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Abstract— We seek to maximize the data throughput of an
energy and time constrained transmitter sending data over a
fading channel. The transmitter has a fixed amount of energy
and a limited amount of time to send data. Given that the
channel fade state determines the throughput obtained per unit
of energy expended, the goal is to obtain a policy for scheduling
transmissions that maximizes the expected data throughput. We
develop a dynamic programming formulation that leads to an
optimal closed-form transmission schedule. We then extend our
approach to the problem of minimizing the energy required to
send a fixed amount of data over a fading channel given deadline
constraints.

I. INTRODUCTION

For many mobile wireless transmitters, increased efficiency
in data transmission provides significant benefits. Most such
devices are battery powered, and often the energy required for
data transmission is a significant drain on the battery. Higher
energy efficiency may result in the use of a smaller battery
or in a longer battery lifetime. Alternatively, increasing data
throughput leads to more efficient bandwidth utilization and
higher revenue.

Unfortunately, the requirements for optimizing performance
are frequently contradictory and must be balanced. For ex-
ample, increasing transmission rates often result in decreased
energy efficiency. A well-designed mobile transmitter must not
only maximize data throughput, but also optimize the use of
resources, effectively cope with a fading channel, and meet
operational constraints. These constraints may include a limit
on available energy, and a deadline by which transmission
must be completed.

It is not difficult to think of mobile transmitters that face
such issues. A laptop computer uploading data to the internet,
a personal digital assistant sending email, or a military sensor
in a remote location, must all operate with finite battery energy,
a limit on transmission power, and a delay constraint. For all
these applications, increased throughput and energy efficiency
would in the very least result in longer operational life or
lowered cost.

The tradeoff between expended energy and throughput is
of prime importance in increasing transmitter efficiency. This
relationship will depend on the fade state of the channel
being used by the transmitter. For a given fade state, the
data throughput is usually concave in expended energy (and
the expended energy is convex in throughput). This concavity

property results from a number of factors. First, the Shannon
capacity for a channel is a logarithmic function of energy
expended. Moreover, channel capacity is an approximately
linear (and concave) function of energy in a low signal-to-
noise ratio or high bandwidth environment. Second, under
a fixed modulation scheme, throughput usually has a linear
relation to energy expended. If, in addition, a power limit
is imposed - a maximum on the amount of energy that can
be consumed at any time - then this linear relation becomes
piecewise linear and concave.

With the relationship between throughput and power in
mind, one may envision a transmitter trying to send informa-
tion over a channel whose fade state and throughput/power
tradeoff is constantly changing. In this paper, we seek to
maximize the throughput of the transmitter when there is only
a finite amount of energy available. Conversely, we also seek
to minimize the energy required to send a certain amount of
data. For both problems, it is assumed that transmission must
be completed by a deadline.

Resource allocation for fading multi-user broadcast channels
is a popular topic in information theory. However, the resource
being allocated is usually average power or bandwidth, and
the quantity to be maximized is most often Shannon capacity.
Goldsmith and Li [12] [9] and Tse and Hanly [15] found
capacity limits and optimal resource allocation policies for
such channels. Biglieri et al. [2] examined power allocation
schemes for the block-fading Gaussian channel. Tse and Hanly
[11] also studied channel allocations in multi-access fading
channels that minimize power consumption. Of particular
relevance is the paper of Goldsmith and Varaiya [10], which
computed the expected Shannon capacity for fading channels,
under the condition that both the receiver and transmitter know
the current channel state. This work was extended by Negi
and Cioffi [13], who calculated capacity and provided power
allocation strategies under an additional delay constraint and
assuming that a Gaussian codebook is used. None of these pa-
pers, however, explore the effects of scheduling transmissions
with a finite amount of available energy.

More recently, as interest in mobile communications has
increased, transmission scheduling for fading channels has at-
tracted more interest. Ferracioli et al. [5] propose a scheduling
scheme for the third generation cellular air interface standard
that takes channel state into account and seeks to balance
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service priority and energy efficiency. Wong et al. [17] study
channel allocation algorithms for cellular base stations. Given
known channel characteristics, the authors seek to assign chan-
nels in such a way as to minimize total power consumed by all
the mobile users communicating with a base station. A recent
paper by Tsybakov examined the problem of transmission time
minimization between cellular base stations and mobile users
[16], but did not consider situations with limited energy. Berry
and Gallager [1] analyzed schemes that trade off transmission
power and buffer delay, while Zhang and Wasserman [18]
used dynamic programming and partially observable Markov
models to study the tradeoff between throughput and energy
efficiency under incomplete channel state information.

Perhaps the work closest to this paper is that of El Gamal
et al. [4] and Collins and Cruz [3]. Both papers studied the
problem of minimizing expended energy for a transmitter with
a buffer accepting packets arriving according to a random pro-
cess. El Gamal et al. postulated a hard deadline constraint for
all data packets, and increased energy efficiency with slower
transmission rates. The problem was to choose transmission
rates for each data packet that would allow transmission after
arrival and before the deadline, while minimizing expended
energy. The paper did not include the effects of a fading
channel. Collins and Cruz used dynamic programming and
a duality argument to develop a near-optimal transmission
policy for minimizing energy in a fading channel with an
average delay constraint and a power limit. They assumed
energy expenditure that is linear with transmitted data and
two possible channel fade states.

In this paper, we show that dynamic programming can be
used to generate optimal solutions to the dual problems of
maximizing throughput given limited energy, and of mini-
mizing energy given minimum throughput constraints. We
solve both problems in the presence of a fading channel and
hard deadline constraints. Furthermore, we provide tractable
numerical methods for the general case where data throughput
is concave in expended energy, and closed form optimal
solutions for special cases.

II. THROUGHPUT MAXIMIZATION

A. System Model

We consider a transmitter operating over a fading channel.
Time is assumed to be discrete, and in each time slot the
channel state changes according to a known probabilistic
model. The channel state determines the throughput that can
be obtained per unit energy expended by the transmitter, and is
modeled as a random process. The transmitter is also assumed
to have a battery with a fixed amount of energy units available
for use. The objective is to find a transmission schedule that
maximizes expected throughput subject to a constraint on the
total energy that can be expended and a deadline by which it
must be consumed (or otherwise wasted).

Let ak be the available energy in the battery at time slot k.
The battery starts with a1 units of energy and must complete
transmission by time slot n. The energy consumed at time

slot k is denoted by ck. Thus, the available energy ak evolves
according to

ak+1 = ak − ck

At each time slot k the transmitter can consume up to ak units
of energy.

The throughput obtained by consuming energy depends on
the channel fade state. Let qk be the channel quality at time
k, and let f(c, q) be the throughput obtained by consuming
c units of energy in the presence of channel quality q. The
function f(c, q) is assumed concave in c (for example, it may
be linear in c).

The objective is to maximize the expected data throughput
achieved by the transmitter given n time slots to transmit data
and a1 units of initial energy. Thus, the problem is to maximize

E

[
n∑

k=1

f(ck, qk)

]
(1)

subject to the constraints that ck ≥ 0 for all k and
n∑

k=1

ck ≤ a1 (2)

In the following subsections, we first study throughput
maximization under the conditions that the channel fade state
qk is known ahead of time and the throughput/energy tradeoff
f(c, q) is a general concave function. Then, we assume that qk

is random with known distribution function pqk
(q) (indepen-

dent across time), and that qk is not revealed until just before
transmission at time k. We develop a dynamic programming
algorithm that provides an optimal policy for the case where
f(c, q) is concave, and obtain a closed-form optimal policy
for the special case where f(c, q) is linear, but subject to a
power limit. Finally, we examine additional variations of the
throughput maximization problem. The dynamic programming
algorithm is extended to the case where the channel quality qk

is revealed only at time k+1, and evolves as a Markov process.
The case where the transmitter receives additional incoming
energy before the deadline is also discussed.

B. Known Channel Quality

Let us start by examining the throughput maximization
problem in the simple case where channel quality is com-
pletely known for all time. In other words, qk is known at
time 1 for all k. Although knowing the channel fade state
for all time is an unrealistic assumption, the solution to this
problem provides insight, and is used to solve the problem
when the channel fade state is unknown.

Since the tradeoff between throughput and energy is pre-
cisely known for each time slot, we may define

fk(c) = f(c, qk)

The problem (1) can then be restated as maximizing
n∑

k=1

fk(ck) (3)
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subject to the same constraints as before, and where every
function fk(c) is concave and known. Furthermore, since
it cannot hurt to use up all available energy, note that the
constraint given in (2) is active and met with equality.

Assuming that each fk(c) is differentiable, we may apply
the Kuhn-Tucker optimality conditions. It is well known that
when the objective function is concave and the constraints
linear, any solution satisfying the Kuhn-Tucker conditions is
optimal.

The optimality conditions are the following: for all k,

f ′
k(ck) − λ− µk = 0

µkck = 0
µk ≥ 0
ck ≥ 0

n∑
k=1

ck = a1

where f ′
k(c) is the derivative of fk(c), and where λ and the

µk are Lagrange multipliers.
The last two conditions are simply the constraints of the

maximization. In addition, complementary slackness holds;
that is, either µk = 0 or ck = 0. From this we conclude
that for every k, an optimal solution has either f ′

k(ck) = λ or
ck = 0.

Given that each fk(c) is concave, this solution has an
interpretation similar to that of waterfilling in the parallel
Gaussian channel. In the waterfilling process, one allocates
energy to the least noisy Gaussian channel until the marginal
return is lower than that of the next best channel, at which
point energy is allocated evenly. Here, we allocate energy to
the best time slot until the marginal throughput (determined
by f ′

k(c)) is reduced to that of the next best time slot, at which
point energy is allocated in such a fashion as to keep marginal
throughput identical for both time slots, and so forth.

C. Unknown Channel Quality

Now, let us examine the problem of throughput maximiza-
tion under the assumptions that the channel quality qk is not
known until just before transmission at time k, and that qk is
random and independent across time, with a known distribu-
tion function pqk

(q), which may be different at different times
k.

In this case, the dynamic programming algorithm can be
used to find an optimal policy. As usual in dynamic program-
ming, we introduce the value function Jk(a, q), which provides
a measure of the desirability of the transmitter having energy
level a at time k, given that the current channel quality is
q. The functions Jk(a, q) for each stage k are related by the
dynamic programming recursion:

Jn(a, q) = f(a, q)

and

Jk(a, q) = max
0≤c≤a

[
f(c, q) + Jk+1(a− c)

]
(4)

where Jk(a) = E[Jk(a, qk)].
The first term in the right hand side of equation (4), f(c, q),

represents the data throughput that can be obtained in the
current stage by consuming c units of energy. The available
energy in the next stage is then a−c, and the term Jk+1(a−c)
represents the expected throughput that can be obtained in the
future given a− c units of energy.

We claim that Jk(a, q) and Jk(a) are concave functions of
a for all k and q. Indeed, Jn(a, q) = f(a, q) is concave by
assumption. If Jk+1(a, q) is concave, it is clear that Jk+1(a) =
E[Jk+1(a, qk+1)] is also concave, since it is a weighted sum
of concave functions. Finally, Jk(a), as given by equation
(4), is an infimal convolution of two concave functions and
is therefore concave [14].

We now observe that the maximization in equation (4) is of
the same form as the problem of allocating energy between
two channels of known quality. To obtain an optimal policy
for the unknown channel problem of this subsection, we solve
a two-stage known channel problem for each possible value
of ak, at each stage of the dynamic programming recursion.
This is a computationally tractable problem and can be readily
solved numerically.

D. Special Case: Piecewise Linear f(c, q)
We now assume that throughput is a piecewise linear

function of expended energy, and energy consumption at each
time step is subject to a power limit. Then

f(c, q) = qmin(c, P )

where P is the power limit. Substituting into (4), the dynamic
programming recursion becomes

Jk(a, q) = max
0≤c≤a

[
qmin(c, P ) + Jk+1(a− c)

]
(5)

and

Jn(a, q) = qmin(a, P )

It is possible to precisely identify an optimal policy and obtain
a closed-form formula for this value function.

Theorem 1:
The expected value function Jk(a), for 1 ≤ k ≤ n, is

piecewise linear, with the form

Jk(a) =γk
k min(a, P )

+ γk+1
k [min(a, 2P ) − min(a, P )]

+ γk+2
k [min(a, 3P ) − min(a, 2P )]

...

+ γn
k [min(a, (n− k + 1)P )
− min(a, (n− k)P )] (6)

where the number of linear segments is equal to (n− k + 1)
and where γk

k , . . . , γ
n
k are constants that give the slopes of

each segment, and are computed according to the following
recursion: The base case is

γn
n = E[qn]
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and in the recursion γk
k , γ

k+1
k , . . . , γn

k are calculated from
γk+1

k+1 , . . . , γ
n
k+1 for k < n. The constants γk

k and γn
k are given

by

γk
k =E[max(qk, γ

k+1
k+1)]

γn
k =E[min(qk, γ

n
k+1)]

and γk+1
k , . . . , γn−1

k are given by

γi
k = E[min(qk, γ

i
k+1) − min(qk, γ

i+1
k+1)] + γi+1

k+1

Corollary:
An optimal policy for 1 ≤ k < n is to set the consumption

ck to:

min(P, ak) for γk+1
k+1 < qk

min(P,max(ak − P, 0)) for γk+2
k+1 < qk ≤ γk+1

k+1

...

min(P,max(ak − (n− k)P, 0)) for qk ≤ γn
k+1 (7)

and to set ck = min(ak, P ) when k = n.

Proof:
Given in the appendix.

The optimal policy can be explained as follows: Assume ak

units of energy are available at time k. At each time slot at
most P units of energy may be consumed. If qk were known
for all k, maximizing throughput would consist of selecting the
�ak

P � time slots with the best channel quality and allocating
energy to the best time slots. Assuming there are enough time
slots available, this would entail consuming P units of energy
in �ak

P � time slots and

ak − P �ak

P
�

which is the remaining energy, in another time slot.
Of course, channel quality is in fact unknown. However, the

constants γi
k are representative of expected channel qualities

during future time slots as seen just before time k. The γi
k

values are ordered: γk
k is the expected value of the best channel

and γn
k is the expected value of the worst, in the sense that

γk
k = max

τ
E [qτ ]

γn
k = min

τ
E [qτ ]

where the optimization is over all non-anticipative stopping
times that satisfy k ≤ τ ≤ n.

If we assume that the ordered list γk+1
k+1 , . . . , γ

n
k+1 comprises

the actual future channel fade states, sorted in order of quality,
we may derive an optimal policy from the earlier case with
known channel quality. The policy would be as follows: Take
the current channel state qk, insert it into the ordered list. If
qk is among the best �ak

P � channel qualities, consume P units

of energy. If this is not the case and qk is the �ak

P �th best
channel quality, consume

ak − P �ak

P
�

units. Otherwise, do not consume any energy.
Theorem 1 and its corollary state that this policy is in fact

optimal; the assumption that the constants γk+1
k , . . . , γn

k are
the actual future channel qualities is unnecessary.

E. Additional Problem Variations

The approach we have developed for the throughput maxi-
mization problem can be used to solve several other variants
of the main problem. For instance, one may eliminate the
assumption that the channel is known just before the decision
to transmit. Instead, it can be assumed that the current channel
is unknown, but that the channel in the previous stage is known
and that the state of the channel in the current time step is
dependent on the state of the channel in the previous time
step.

This channel dependency can be modeled as a Markov chain
and we extend the earlier results to this case. The objective is
again to maximize the quantity

E

[
n∑

k=1

f(ck, qk)

]

subject to the constraints that ck ≥ 0 for all k and
n∑

k=1

ck ≤ a1

The value function satisfies

Jk(a, q) = max
0≤c≤a

{E[f(c, qk))|qk−1 = q]

+ E[Jk+1(a− c, qk)|qk−1 = q]} (8)

and at the last stage, stage n, the value function is

Jn(a, q) = E[f(a, qn)|qn−1 = q]

It can be shown that Jk(a, qk−1) is concave in a for any
fixed qk−1 [6]. Since the weighted sum of a concave function
is again concave, it is evident that both terms on the right
hand side of equation (8) are also concave. An optimal policy
can thus be obtained using our earlier techniques for the case
of independent channels. More precisely, in the Markovian
model, the expectation E[qk|qk−1] and probability distribution
function pqk

(qk|qk−1) take the place of qk and pqk
(qk) in the

case of independent channels. Once this substitution is made,
the results for section II-C easily extend to the Markov case.

Other problem variations may be obtained by allowing the
transmitter to receive additional energy input at each stage,
and to have a battery of finite size. Unused energy that cannot
be stored in the battery is assumed to be lost.

Let bk be the incoming energy for each stage and let Emax

be the battery capacity. Then the expression for available
energy at each stage evolves according to

ak+1 = min(ak − ck, Emax) + bk+1
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Let us suppose bk is known at time 1 for all k. Then the
dynamic programming equation (4) becomes, for k < n,

Jk(a, q) = max
0≤c≤a

[
f(c, q)

+ Jk+1(min(a− c, Emax) + bk+1)
]

(9)

where, again,

Jk(a) = E[Jk(a, q)]

and for k = n,

Jn(a, q) = f(a, q)

Assuming that Jk+1(a) is concave in a, it can be shown
that Jk+1(min(a− c, Emax) + b) is also concave in a. Then,
we can again reduce the maximization in equation (9) to that
of the two-stage known channel problem of equation (4).

When there is no power limit and f(c, q) is linear, i.e.

f(c, q) = q c

the dynamic programming recursion becomes

Jk(a, q) = max
0≤c≤a

[
q c

+ Jk+1(min(a− c, Emax) + bk+1)
]

and an optimal policy can be obtained in closed form. Fur-
thermore when f(c, q) is of the form

f(c, q) = qmin(c, P )

fast numerical methods can be used to rapidly obtain an
optimal policy [6].

It is also possible to handle the case where the energy input
is random with known distribution pbk

(b) and where bk is
revealed to the transmitter just before transmission. In this
case, we define

Ĵk(a) = E[Jk(a + bk, qk)]

The dynamic programming equation becomes

Jk(a, q) = max
0≤c≤a

[
f(c, q) + Ĵk+1(a− c)

]
(10)

the proof of concavity still goes through, and the maximization
is again the same as that of the two-stage known channel
problem.

Unfortunately, we are unable to obtain a closed-form for-
mula for Jk(a, q), for the case of a general function f(c, q).
Moreover, the numerical evaluation of the value function
can become difficult because the expectation over qk and
bk imposes a heavy computational burden. However, when
f(c, q) is linear or piecewise linear, it is possible to apply
the numerical techniques outlined in [6] to obtain an optimal
policy.

III. ENERGY MINIMIZATION

A. System Model

We have thus far analyzed a situation where we have a given
amount of energy, and wish to maximize the throughput within
a fixed time period. These results can be extended to the case
where the transmitter has a given amount of data that must be
sent within a fixed time period n, and wishes to minimize the
expected amount of energy required to do so.

Let the variable dk be the number of data units remaining
to be sent at time k, and let sk be the amount of data that is
actually sent at time k. Thus dk evolves according to

dk+1 = dk − sk

The channel quality at time k is given by a variable qk, which
is random. Transmitting sk units of data requires g(sk, qk)
units of energy, and the function g(sk, qk) is assumed to be
convex and differentiable in sk. Since the transmission must
be completed by time n, the objective is to find a transmission
policy that minimizes

E

[
n∑

k=1

g(sk, qk)

]
(11)

subject to the constraints that sk ≥ 0 for all k and
n∑

k=1

sk ≥ d1

where d1 is the amount of data to be sent.
We show that the energy minimization problem, in the pres-

ence of a convex energy/throughput function g(s, q), can be
solved using methods similar to those used for the throughput
maximization problem. We first examine energy minimization
for the case where the channel quality qk is known at time
k = 0 for all k. Then, we study the case where qk is revealed to
the transmitter just before transmission at time k. We assume
throughout that the random variables qk are independent, with
known probability distribution pqk

(qk). We present a dynamic
programming algorithm that can be used to obtain an optimal
policy. Furthermore, when g(sk, qk) is linear and subject to
a power limit, and qk only takes values which are integer
multiples of a minimum channel quality qmin, we are able
to describe an optimal policy in closed form. Finally, several
additional variants of the problem are analyzed, including a
case where additional data packets with fixed time to live can
arrive before the transmission deadline.

B. Known Channel Quality

We first examine the energy minimization problem in the
simple case where the channel quality qk is completely known
ahead of time. This problem is analogous to the known channel
throughput maximization problem, and its solution is similar.

Since the channel quality is known, the tradeoff between
throughput and energy is known for all time. Then we may
define

gk(s) = g(s, qk)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003



The objective is then to solve the problem

min
n∑

k=1

gk(sk)

subject to the constraints that sk ≥ 0 for all k and
n∑

k=1

sk ≥ d1

Applying the Kuhn-Tucker optimality conditions, we see
that for every k, the optimal solution has either g′k(sk) = λ
or sk = 0, where λ is a constant and g′k(sk) is the derivative
of gk(sk). This solution has a waterfilling interpretation: it is
optimal to send data during the best time slot until the marginal
energy cost (determined by g′k(·)) is increased to that of the
next best time slot, at which point data is allocated in such
a fashion as to keep marginal energy costs identical for both
time slots, and so forth.

C. Unknown Channel Quality

We now assume that the channel quality qk is not known
until just before transmission at time k. This problem is similar
to that of section II-C, and as before, we may use dynamic
programming to solve it.

The value functions Jk(d, q) for each stage k are related by
the following recursion:

Jk(d, q) = min
0≤s≤d

[
g(s, q) + Jk+1(d− s)

]
(12)

where the base case is given by

Jn(d, q) = g(s, q)

and the expected value function Jk(d) is defined by

Jk(d) = E[Jk(d, qk)]

It can be shown that since gk(s, q) is convex in s, Jk(d, q)
and Jk(d) are also convex in d. This property implies that
the problem reduces to a series of two-stage known channel
problems. These problems are computationally tractable and
can be solved to obtain an optimal policy.

D. Special Case: Linear g(s, q)

We now examine the special case where g(s, q) is linear
in s/q, so that q can be interpreted as the amount of data
transmitted per unit energy consumed. A linear function g(s, q)
implies that there is no limit on the amount of data that can be
sent or on the energy that can be consumed in a single time
step. In such a situation, the problem reduces to an optimal
stopping problem. However, if we impose a power limit, the
problem becomes more difficult.

The power limit effectively imposes a limit of Pqk on the
throughput, where P is the power limit and qk is the channel
quality. If d is the amount of data remaining to be sent, the
dynamic programming recursion becomes

Jk(d, q) = min
0≤s≤min(d,Pq)

{s
q

+ Jk+1(d− s)} (13)

where

Jk(d) = E[Jk(d, qk)]

We impose an infinite cost for not sending all the data by the
last stage; the terminal cost function is

Jn+1(d, q) =

{
0 for d ≤ 0
∞ for d > 0 (14)

For any possible channel quality q, let φk(q) be a value of
u that minimizes the expression

d− u

q
+ Jk+1(u)

over all u ≥ 0. Thus,

φk(q) = argmin
u≥0

[
Jk+1(u) − u

q

]

A value of s that attains the minimum in the right-hand side
of equation (13) can be expressed in terms of φk(q), leading
to an optimal policy of the following form:

Theorem 2:
There exists an optimal policy of the form

sk =

{
0 if dk ≤ φk(qk)

min(dk − φk(qk), P qk) if φk(qk) < dk

attains the minimum in the right hand side of (13).

The proof is omitted for brevity but can be found in [6].

In effect, φk(qk) is a threshold beyond which the energy cost
of sending data immediately exceeds the cost of saving data for
later transmission. It does not depend on the remaining amount
of data dk, and is hence easy to compute. This property allows
the development of numerical methods that considerably speed
the process of calculating the value function, and which are
detailed in [6].

When qk is discrete and is restricted in value to integer
multiples of a constant qmin, it is possible to obtain closed
form expressions for the optimal policy and value function. It
turns out that the expected value function Jk(a) is a piecewise
linear function with n−k+1 segments, each with slope 1/ηi

k,
where 1 ≤ i ≤ n − k + 1, and where ηi

k is defined by the
following:

Definition:
Given an m-dimensional list (α1, . . . αm) sorted in ascend-

ing order, and an i-dimensional list consisting of i repetitions
of the same number x, let θ(i, x, α1, . . . , αm) be the (m+1)
dimensional sorted list obtained by (i) merging and sorting the
two lists, and (ii) keeping the largest m+ 1 elements.

Definition:
Define the constants ηi

k for 1 ≤ k ≤ n and 1 ≤ i ≤ n−k+1
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recursively in the following fashion: The base case for k = n
(and i = 1) is given by

1
η1

n

= E

[
1
qn

]

and the recursion to obtain η1
k−1, . . . , η

n−k+2
k−1 from

η1
k, . . . , η

n−k+1
k is given by(
1

η1
k−1

, . . . ,
1

ηn−k+2
k−1

)

=E

[
θ

(
qk

qmin
,

1
qk
,

1
η1

k

, . . . ,
1

ηn−k+1
k

)]
(15)

The slopes 1/η1
k, . . . , 1/η

n−k+1
k reflect the expected

marginal energy cost of sending a data packet. At each time
slot, data may be sent immediately for a cost of 1/qk energy
units per unit of data. Since there is a power limit P , a
maximum of Pqk units may be sent during each time slot.
Alternatively, data may be sent in future stages for an expected
cost determined by Jk+1(d). This function has slope 1/η1

k+1

for the first Pqmin units of data, and 1/ηi
k+1 for each ith

additional Pqmin units of data. By following the approach of
section III-C, the minimum energy cost may be obtained. The
resulting value function Jk(d, q) is a piecewise linear function
with slopes

θ

(
qk+1

qmin
,

1
qk+1

,
1
η1

k

, . . . ,
1

ηn−k+1
k

)
(16)

for 0 ≤ d ≤ (n − k + 1)Pqmin. Furthermore, the slopes for
the expected value function Jk−1(a) at time k − 1 are given
by equation (15).

The theorem below formalizes these notions.

Theorem 3:
Suppose the channel quality qk is restricted to integer

multiples of qmin. Then the expected value function is given
by

Jk(d) =
1
η1

k

min(d, Pqmin)

+
1
η2

k

[min(d, 2Pqmin) − min(d, Pqmin)]

...

+
1

ηn−k+1
k

[min(d, (n− k + 1)Pqmin)

− min(d, (n− k)Pqmin)]

Corollary:
An optimal policy at time k (for 1 ≤ k ≤ n− 1) is to set

sk as follows: For qk > η1
k+1,

sk = min(dk, P qk)

for η2
k+1 < qk ≤ η1

k+1

sk = min(max(dk − Pqmin, 0), P qk)

for η3
k+1 < qk ≤ η2

k+1

sk = min(max(dk − 2Pqmin, 0), P qk)

and so forth until qk < ηn−k
k+1 , where

sk = min(max(dk − (n− k)Pqmin, 0), P qk)

The proof of the theorem is given in [6] and is similar
to the proof of Theorem 1 for throughput maximization, and
is omitted for brevity. The major difference arises because
of the power limit. In the throughput maximization problem,
the limiting resource is energy and the maximum amount of
energy that can be consumed during each time step is P . In
this energy minimization problem, the constraining resource
is data and the maximum amount of data that can be sent
at each time step is Pqk. There is hence a dependence on
qk that is not present in the earlier problem. However, by
imposing an integer constraint on the possible values of qk,
we can obtain a closed form expression for the expected value
function. Once this is done, the problem is reduced to a two-
stage known channel quality problem, and the Kuhn-Tucker
conditions dictate the optimal policy.

E. Additional Problem Variations

As in the case of throughput maximization, there are a
number of variations of the energy minimization problem
which can be solved using the approach outlined above. For
example, our methods can accommodate Markov channel fade
states, and also additional incoming data (which all must be
sent by time n) that arrive after time k = 0.

One problem variation of interest consists of having a linear
g(s, q), but with a limit on throughput, i.e.

g(s, q) =
{

s/q for s ≤ Tmax

∞ for s > Tmax

where Tmax is the throughput limit per time slot. Such a prob-
lem may arise when a fixed modulation scheme is employed
or when data protocols impose a limitation on throughput (e.g.
the TCP window size limit).

A closed-form optimal transmission schedule for this case
can be obtained using a procedure analogous to the one
provided in Theorem 1. This is because a throughput limit
applied to the energy minimization problem has exactly the
same effect as a power (energy) limit applied to the throughput
maximization problem. (In the same fashion, a throughput
limit in the throughput problem may be handled by an analog
of Theorem 3.)

We now focus our attention on the case where the trans-
mitter must deal with data that arrives after time k = 0, and
where data packets must be sent l time steps after arrival. In
this situation, each data packet is said to have a time to live,
or expiration time, of l time steps.

Consider a transmitter that is sending data and that receives
bk additional units of data at each time k, which must be sent
within a time to live l. We assume that bk is known at time 0
for all k. Data that has not yet arrived cannot be sent, and data
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must be sent before it expires. The objective is to minimize
the expected energy required to send all the data.

It is clear that the data with the shortest time to live can be
transmitted first. This is because sending data with a shorter
time to live permits greater flexibility in arranging transmission
times. In [6] it is formally shown that the class of first-in-first-
out (FIFO) policies contains an optimal policy when all data
packets arrive with the same time to live l.

With this property in mind, we may therefore envision
the data packets arriving in a queue, each labeled with its
own time to live and with the restriction that each packet
must be serviced by its expiration time. This expiration time
constraint may be transformed into an equivalent constraint
where the queue buffer size changes during each time slot,
and any packets that do not fit in the buffer must be serviced
immediately.

Define dk as the total amount of data to be transmitted,
regardless of time to live. Then dk evolves according to the
recursion

dk+1 = dk + bk+1 − sk

where sk is the amount of data transmitted at time k, and the
base case is d1 = b1 We further define the buffer size at time
k to be Bk, and we have the following relationship between
incoming data and buffer size:

Bk =
k∑

i=k−l+1

bi

This definition of Bk insures that packets arriving at time k
are transmitted at time k + l or before.

The objective is to choose sk so as to minimize

E

[
n∑

k=1

gk(sk, qk)

]

subject to the constraints that dk −sk ≤ Bk and 0 ≤ sk ≤ dk.
When bk (and hence Bk) is known for all k, the dynamic

programming recursion becomes

Jk(d, q) = min
0≤u≤min(d,Bk)

{
gk(d− u, q)

+ E
[
Jk+1(u, qk+1)

]}
where u is unsent data. This problem can be solved using the
methods of section III-C.

Now consider the case where each bk is revealed only at
time k. Here, the state space for the dynamic programming
recursion becomes l + 2 dimensional. For all but small val-
ues of time to live l, the problem becomes intractable and
approximate methods are necessary.

IV. NUMERICAL EXAMPLES

A. Throughput Maximization

We consider a specific instance of the throughput maxi-
mization problem and compare the performance of an optimal
policy to a threshold heuristic that transmits whenever the
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Fig. 1. Channel Quality, Consumption, and Thresholds

channel quality is above a fixed threshold. We find that no
matter what threshold is used in the heuristic, we are able
to obtain superior average performance by using our optimal
policy.

The scenario consists of 50 time steps where the channel
throughput qk per unit energy is integer valued and Rayleigh
distributed with a mean of 20 during each time step. It is
assumed that consuming c units of energy yields qk min(c, P )
units of throughput, where the power limit P for each time
step is 10 units of energy. The initial energy is 95 energy units.

Figure 1 shows a set of randomly generated channel qual-
ities and the consumption schedule as determined by the
optimal policy. The figure also shows a set of thresholds
corresponding to values of γi

j generated by the optimal policy.
This allows one to gain an idea of how the optimal policy
functions. The topmost dashed line is the value of γk+1

k+1 for
each time step k. This represents the expected throughput that
can be obtained per unit energy for the first ten units of energy
saved. The dashed line just below the top is the value of
γk+2

k+1 . Unsurprisingly, this represents the expected throughput
per unit energy for the next ten units of energy saved. The
pattern continues for the rest of the dashed lines.

The lines represent thresholds between consuming and
saving energy. With the battery full, at energy state 95, the op-
timal policy consumes energy when channel quality is higher
than the bottom-most threshold line. This line represents the
expected throughput that can be obtained by the 91st to
100th unit of energy saved. Whenever the current possible
throughput is higher than the expected future throughput, the
optimal policy consumes.

After the first transmission, the battery only has 85 units
of energy. At this point, the threshold line second from the
bottom becomes relevant because it represents the expected
throughput from the 81st through 90th energy units saved. The
optimal policy consumes when the current channel quality is
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Fig. 2. Throughput for Optimal and Threshold Policies

greater than this threshold. Notice also that the optimal policy
will only consume five energy units if the current channel
quality is greater than this threshold but less than the threshold
just above it.

Figure 2 shows the average throughput obtained by the
optimal policy and different fixed threshold policies. The
fixed threshold policies always consume as much energy as
possible when the channel state is better than or equal to the
threshold, and save energy otherwise. The average throughput
for each policy was obtained by generating 500 different
channel state trajectories and applying the policies to each
trajectory. The horizontal dashed line represents the average
throughput obtained by the optimal threshold policy, and the
solid line plots the throughput obtained by a fixed threshold
policy as a function of the threshold. The leftmost point
on the curve (threshold = 1) represents a greedy heuristic
that transmits no matter what the channel quality, while the
rightmost points represent heuristics that transmit only for the
very best channel states. As can be seen from the figure, the
optimal policy obtained a higher average throughput than any
possible simple fixed threshold policy. The advantage of the
optimal policy is further enhanced by the fact that finding the
best simple threshold is often nontrivial. Moreover, Figure 2
shows a large sensitivity to error: a poorly chosen threshold
will result in a rapid decrease in performance.

The calculation of the optimal threshold policy described
above was compared with an earlier-developed numerical algo-
rithm that directly solves the dynamic programming recursion
[8]. The numerical algorithm, although capable of handling a
much broader array of situations (such as random power limits
and battery recharges) was significantly slower: on a Sun Ultra
10 computer running Matlab 6.0, the numerical algorithm was
slower by a factor of 10. Both the optimal policy and the
numerical algorithm are orders of magnitude faster than a
brute-force calculation of the value function.
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Fig. 3. Channel Quality, Data Sent, and Thresholds

B. Energy Minimization

We now present a similar example of an energy minimiza-
tion problem. We consider a scenario where the transmitter
has 50 time steps to send 95 units of data. Channel quality qk

is integer and Rayleigh distributed with a mean of 20, and a
power limit of 10 energy units is imposed. Sending s units of
data requires s/qk units of energy.

Figure 3 shows the channel qualities and the data trans-
mission schedule as determined by our optimal policy. The
figure also shows a set of thresholds corresponding to values
of ηi

k+1 generated by the optimal policy. The topmost dashed
line is the value of η1

k+1 for each time step k. This represents
the expected data that can be transmitted per unit energy for
the first ten units of energy saved. The pattern continues;
the dashed line just below the top is the value of η2

k+1 and
represents the expected throughput per unit energy for the next
ten units of energy saved. These threshold lines are used in
the same fashion as those of Figure 1.

Unlike the problem of throughput maximization, a policy
that uses a fixed threshold at all times would not be appro-
priate. This is because unless the threshold is below qmin,
the expected cost would be infinite, as there is a positive
probability that that the channel quality would be equal to
qmin at all times. We consider instead a threshold policy of
the following type: For times k such that

n− k ≤ d0

Pqmin

(that is, using the parameters in this example, for k ≥ 41), the
threshold is at zero and we always transmit at full power. For
earlier times, we transmit if and only if the channel quality is
above a threshold.

Figure 4 shows the average energy consumed by different
fixed threshold policies as a percentage of that consumed by
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Fig. 4. Energy Consumed for Optimal and Threshold Policies

the optimal policy. The results were obtained by applying the
policies to 500 randomly generated channel state trajectories.
The optimal policy obtained a significantly lower energy cost
than any possible threshold policy of the type described above.

V. CONCLUSION

This paper developed strategies for transmission optimiza-
tion over a fading channel with energy and time constraints.
Throughput maximization and energy minimization strategies
were developed, first for channels with known fade states, and
then for channels with fade states unknown until just before
transmission. Furthermore, closed form optimal policies were
derived for a number of cases, and several problem variations
were examined. These variations included throughput maxi-
mization in the presence of additional incoming energy, energy
minimization in the presence of additional incoming data, and
a scenario where the channel fade state evolves according to
a Markov process.

There are several areas that require further investigation.
First, a tractable solution for the important scenario of energy
minimization with random additional data inputs needs to be
developed. In addition, it may be interesting to explore trans-
mission optimization under the additional constraints imposed
by network protocols, such as those that might arise under
explicit TCP time-out and window size limits.
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APPENDIX

Proof of Theorem 1:
We first show that Jk(ak) satisfies equation (6). From the

base case of the dynamic programming recursion, we have

Jn(a) =E [Jn(a, qn)]
=E[qn] min(a, P )
=γn

n min(a, P )

which establishes equation (6) for the case k = n.
We now assume that Jk+1(a) satisfies equation (6), and

show that Jk(a) has the same property. Substituting equation
(6) into equation (5), we obtain

Jk(a, q) = max
0≤c≤a

{qmin(c, P ) + γk+1
k+1 min(a− c, P )

+ γk+2
k+1 [min(a− c, 2P ) − min(a− c, P )]

...

+ γn
k+1[min(a− c, (n− k)P )
− min(a− c, (n− k − 1)P )] (17)

Using the above expression, one may employ an algebraic
approach to prove the theorem [6].

However, because this approach is somewhat tedious, we
discuss an alternative method. The results from section II-
C indicate that the maximizing value of consumption c in
equation (5) can be obtained by solving a two-stage known
channel problem. One “channel” represents the throughput that
can be obtained by consuming immediately, qmin(c, P ), while
the other channel represents the expected throughput obtained
by saving, Jk+1(a− c).

In this special case, the two channels have a special struc-
ture: they are both piecewise linear. We may take advantage of
this property when applying the Kuhn-Tucker conditions (as
outlined in section II-B). The derivatives of both Jk+1(a− c)
and qmin(c, P ) are decreasing piecewise constant functions
whose values change every P units. Allocating energy to the
function with the highest marginal throughput simply consists
of picking the function with the highest slope. The resulting
Jk(a, q) is again piecewise linear and can be determined
precisely since its slopes are known.

More precisely, the function qmin(c, P ) has derivative

q for 0 ≤ c < P
0 for P > c

(18)

and Jk+1(a− c) has derivative

γk+1
k+1 for 0 ≤a− c < P

γk+2
k+1 for P <a− c < 2P

...

γn
k+1 for (n− k − 1)P <a− c < (n− k)P

0 for (n− k)P >a− c (19)

To summarize (18) and (19), we say that qmin(c, P ) has
marginal throughput (slopes) q, 0, and Jk+1(a − c) has
marginal throughput γk+1

k+1 , . . . , γ
n
k+1. Note that due to con-

cavity, the elements of both marginal throughput expressions
are in descending order.
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Using the Kuhn-Tucker conditions and applying the wa-
terfilling process, we see that Jk(a, q) has almost the same
marginal throughput as Jk+1(a− c), except that q is inserted
into it so as to maintain a descending order. The resulting
marginal throughput, γk+1

k+1 , . . . , q, . . . γ
n
k+1 can be exactly

expressed as

max(q, γk+1
k+1),

min(q, γk+1
k+1 ) − min(q, γk+2

k+1 ) + γk+2
k+1 ,

min(q, γk+2
k+1 ) − min(q, γk+3

k+1 ) + γk+3
k+1 ,

...

min(q, γn
k+1) (20)

Since Jk(a, q) is piecewise linear and equation (20) provides
an exact expression for its slope in consecutive intervals of
length P , we may obtain Jk(a, q) in closed form:

Jk(a, q) = max(q, γk+1
k+1 )min(a, P )

+ [min(q, γk+1
k+1 ) − min(q, γk+2

k+1 ) + γk+2
k+1 ]

· [min(a, 2P ) − min(a, P )]
...

+ min(q, γn
k+1)

· [min(a, (n− k + 1)P ) − min(a, (n− k)P )]

Taking the expected value with respect to q, and using the
definition of γi

k, we obtain equation (6). The expected value
function Jk(a) is thus a concave piecewise linear function
with marginal throughput γk

k , . . . , γ
n
k .

Now that the form of the expected value function has been
ascertained, the optimal policy readily follows. The value
function Jk+1(a − c) is identical to the one that would be
obtained if, at time k, future channel qualities qk+1, . . . , qn

were known to be respectively equal to γk+1
k+1 , . . . , γ

n
k+1. As

seen in the discussion subsequent to the statement of Theorem
1, an optimal policy for this situation simply consists of
picking the best time slots. The resulting consumption at time
k is then given by (7).

REFERENCES

[1] R. Berry, R. Gallager, “Communication over fading channels with delay
constraints.” IEEE Transactions on Information Theory vol.48, no.5,
pp.1135-1149, May 2002.

[2] E. Biglieri, G. Caire, G. Taricco, “Coding for the block-fading channel:
optimum and suboptimum power-allocation schemes,” in 1998 Informa-
tion Theory Workshop. (New York, NY, USA, 1998).

[3] B. Collins, R. Cruz, “Transmission policies for time varying channels
with average delay constraints,” in Proceedings, 1999 Allerton Conf. on
Commun., Control, and Comp.. (Monticello, IL, USA, 1999).

[4] A. El Gamal, E. Uysal, and B. Prabhakar, “Energy-efficient transmis-
sion over a wireless link via lazy packet scheduling,” Infocom 2001
Proceedings. (2001, vol.1, pp.386-94).

[5] M. Ferracioli, V. Tralli, and R. Verdone, “Channel based adaptive
resource allocation at the MAC layer in UMTS TD-CDMA systems,”
in IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference.
(2000, vol.2, pp.2549-55).

[6] A. Fu, Optimial Energy Allocation for Space and Wireless Communica-
tions, Ph.D. thesis, MIT, 2002.

[7] A. Fu, E. Modiano, and J.N. Tsitsiklis, “Optimal energy allocation
and admission control for communications satellites,” in Infocom 2002
Proceedings. (2002, vol.2, pp.648-56).

[8] A. Fu, E. Modiano, and J.N. Tsitsiklis, “Transmission scheduling over a
fading channel with energy and deadline constraints,” 2002 Conference
on Information Sciences and Systems. (Princeton, NJ, 2002).

[9] A. Goldsmith, “Capacity and dynamic resource allocation in broadcast
fading channels,” in Proceedings, Thirty-Third Annual Allerton Confer-
ence on Commun., Control, and Comp.. (Urbana-Champaign, IL, USA,
1995, pp.915-24).

[10] A. Goldsmith, P. Varaiya, “Capacity of fading channels with channel
side information.” IEEE Trans. Inform. Theory, vol.43, pp.1986-92, Nov.
1997.

[11] S. Hanly, D. Tse, “Min-max power allocation for successive decoding”,
in 1998 Information Theory Workshop. (New York, NY, USA, 1998
pp.56-7).

[12] L. Li, A. Goldsmith, “Capacity and optimal resource allocation for
fading broadcast channels,” in Proceedings, Thiry-Sixth Annual Allerton
Conference on Communication, Control, and Computing. (1998, pp.516-
25).

[13] R. Negi, J. Cioffi, “Transmission over fading channels with channel
side information and delay constraint,” in Globecom 1999 Proceedings.
(1999, pp. 2550-53).

[14] R. Rockafellar, Convex Analysis. Princeton, NJ: Princeton University
Press, 1970.

[15] D.N. Tse, S.V. Hanly, “Multiaccess fading channels: Polymatroid struc-
ture, optimal resource allocation and throughput capacities.” IEEE
Transactions on Information Theory vol.44, no.7, pp.2796-815, Nov.
1998.

[16] B. Tsybakov, “File Transmission Over Wireless Fast Fading Downlink.”
IEEE Transactions on Information Theory, vol.48, no.8, August 2002.

[17] C. Wong, C. Tsui, R. Cheng, and K. Letaief, “A real-time sub-carrier
allocation scheme for multiple access downlink OFDM transmission,” in
IEEE VTS 50th Vehicular Technology Conference. (1999, vol.2, pp.1124-
8).

[18] D. Zhang and K. Wasserman, “ Transmission schemes for time-varying
wireless channels with partial state observations,” in IEEE Infocom 2002.
(2002, vol.2, pp.467-476).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003


	INFOCOM 2003
	Return to Main Menu


