonblocking, uses the minimum number of wavelengths,
and requires at most d∗−1 lightpath rearrangements per new session request, where
d∗ is the degree of the most heavily used node in the worst-case traffic scenario.
We observe that the number of lightpath rearrangements per new session request
does not increase as the amount of traffic k in the network increases by an integer
scaling factor. In addition, we found that wavelength converters cannot reduce the
number of wavelengths required to support k-port traffic in a tree network.

1 Introduction
In a wavelength division multiplexed (WDM) network, the fiber bandwidth is divided into
multiple frequency bands often called wavelengths. Using reconfigurable optical switches
at the network nodes, some wavelengths can be selected at each node for termination and
electronic processing, and others selected for optical bypass. In an all-optical network,
each traffic session optically bypasses electronic processing at each node on its path other
than the source node and the destination node. One important benefit of this architecture
is a significant cost saving from the use of fewer and/or smaller electronic switches.

Without optical wavelength conversion, routing of traffic sessions is subjected to the
wavelength continuity constraint, which dictates that the lightpath corresponding to a
given session must travel on the same wavelength on all links from the source node to the
destination node. Using wavelength converters potentially allows the network to support
a larger set of traffic. However, such converters are likely to be expensive. Hence, several
researchers assume no wavelength conversion in the problem of routing and wavelength
assignment (RWA). Similarly, we shall assume no wavelength conversion.

The RWA problem is an important problem in resource management for all-optical
networks, and has received a lot of attention. We can categorize existing results in
literature into two groups based on whether static or dynamic provision of routes and
wavelengths is performed. We shall focus on dynamic RWA.

To model dynamic traffic, session arrivals can be assumed to form stochastic pro-
cesses [1, 2]. In addition, session lifetimes are probabilistic. The goal is usually to
develop an on-line RWA algorithm which minimizes the average blocking probability for
a new session request given a fixed number of wavelengths in the network. We refer to
this type of problem formulation as the blocking formulation. Due to the complexity in

∗This work was supported by the National Science Foundation (NSF) under Grant ANI-0073730.

computing blocking probabilities, some approximations are made to simplify the analysis.
For example, session arrivals on different links are assumed to be independent [1, 3], or
correlated among adjacent links in the same fashion throughout the network [2]. Based
on such approximations, several dynamic RWA heuristics have been developed [4, 5].

Alternatively, a different problem formulation, referred to as the nonblocking for-
mulation, assumes prior knowledge of the set of all the traffic matrices to be sup-
ported [6, 7, 8, 9]. In [7], the set of traffic matrices is characterized by the maximum
link load in the network. In [6, 8, 9], the set of traffic matrices is characterized by the
numbers of tunable transmitters and tunable receivers at each end node, i.e. a node
which sources and/or sinks traffic sessions. A new session is said to be admissible if its
arrival results in a traffic matrix which is still in the set of supportable traffic. The goal
is to develop an on-line RWA algorithm which does not block any admissible session and
uses the minimum number of wavelengths.

If we allow some existing lightpaths to be rearranged in order to support a new
session, the corresponding RWA algorithm is said to be rearrangeably nonblocking. If we
allow no rearrangement of any existing lightpath in order to support a new session, the
corresponding RWA algorithm is said to be wide-sense nonblocking. Note that if an RWA
algorithm is wide-sense nonblocking, it is also rearrangeably nonblocking.

We shall adopt a nonblocking formulation. As in [6, 8, 9], the supportable traffic
set is defined by the number of tunable transmitters and tunable receivers at each end
node. We model the traffic as a session-by-session arrival and departure process in which
sessions arrive and depart one at a time, and each session utilizes a full wavelength. Our
goal is to design an on-line RWA algorithm which is rearrangeably nonblocking, uses the
minimum number of wavelengths, and requires few rearrangements of existing lightpaths
in order to support each new session request.

In this paper, we present an on-line RWA algorithm for tree networks. Since there is
no routing problem in a tree network, our RWA algorithm only has to perform wavelength
assignment (WA) and will be referred to as a WA algorithm. Since a tree topology can
be embedded in any connected topology, we hope that our analytical approach can later
be used in the extension of this work to other types of network topologies.

In section 2, we define the set of k-port traffic based on the number of tunable
transmitters and tunable receivers at each end node, and formulate the WA problem for
k-port traffic in a tree network. In section 3, we describe our on-line WA algorithm and
prove its correctness. Finally, we summarize the results and point out future research
directions in section 4.

2 Problem Formulation
Consider a WDM all-optical tree network with no wavelength conversion. Adjacent nodes
are connected by two fibers, one in each direction. All fibers contain the same number
of wavelengths. Assume there are N end nodes, which are the leaf nodes of the tree.
(Later on, we shall discuss the cases with non-leaf end nodes.) Assume that each traffic
session has a rate of one wavelength. At a given time, only one session can use a specific
wavelength in a fiber, but multiple sessions on the same wavelength can use the same
node. Leaf node i, 1 ≤ i ≤ N , is equipped with ki fully tunable transmitters and ki fully
tunable receivers. Consequently, at any time, node i can transmit at most ki wavelengths
and receive at most ki wavelengths. Such a traffic matrix is said to belong to a set of
k-port traffic, where k = [k1, k2, ..., kN]. We make one assumption on k-port traffic.

Assumption 1 Let kmax = max1≤i≤N ki. Assume that kmax ≤
(∑

1≤i≤N ki

)
/2.

Assumption 1 is reasonable since the node with kmax transmitters (receivers) can
transmit (receive) at most (

∑
1≤i≤N ki)− kmax wavelengths to (from) all the other nodes.

Therefore, kmax need be no greater than (
∑

1≤i≤N ki)− kmax.
We model dynamic traffic as a session-by-session arrival and departure process in

which sessions arrive and depart one at a time. In other words, a transition from one
traffic matrix to another results from either a session arrival or a session departure. A
new session request is admissible if the resultant traffic matrix is still in the set of k-port
traffic. For convenience, throughout the paper, a new session is assumed to be admissible.

We want to design an on-line WA algorithm which supports k-port traffic in a rear-
rangeably nonblocking fashion, uses the minimum number of wavelengths, and requires
few rearrangements of existing lightpaths in order to support each new session request.
Our algorithm will be centralized in nature. We assume that traffic does not change too
frequently and the WA algorithm always has correct knowledge of the current WA in
the network. In addition, we assume there is sufficient time for lightpath rearrangements
between successive transitions of the traffic matrix.

3 On-Line WA Algorithm
3.1 Star Networks
We first present an on-line WA algorithm for star networks. This algorithm is later
extended for tree networks. Fig. 1 shows an example of a star network with 3 leaf nodes
connected through a central hub.

(1,2)
(2,1)
(1,3)
(3,1)
(2,3)

arrivals
of session
sequence

from node i to node j.
(i, j) denotes a session

λ1 λ2

λ1 or λ2

node 1

cannot use

node 2 node 3

λ1 λ2

kmax=2
k1=k2=k3=2

(1,2) on λ1

(2,1) on λ1

(1,3) on λ2

(3,1) on λ2

(2,3) not on λ1 or λ2

WA steps
sequence of

corresponding

Figure 1: An example in which a greedy approach requires more than kmax wavelengths.

Let Lk andWk denote the minimum number of wavelengths which, if provided in each
fiber, can support k-port traffic with full wavelength conversion at all nodes and without
wavelength conversion respectively. It is clear that Lk ≤ Wk. Notice that Lk and Wk

are the number of wavelengths required to support any traffic matrix in the k-port set.
Thus, for a specific traffic matrix, we may need fewer wavelengths than in the worst-case.
To derive Lk, consider the fiber from the node with traffic parameter kmax to the hub
node. This fiber must support up to kmax wavelengths, which is the maximum link load.
It follows that Lk = kmax.

We shall construct an on-line WA algorithm using kmax wavelengths. This algorithm
implies that Wk = Lk = kmax. Fig. 1 illustrates an example scenario in which an on-line
greedy WA algorithm fails to support an instance of k-port traffic using kmax wavelengths.
In this example, N = 3, k = [2, 2, 2], and the traffic matrix to be supported is uniform
all-to-all traffic, i.e. each node sends one session to each of the other nodes. In Fig. 1,
the same wavelength is assigned to the oppositely directed sessions between the same
pair of nodes, e.g. sessions (1,2) and (2,1) on wavelength λ1. After assigning wavelengths
λ1 and λ2 to sessions (1,2), (2,1), (1,3), and (3,1), neither λ1 nor λ2 can be assigned to
(2,3). It follows that more than kmax = 2 wavelengths are used. This example tells us
that the WA algorithm design is not trivial. In addition, to use the minimum number of

wavelengths, we may need to support the oppositely directed sessions between the same
pair of nodes on different wavelengths.

Our algorithm is based on bipartite matchings. For a given traffic matrix, we construct
the traffic bipartite graph, denoted by (V1,V2, E), as follows. We consider each leaf node
as a distinct source node and destination node. The set of nodes V1 contains the N
source nodes. The set of nodes V2 contains the N destination nodes. In the set of edges
E , an edge between node i in V1 and node j in V2 exists for each traffic session from
source i to destination j. Fig. 2a shows an example of the traffic bipartite graph and its
traffic matrix. Note that there may be multiple edges between the same pair of nodes.
For example, since there are two sessions from source 1 to destination 2, there are two
parallel edges between s1 in V1 and d2 in V2 in Fig. 2a.

d2

0

0

0

2

0

0

1

1

d3

0

0

2

0

d4

d3

d4

d2

d1

s3

s4

s2

s1

V2
destination

V1
source

d3

d4

d2

d1

s3

s4

s2

s1

d3

d4

d2

d1

s3

s4

s2

s1

0

1

0

1

d1

s1

s2

s3

s4

(a) traffic matrix and
its traffic bipartite graph

destination

(b) bipartite matchings M1 and M2
assigned to wavelengths λ1 and λ2

source

M1, λ1

V1 V2V2V1

M2, λ2

Figure 2: Traffic bipartite graph and its matchings.
A matching in a bipartite graph, or in short a bipartite matching, is a subset M of

E such that no two edges in M are adjacent. A matching M is said to saturate the set
V1 if, for every node in V1, there is an edge in M incident on that node. A matching M
which saturates the set V1 is called a perfect matching. In Fig. 2b, the matchings M1

and M2 are two different perfect matchings in (V1,V2, E).
Observe that the sessions in a bipartite matching can be supported on a single wave-

length without wavelength collision. To see this, note that, in a matching, at most one
edge is incident on each source (destination) node. Thus, in each fiber to (from) the hub
node, every wavelength is used at most once. Our algorithm will assign a single matching
to a single wavelength. We shall refer to the matching assigned to wavelength λ1 simply
as the bipartite matching of λ1. Fig. 2b shows example bipartite matchings of specific
wavelengths. We next state a known lemma related to bipartite graphs [10].

Lemma 1 In a bipartite graph (V1,V2, E) with maximum node degree m, we can color
the edges in E so that no two adjacent edges have the same color using m colors.

Consider coloring the edges in a bipartite graph (V1,V2, E) as suggested by lemma 1.
Since no two adjacent edges have the same color, the edges with the same color form a
bipartite matching. Thus, we can restate lemma 1 as follows.

Lemma 2 In a bipartite graph (V1,V2, E) with maximum node degree m, the set E can
be partitioned into m disjoint bipartite matchings.

Lemma 2 can be used to argue that kmax wavelengths are sufficient to support any
traffic matrix in the k-port set. Given a traffic matrix, we can write down the correspond-
ing traffic bipartite graph in which each node has degree at most kmax. By lemma 2,
the set of edges can be partitioned into kmax disjoint bipartite matchings. The sessions
in each matching can be supported on a single wavelength. Thus, kmax wavelengths are
sufficient to support any k-port traffic matrix.

The main idea of our on-line WA algorithm involves keeping kmax disjoint bipartite
matchings of kmax wavelengths such that each traffic session corresponds to an edge in

one bipartite matching. When a session departs, we simply remove its corresponding
lightpath from the network. When a new session, say (i, j), arrives, we find one wave-
length that is not used by source i, and one wavelength that is not used by destination
j. If the two wavelengths are the same, we can support the new session without any
lightpath rearrangement. Otherwise, we rearrange some existing lightpaths on the two
wavelengths to support the new session. The following lemma makes the above discussion
concrete and states an upper bound on the number of lightpath rearrangements.

Lemma 3 In a bipartite graph (V1,V2, E) with |V1| = |V2| = V , given a new edge (si, dj),
si ∈ V1, dj ∈ V2, a matching M1 of wavelength λ1 which is not incident on si, and
a matching M2 of wavelength λ2 which is not incident on dj, there exist two disjoint
matchings which cover all the edges in M1 and M2 as well as the new edge (si, dj).

In addition, these two disjoint bipartite matchings can be assigned to λ1 and λ2 so
that the number of lightpath rearrangements is at most V − 1.
Proof: Consider the bipartite graph (V1,V2, E ′), where E ′ = M1 ∪ M2 ∪ {(si, dj)}.
Observe that each node has degree at most 2. From lemma 2, E ′ can be partitioned into
two disjoint matchings M′

1 and M′
2.

Without loss of generality, assume that (si, dj) ∈ M′
1. Let set P contain the edges in

M1 assigned to M′
2 and the edges in M2 assigned to M′

1. Let set Q contain the edges
in M1 assigned to M′

1 and the edges in M2 assigned to M′
2. Notice that P and Q are

disjoint and P ∪ Q = M1 ∪M2. Since there are at most 2V − 2 edges in M1 ∪M2, it
follows that |P|+ |Q| ≤ 2V − 2. If |P| ≤ V − 1, assigningM′

1 to λ1 andM′
2 to λ2 yields

the desired result. Otherwise, it is true that |Q| ≤ V − 1. In this case, assigning M′
1 to

λ2 and M′
2 to λ1 yields the desired result. ✷

In [11], we provide an efficient algorithm to find two disjoint matchings in a bipartite
graph with maximum node degree 2. The algorithm has the running time O(V).

The following is our on-line WA algorithm for a star network with k-port traffic which
uses kmax wavelengths in each fiber, is rearrangeably nonblocking, and requires at most
N − 1 lightpath rearrangements per new session request.

Star WA algorithm: (Use kmax wavelengths.)
Session termination: Simply remove its lightpath from the network.
Session arrival: When a new session arrives, proceed as follows. (Assume that the

new session is (i, j).)
Step 1: If there is a wavelength, denoted by λ0, which is used by neither source i nor

destination j, then assign the new session to λ0. In this case, no lightpath rearrangement
is made. Otherwise, proceed to step 2.

Step 2: Find a wavelength, denoted by λ1, which is not used by source i, i.e. its
bipartite matching M1 is not incident on si, and another wavelength, denoted by λ2,
which is not used by destination j, i.e. its bipartite matching M2 is not incident on
dj. (Since the new session is admissible, there are at most kmax − 1 sessions from source
i. Since there are kmax available wavelengths, it follows that λ1 exists. By the same
argument, λ2 always exists.)

Modify the WA of only the sessions on λ1 and λ2. Contruct the traffic bipartite graph
(V1,V2, E ′), where E ′ = M1 ∪M2 ∪ {(si, dj)}. Partition E ′ into two disjoint matchings
(c.f. lemma 2). Since |V1| = |V2| = N , lemma 3 tells us that the two matchings can be
assigned to λ1 and λ2 such that at most N −1 existing lightpaths need to be rearranged.

The construction of the star WA algorithm implies the following theorem.

Theorem 1 For the star network with N nodes and k-port traffic,

Wk = Lk = kmax = max
1≤i≤N

ki.

In addition, there exists, by construction, an on-line WA algorithm which uses kmax

wavelengths in each fiber and requires at most N − 1 lightpath rearrangements per new
session request.

3.2 Arbitrary Tree Networks
In this section, we extend the star WA algorithm to create an on-line WA algorithm for
tree networks. In a given tree network, assume there are N > 2 end nodes which are the
leaf nodes of the tree. We shall ignore all the non-leaf nodes with degree 2 since their
removal does not change the WA problem. We describe a tree by a set of nodes N and
a set of bidirectional links T .

We first determine Lk, the minimum number of wavelengths which, if provided in each
fiber, can support k-port traffic given full wavelength conversion at all nodes. Each link
e in the tree corresponds to a cut which separates N leaf nodes into two sets, denoted by
Ne,1 and Ne,2. The maximum possible traffic, in wavelength units, in a fiber across this
link is equal to min(

∑
i∈Ne,1

ki,
∑

i∈Ne,2
ki). The overall maximum possible traffic across

any link, denoted by w∗, is the value of Lk given below.

Lk = w∗ = max
e∈T

min


 ∑

i∈Ne,1

ki,
∑

i∈Ne,2

ki


 (1)

Let Wk be the minimum number of wavelengths which, if provided in each fiber, can
support k-port traffic with no wavelength conversion. We shall construct an on-line WA
algorithm using w∗ wavelengths. This algorithm implies that Wk = Lk = w∗. We shall
refer to w∗ as the worst-case number of wavelengths since w∗ wavelengths are necessary
and sufficient to support any traffic matrix in the k-port traffic set. Since a star network
is also a tree network, Fig. 1 shows that the WA algorithm design is not trivial.

Let e∗ denote the link associated with w∗. Note that there may be multiple choices
for e∗. We shall refer to e∗ as the bottleneck link since it is the link with the maximum
load under the worst-case traffic.

Link e∗ separates the leaf nodes into two sets Ne∗,1 and Ne∗,2. Without loss of gen-
erality, choose Ne∗,1 such that the sum of ki’s in this set is w∗. We assume for now that
Ne∗,2 contains multiple leaf nodes, as illustrated in Fig. 3. Define the bottleneck node v∗

to be the end point of e∗ opposite to Ne∗,1, i.e. the subtree connected to v∗ by e∗ has the
sum of ki’s equal to w∗, as illustrated in Fig. 3.

e∗

w∗ = 6

3

4
2

2

2
Node labels are the values of ki’s.

v∗

Ne∗,2

Ne∗,1

Figure 3: Definition of the bottleneck node v∗.

We shall refer to each subtree connected to v∗ as a top-level subtree. Note that a
top-level subtree can be a single node. Let d∗ be the degree of v∗. Since v∗ is a non-leaf
node, d∗ ≥ 3. It follows that there are d∗ ≥ 3 top-level subtrees, as illustrated in Fig. 4a.

If the set Ne∗,2 contains a single node, we have the scenario illustrated in Fig. 4b. In
this case, assumption 1 implies that the value of ki for the leaf node in Ne∗,2 is equal

to w∗. We argue that, with N > 2 leaf nodes, this scenario can be transformed to the
scenario in Fig. 4a by exchanging the roles of Ne∗,1 and Ne∗,2. Therefore, we shall shall
consider only the scenarios in which v∗ exists and d∗ ≥ 3, as illustrated in Fig. 4a. Note
that the location of the bottleneck node v∗ depends on the specific tree network and the
traffic vector k, but not on the current traffic matrix being supported. The following
lemma provides useful properties regarding w∗.

subtree 2

top-level

subtree 3

top-level
k1

= w∗

∑
i∈Ne∗,1

ki

e∗

(b) single leaf node in Ne∗,2

top-level
subtree 1

v∗

= w∗

∑
i∈Ne∗,1

ki

e∗

(a) multiple leaf nodes in Ne∗,2

...
top-level

subtree d∗

Figure 4: The bottleneck node v∗ and the top-level subtrees.

Lemma 4 Let Kj denote the sum of ki’s in top-level subtree j. Let K =
∑

1≤j≤d∗ Kj.
Then, (1) For all 1 ≤ j ≤ d∗, Kj ≤ w∗, and (2) K/d∗ ≤ w∗ ≤ K/2.

Proof: Number the d∗ top-level subtrees from 1 to d∗ such that top-level subtree 1 is
connected to v∗ by e∗. By the definition of v∗, we know that K1 = w∗. For 2 ≤ j ≤ d∗,
consider the link ej which isolates top-level subtree j from v∗. Let Nej ,1 contain the leaf
nodes in top-level subtree j, and Nej ,2 contain all the other leaf nodes. Consequently,∑

i∈Nej,1
ki = Kj. In addition,

∑
i∈Nej,2

ki = K − Kj > K1 = w∗ since there are at least

three top-level subtrees. From the definition of w∗ in (1), we must have that Kj ≤ w∗, or
else ej instead of e

∗ would be the bottleneck link. It follows that Kj ≤ w∗ for 2 ≤ j ≤ d∗.
Thus, Kj ≤ w∗ for all 1 ≤ j ≤ d∗.

From the definition of w∗, it is clear that w∗ ≤ K/2. The lower bound follows from
statement 1 of the lemma, i.e. K =

∑
1≤j≤d∗ Kj ≤ d∗w∗. ✷

As in the star WA algorithm, the algorithm in this section is based on bipartite match-
ings. The main difference has to do with what a node in a bipartite graph represents. In
the star WA algorithm, a node represents a single source or a single destination. In this
section, a node represents a set of sources or a set of destinations in a top-level subtree.

For a given traffic matrix, we construct the top-level subtree bipartite graph, denoted
by (V1,V2, E), as follows. We consider each leaf node as one distinct source and one
distinct destination. Number the d∗ top-level subtrees from 1 to d∗. The set V1 contains
d∗ abstract nodes, denoted by S1, S2, ..., Sd∗ . Node Si, 1 ≤ i ≤ d∗, represents the set of
sources contained in top-level subtree i. Similarly, the set V2 contains d∗ abstract nodes,
denoted by D1, D2, ..., Dd∗ . Node Dj, 1 ≤ j ≤ d∗, represents the set of destinations
contained in top-level subtree j. In the set of edges E , an edge from node Si in V1

to node Sj in V2 exists for each traffic session from a source in top-level subtree i to
a destination in top-level subtree j. Fig. 5 shows an example of the top-level subtree
bipartite graph and its traffic matrix. Note that there may be multiple edges between
the same pair of nodes. For example, since there are two sessions from top-level subtree
3 to top-level subtree 4, there are two parallel edges between the set of sources S3 and
the set of destinations D4 in Fig. 5d.

Define a local session to be a traffic session whose source and destination are in the
same top-level subtree. Accordingly, a non-local session has its source and its destination

in different top-level subtrees. A non-local session has to travel through the bottleneck
node v∗, whereas a local session does not have to travel all the way to v∗ and back to its
destination, i.e. each session never uses the same link twice in the opposite directions.
A non-local session corresponds to an edge from some node Si in V1 and some node Dj

in V2, where i �= j. On the other hand, a local session corresponds to an edge between
some node Si in V1 and node Di in V2. For example, the top-level subtree bipartite graph
in figure 5d contains seven non-local sessions and one local session. The local session is
from a source in top-level subtree 2 to a destination in the same top-level subtree.

top-level
subtree 4 subtree 3

top-level

(b) traffic matrix for
individual leaf nodes

(S4,D1), (S4, D3)

(S3,D4), (S3, D4)

(S2,D2)

(S1,D2)

(S1,D3)

(S2,D1)

top-level subtrees

corresponding source
and destination

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

1

2

0

0

0

0

0

s1

s2

s3

s4

s5

s6

node
source

node

d1 d2 d4 d5 d6d3

destination
top-level subtree 1

w∗ = 2

v∗

k1=1

k3=1

k4=1

k6=2 k5=2

subtree 2
top-level

k2=1

(c) traffic matrix for
top-level subtrees

(d) top-level subtree
bipartite graph

S4

S2

S3

0

1

0

1

0

0

0

1 0

0

2

1 0

1

1 0

top-level subtree

D2 D4D3D1

S1

destination

source
top-level
subtree

(a) a tree topology with
traffic parameter k

(Si, Dj)

from top-level subtree i
denotes a session

to top-level subtree j.

S3

S4

S2

S1

D3

D4

D2

D1

top-level subtree
source

top-level subtree
destination

V1 V2

Figure 5: Top-level subtree bipartite graph.

top-level subtree
bipartite graph

D3

D4

D2

D1

S3

S4

S2

S1

source
top-level
subtree

destination
top-level
subtree

V1 V2

S3

S4

S2

S1 D1

D2

D3

D4

V2V1

λ1

V1 V2

λ2

bipartite matchings
assigned to λ1 and λ2

S4

S3

S2

S1

D4

D3

D2

D1

Figure 6: Bipartite matchings of specific wavelengths.

Observe that the sessions belonging to the same matching in the top-level subtree
bipartite graph can be supported on a single wavelength without wavelength collision.
To see this, note that any two sessions in a matching are transmitted from different
top-level subtrees and to different top-level subtrees. If these two sessions travel in the
same top-level subtree, one session must be transmitted from that subtree while the other
session must be received in that subtree. These two sessions traverse links in the same
top-level subtree in the opposite directions and do not collide.

Our algorithm will assign a single bipartite matching to a single wavelength. We shall
refer to the matching assigned to wavelength λ1 as the bipartite matching of λ1. Fig. 6
shows example bipartite matchings of specific wavelengths.

We now argue that w∗ wavelengths are sufficient to support any traffic matrix in the
k-port set. From statement 1 of lemma 4, each top-level subtree can transmit at most w∗

wavelengths and receive at most w∗ wavelengths. Thus, for a given a traffic matrix, each
node in the corresponding top-level subtree bipartite graph has degree at most w∗. By
lemma 2, the set of edges can be partitioned into w∗ disjoint bipartite matchings. The
sessions in each matching can be supported on a single wavelength. Thus, w∗ wavelengths
are sufficient. Notice that, by finding w∗ disjoint matchings, we provide the WA for both
local and non-local sessions simultaneously.

The main idea of our on-line WA algorithm involves keeping w∗ disjoint bipartite
matchings of w∗ wavelengths such that each traffic session corresponds to an edge in
one bipartite matching. When a session departs, we simply remove its corresponding
lightpath from the network. When a new (local or non-local) session arrives, we update
the WA by finding up to two wavelengths whose bipartite matchings can be reassigned
to include the new session.

The following is our on-line WA algorithm for a tree network with k-port traffic
which uses w∗ wavelengths in each fiber, is rearrangeably nonblocking, and requires at
most d∗ − 1 lightpath rearrangements per new session request.

Tree WA algorithm: (Use w∗ wavelengths.)
Session termination: Simply remove its lightpath from the network.
Session arrival: When a new session arrives, proceed as follows. Assume that the

new session is from a source in top-level subtree i to a destination in top-level subtree j.
When i = j, the new session is local. Otherwise, it is non-local. In either case, follow
the same procedures below.

Step 1: If there is a wavelength, denoted by λ0, which is used by neither a source in
top-level subtree i nor a destination in top-level subtree j, then assign the new session
to λ0. In this case, no lightpath rearrangement is made. Otherwise, proceed to step 2.

Step 2: Find a wavelength, denoted by λ1, which is not used by any source in top-level
subtree i, i.e. its bipartite matching M1 is not incident on Si, and another wavelength,
denoted by λ2, which is not used by any destination in top-level subtree j, i.e. its bipartite
matching M2 is not incident onDj. (Since the new session is admissible, there are at
most w∗ − 1 sessions from top-level subtree i. Since there are w∗ available wavelengths,
it follows that λ1 exists. By the same argument, λ2 always exists.)

Modify the WA of only the sessions on λ1 and λ2. Contruct the top-level subtree
bipartite graph (V1,V2, E ′), where E ′ = M1 ∪ M2 ∪ {(Si,Dj)}. Partition E ′ into two
disjoint matchings (c.f. lemma 3). Since |V1| = |V2| = d∗, lemma 3 tell us that the two
matchings can be assigned to λ1 and λ2 such that at most d∗−1 existing lightpaths need
to be rearranged.

The construction of the tree WA algorithm implies the following theorem.

Theorem 2 For an arbitrary tree network with k-port traffic among N leaf nodes and
the bottleneck node v∗ with degree d∗,

Wk = Lk = w∗ = max
e∈T

min


 ∑

i∈Ne,1

ki,
∑

i∈Ne,2

ki


 .

In addition, there exists, by construction, an on-line WA algorithm which uses w∗ wave-
lengths in each fiber and requires at most d∗−1 lightpath rearrangements per new session.

Theorem 2 tells us that wavelength conversion cannot decrease the wavelength re-
quirement for k-port traffic in an arbitrary tree topology. In addition, if we scale the
traffic vector k by an integer factor, then the location of the bottleneck node v∗ remains
fixed, and the upper bound on the number of lightpath rearrangements per new session

request does not increase. Finally, from statement 2 of lemma 4, among the tree topolo-
gies with N leaf nodes, the minimum value of the worst-case number of wavelengths
w∗ is at least (

∑
1≤i≤N ki)/d

∗. The tree topologies with w∗ close to this lower bound
are the ones in which each top-level subtree has the sum of ki’s approximately equal
to (

∑
1≤i≤N ki)/d

∗. Roughly speaking, it is desirable to have all the top-level subtrees
support an equal amount of traffic.

4 Conclusion
We developed an on-line WA algorithm for dynamic k-port traffic in a WDM all-optical
tree network. The algorithm is rearrangeably non-blocking, uses the minimum number
of wavelengths, and requires at most d∗ − 1 lightpath rearrangements per new session
request, where d∗ is the degree of the most heavily used node in the worst-case traffic
scenario. Most of the complexity in our on-line WA algorithm involves partitioning the
edges in a bipartite graph with maximum node degree 2 into two disjoint matchings.

We observed that the number of lightpath rearrangements per new session request
does not increase as the amount of traffic k in the network increases by an integer scaling
factor. In addition, we found that, for an arbitrary tree topology, the minimum numbers
of wavelengths required to support k-port traffic with full wavelength conversion at all
nodes and without wavelength conversion are the same. This implies that the use of
wavelength converters will not decrease the required number of wavelengths.

Our future goal is to develop an on-line RWA algorithm for other types of network
topologies. Since a tree network can be embedded in any connected network, we hope
that our analytical approach in this paper can be extended to create an on-line RWA
algorithm for other types of network topologies.

References
[1] A. Birman, “Computing approximate blocking probabilities for a class of all-optical net-

works,” IEEE JSAC, vol. 14, no. 5, pp. 852-857, June 1996.
[2] S. Subramaniam et al., “All-optical networks with sparse wavelength conversion,”

IEEE/ACM Trans. on Networking, vol. 4, no. 4, pp. 544-557, August 1996.
[3] R.A. Barry and P.A. Humblet, “Models of blocking probability in all-optical networks with

and without wavelength changers,” IEEE JSAC, vol. 14, no. 5, pp. 858-867, June 1996.
[4] L. Li and A.K. Somani, “Dynamic wavelength routing using congestion and neighborhood

information,” IEEE/ACM Trans. on Networking, vol. 7, no. 5, pp. 779-786, October 1999.
[5] Y. Zhu, G.N. Rouskas, and H.G. Perros, “A path decomposition algorithm for computing

blocking probabilities in wavelength routing networks,” IEEE/ACM Trans. on Networking,
vol. 8, no. 6, pp. 747-762, December 2000.

[6] R.K. Pankaj, Architectures for Linear Lightwave Networks, MIT Ph.D. Thesis, 1992.
[7] O. Gerstel, G. Sasaki, S. Kutten, and R. Ramaswami, “Worst-case analysis of dynamic

wavelength allocation in optical networks,” IEEE/ACM Trans. on Networking, vol. 7, no.
6, pp. 833-845, December 1999.

[8] A. Narula-Tam, P.J. Lin, and E.H. Modiano, “Efficient routing and wavelength assignment
for reconfigurable WDM networks,” IEEE JSAC, vol. 20, no. 1, pp. 75-88, January 2002.

[9] P. Saengudomlert, E.H. Modiano, and R.G. Gallager, “On-line routing and wavelength
assignment for dynamic traffic in WDM ring and torus networks,” IEEE Infocom, April
2003.

[10] C. Berge, Graphs. North-Holland, 1985.
[11] P. Saengudomlert, Architectural Study of High-Speed Networks with Optical Bypassing,

MIT Ph.D. Thesis, September 2002.

