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Abstract -- We consider the tradeoffs between packet delay guar-
antees and per-timeslot computation complexity in an
packet switch operating under the crossbar constraint. It is well
known that scheduling packets every timeslot according to a Maxi-
mum Weight Matching (MWM) achieves 100% throughput. This
algorithm ensures average packet delay is within O(n) timeslots
(where n is the number of input ports of the switch) but is quite
complex to implement, requiring O(n3) computations every slot to
compute the schedule. Here we develop a modified version of
MWM which reduces computation complexity while still ensuring
100% throughput and offering polynomial delay bounds. Specifi-
cally, we develop a class of scheduling policies (parameterized by

) which achieve a per-timeslot computation complexity
of O(nα) and ensure O(n4-α) bounds on average delay. In particu-
lar, linear per-timeslot computation complexity is achievable with
an O(n3) delay guarantee (case α=1). Furthermore, as ,
complexity can be made as low as desired while delay is held
within O(n4). These results for the first time illustrate an explicit
tradeoff between performance and scheduling complexity.

I. INTRODUCTION

There is a great deal of interest in developing low complexity
algorithms for scheduling packets in an packet switch
operating under the crossbar constraint [1-9]. In the landmark
papers [1] and [2], it was independently shown that a Maximum
Weight Matching algorithm (MWM) stabilizes the switch for
any set of admissible (stabilizable) input rates, and hence
MWM achieves 100% throughput. Such stability is guaranteed
even if the input rates for each port are unknown. In [7] it is
shown that this policy offers desirable delay performance by

maintaining average packet delay within O(n) timeslots1 (where
n is the number of input ports of the switch). However, the
MWM algorithm is quite complex to implement, requiring

O(n3) operations every timeslot to compute the switching
matrix [11]. Such complexity makes MWM impractical for
large switches operating at very high speeds.

Lower complexity algorithms which also offer 100%
throughput are developed in [3, 4, 5, 6]. An algorithm devel-
oped by Tassiulas in [4] demonstrates that it is possible to
achieve 100% throughput using a scheduling algorithm with
linear complexity every timeslot (a tremendous improvement

over the O(n3) complexity of MWM). However, the algorithm
offers poor delay performance (as observed in simulations). It
can be shown analytically that the Tassiulas algorithm keeps
average packet delay within O(n!) timeslots. The non-polyno-
mial growth of this upper bound is consistent with simulation
results, and hence delay may be unreasonably large as n
increases.

Here, we develop a modified version of MWM which both
reduces computation complexity and guarantees polynomial
delay. Specifically, we describe a class of algorithms (parame-
terized by ) which achieve a per-timeslot computa-

tion complexity of O(nα) and ensure O(n4-α) bounds on average
delay. In particular, for the case α=1, linear per-timeslot com-

putation complexity is achievable with an O(n3) delay guaran-
tee. Furthermore, as complexity can be made as low as

desired while delay is held within O(n4). These results for the
first time illustrate an explicit tradeoff between performance
and scheduling complexity.

The idea is quite simple. Rather than compute a Maximum
Weighted Match every timeslot, we allow k timeslots for the
computation. The switching configuration determined by the
outcome of the matching is then held fixed for another k slots
while the next matching computation proceeds--using weights
equal to the number of packets seen at the start of the k-slot
interval. It is clear that this technique reduces the per-timeslot

complexity of the O(n3) MWM algorithm at the expense of
using out-of-date queue backlog information and imposing the
restriction of a fixed switching configuration during the k-slot
intervals. In the following analysis, we show that delay grows
as O(kn) because of such restrictions.

This technique is thus useful for reducing complexity at the
expense of increasing delay. Furthermore, the algorithm natu-
rally applies to systems whose physical constraints require
switching configurations to be held fixed for more than one
timeslot.  Examples include:

-Optical switching devices which rely on slow mechanical
reflectors for switching inputs to different output paths, and
hence should be held in a fixed switching mode for longer dura-
tions of time (see [9]).

-Systems whose crossbar electronics operate at speeds slower
than the input/output line rate.

The switching algorithms developed here suggest a host of
potential improvements. For example, a Max Weight Matching
algorithm distributed over k timeslots might use dynamic link
weights determined by the new packet arrivals every slot. Fur-
thermore, switching configurations may be altered during the k-
slot interval if a better match is found by other means. Example
heuristics of this type are considered.

In the next section, we describe the set of admissible input

rates which form the stability region of the system. In Sec-
tion III the modified MWM policy is developed and the delay/
complexity tradeoff is illustrated for the case when arrivals
occur iid every timeslot. In Section IV we consider non-iid
arrivals and show that the policy is robust to arbitrary changes
in the input rates from timeslot to timeslot. Finally, in Section
V we consider some simple heuristic improvements to the given
algorithms.

1. This is the best known asymptotic delay for switching algo-

rithms operating on switches with random inputs, and we
conjecture it is the best performance possible.
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II. THE STABILITY REGION

Consider the packet switch with n input ports and n output
ports shown in Fig. 1. The switch operates in discrete time,
where timeslots are normalized to 1 unit. Every timeslot, a ran-
dom number of packets arrive at each input and are queued
according to their intended destinations, so that queue (i, j) con-
tains packets from input i destined for output j. If a connection
is established between input i and output j at the beginning of a
timeslot, exactly one packet waiting in queue (i,j) can be trans-
ferred during the slot. All connections are established on
timeslot boundaries ( ), and the system operates
according to the crossbar constraint: during a timeslot, each
input can transfer at most one packet to an output, and each out-
put can receive at most one packet from an input. Hence, at
most n connections can be established in any timeslot, and the
set of valid connections consists of the n! possible permutations
between inputs and outputs.  Define:

Nij(t) = Number of packets in queue (i,j) at time t.

aij(t) = Number of new arrivals to queue (i,j) during [t, t+1).
cij(t) = connection decision for queue (i,j) at time t

(where cij(t) = 1 if a connection is established, and 0 else).

.

The dynamics of queue (i,j) proceed according to the equa-
tion:

where every timeslot the crossbar constraint limits the matrix of
control decisions (cij(t)) to the set of permutation matri-

ces (i.e., the set of 0-1 matrices with

exactly one “1” in each row and column).
The stability region is the set Ω such that the system cannot

be stabilized if the rate matrix , and the system can be

stabilized using some scheduling algorithm whenever the rate
matrix is strictly interior to Ω (the system may or may not be
stabilizable if (λij) is on the boundary of the stability region). It
is well known that the stability region is the set of all rate matri-
ces (λij) such that the sum of the entries in any row or column is
less than or equal to 1:

It is clear that is a necessary condition for stability.

Indeed, if the rate matrix is not within Ω, then at least one of the
inequality constraints in (2) must be violated, and hence some
input port or output port is oversubscribed--leading to an infi-
nite buildup of packets in the system with probability 1.

To show sufficiency, it is useful to consider the subset of Ω
consisting of points where the inequalities in (2) are met with
equality. The Birkhoff-Von Neumann Theorem [10] states that
this subset can be expressed as the convex combination of per-
mutation matrices:

Theorem (Birkhoff-Von Neumann):

Convex Hull =

. ❑

The Birkhoff-Von Neumann Theorem thus implies that the
convex hull of all permutation matrices forms the dominant
subset of Ω: The subset of Ω such that every rate matrix in Ω is
entrywise dominated by a point in the subset. Thus, for all

, there exists a matrix in Convex

Hull  such that  for all i and j.

This fact can be used to show that being strictly interior

to Ω is a sufficient condition for stability. To see this, suppose
is strictly interior to Ω and choose a matrix within

Convex Hull such that (where

the inequality is considered entrywise). From the Birkhoff-Von
Neumann Theorem, we can find non-negative values

 such that , where:

To stabilize the system, consider the following policy: Every
timeslot, randomly choose a control matrix (cij(t)) from among
the set of all permutation matrices, such that matrix Mi is cho-
sen with probability pi. From (3) it follows that every timeslot a
server connection is established for queue (i,j) with probability
µij. This effectively creates a geometric “service time” for each
packet, and hence each queue (i,j) is transformed into a slotted
G/G/1 queue with arrival rate λij and service rate µij. Because
λij < µij, each queue is stable.

Example: Suppose all inputs are Poisson with uniform rates
λ<1/n, and let µij=1/n for all i and j. Each queue is then equiva-
lent to a slotted M/G/1 queue with geometric service time and
loading . The average delay can be easily calculated
(see [12]):

The above delay is clearly O(n), and hence delay scales lin-
early as the number of input ports n is increased. One might
suspect that delay can be reduced if the randomness of the ser-
vice algorithm is replaced by a periodic schedule which ser-
vices each queue (i,j) a fraction of time µij. Indeed, for uniform
traffic, it is easy to see that switching periodically amongst the n
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Figure 1:  An  packet switch with n input ports and
input queues.
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cyclic permutation matrices provides a server to each queue
every n timeslots. The resulting system is similar to an M/D/1
queue, and delay can be calculated using the techniques in [12]:

periodic schedule=

Although the above delay is reduced from the delay of the
random control algorithm, it still scales linearly with n. Intu-
itively, this is because each input port can service at most one of
its n queues per timeslot, and hence it takes an average of n/2
timeslots for any queue to receive a server. We conjecture that
O(n) delay is the best asymptotic delay performance that any

algorithm can provide when inputs are random.2

III. DELAY / COMPLEXITY TRADEOFFS

Here we consider switch scheduling when the input rates
are interior to the stability region Ω but are unknown to

the scheduler. In [1], [2] it was shown that a Maximum Weight
Matching algorithm which chooses a permutation matrix

to maximize every timeslot stabilizes

the system whenever the system is stabilizable, and hence
allows for 100% throughput. In [7] a packet delay analysis for
the MWM algorithm was presented, which demonstrated that
packet delay is O(n)--the best known asymptotic delay for any
algorithm. However, the MWM algorithm is complex to imple-

ment, requiring O(n3) operations to be performed within a sin-
gle timeslot [11]. Here we present a class of algorithms which
allow per-timeslot implementation complexity to be reduced at
the expense of increasing packet delay. The idea is to reduce
complexity by holding switching configurations fixed for k
timeslots--allowing more time for completion of the matching
algorithm.

Let t represent the starting time for such a k-slot interval. The
number of packets k timeslots into the future satisfies:

Note that the inequality is due to the fact that new packets
arriving in the interval [t, t+k-1) can potentially be served dur-
ing this k-slot interval, and hence will not be in the system at
time t+k. In the case k=1, the inequality (6) can be written as an
equality, and reduces to (1).

If a policy computes a Max Weight Match during a k-slot
interval [t, t+k), the resultant match will be implemented as a
fixed server configuration on the next interval [t+k, t+2k).
Hence, if the computation uses queue occupancy data (Nij(t))
from timeslot t, this information will be more than k slots out of
date (and as much as 2k slots out of date) when the server
implementation is finally applied. It is thus better to use for the
matching the estimated packet occupancy at time t+k (when the
implementation starts), where this estimate is based on the
known packet occupancy at time t and the known server config-

uration during [t, t+k).  We thus define:

Notice that and remain close together for all

time t:

and hence serves as a good estimate of . Further-

more, the values can be obtained exactly from
knowledge that is available at time t:

We now define a class of scheduling policies πk, parameterized

by k, which use the  information as follows:

Scheduling Policy πk: At times t={0, k, 2k, 3k, ...} perform
the following:

-Configure the switch matrix (cij(t)) to the permutation calcu-
lated by the MWM algorithm during the past k-slot interval,
and maintain this configuration for the new interval [t, t+k).
(If t=0, simply use the identity permutation matrix.)

-Calculate values using and (cij(t)) accord-

ing to (8).

-Use values as weights in an MWM computation
during the interval [t, t+k).

To analyze the performance of this strategy, we use a
Lyapunov drift technique for bounding average occupancy.

A. Lyapunov Drift. Consider a general system of J queues,

and let represent the vector

of queue occupancy which changes state at times t={0, 1, 2,...}.
Assume the resulting process is a Markov chain. We develop a
criterion using Lyapunov drift which ensures a steady state
occupancy exists and provides a bound on average delay. The
technique uses a well established theory of Lyapunov functions
applied to queueing systems [1,2,7,8], and the bounding tech-
nique is similar to the method for establishing delay bounds
developed in [7].

The vector notation here is for convenience. Note that the
matrix of packet occupancies ( ) in a switch can be writ-

ten as a stacked vector, and proceeds according to a Markov
chain if the system is sampled every k timeslots and if the con-
trol decisions (cij(t)) are appended to the system state.

Consider a Lyapunov function defined on the state of queue

occupancies: . In [2] the following theorem is

given, which establishes the existence of a steady state distribu-

tion for the vector process :

2. This conjecture does not hold when inputs are not random.
Examples of periodic inputs and scheduling algorithms can be
constructed which ensure constant delay independent of n.
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Theorem 1: Suppose there exists a positive number γ and a
bounded region Λ of the state space of the Markov process

 such that:

(i)  for all

(ii)

whenever

Then a steady state distribution for  exists. ❑

Below we present a condition for the Lyapunov drift which,
together with Theorem 1, establishes a finite upper bound on the

average values of . The proof uses a simple telescoping
series argument similar to the technique presented in [7].

Theorem 2: Suppose there exist positive values { } and B

such that for all :

then: (a) A steady state distribution exists for .
(b) The steady state values of queue occupancy are finite

and satisfy:

Proof of (a): From (9), it is clear that condition (i) of Theorem
1 is satisfied. To show that (ii) is also satisfied, fix a constant

and define the set . From

(9), it follows that the one step Lyapunov drift for is less

than or equal to -α whenever . ❑

Proof of (b): In a manner similar to the method demonstrated in
[7], we take expectations of both sides of (9) and sum from

 to obtain:

Dividing (11) by  and shifting terms, we find:

Now, because a steady state distribution exists for and

because time averages are bounded, it follows

that first moments exist and are reached as limits of the time
average. Taking limits of (12) as thus establishes (10)
and concludes the proof. ❑

B. Performance Analysis of strategy πk: We use the
Lyapunov drift Theorem 2 to obtain a bound on the steady state

behavior of the process, which allows a delay bound
for the πk scheduling strategy to be developed. Let t be the

beginning of a k-slot interval for the πk strategy. The matrix

can be bounded in terms of using the
(cij(t)) control decisions according to the inequality:

i.e., the value of is less than or equal to its value at
time t, minus the departures during the past k-slot interval, plus
the new arrivals that occurred in the second to last k-slot inter-
val. Because some of these new arrivals may be served before
time t+k, (13) is an inequality instead of an equality.

Consider now the inputs aij(t) to the switch. Assume that on
each timeslot, a new matrix of arrivals occurs iid with some dis-
tribution (where represents a matrix of packet arrivals).
Note that although arrivals in different timeslots are indepen-
dent, arrivals to different queues in the same timeslot may be
correlated. For simplicity, here we assume that no more than
one new packet can arrive to an input port in any given timeslot:

 for all input ports .

This assumption is not necessary, but it simplifies the resulting
expression for average packet delay, and it is consistent with the
physical constraints of  packet switches.

Let the input rate matrix for the switch

be strictly interior to the stability region Ω. Let ε>0 be the larg-
est value that can be added to each entry of the rate matrix such
that the resulting matrix remains within the stability region, i.e.,

is on the boundary of Ω. Viewing as a

stacked vector with n2 entries, we can thus define the Euclidean
distance d of the rate matrix to the boundary of the capacity

region to be the norm of .  Clearly , and hence:

To analyze delay performance of an switch, it is appro-
priate to keep d constant as n scales. This effectively preserves
the same loading for each input port . For exam-

ple, if input rates to each queue (i,j) are uniformly (where

represents the total loading on an input), then

, and  is held constant.

Let denote the average rate of packets

entering an input port i (averaged over all ).

Theorem 3: For any integer k>0, the policy πk has per-

timeslot complexity O(n3/k) and ensures an average delay of

O(nk). Specifically, average delay  satisfies: .

Proof: That the per-timeslot complexity of πk is O(n3/k) fol-

lows immediately from the fact that the O(n3) MWM computa-
tion is distributed over k slots. To prove the delay bound, we
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define the quadratic Lyapunov function ,

where .  Define:

For convenience, we neglect the time subscripts and use ,

, and to respectively represent , , and

.  Using (15) in (13), we have:

Taking conditional expectations of (16) given and
summing over all i and j, we have:

where the iid nature of packet arrivals was used to substitute

 above.

Note that the control matrix is a deterministic func-

tion of the matrix, determined by the policy πk. Hence, we

can write as --the control decision made by pol-

icy πk at time t. The policy πk chooses a permutation matrix

from the set of all possible permutation matrices (cij) to

maximize . However, by the Birkhoff-Von Neu-

mann Theorem, all points in the stability region Ω can be domi-
nated by a convex combination of permutation matrices.

Hence, the resulting value of also maximizes

the linear function over all rates (see

[14]). Because  is in Ω, it follows that:

Using (18) in (17), we have:

where (19) follows because both and are in {0, 1}, so

and . The condition (20) is the negative drift

condition we are after. Applying the result of Theorem 2, we

find that a steady state value for  exists and satisfies:

Simplifying (21) and using the fact that as well as the

fact that , we have:

Using (7) to express a bound for the actual number of packets in

the switch  in terms of the bound for ( ) yields:

Dividing both sides of (23) by the total input rate and

using Little’s Theorem yields:

and proves the theorem. ❑

The 1/d behavior of the waiting time bound is worth noting.
Recall that d can be viewed as the Euclidean distance of the rate
matrix (λij) to the boundary of the stability region (in the sense

that ε is the maximum value that can be added to all n2 entries
of the rate matrix such that the matrix remains

within the stability region, and the norm of the stacked vector
is d). Thus, the bound grows asymptotically like 1/d as the rate
matrix is pushed towards the boundary. Such behavior is char-
acteristic of queueing systems, as illustrated by the standard P-
K formula for average occupancy in an M/G/1 queue [12].

The relationship between complexity and delay is now appar-
ent. Indeed, choose a value . From Theorem 3, we

can choose an integer such that policy has

per-timeslot complexity O(nα) and a delay bound of O(n4-α).

IV. ROBUSTNESS TO INPUT RATE CHANGES

The analysis in the previous section assumes iid arrivals.
Here we demonstrate that the πk algorithm is robust to arbitrary

changes in the input rate matrix as long as the matrix

remains within the stability region Ω at each timeslot. Specifi-

cally, suppose that the input rate matrix to the system is for

a certain duration of time, then changes to --perhaps due to
changing user demands. This change will be reflected in the
backlog that builds up in the queues of the system. Because the
policy πk bases decisions on the size of the queues, it reacts
smoothly to such changes in the input statistics.
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2 2kÑ ij cij Aij k⁄–( )–+ +≤ (16)
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Formally, this situation is modeled by defining an input distri-
bution on the arrival matrix (aij(t)) at each timestep t.

The distributions are arbitrary and unknown to the sched-

uler, although we assume they yield rate matrices
, all of which are within the stability

region. System dynamics thus proceed according to a time-
varying Markov chain. Although there is no notion of steady
state behavior for a time-varying chain, below we show that
time averages are well behaved.

Assume that there is some distance d such that all instanta-
neous arrival rate matrices are at least a distance d from

the boundary of the stability region, i.e., for ,

for all t. The one-step Lyapunov drift can be

analyzed for this system as before. Indeed, notice that inequal-

ity (17) remains valid, where expectations are taken over the tth

arrival distribution . Following through with the same

derivation as in Theorem 3, it can be shown:

where is the average rate to an input port taken over the

tth arrival distribution. From a telescoping series argument sim-
ilar to Theorem 2, it can be shown that:

V. HEURISTIC IMPROVEMENTS

The policy πk suggests several heuristic improvements. For
example, rather than use fixed values of queue occupancy while
the MWM computation is running, the matching scheme might
use dynamic weight updates based on the new data entering the
system. Another improvement is to enable the switching matrix
to switch to an alternate configuration in the middle of a k-slot
interval when the new configuration is clearly preferable. For
example, if the switch has cleared all packets in the n queues it
is serving under a given connectivity matrix, it is better to
change to another matrix which can serve packets in other
queues rather than remain idle for the rest of the k-slot interval.

Finally, the MWM computation often requires less that O(n3)
complexity. For example, one set of weights may require the
computation to run for 50 timesteps, while in the next k-slot
interval, only 15 timesteps are needed to find the max weight
match. A modified πk algorithm which allows for these variable
computation times could thus initiate the next MWM computa-
tion immediately if the previous one finishes early. Such tech-
niques intuitively improve the operation of policy πk, and hence
potentially improve upon the delay/complexity tradeoff profile.

VI. CONCLUSIONS

We have demonstrated a class of switch scheduling policies
πk for an packet switch which offer 100% throughput and

enable delay performance to be traded off for reduced per-
timeslot computation complexity. It was shown that for any
parameter , a policy can be designed that has a per-

timeslot computation complexity of O(nα) and provides an

average delay within O(n4-α). While much of the previous liter-
ature on packet switches has concentrated on stability
results, this work for the first time enables an explicit character-
ization of the tradeoffs between performance guarantees and
per-timeslot computation complexity.

The policies πk were shown to be robust to arbitrary changes
in the input rates from one timeslot to the next provided that the
instantaneous arrival rates remain within the stability region Ω.
Furthermore, the described policies naturally apply to systems
whose physical constraints preclude rapid switching changes. It
is remarkable that 100% throughput can still be achieved when
switching rates are decreased well below the linespeed. We
believe these results are fruitful and provide direction for future
research into designing powerful scheduling algorithms which
offer small packet delay with low implementation complexity.

REFERENCES:

[1] N. McKeown, V. Anantharam, and J. Walrand, "Achieving

100% Throughput in an Input-Queued Switch," in Proc. IEEE
INFOCOM, San Francisco, CA, Mar. 1996, pp. 296-302.

[2] L. Tassiulas and A. Ephremides, “Stability Properties of Con-

strained Queueing Systems and Scheduling Policies for Maxi-

mum Throughput in Multihop Radio Networks,” IEEE
Transactions on Automatic Control, Vol. 37, no. 12, Dec. 1992.

[3] A.Mekkittikul, N.McKeown, “A Practical Scheduling Algorithm

to achieve 100% Throughput in Input-Queued Switches,” IEEE
INFOCOM Proceedings 1998, pp. 792-799.

[4] L. Tassiulas, “Linear Complexity Algorithms for Maximum

Throughput in Radio Networks and Input Queued Switches,”

IEEE Proc. of INFOCOM, 1998.

[5] D. Shah, “Stable Algorithms for Input Queued Switches,” Pro-
ceedings of the 39th Annual Allerton Conf. on Communication,
Control, and Computing, Oct. 2001.

[6] I. Keslassy and N. McKeown, “Analysis of Scheduling Algo-

rithms that Provide 100% Throughput in Input-Queued Switch-

es,” Proceedings of the 39th Annual Allerton Conf. on
Communication, Control, and Computing, Oct. 2001.

[7] E. Leonardi, M. Mellia, F. Neri, and M. Ajmone Marson,

“Bounds on Average Delays and Queue Size Averages and Vari-

ances in Input-Queued Cell-Based Switches,” IEEE INFOCOM
Proceedings 2001, vol 2.

[8] P.R.Kumar, S.P.Meyn, “Stability of Queueing Networks and

Scheduling Policies,” IEEE Transactions on Automatic Control,
vol.40,.n.2, Feb. 1995, pp.251-260.

[9] R.L. Cruz and Saleh Al-Harthi, “Packet Scheduling with Switch

Configuration Delays,” Proceedings of the 39th Annual Allerton
Conf. on Communication, Control, and Computing, Oct. 2001.

[10] G. Birkhoff, “Tres Observaciones Sobre el Algebra Lineal,”

Univ. Nac. Tucuman Rv. Ser. A5, pp. 147-150, 1946.

[11] H.A.B.Saip, C.L.Lucchesi, “Matching Algorithms for Bipartite

Graphs,” Relatorio Tecnico DCC-03/93.

[12] D.P.Bertsekas and R. Gallager. Data Networks. Englewood

Cliffs, NJ: Prentice-Hall, 1992.

[13] R.G. Gallager. Discrete Stochastic Processes. Boston: Kluwer

Academic Publishers, 1996.

[14] D.P. Bertsekas. Convex Analysis & Optimization: Ch.1 prob. 23.

http://www.mit.edu:8001//people/dimitrib/home.html.

f t a( )

f t a( )

λ ij t( )( ) E aij t( )[ ]( )=

λ ij t( )( )

ε d n⁄=

λ ij t( ) ε+( ) Ω∈

f t a( )
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