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Abstract— We develop on-line routing and wavelength assign-
ment (RWA) algorithms for WDM bidirectional ring and torus
networks with N nodes. The algorithms dynamically support all
k-allowable traffic matrices, where k denotes an arbitrary integer
vector [k1, k2, ..., kN ], and node i, 1 ≤ i ≤ N , can transmit
at most ki wavelengths and receive at most ki wavelengths.
Both algorithms support the changing traffic in a rearrangeably
nonblocking fashion. Our first algorithm, for a bidirectional
ring, uses �(

∑N

i=1 ki)/3� wavelengths in each ring direction and
requires at most three lightpath rearrangements per new session
request regardless of the number of nodes N and the amount of
traffic k. When all the ki’s are equal to k, the algorithm uses
�kN/3� wavelengths, which is known to be the minimum for
any off-line rearrangeably nonblocking algorithm. Our second
algorithm, for a torus topology, is designed for the special case
with all the ki’s equal to k. For a square torus network with N
nodes, the algorithm uses �k

√
N/2� wavelengths in each fiber,

which is shown to be at most two times a lower bound obtained
by assuming full wavelength conversion at all nodes. In addition,
the algorithm requires at most

√
N −1 lightpath rearrangements

per new session request regardless of the amount of traffic k.

Index Terms— WDM networks, routing and wavelength as-
signment, graph theory.

I. INTRODUCTION

In a wavelength division multiplexed (WDM) network, the
fiber bandwidth is divided into multiple frequency bands often
called wavelengths. Using reconfigurable optical switches at
the network nodes, some wavelengths can be selected at
each node for termination and electronic processing, and
others selected for optical bypass. In an all-optical network
architecture, each traffic session optically bypasses electronic
processing at each node on its path other than the source
node and the destination node. One important benefit of this
architecture is the cost saving resulting from using fewer
and/or smaller elctronic switches in the network. We consider
all-optical networks in this paper.

Without optical wavelength conversion, routing of traffic
sessions is subjected to the wavelength continuity constraint,
which dictates that the lightpath corresponding to a given
session must travel on the same wavelength on all links from
the source node to the destination node. Using wavelength
converters potentially allows the network to support a larger
set of traffic. However, such converters are likely to be expen-
sive. Hence, several researchers have focused on the problem
of routing and wavelength assignment (RWA) assuming no
wavelength conversion. We shall focus on this same problem.

This work was supported by the National Science Foundation (NSF) under
Grant ANI-0073730.

A large body of literature investigates the RWA problem
under the wavelength continuity constraint. We can categorize
existing results into two groups based on whether static or
dynamic provisioning of routes and wavelengths is performed.
For static provisioning, the traffic to be supported is assumed
known and fixed over time. The goal is often to minimize
the number of wavelengths used in the network [1], [2], or to
maximize the number of supported traffic sessions for a fixed
number of wavelengths [3], [4], [5], [6]. These problems are
known to be NP-complete [3]. Consequently, bounds on the
optimal costs have been derived [4], [7], and several RWA
heuristics have been developed [1], [4], [5], [6], [8], [9].

Dynamic provisioning of routes and wavelengths gives us
flexibility in supporting traffic which may change over time
through session arrivals and session departures. To model
dynamic traffic, session arrivals can be assumed to form
stochastic processes [10], [11]. In addition, session lifetimes
are stochastic. The goal is usually to develop an on-line RWA
algorithm which minimizes the average blocking probability
for a new session request given a fixed number of wavelengths
in the network. We refer to this type of problem formulation as
the blocking formulation. Due to the complexity in computing
blocking probabilities, some approximations are made to sim-
plify the analysis. For example, session arrivals on different
links are assumed to be independent [10], [12], or correlated
among adjacent links in the same fashion throughout the
network [11]. Based on such approximations, several dynamic
RWA heuristics have been developed [13], [14].

Another type of problem formulation, referred to as the
nonblocking formulation, assumes prior knowledge of the set
of all the traffic matrices, or equivalently the traffic demands,
to be supported [15], [16], [17], [18]. In [16], the set of
traffic matrices is characterized by the maximum link load
in the network. In [15], [17], [18], the set of traffic matrices
is characterized by the numbers of tunable transmitters and
tunable receivers at each end node, i.e. a node which sources
and/or sinks traffic sessions. A new session is said to be
allowable if its arrival results in a traffic matrix which is still
in the set of supportable traffic. The goal is usually to develop
an on-line RWA algorithm which does not block any allowable
session and uses the minimum number of wavelengths.

If we allow some existing lightpaths to be rearranged
in order to support a new session, the corresponding RWA
algorithm is said to be rearrangeably nonblocking. If we allow
no rearrangement of any existing lightpath in order to support
a new session, the corresponding RWA algorithm is said to be
wide-sense nonblocking. Note that if a RWA algorithm is wide-
sense nonblocking, it is also rearrangeably nonblocking. Thus,
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for the same set of traffic matrices, the required number of
wavelengths can be no smaller for a wide-sense nonblocking
RWA algorithm than for a rearrangeably nonblocking RWA
algorithm.

In this paper, we investigate the RWA problem for dynamic
traffic. We shall adopt a nonblocking formulation of the RWA
problem. As in [15], [17], [18], the supportable traffic set is
defined by the number of tunable transmitters and tunable
receivers at each end node. We model the traffic as a session-
by-session arrival and departure process in which sessions
arrive and depart one at a time, and each session utilizes a
full wavelength. Our goal is to design an on-line RWA algo-
rithm which is rearrangeably nonblocking, uses the minimum
number of wavelengths, and requires few rearrangements of
existing lightpaths in order to support each new and allowable
session. We shall focus on a bidirectional ring topology
and a torus topology. Our on-line RWA algorithm for the
bidirectional ring first appears in [18]. This paper provides
a more complete treatment on the subject.

This paper is organized as follows. In section II, we define
the set of k-allowable traffic based on the number of tunable
transmitters and tunable receivers at each end node, and for-
mulate the RWA problem for k-allowable traffic. In section III,
we describe our on-line RWA algorithm for a bidirectional ring
topology. Section IV contains our on-line RWA algorithm for
a torus topology. Finally, we summarize the results and point
out future research directions in section V.

II. PROBLEM FORMULATION

Consider an all-optical WDM network with no wavelength
conversion. Adjacent nodes are connected by two fibers, one in
each direction. In addition, all fibers contain the same number
of wavelengths. Assume that each traffic session has a rate
of one wavelength. At a given time, only one session can
use a specific wavelength in a fiber, but multiple sessions can
travel through the same node. Let N be the number of end
nodes in the network. Node i, 1 ≤ i ≤ N , is equipped with
ki fully tunable transmitters and ki fully tunable receivers.
Consequently, at any time, node i can transmit at most ki

wavelengths and receive at most ki wavelengths. Such a traffic
matrix is said to belong to a set of k-allowable traffic, where
k = [k1, k2, ..., kN ].

We model dynamic traffic as a session-by-session arrival
and departure process in which sessions arrive and depart one
at a time. In other words, a transition from one traffic matrix
to another is a result of either a single session arrival or a
single session departure. A new session request is allowable
if the resultant traffic matrix is still in the set of k-allowable
traffic. The definition implies that, for each new and allowable
session request, there is a free transmitter at the source node
and a free receiver at the destination node. For convenience,
throughout the paper, a new session is assumed to be allowable
unless it is explicitly stated otherwise.

We want to design an on-line RWA algorithm which sup-
ports k-allowable traffic in a rearrangeably nonblocking fash-
ion, uses the minimum number of wavelengths, and requires
few rearrangements of existing lightpaths in order to support

each new session request. Our algorithm will be centralized in
nature. We assume that traffic does not change too frequently
and the RWA algorithm always has correct knowledge of
the current RWA in the network. In addition, we assume
there is sufficient time for lightpath rearrangements between
consecutive transitions of the traffic matrix.

We shall consider two regular topologies, a bidirectional
ring topology and a torus topology. Figure 1 illustrates the
two topologies. In either topology, each node is considered
an end node, i.e. it sources and/or sinks traffic as well as
passes intermediate traffic. Since a bidirectional ring topology
is widely used, its investigation is an important practical prob-
lem. Although the torus topology may not be implemented in
practice, its investigation should give us better understanding
of the RWA problem for dynamic traffic in a more densely
connected network in comparison to the sparsely connected
bidirectional ring.

Each link is bidirectional.

bidirectional ring topology torus topology

Fig. 1. Bidirectional ring and torus topologies.

III. BIDIRECTIONAL RING TOPOLOGY

In this section, we study the RWA problem for k-allowable
traffic for an N -node bidirectional ring topology. Let Wk

denote the minimum number of wavelengths which, if pro-
vided in each fiber, can support k-allowable traffic with no
wavelength conversion. Note that Wk is the number of wave-
lengths used to support any traffic matrix in the k-allowable
set. Thus, for a specific traffic matrix, we may need fewer
wavelengths than in the worst case. In [17], it was shown
that, if all the ki’s are equal to k, then Wk = �kN/3� for
N ≥ 7.1 In addition, an off-line RWA algorithm that uses
at most �kN/3� wavelengths in each fiber, or equivalently in
each ring direction, was developed.

We shall present an on-line RWA algorithm that uses
�(

∑N
i=1 ki)/3� wavelengths in each fiber to support k-

allowable traffic. Note that, for N ≥ 7, when all the ki’s
are equal to k, the algorithm uses the minimum number of
wavelengths found in [17]. In all the other cases, the algorithm
yields the upper bound Wk ≤ �(

∑N
i=1 ki)/3�.

Define a directed wavelength as a wavelength in either the
clockwise or the counterclockwise ring direction. Given w
wavelengths in each fiber, there are w directed wavelengths
in the clockwise ring direction, and w directed wavelengths
in the counterclockwise ring direction. Note that any traffic
session can be supported on a directed wavelength in either
ring direction. Two sessions are said to be adjacent if the
destination node of one session is the source node of the
other session. The main idea behind our algorithm involves

1For 2 ≤ N ≤ 6, the value of Wk can be found in [20].
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sharing a directed wavelength between two adjacent sessions,
as suggested by the following known lemma in [17].

Lemma 1: In a bidirectional ring, lightpaths corresponding
to any pair of adjacent sessions can either share a directed
wavelength in the clockwise ring direction or the counterclock-
wise ring direction.

The proof of lemma 1 is immediate from figure 2, where if
two lightpaths overlap in one direction, they do not overlap in
the other direction. For example, lightpaths corresponding to
a pair of adjacent sessions (1,4) and (4,2) collide in the clock-
wise ring direction, but do not collide in the counterclockwise
ring direction.2 In what follows, when lightpaths associated
with a pair of adjacent sessions share a directed wavelength,
we simply say that the adjacent session pair share a directed
wavelength.

node 1

8

7

6

2

3

4

5

node 1

8

7

6

2

3

4

5

clockwise counter-
clockwise

Fig. 2. Adjacent sessions share a directed wavelength.

The main idea of our algorithm is to maintain the following
two RWA conditions at all times: (i) only adjacent sessions
share a directed wavelength, and (ii) at most two adjacent
sessions share a directed wavelength.

To give some intuition on the main idea of our algorithm,
consider the special case with all the ki’s equal to 1. In this
case, our algorithm uses �N/3� wavelengths. We next describe
informally how to use �N/3� wavelengths to support the
traffic. We ignore integer rounding in the informal discussion
below.

Given a traffic matrix, form as many adjacent session pairs
as possible up to N/3 pairs in a greedy fashion, i.e. it does
not matter if we end up with less than the maximum possible
number of pairs. Let p denote the number of adjacent session
pairs formed. Consider two cases.

Case 1: p = N/3. In this case, we support N/3 adjacent
session pairs containing 2N/3 sessions on N/3 directed wave-
lengths in the required ring directions. This is always possible
since there are N/3 directed wavelengths available in each ring
direction. Having done so, there are at most N −2N/3 = N/3
remaining sessions each of which we support on one directed
wavelength in either ring direction. Thus, the total number of
directed wavelengths required is at most N/3+N/3 = 2N/3.
It follows that N/3 wavelengths are sufficient.

Case 2: p < N/3. In this case, we support p adjacent session
pairs containing 2p sessions on p directed wavelengths in the
required ring directions. This is always possible since there
are N/3 directed wavelengths available in each ring direction.
Note that we cannot form any more adjacent session pair in
this case.

2A session from node i to node j is denoted by session (i, j).

Consider only the sessions in the p adjacent session pairs
formed above. Define a common node to be a node which
transmits a wavelength and receives a wavelength. Observe
that each adjacent session pair has at least one common node.
For example, figure 3 shows two (p = 2) adjacent session
pairs (7,4) and (4,3) together with (1,8) and (8,7). The pair
(7,4) and (4,3) has node 4 as a common node, while the pair
(1,8) and (8,7) has node 8 as a common node. In addition,
the sessions (8,7) and (7,4) make node 7 a common node. In
general, given p adjacent session pairs, there are at least p
common nodes.

adjacent
session pair

adjacent
session pair

3

2

4

5

6

8

node 1

7

The sessions in adjacent pairs
are shown in solid lines.
The remaining sessions are
shown in dashed lines.

Nodes 4, 7, and 8 are common nodes.
Nodes 1, 2, 3, 5, and 6 are free nodes.

Fig. 3. Adjacent session pairs, common nodes, and free nodes.

Define a node which is not a common node as a free node.
A free node still has a free transmitter and/or a free receiver.
For example, in figure 3, nodes 1, 2, 3, 5, and 6 are free
nodes. Since there are at least p common nodes, there are at
most N − p free nodes.

Consider the remaining sessions which are not in the p
adjacent session pairs formed above. Observe that each free
node terminates, i.e. either transmits or receives, at most one
remaining session. To see this, note that each free node cannot
transmit more than one remaining session since it only has
one transmitter. By the same argument, each free node cannot
receive more than one remaining session. Moreover, each
free node cannot transmit a remaining session and receive
a remaining session simultaneously, or else we could form
another new adjacent session pair, i.e. have more than p pairs.
Thus, each remaining session is terminated at two distinct free
nodes. For example, in figure 3, the remaining session (2,1) is
terminated at free nodes 1 and 2. No other remaining session is
terminated at either node 1 or node 2. Since there are at most
N − p free nodes, there are at most (N − p)/2 remaining
sessions. We support each remaining session on one directed
wavelength in either ring direction. Thus, the total number of
directed wavelengths required is p+(N−p)/2 = N/2+p/2 <
N/2 + N/6 = 2N/3. It follows that N/3 wavelengths are
sufficient.

We shall later prove by similar arguments that
�(

∑N
i=1 ki)/3� wavelengths are sufficient to support k-

allowable traffic. We now describe our on-line RWA algorithm
which is rearrangeably nonblocking, uses �(

∑N
i=1 ki)/3�

wavelengths in each fiber, and requires at most three lightpath
rearrangements per new session request. We shall refer to this
algorithm as the ring RWA algorithm.

Ring RWA Algorithm: (Use �(
∑N

i=1 ki)/3� wavelengths.)

Session termination: When a session terminates, simply
remove its associated lightpath from the ring without any
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further lightpath rearrangement.

Session arrival: When a session arrives and the resultant
traffic matrix is still k-allowable, proceed as follows.

Step 1: If there is a nonsharing session, i.e. a session which
does not share its directed wavelength with any session,
and it is adjacent to and can share its directed wavelength
with the new session, assign the two sessions to share that
directed wavelength. In this case, no lightpath rearrangement
is required. Otherwise, proceed to step 2.

Step 2: If there is a free directed wavelength in either ring
direction, assign a free directed wavelength to the new session.
In this case, no lightpath rearrangement is required. Otherwise,
proceed to step 3.

Step 3: Among the nonsharing sessions and the new session,
we claim and shall prove shortly that there must exist a pair
of adjacent sessions. Form such an adjacent session pair by
searching through all pairs of sessions in some order, e.g.
from sessions terminating at node 1 to sessions terminating
at node N . Once an adjacent session pair is found, there are
two possibilities.

(3a) If the adjacent session pair can share the directed
wavelength of one session in the pair, assign the adjacent
session pair to share that directed wavelength. In this case,
the adjacent session pair does not include the new session
since step 1 would have otherwise applied. Therefore, one
existing lightpath must be rearranged. Sharing of the directed
wavelength by the adjacent session pair will free one directed
wavelength on which the new session can be supported with
only one lightpath rearrangement. Figure 4a illustrates this
scenario. In particular, existing sessions (1,5) and (5,2) form an
adjacent session pair which can be supported on the directed
wavelength of session (5,2). After the lightpath of session
(1,5) is rearranged, the new session (1,4) is supported on the
directed wavelength previously used by session (1,5).

(3b) If the adjacent session pair cannot share the directed
wavelength of either session in the pair, we claim and shall
prove shortly that there must exist a directed wavelength
with a nonsharing session in the opposite ring direction, i.e.
the ring direction in which the adjacent session pair can
share a directed wavelength. Remove the lightpath of that
nonsharing session from its directed wavelength, and assign
the adjacent session pair to share that directed wavelength.
When the adjacent session pair includes the new session,
the new session will now be supported, and sharing of the
directed wavelength by the adjacent session pair will free
one directed wavelength on which the removed nonsharing
session can be supported. In this case, a total of two lightpath
rearrangements are made. Figure 4b illustrates this scenario. In
particular, existing session (1,5) and the new session (5,2) form
an adjacent session pair which can be supported on the directed
wavelength of existing session (3,8). After the lightpaths of
sessions (1,5) and (3,8) are rearranged, the new session (5,2)
shares a directed wavelength with session (1,5) on the directed
wavelength previously used by session (3,8), while session
(3,8) is supported on the directed wavelength previously used
by session (1,5).
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Fig. 4. Step 3 of the ring RWA algorithm.

When the adjacent session pair does not include the new
session, sharing of the directed wavelength by the adjacent
session pair will free two directed wavelengths on which the
removed nonsharing session and the new session can be sup-
ported. In this case, a total of three lightpath rearrangements
are made. Figure 4c illustrates this scenario. In particular,
existing sessions (1,5) and (5,2) form an adjacent session
pair which can be supported on the directed wavelength of
existing session (3,8). After the lightpaths of sessions (1,5),
(5,2), and (3,8) are rearranged, the adjacent session pair (1,5)
and (5,2) are supported on the directed wavelength previously
used by session (3,8), session (3,8) is supported on the
directed wavelength previously used by session (1,5), and the
new session (1,4) is supported on the directed wavelength
previously used by session (5,2).

Before proving the correctness of the ring RWA algorithm,
we establish two useful lemmas related to step 3 of the algo-
rithm. The first lemma gives an upper bound on the number
of adjacent session pairs which share a directed wavelength
in step 3 before the new session request. The second lemma
gives an upper bound on the number of nonsharing sessions
in step 3 before the new session request. In what follows,
let p be the number of adjacent session pairs which share
a directed wavelength before the new session request. Let q
be the number of nonsharing sessions before the new session
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request. Let w be the number of wavelengths in use before the
new session request. Note that w = p + q. For convenience,
define K =

∑N
i=1 ki.

Lemma 2: In step 3 of the ring RWA algorithm, p <
�K/3�.

Proof: Since the total number of sessions is at most K in
k-allowable traffic, it follows that 2p+ q < K before the new
session request. Thus, w is bounded by

w = p + q < p + (K − 2p) = K − p.

In step 3, since there is no free directed wavelength for the new
session, it follows that the number of wavelengths in use w
is equal to the total number of directed wavelengths 2�K/3�.
Therefore, K−p > w = 2�K/3�, yielding the desired relation

p < K − 2�K/3� ≤ �K/3�. ✷

Lemma 3: In step 3 of the ring RWA algorithm, if no
adjacent session pair can be formed among the nonsharing
sessions and the new session, then q ≤ �(K − p)/2�.

Proof: Note that node i, 1 ≤ i ≤ N , is equipped
with ki tunable transmitter/receiver pairs. Overall, we have
a total of K transmitter/receiver pairs. Each pair of adjacent
sessions which share a directed wavelength utilizes one trans-
mitter/receiver pair at some node, one transmitter, and one
receiver elsewhere.

Let pi be the number of adjacent session pairs which share a
directed wavelength and have node i as a common node. Since
an adjacent session pair may have more than one common
node,

∑N
i=1 pi ≥ p. Let k′

i = ki − pi denote the number
of transmitter/receiver pairs which are not used by those pi

adjacent session pairs at node i. In addition, let kt
i and kr

i

denote the numbers of nonsharing sessions transmitted and
received at node i respectively. It is clear that kt

i ≤ k′
i and

kr
i ≤ k′

i.
Since no new adjacent session pair can be formed among the

nonsharing sessions, it follows that, at each node i, either kt
i =

0 or kr
i = 0. Thus, kt

i + kr
i ≤ k′

i. Because each nonsharing
session uses one transmitter and one receiver, it follows that

2q =
N∑

i=1

(kt
i + kr

i ) ≤
N∑

i=1

k′
i = K −

N∑

i=1

pi ≤ K − p.

Since q is an integer, it follows that q ≤ �(K − p)/2�. ✷

Proof of algorithm correctness: From the algorithm de-
scription, it is clear that we always keep the two desired RWA
conditions, i.e. (i) only adjacent sessions share a directed
wavelength, and (ii) at most two adjacent sessions share a
directed wavelength. In addition, it is clear that at most three
lightpath rearrangements are made to support each new session
request.

It remains to prove the two claims in step 3. The first claim
states that there always exists a new adjacent session pair.
We proceed by contradiction. Suppose that no new adjacent
session pair can be formed among the nonsharing sessions and
the new session. From lemma 3, q ≤ �(K−p)/2�. Since there
is no free directed wavelength for the new session in step 3,

it follows that the number of wavelengths in use w is equal to
the total number of directed wavelengths 2�K/3�. Therefore,

p + �(K − p)/2� ≥ p + q = w = 2�K/3�.

It follows that

p ≥ 2�K/3� − �(K − p)/2� ≥ 2K/3 − (K − p)/2,

or equivalently, p ≥ K/3, which contradicts the fact that p <
�K/3� in step 3 from lemma 2. Hence, a new adjacent session
pair always exists in step 3.

We now prove the second claim in step 3 that if we need
to find a nonsharing session in the opposite ring direction, i.e.
the ring direction in which the new adjacent session pair can
share a directed wavelength, one always exists. The claim is a
direct consequence of lemma 2, i.e. p < �K/3� in step 3. In
other words, the number of sharing session pairs is less than
the number of directed wavelengths in each ring direction.
Since step 2 was not taken, all the other 2�K/3� − p directed
wavelengths are taken by nonsharing paths. Therefore, in
either ring direction, a directed wavelength with a nonsharing
session exists. ✷

The construction of the ring RWA algorithm implies the
following theorem.

Theorem 1: For a bidirectional ring with N nodes and k-
allowable traffic, Wk is upper bounded by

Wk ≤

⌈∑N
i=1 ki

3

⌉
.

In addition, there exists, by construction, an on-line RWA
algorithm which uses �(

∑N
i=1 ki)/3� wavelengths in each fiber

and requires at most three lightpath rearrangements per new
session request.

When N ≥ 7 and all the ki’s are equal to k, it was
shown in [17] that Wk = �kN/3�. In this case, the above
upper bound is tight. Otherwise, the above upper bound is not
necessarily tight and our algorithm may use more than the
minimum number of wavelengths. An interesting example is
an N -node bidirectional ring which contains one hub node,
say node 1, with k1 = N − 1, and the other N − 1 nodes
each with ki = 1. We shall show below that, in this case,
Wk = �(N − 1)/2�, which is less than the upper bound
�2(N − 1)/3� from theorem 1. To do so, we develop an on-
line RWA algorithm which uses �(N −1)/2� wavelengths and
requires at most four lightpath rearrangements per new session
request.

A. On-Line RWA for a Single-Hub Bidirectional Ring

In this subsection, we gives an example scenario for k-
allowable traffic in which the ring RWA algorithm does not use
the minimum number of wavelengths. Consider a bidirectional
ring with N nodes. In particular, node 1 acts as a hub node
with k1 = N − 1. In addition, for 2 ≤ i ≤ N , ki = 1. Note
that the non-hub nodes can directly transmit and/or receive
wavelengths among themselves.

We first derive a lower bound on the minimum number of
wavelengths Wk. Consider a cut set corresponding to the two
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links adjacent to the hub node. The maximum traffic across
the two fibers leaving from the hub occurs when the hub
node transmits N − 1 wavelengths. Since there are N − 1
wavelengths travelling on two fibers, one fiber must support
at least �(N − 1)/2� wavelengths. Thus, Wk ≥ �(N − 1)/2�.

We shall prove informally below that Wk ≤ �(N − 1)/2�,
yielding Wk = �(N − 1)/2�. A formal proof is based on an
on-line RWA algorithm which uses �(N − 1)/2� wavelengths
and is given in the appendix.

As in the ring RWA algorithm, the main idea of our RWA
involves sharing of a directed wavelength by an adjacent
session pair. In addition, we define a special kind of adjacent
session pairs as described next. Two sessions form a mutual
adjacent session pair if they have two common nodes, i.e.
the source node of one session is the destination node of the
other session and vice versa. For convenience, we refer to
an adjacent session pair which is not mutually adjacent as a
nonmutual adjacent session pair. While a nonmutual adjacent
session pair can share a directed wavelength in only one ring
direction, a mutual adjacent session pair can share a directed
wavelength in either ring direction, as shown in figure 5. In
particular, the nonmutual adjacent session pair (1,4) and (4,2)
can share a directed wavelength in the counterclockwise ring
direction, but not in the clockwise ring direction. On the other
hand, the mutual adjacent session pair (2,4) and (4,2) can share
a directed wavelength in either ring direction.
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The nonmutual adjacent session pair
(1,4) and (4,2) can share a directed

wavelength in only one ring direction.
(2,4) and (4,2) can share a directed
wavelength in either ring direction.

CW = clockwise, CCW = counterclockwise

The mutual adjacent session pair

Fig. 5. Supporting a mutual adjacent session pair on a directed
wavelength.

We shall refer to an adjacent session pair which has the
hub node as a common node as an adjacent session pair at the
hub. Our RWA is based on the following two RWA conditions:
(i) only adjacent session pairs at the hub share a directed
wavelength, and (ii) all mutual adjacent session pairs at the
hub share a directed wavelength.

Below is our informal proof that �(N − 1)/2� wavelengths
are sufficient to support the traffic. We ignore integer rounding
in the informal discussion below.

Given a traffic matrix, form all the mutual adjacent session
pairs at the hub, but do not assign directed wavelengths for
them at this point. Then form all the nonmutual adjacent
session pairs at the hub. Let r and s denote the numbers
of mutual and nonmutual adjacent session pairs at the hub
respectively. Let t be the number of the remaining sessions.
Note that we cannot form any new adjacent session pair at the
hub among these t sessions.

We first support the s nonmutual adjacent session pairs
at the hub on s directed wavelength in the required ring
directions. We now show this is always possible. Observe that

each non-hub node terminates, i.e. transmits or receives, at
most one session in these s adjacent pairs. To see this, note
that each non-hub node cannot transmit more than one session
since it only has one transmitter. By the same argument, each
non-hub node cannot receive more than one session. Moreover,
each non-hub node cannot transmit a session and receive a
session in these s adjacent pairs simultaneously, or else we
can form another mutual adjacent session pair at the hub. It
follows that each nonmutual adjacent session pair at the hub
is terminated at two non-hub nodes, and no other nonmutual
adjacent session pair at the hub is terminated at any of these
two nodes. Since there are N−1 non-hub nodes, it follows that
s ≤ (N−1)/2. Since there are (N−1)/2 directed wavelengths
available in each ring direction, there are enough wavelengths
to support the s session pairs.

We next support the r mutual adjacent session pairs at the
hub on any r unused directed wavelengths. We now show this
is always possible. Note that each mutual adjacent session pair
at the hub is terminated at one distinct non-hub node. From the
above discussion, each nonmutual adjacent session pair at the
hub is terminated at two distinct non-hub nodes. Since there
are N − 1 non-hub nodes, it follows that r + 2s ≤ N − 1, or
equivalently r ≤ (N − 1) − 2s. Since there are (N − 1) − s
unused directed wavelengths left for this step, the inequality
r ≤ (N − 1) − 2s implies that there are enough directed
wavelengths to support the r session pairs.

In the final step, we support the t remaining sessions on any
t unused directed wavelengths. We now show this is always
possible. Since we cannot form any adjacent session pair at the
hub from these t sessions, the hub node can either transmit or
receive some or all of these t sessions but not both. Without
loss of generality, assume that the hub node transmits none
of these t sessions. Consider the transmitters at the non-hub
nodes. Each of the r mutual adjacent session pairs at the hub
uses one transmitter at some non-hub node. Similarly, each
of the s nonmutual adjacent session pairs at the hub uses one
transmitter at some non-hub node. Since the hub node does not
transmit any of the t remaining sessions, each of the t sessions
uses one transmitter at some non-hub node. Since there are
N − 1 non-hub nodes, it follows that r + s + t ≤ N − 1, or
equivalently t ≤ (N−1)−r−s. Since there are (N−1)−r−s
unused directed wavelengths left for this step, there are enough
directed wavelengths to support the remaining t sessions.

Based on the above main idea of our RWA, we can
construct an on-line RWA algorithm which uses �(N − 1)/2�
wavelengths in each fiber, is rearrangeably nonblocking, and
requires at most four lightpath rearrangements per new session
request. We shall refer to this algorithm as the single-hub ring
RWA algorithm. We present the algorithm in the appendix but
omit the correctness proof which can be found in [20].

IV. TORUS TOPOLOGY

In this section, we study the RWA problem for k-allowable
traffic for a torus topology. We shall consider only the cases in
which all the ki’s are equal to some integer k. For convenience,
we refer to the k-allowable traffic in which all the ki’s are
equal to k as symmetric k-allowable traffic. The RWA problem
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for general k-allowable traffic remains to be investigated in the
future.

Consider an R × C torus topology with N nodes, where
N = RC and R ≥ C. Let Lk be the minimum number
of wavelengths which, if provided in each fiber, can support
symmetric k-allowable traffic given full wavelength conversion
at all nodes. Note that Lk is the number of wavelengths used
to support any traffic matrix in the symmetric k-allowable
set. Thus, for a specific traffic matrix, we may need fewer
wavelengths than in the worst case. We first derive a lower
bound on Lk.

Lemma 4: For an R×C torus topology with R ≥ C, Lk ≥
�k(R − 1)/4�.

Proof: For R even, consider a cut set which separates R/2
consecutive rows of nodes from the other R/2 consecutive
rows. Assume a traffic matrix in which each node transmits k
wavelengths to a node in the other set. In this traffic, a total of
kRC/2 sessions travel from one set of nodes to the other set
of nodes on 2C fibers. It follows that one fiber connecting the
two sets of nodes must support at least

⌈
kRC/2

2C

⌉
= �kR/4�

wavelengths. Thus, Lk ≥ �kR/4�.
For R odd, consider a cut set which separates (R − 1)/2

consecutive rows of nodes from the other (R+1)/2 consecu-
tive rows. Assume a traffic matrix in which each node in the
smaller set transmits k wavelengths to a node in the other set.
In this traffic, a total of kC(R − 1)/2 sessions travel from
one set of nodes to the other set of nodes on 2C fibers. It
follows that one fiber connecting the two sets of nodes must
support at least

⌈
kC(R−1)/2

2C

⌉
= �k(R − 1)/4� wavelengths.

Thus, Lk ≥ �k(R − 1)/4�.
In conclusion, for a general (odd or even) positive integer

R, Lk ≥ �k(R − 1)/4�. ✷

We shall construct an RWA algorithm which uses �kR/2�
wavelengths in each fiber. The algorithm yields an upper
bound on Wk, the minimum number of wavelengths which,
if provided in each fiber, can support symmetric k-allowable
traffic with no wavelength conversion, i.e. Wk ≤ �kR/2�.
Our upper bound on Wk is about twice the value of our lower
bound on Lk.

Define a directed wavelength in the torus topology as
follows. Each wavelength consists of an upward directed
wavelength and a downward directed wavelength as described
next. An upward directed wavelength is directed upwards
along any column and to the right along any row, as as
illustrated in figure 6a. On the other hand, a downward directed
wavelength is directed downwards along any column and to
the left along any row.

We shall apply column-first routing where each lightpath
travels along the source column and then along the destination
row. In addition, each lightpath is supported by no more
than one directed wavelength, i.e. if it travels upwards along
the source column, then it must travel to the right along
the destination row according to the definition of a directed
wavelength. The main idea of our RWA algorithm is based on
the following observation.

destinationsource

R = 5, C = 4, N = 20

(a)upward
directed wavelength

downward
directed wavelength

upward
directed wavelength

downward
directed wavelength

(b) sessions from distinct columns to distinct rows
on the same directed wavelength

4-1

3-2

2-3

1-4

2-3

1-4

4-1

3-2

Fig. 6. Directed wavelength and its supported sessions.

Lemma 5: For an R × C torus topology, under column-
first routing, a set of sessions from distinct source columns
to distinct destination rows can all be supported on a single
directed wavelength, which can be either upward or downward
directed.

Proof: Since the sessions come from distinct source
columns, at most one session utilizes the fibers in a given
column. Similarly, since the sessions go to distinct destination
rows, at most one session utilizes the fibers in a given row. It
follows that there is no wavelength collision on any fiber in
the network. ✷

Let i-j denote the node in row i and column j. Let (i-
j, k-l) denote a session from node i-j to node k-l. Figure 6b
illustrates the statement of lemma 5. In particular, there are two
sessions (4-1,2-3) and (3-2,1-4) which are transmitted from
two distinct source columns to two distinct destination rows.
The two sessions can be supported on either an upward or a
downward directed wavelength.

We can view the set of sessions from distinct source
columns to distinct destination rows as a matching in a
bipartite graph. For a given traffic matrix, we can construct
the column-to-row bipartite graph, denoted by (V1,V2, E),
as follows. The set of abstract nodes V1 contains C nodes
corresponding to the C source columns. The set of abstract
nodes V2 contains R nodes corresponding to the R destination
rows. In the set of edges E , an edge between node i in V1 and
node j in V2 corresponds to a session from a source in column
i to a destination in row j. Figure 7a-b shows an example of
the column-to-row bipartite graph and its traffic matrix. Note
that there may be multiple edges between the same pair of
nodes.

A matching in a bipartite graph, or in short a bipartite
matching, is a subset M of E such that no two edges in M are
adjacent. A matching M is said to saturate the set V1 if, for
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Ri denotes the set of destinations in row i.
Cj denotes the set of sources in column j.
i-j denotes the node in row i and column j.
(Ci, Rj) denotes a session from
source column i to destination row j.

(a) traffic sessions among individual nodes

and destination row

(c) bipartite matchings of specific directed wavelengths
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(C1, R2)

(C2, R3)

(C3, R4)
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Fig. 7. Column-to-row bipartite graph.

every node in V1, there is an edge in M incident on that node.
A matching M which saturates the set V1 is called a perfect
matching. Figure 7c shows four different perfect matchings in
(V1,V2, E).

Observe that the sessions belonging to a matching in the
column-to-row bipartite graph are transmitted from distinct
source columns to distinct destination rows. From lemma 5,
these sessions can be supported on one directed wavelength
using column-first routing. Our algorithm will assign a single
bipartite matching to a single directed wavelength. In what
follows, we shall refer to the bipartite matching assigned to
directed wavelength λ1 simply as the bipartite matching of
λ1. Figure 7c shows example bipartite matchings of specific
directed wavelengths. Note that there are at most C sessions
in each matching. We next state a known useful lemma related
to bipartite graphs (e.g. [19]).

Lemma 6: In a bipartite graph (V1,V2, E) with maximum
node degree m, we can color the edges in E so that no two
adjacent edges have the same color using m colors.

Consider coloring the edges in a bipartite graph (V1,V2, E)
as suggested by lemma 6. Since no two adjacent edges have
the same color, the edges with the same color form a bipartite
matching. Thus, we can restate lemma 6 as follows.

Lemma 7: In a bipartite graph (V1,V2, E) with maximum
node degree m, the set E can be partitioned into m disjoint
bipartite matchings.

Lemma 7 can be used to argue that kR directed wavelengths
are sufficient to support any traffic matrix in the symmtric k-
allowable set. Given a traffic matrix, we can write down the
corresponding column-to-row bipartite graph in which each
node has degree at most kR. By lemma 7, the set of edges can
be partitioned into kR disjoint bipartite matchings. The ses-

sions on each bipartite matching can be supported on a single
directed wavelength. Therefore, kR directed wavelengths are
sufficient to support any symmetric k-allowable traffic matrix.

The main idea of our on-line RWA algorithm involves
keeping kR disjoint bipartite matchings of kR directed wave-
lengths such that each traffic session corresponds to an edge
in one bipartite matching. When a session departs, we simply
remove its corresponding lightpath from the network. When
a new session, say (Ci,Rj), arrives, we find one directed
wavelength which is not used by any source in column i, and
one directed wavelength which is not used by any destination
in row j. If the two directed wavelength are the same, we can
support the new session without any lightpath rearrangement.
Otherwise, we rearrange some existing lightpaths on the two
directed wavelengths to support the new session. The follow-
ing lemma makes the above discussion concrete and states an
upper bound on the number of lightpath rearrangements.

Lemma 8: In a bipartite graph (V1,V2, E) with |V1| = C ≤
|V2|, given a new edge (Ci,Rj), Ci ∈ V1, Rj ∈ V2, a matching
M1 of directed wavelength λ1 which is not incident on Ci,
and a matching M2 of directed wavelength λ2 which is not
incident on Rj , there exist two disjoint bipartite matchings
which cover all the edges in M1 and M2 as well as the new
edge (Ci,Rj).

In addition, these two disjoint bipartite matchings can
be assigned to λ1 and λ2 so that the number of lightpath
rearrangements is at most C − 1.

Proof: Consider the bipartite graph (V1,V2, E ′) whose set
of edges E ′ contains all of the edges in M1 and M2 as well
as the new edge (Ci,Rj). Observe that each node has degree
at most 2. From lemma 7 with m = 2, there exist two disjoint
bipartite matchings, denoted by M′

1 and M′
2, which cover all

the edges.
Without loss of generality, assume that (Ci,Rj) belongs to

M′
1. Let set P contain the edges in M1 assigned to M′

2 and
the edges in M2 assigned to M′

1. Let set Q contain the edges
in M1 assigned to M′

1 and the edges in M2 assigned to M′
2.

Notice that P and Q cover all the edges in M1 and M2. Since
there are at most 2C − 2 edges in M1 and M2, it follows
that |P| + |Q| ≤ 2C − 2.

If |P| ≤ C − 1, assigning M′
1 to λ1 and M′

2 to λ2 yields
the desired result that the number of lightpath rearrangements,
which is equal to the sum of the number of edges in M1
assigned to M′

2 and the number of edges in M2 assigned to
M′

1, is at most C − 1. Otherwise, it is true that |Q| ≤ C − 1.
In this case, assigning M′

1 to λ2 and M′
2 to λ1 yields the

desired result. ✷

The following is our on-line RWA algorithm for a torus
topology with symmetric k-allowable traffic. The algorithm
uses �kR/2� wavelengths in each fiber, is rearrangeably non-
blocking, and requires at most C −1 lightpath rearrangements
per new session request. We shall refer to this algorithm as
the torus RWA algorithm

Torus RWA Algorithm: (Use �kR/2� wavelengths.)

Session termination: When a session terminates, simply
remove its associated lightpath from the network without any
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further lightpath rearrangement.

Session arrival: When a session arrives and it is allowable,
proceed as follows. Let i and j denote the source column and
the destination row of the new session.

Step 1: If there is a directed wavelength, denoted by λ0, which
is used by neither a source in column i nor a destination in
row j, then assign the new session to λ0, and use column-first
routing. In this case, no lightpath rearrangement is required.
Otherwise, proceed to step 2.

Step 2: Find a directed wavelength, denoted by λ1, which is
not used by any source in column i, i.e. its bipartite matching
is not incident on Ci, and another directed wavelength, denoted
by λ2, which is not used by any destination in row j, i.e. its
bipartite matching is not incident on Rj . We claim and shall
prove shortly that λ1 and λ2 exist.

Modify the RWA of only the sessions on λ1 and λ2.
Construct the column-to-row bipartite graph (V1,V2, E ′) in
which the set of edges E ′ contains the bipartite matchings
of λ1 and λ2 as well as the new edge (Ci,Rj). Notice that
|V1| = C ≤ R = |V2| and each abstract node has degree at
most 2. From lemma 8, the set E ′ can be partitioned into two
disjoint bipartite matchings. In addition, lemma 8 tells us that
the two matchings can be assigned to λ1 and λ2 such that at
most C − 1 existing lightpaths need to be rearranged.

Proof of algorithm correctness: It remains to prove the
claim in step 2, which states that either there is a directed
wavelength which is used by neither a source in column i nor
a destination in row j, or λ1 and λ2 as defined in step 2 must
exist. We shall prove the existence of λ1. Similar arguments
can be used to prove the existence of λ2. Since the new session
is allowable, there are at most kR − 1 sessions transmitted
from source column i. Since there are 2�kR/2� directed
wavelengths, the number of directed wavelengths available for
a session transmitted from source column i is at least

2�kR/2� − (kR − 1) ≥ kR − (kR − 1) ≥ 1.

Therefore, λ1 always exists. ✷

Although we concentrate on an R × C torus topology with
R ≥ C, similar results can be obtained for an R × C torus
topology with R ≤ C by reversing the roles of rows and
columns. We summarize the results in this section in the
following theorem.

Theorem 2: For an R × C torus network with symmetric
k-allowable traffic, Wk is bounded by

⌈
k(max(R,C) − 1)

4

⌉
≤ Lk ≤ Wk ≤

⌈
k max(R,C)

2

⌉
.

In addition, there exists, by construction, an on-line RWA
algorithm which uses �k max(R,C)/2� wavelengths in each
fiber and requires at most min(R,C) − 1 lightpath rearrange-
ments per new session request.

As a comparison, when min(R,C) = 1, we have a bidirec-
tional ring with N nodes, where N = RC. The torus RWA
algorithm in this section uses �kN/2� wavelengths in each
fiber while the ring RWA algorithm specialized for the ring

topology uses �kN/3� wavelengths. Hence, while the torus
RWA algorithm is more general, it uses more wavelengths
than the minimum required for the ring topology.

We observe from the two algorithms that the number of
lightpath rearrangements per new session request is related
to the number of lightpaths supported on a single directed
wavelength. For a bidirectional ring, up to two lightpaths are
supported on a single directed wavelength. Since the ring
RWA algorithm modifies only the RWA of the sessions on
at most three directed wavelengths, it follows that the number
of lightpath rearrangements depends on neither the number of
nodes N nor the amount of traffic k. For a torus topology, up
to C lightpaths are supported on a single directed wavelength.
Since the torus RWA algorithm modifies only the RWA of
the sessions on at most two directed wavelengths, it follows
that the number of lightpath rearrangements depends on the
dimension of the network C but not on the amount of traffic
k.

V. CONCLUSION

We developed an on-line routing and wavelength assignment
(RWA) algorithm a for WDM bidirectional ring with N nodes
to support k-allowable traffic in a rearrangeably nonblocking
fashion. The algorithm uses �(

∑N
i=1 ki)/3� wavelengths in

each ring direction and requires at most three lightpath rear-
rangements per new session request regardless of the number
of nodes N and the amount of traffic k.

The developed algorithm implies the upper bound on Wk,
i.e. Wk ≤ �(

∑N
i=1 ki)/3�. The bound is tight for the case

in which N ≥ 7 and all the ki’s are equal to some positive
integer k. In addition, we observed that, for N ≥ 7 and a fixed
value of

∑N
i=1 ki equal to kN for some positive integer k, the

case in which all the ki’s are equal yields the maximum value
of Wk.

We also developed an on-line RWA algorithm for an R×C
torus topology to support k-allowable traffic, where all the
ki’s are equal to some positive integer k, in a rearrangeably
nonblocking fashion. The algorithm uses �k max(R,C)/2�
wavelengths in each fiber, which is shown to be approximately
two times a lower bound obtained by assuming full wavelength
conversion at all nodes. In addition, the algorithm requires at
most min(R,C)−1 lightpath rearrangements per new session
request regardless of the amount of traffic k. Our future goal
is to develop an on-line RWA algorithm for arbitrary mesh
topologies. We hope that our analytical approaches in this
paper can be used in the development of such an algorithm.

APPENDIX

SINGLE-HUB RING RWA ALGORITHM

In the algorithm below, we maintain two RWA conditions
at all time: (i) only adjacent session pairs at the hub share a
directed wavelength, and (ii) all mutual adjacent session pairs
at the hub share a directed wavelength.

Single-Hub Ring RWA Algorithm: (Use �(N − 1)/2� wave-
lengths and perform at most four lightpath rearrangements per
new session request.)
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Session termination: When a session terminates, simply
remove its associated lightpath from the ring without any
further lightpath rearrangement.

Session arrival: When a session arrives and the resultant
traffic matrix is still k-allowable, proceed as follows.

Step 1: If the new session, denoted by u, can form a mutual
adjacent session pair at the hub with some existing session,
denoted by x, there are two possibilities.

(1a) If x is not sharing its directed wavelength, assign the
mutual adjacent session pair u and x to share this directed
wavelength. In this case, no lightpath rearrangement is re-
quired.

(1b) If x is sharing a directed wavelength with another
existing session, denoted by y, then x and y are not mutually
adjacent at the hub, or else u and x cannot be mutually
adjacent at the hub. Remove y from its directed wavelength
and assign the mutual adjacent session pair u and x to share
the directed wavelength of y.

If there is a free directed wavelength, use it to support y.
In this case, one lightpath rearrangement is made. Otherwise,
we claim that y can form another adjacent session pair at the
hub with some nonsharing session, denoted by z. Note that
y and z cannot be mutually adjacent at the hub, or else they
would have shared a directed wavelength.

If the directed wavelength of z can support y, assign y
and z to share this directed wavelength. In this case, one
lightpath rearrangement is made. Otherwise, we claim that
there must exist either a nonsharing session or a mutual
adjacent session pair in the opposite ring direction. In the
case of a nonsharing session in the opposite ring direction,
we remove that nonsharing session and support y and z on
its directed wavelength. The removed nonsharing session can
then be supported on the directed wavelength of z. In this case,
a total of three lightpath rearrangements are made. In the case
of a mutual adjacent session pair in the opposite ring direction,
we remove that mutual adjacent session pair and support y and
z on their directed wavelength. The removed mutual adjacent
session pair can then be supported on the directed wavelength
of z. In this case, a total of four lightpath rearrangements are
made.

Step 2: If u cannot form a mutual adjacent session pair at
the hub with any existing session and there is a free directed
wavelength, use a free directed wavelength to support u. In
this case, no lightpath rearrangement is made.

Step 3: If u cannot form a mutual adjacent session pair at the
hub with any existing session and there is no free directed
wavelength, we claim that, among nonsharing sessions and u,
a nonmutual adjacent session pair at the hub can be formed.
Denote this session pair by y and z. There are two possibilities.

(3a) If u is in the session pair, i.e. y = u or z = u,
assume without loss of generality that y = u. If the directed
wavelength of z can support y, assign y and z to share this
directed wavelength. In this case, no lightpath rearrangement
is required. Otherwise, we claim there must exist either a
nonsharing session or a mutual adjacent session pair in the
opposite ring direction. In the case of a nonsharing session

in the opposite ring direction, we remove that nonsharing
session and support y and z on its directed wavelength. The
removed nonsharing session can then be supported on the
directed wavelength of z. In this case, a total of two lightpath
rearrangements are made. In the case of a mutual adjacent
session pair in the opposite ring direction, we remove that
mutual adjacent session pair and support y and z on their
directed wavelength. The removed mutual adjacent session
pair can then be supported on the directed wavelength of z. In
this case, a total of three lightpath rearrangements are made.

(3b) If u is not in the session pair, then y �= u and z �= u.
If the directed wavelength of either y or z can support the
session pair, assign y and z to share this directed wavelength.
This sharing frees one directed wavelength on which u can be
supported. In this case, one lightpath rearrangement is made.
Otherwise, we claim that there must exist either a nonsharing
session or a mutual adjacent session pair in the opposite ring
direction. In the case of a nonsharing session in the opposite
ring direction, we remove that nonsharing session and support
y and z on its directed wavelength. The removed nonsharing
session and the new session can then be supported on the
directed wavelengths of y and z. In this case, a total of three
lightpath rearrangements are made. In the case of a mutual
adjacent session pair in the opposite ring direction, we remove
that mutual adjacent session pair and support y and z on their
directed wavelength. The removed mutual adjacent session
pair and the new session can then be supported on the directed
wavelengths of y and z. In this case, a total of four lightpath
rearrangements are made.

The proof of algorithm correctness can be found in [20].
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