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Abstract — We seek to maximize the data through-
put of a power, energy, and time constrained trans-
mitter sending data over a fading channel. The trans-
mitter has a fixed amount of energy, a maximum
power level, and a limited amount of time to send
data. Given that the fade state, which is random, de-
termines the throughput obtained per unit of energy
expended, the goal is to obtain a policy for schedul-
ing transmissions that maximizes the expected data
throughput. We develop a dynamic programming for-
mulation that leads to an optimal transmission sched-
ule for channels with independently distributed fade
states and also for channels whose fade states are
Markov. This approach can be extended to the case
of a transmitter seeking to minimize the energy re-
quired to send a fixed amount of data over a fading
channel given power and deadline constraints.

I. Introduction

The problem of transmission scheduling over a fading wire-
less channel has received much attention in the recent past
[10] [8] [11] [2] [9]. In this paper, we address this problem
in the context of an energy and power limited transmitter.
Such a situation may arise in a battery-powered mobile device
with a wireless network connection. Because the device relies
on energy from a battery, it is limited in energy and power
for data transmission. In addition, the network protocol may
have timeouts or other limits that necessitate transmission of
a data packet within a certain period of time.

In a fading channel environment, a poor channel state re-
quires a large amount of energy to send a given amount of
data, while a good channel state requires much less energy for
the same amount of data. A transmission scheme that takes
advantage of changing channel states can significantly improve
the use of scarce energy resources.

If the transmitter wishes to maximize throughput in a fixed
time period, it should select the timeslots with the best chan-
nel and then transmit during those timeslots. Unfortunately,
the fade state of the channel is not known ahead of time; here,
we assume that the transmitter knows the current state of the
channel just before it transmits.

Under such conditions, the transmitter faces a tradeoff be-
tween waiting for a good channel and exceeding the time con-
straint. Without the time constraint, maximizing throughput
for a given amount of energy and power simply consists of
waiting for the best possible channel state and then transmit-
ting. However, when a deadline constraint is applied, a trans-
mitter that waits for too long may be forced to send data over
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poor channels as it seeks to expend its energy before the dead-
line. If a maximum power constraint is added, a transmitter
that waits too long may not even be able to use up all of its
energy.

To the best of our knowledge, this problem has not been
well-studied in the literature. Resource allocation for fading
multi-user broadcast channels is a popular topic in informa-
tion theory. However, the resource being allocated is usually
power or bandwidth, and the quantity to be maximized is
most often Shannon capacity. Goldsmith and Li [10] [8] and
Tse and Hanly [11] have found capacity limits and optimal re-
source allocation policies for such channels. Biglieri et.al. [2]
have examined power allocation schemes for the block-fading
Gaussian channel. Tse and Hanly [9] have also studied chan-
nel allocations in multi-access fading channels that minimize
power consumption.

More recently, as interest in mobile communications has
increased, transmission scheduling for fading channels has at-
tracted more interest. El Gamal et.al. have performed exten-
sive research on communication with energy constraints [5].
Ferracioli et.al. [6] propose a scheduling scheme for the third
generation cellular air interface standard that takes channel
state into account and seeks to balance service priority and
energy efficiency. Wong et.al. [12] studied channel allocation
algorithms for cellular base stations. Given known channel
characteristics, the authors seek to assign channels in such a
way as to minimize total power consumed by all the mobile
users corresponding with a base station.

In addition, Chiasserini and Rao [3] [4] explored the phe-
nomenon of charge recovery in batteries. They found that the
pulsed discharge of a battery yields considerably more energy
than discharging at a constant current. By introducing delays
in transmission and using batteries on a round-robin basis, the
authors are able to significantly enhance battery performance.

In this paper, we seek to maximize throughput for time,
energy, and power constrained transmitters faced with a fad-
ing channel. It is assumed that the fade state of the channel
is random, independently distributed, and known just before
transmission. We formulate the problem using a dynamic pro-
gramming approach, and prove concavity of the dynamic pro-
gramming value function. This property leads to the formu-
lation of an optimal policy, and also to a numerical algorithm
for rapidly obtaining the optimal policy. The approach can
be extended to handle a situation where the channel state
is Markov and only the fade state of the previous channel is
known. Using the same approach, it is also possible to mini-
mize the amount of energy a power-limited transmitter needs
in order to send a given amount of data over a fading channel
by a certain deadline.



II. Maximizing Throughput

A System Model

We consider a transmitter operating over a fading chan-
nel. Time is assumed to be discrete, and in each time slot the
channel state changes according to a known probability distri-
bution function. The channel state determines the through-
put that can be obtained per unit energy expended by the
transmitter. The transmitter is assumed to have a battery
with a fixed number of discrete energy units available for use.
Furthermore, there is a limitation on power: i.e., the number
of energy units that can be expended per time slot is lim-
ited. The objective is to find a transmission schedule that
maximizes expected throughput for a given amount of energy
and a deadline by which it must be consumed (or otherwise
wasted).

Denote the available energy in the battery at time slot k
with the variable ak. The battery starts with a0 units of en-
ergy and must complete transmission by time slot n. At each
time slot the transmitter can consume up to min(ak, P ) units
of energy, where P is the power limit. Each unit of energy
expended results in a certain amount of data throughput that
is dependent on the channel fade state.

It is assumed that the throughput of the channel is linear
with power, or equivalently, expended energy during a time
slot. Thus, for a given channel state qk and consumption ck

at time k, the data throughput is given by qkck. Although the
relationship between throughput and power is actually depen-
dent on the modulation scheme and the capacity of the chan-
nel, assuming linearity is not unreasonable. First, throughput
is linear to power for a given modulation scheme. Second,
one may obtain a linear relationship with a fixed modulation
scheme simply by transmitting only part of the time. Third,
channel capacity is linear to energy in a low signal-to-noise
ratio or high bandwidth environment.

We examine two possibilities for channel fade state infor-
mation: first, that the state of the channel is known just before
transmission, and second, that only the state of the channel
in the previous time slot is known before transmission. In the
first case, the state of the channel qk is modeled as a random
variable with an independent probability distribution pqk(qk)
in each time slot. In the second case, a Markov model can be
used. The probability distribution of the state of the channel
at time k is dependent on the prior state of the channel at
time k− 1, and the probability distribution for the channel at
time k is given by pqk(qk|qk−1). In both cases it is assumed
that the probability distribution functions are known a priori.

In practice, the choice of the model to be used will likely de-
pend on how quickly the channel changes. Obtaining channel
state information usually requires that the transmitter send
a test sequence and receive feedback from the receiver, or for
the receiver to send a test sequence. If the channel does not
change significantly in the time necessary for the test sequence
to propagate and be analyzed, assuming that the channel is
known before transmission may be reasonable. On the other
hand, if the channel is changing quickly, the Markov model
will be more appropriate.

B Dynamic Programming Formulation

The objective is to find a policy for scheduling transmis-
sions in such a fashion as to maximize expected throughput.

To do so, the quantity

E

[
n∑

k=1

qkck

]

must be maximized, where consumption is subject to power
and energy constraints.

The dynamic programming algorithm can be used to find
an optimal policy for scheduling transmissions. As usual
in dynamic programming, we introduce the value function
Jk(ak, qk), which provides a measure of the desirability of
the transmitter having energy level ak at time k, given that
current channel quality is qk. The optimal value functions
Jk(ak, qk) for each stage k are related by the following dy-
namic programming recursion:

Jk(ak, qk) = max
0≤ck≤ak

{qk min(ck, P ) + Jk+1(ak − ck)} (1)

where Jk(ak) = Eqk [Jk(ak, qk)] and

Jk+1(ak − ck) = Eqk+1 [Jk+1(ak − ck, qk+1)]

At the last stage, stage n, the value function becomes

Jn(an, qn) = qk min(an, P )

The first term in equation (1), qk min(ck, P ), represents the
data throughput that can be obtained in the current stage by
consuming ck units of energy. The available energy in the next
stage is then ak − ck, and the term Jk+1(ak − ck) represents
the expected throughput that can be obtained in the future
given ak − ck units of energy.

The value function has a number of important properties
that should be explored.

Theorem 1:
Jk(ak, qk) and Jk(ak) are concave in ak for any fixed value

of qk.

Proof:
Given in appendix A.

The concavity properties of the expected value function
Jk(ak) dictate the nature of an optimizing consumption pol-
icy. The expected value function Jk+1(ak+1) for time k + 1
represents the expected throughput for saving energy at time
k. Since this function is concave, it translates into a decreas-
ing marginal throughput for saving energy. The marginal
throughput for consuming energy is also decreasing: it is qk

and then zero after the power limit is reached. The optimal
policy must apportion energy between these two concave func-
tions: at the optimum consumption point, either the marginal
rewards for saving and consuming energy are equal, or the op-
timal point is an extreme point.

More formally, let us assume that the variables ak, ck, qk,
and P are all integer. Further, define φk(qk) to be the smallest
x in the range 0 ≤ x ≤ a0 (where a0 is the initial energy in
the battery) such that

Jk+1(x + 1)− Jk+1(x) < qk



and set φk(qk) = a0 if such an x does not exist. Then it can
be shown [7] that an optimal policy is to let ck be

0 for ak ≤ φk(qk)
min(ak − φk(qk), P ) for φk(qk) < ak

In effect, φk(qk) is a threshold beyond which the through-
put gained by consuming exceeds the throughput gained by
saving. In other words, it is best to save the first φk(qk) energy
units in the battery and to use any extra units to transmit.

C Computation of the Value Function

If one assumes that the variables ak, ck, qk, and P are
integer, it is relatively easy to program a computer to perform
the dynamic programming recursion. However, execution time
can be slow. The major difficulty is computing the expectation
Eqk+1 [Jk+1(ak − ck, qk+1)] for every possible ak, qk, and k.
Evaluating this expectation requires a four-layer nested loop:
the algorithm must maximize over ck and consider all values
of ak and qk in each stage, and there are a total of n stages.

Fortunately, this process can be considerably simplified.
When ak = 0, it is clear that the value function is

Jk(0) = Jk+1(0)

= 0

When ak > 0 it can be shown that the value function can be
reformulated as

Jk(ak, qk) = Jk+1(ak)

+

min(ak,P )∑
ck=1

max(qk − J
′
k+1(ak − ck), 0) (2)

where J
′
k(ak) is the first difference of Jk(ak):

J
′
k(ak) = Jk(ak + 1)− Jk(ak)

Using equation (2), it is demonstrated in appendix B that
for ak > 0 the expected value function can be written as

Jk(ak) =Jk+1(ak) +

min(ak,P )∑
ck=1

{Gqk(�J
′
k+1(ak − ck)�)

− J
′
k+1(ak − ck)Fqk(�J

′
k+1(ak − ck)�)} (3)

where

Fqk(x) =

∞∑
qk=x

p(qk)

Gqk(x) =
∞∑

qk=x

qkp(qk)

and �·� is the ceiling operator that rounds up.
The above equation, although complicated in appearance,

is relatively easy to evaluate numerically. Note that Fqk(x),
and Gqk (x) do not change unless the probability distributions
for qk change with time. In any case, the calculations of
Fqk(x), Gqk(x), and J

′
k+1(ak) are extremely simple, there is

no maximization over ck, and the summation over ck for n
stages results only in a two-stage nested loop. This approach
leads to a considerably more efficient computation of expected
value.

D Markovian Model of an Unknown Channel

We now eliminate the assumption that the channel is known
just before the decision to transmit. Instead, it is assumed
that the current channel is unknown, but that the channel in
the previous stage is known and that the state of the channel in
the current time step is dependent on the state of the channel
in the previous time step. We model this channel dependency
as a Markov chain and extend the earlier results to this case.

The objective is again to maximize the quantity

E

[
n∑

k=1

qkck

]

by finding the best policy c1 . . . cn. The value function can be
formulated by writing

Jk(ak, qk−1) = max
0≤ck≤ak

{Eqk [qk min(ck, P )

+ Jk+1(ak − ck, qk)|qk−1]}

At the last stage, stage n, the value function is

Jn(an, qn−1) = Eqn [qn min(an, P )|qn−1]

The value function may be rewritten as

Jk(ak, qk−1) = max
0≤ck≤ak

{Eqk [qk min(ck, P )

+ Jk+1(ak − ck, qk)|qk−1]}
= max

0≤ck≤ak

{Eqk [qk|qk−1] min(ck, P )

+ Eqk [Jk+1(ak − ck, qk)|qk−1]

This expression is virtually identical to the non-Markovian
expression given in equation (1) and is concave by the same
induction arguments used to show the concavity of equation
(1) in the appendix. Because the value functions are so sim-
ilar, the results for the non-Markov case easily extend to the
Markov case. Let us define

Ĵk+1(ak, qk−1) = Eqk [Jk+1(ak, qk)|qk−1]

and let φk(qk−1) be the smallest x in the range 0 ≤ x ≤ a0

such that

Ĵk+1(x + 1, qk−1)− Ĵk+1(x, qk−1) < E[qk|qk−1]

and set φk(qk−1) = a0 if such an x does not exist. Then an
optimal policy is to let ck be

0 for ak ≤ φk(qk−1)
min(ak − φk(qk−1), P ) for φk(qk−1) < ak

It is clear from the above that in the Markovian model, the
expectation E[qk|qk−1] and probability distribution function
pqk(qk|qk−1) take the place of qk and pqk(qk) in the non-
Markovian case. The resulting optimal policy is directly anal-
ogous to the non-Markov policy.

III. Minimizing Energy

We have analyzed a situation where we have a given amount
of energy and wish to maximize the throughput within a fixed
time period. These results can be extended to the somewhat
more practical situation in which the transmitter has a given
amount of data that must be sent within a fixed time period,



and wishes to minimize the amount of energy required to do
so.

To a limited extent, we can fit this problem into the ex-
isting framework by taking what was previously energy to be
data. Let the variable dk denote the number of data units
remaining to be sent at time k, and sk the amount of data
that is actually sent at time k. As before, the channel quality
is given by the variable qk and each unit of data requires 1

qk

units of energy to transmit. We assume that the channel is
not known until just before time of transmission, but that the
probability distribution for the channel state pqk (qk) is known.
The transmission must be completed by time n, and we seek
to find best transmission policy s1 . . . sn that minimizes total
required energy:

minE

[
n∑

k=1

sk
1

qk

]

If there is no limit on the amount of energy that can be
consumed in each time step, a simple optimal stopping prob-
lem results. However, if we impose a power limit, the problem
becomes more interesting. The power limit effectively imposes
a limit on the throughput, given by Pqk where P is the power
limit and qk is the channel quality. If dk represents the amount
of data remaining to be sent, the dynamic programming cost
function can be formulated as

Jk(dk, qk) = min
0≤sk≤min(dk,Pqk)

{sk

qk
+ Jk+1(dk − sk)} (4)

where

Jk+1(dk − sk) = Eqk+1 [Jk+1(dk − sk, qk+1)]

This cost function for the power-minimization scenario
is very similar to the value function for the throughput-
maximization scenario, equation (1). Due to this similarity,
the earlier analysis holds to a large extent, with one impor-
tant caveat: When a power limit is imposed, the transmitter
is faced with the possibility that if an insufficient amount of
data is not transmitted early on, it may not be possible to
send all the data even at maximum power before time runs
out. It is therefore necessary to assign a cost Jn(dn, qn) for
not transmitting all the data before time n. One solution is to
impose an infinite energy penalty for not sending all the data.
In this case, the cost function at the last stage becomes

Jn(dn, qn) =

{
0 for dn ≤ 0
∞ for dn > 0

}

and we define sn
qn

= Jn(dn, qn).
Another option is to remove the power constraint at time

n and impose an extremely low data rate qn as a penalty
function:

Jn(dn, qn) =
1

qn
dn

where qn is predetermined and very small.

Theorem 2:
Under both definitions of Jn(dn, qn), the cost function

Jk(dk, qk) and the expected cost function Jk(dk) are convex
in dk for any fixed qk.

The proof of the theorem is extremely similar to the proof
given in the appendix showing concavity of the value func-
tion for throughput maximization. In fact, as long as Jn at
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Fig. 1: Channel Quality and Consumption

the final stage is a convex function of dn, Jk(dk, qk) can be
shown to be convex. As in the earlier case, the convexity of
the expected value function means that an optimal policy for
minimizing energy can be readily obtained. Furthermore, a
Markov model for the case where the channel is not known
before transmission can be derived as well.

The optimal policy for integer dk, sk, qk, and P is the
following: Define φk(qk) be the smallest x in the range 0 ≤
x ≤ d0 such that

Jk+1(x + 1)− Jk+1(x) > qk

and set φk(qk) = d0 if such an x does not exist. Furthermore,
when Jk(x+1) and Jk(x) are both infinite, we define Jk(x+
1)− Jk(x) to be infinite as well. Then an optimal policy is to
let sk be

0 for dk ≤ φk(qk)
min(dk − φk(qk), P qk) for φk(qk) < dk

In the infinite penalty case, it can be shown that for time
n − i and when qk takes on possible values between qmin and
qmax the expected cost function can be written in the form

Jn−i(dn−i) =

{
f(dn−i) for dn−i ≤ Piqmin

∞ for dn−1 > Piqmin

}
(5)

where f(x) is a finite convex function. When the value func-
tion is infinite, there is a finite probability of not completing
transmission by the deadline, even if one transmits at full
power during every remaining time slot.

The net effect of the cost function having the form given in
(5) is that the transmitter avoids missing the data throughput
target at all costs, even if the probability of missing the target
is vanishingly small. In some sense this is suboptimal; it may
be considerably more efficient if the algorithm is allowed to
use a policy that results in a miniscule probability of missing
the data throughput constraint.

IV. Example: Throughput Maximization

We now apply the throughput maximization procedure to
a simple scenario and compare its performance to a threshold
heuristic that transmits whenever channel quality is above a
fixed threshold. We find that no matter what the threshold
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Fig. 2: Average Throughput for Optimal Policy and Heuristics

is, we are able to obtain better average performance by using
the optimal algorithm developed above.

The scenario consisted of 50 time steps where channel
throughput per unit energy qk was integer and uniformly dis-
tributed between 1 and 50 during each time step. The initial
energy was 95 energy units and the power limit for each time
step was 10 units of energy.

As an example, we show a single randomly generated
channel state trajectory and the resulting optimal policy for
throughput maximization in figure 1. The figure also shows
the channel qualities and the consumption schedule as deter-
mined by the optimal policy.

Figure 2 shows the average throughput obtained by the
optimal policy and different threshold policies. The average
throughput for each policy was obtained by generating 500
different channel state trajectories and applying the policies
to each trajectory. The horizontal dashed line represents the
average throughput obtained by the optimal policy, and the
solid line plots the throughput obtained by a threshold pol-
icy as a function of the threshold. The leftmost point on
the curve corresponds to a greedy heuristic that transmits no
matter what the channel quality, while the rightmost points
correspond to heuristics that transmit only for the very best
channel states. As can be seen from the figure, the optimal
policy obtained a higher average throughput than any possible
threshold policy.

V. Conclusion

This paper developed a dynamic programming formulation
for maximizing throughput over a fading channel given con-
straints on time, energy, and power. Furthermore, a method
for efficiently obtaining a solution was presented. In addition,
the same approach was used to solve the problem of minimiz-
ing the energy required to send a fixed amount of data over a
fading channel given constraints on time and power.

VI. Appendix

A Proof of Theorem 1

We wish to show that the dynamic programming recursion
given in equation (1) is concave in ak for every qk. We say
that a function f : 
n → 
 is concave if for 0 ≤ λ ≤ 1 and
λ + λ = 1

f [λy + λz] ≥ λf(y) + λf(z)

The theorem can be proved by induction. First, note that
at time n, the value function Jn(an, qn) is piecewise linear
and concave in an. The expected value function Jn(an) =
Eqn [Jn(an, qn)] is then also concave to an since a linear com-
bination of concave functions is again concave.

Now assume Jk+1(ak+1) is concave in ak. We show that
Jk(ak, qk) is concave in ak. To complete the induction, note
that if Jk(ak, qk) is concave in ak, Jk(ak) is also concave in
ak, since it is a weighted sum of concave functions.

Let us look at Jk(x, qk) and Jk(y, qk) for arbitrary x and y.

Jk(x, qk) = max
0≤ck≤x

{qk min(ck, P ) + Jk+1(x − ck)}

Since Jk+1(ak+1) is nondecreasing with ak+1, the expression
above can be replaced by

Jk(x, qk) = max
0≤ck≤min(x,P )

{qkck + Jk+1(x − ck)}

There must be an optimizing value for ck. Denote this by cx
k.

Then

Jk(x, qk) = qkcx
k + Jk+1(x − cx

k)

Similarly,

Jk(y, qk) = qkcy
k + Jk+1(y − cy

k)

where cy
k is the optimizing value for ck for Jk(y, qk). Combin-

ing the two equations and weighting by λ or λ,

λJk(x, qk) + λJk(y, qk)

=λ{qkcx
k + Jk+1(x − cx

k)}+ λ{qkcy
k + Jk+1(y − cy

k)}
=qk[λcx

k + λcy
k] + λJk+1(x − cx

k) + λJk+1(y − cy
k)}

By the induction hypothesis, Jk+1(x − cx
k) and Jk+1(y − cy

k)
are concave in ck. Then

λJk(x, qk) + λJk(y, qk)

≤ qk(λcx
k + λcy

k) + Jk+1(λx + λy − λcx
k − λcy

k)

Now examine the range of the maximization. Since cx
k ≤ x and

cy
k ≤ y, we have that λcx

k + λcy
k ≤ λx + λy and λcx

k + λcy
k ≤

λP + λP . These expressions can be combined to obtain

λcx
k + λcy

k ≤ min(λx + λy, P )

and

λJk(x, qk) + λJk(y, qk)

≤ max
0≤ck≤min(λx+λy,P )

{qkck + Jk+1(λx + λy − ck)}

=Jk(λx + λy, qk)

This shows that Jk(ak, qk) is concave in ak. Since a linear
combination of concave functions is again concave, Jk(ak) is
also concave in ak, and the induction is complete.

B Calculation of the Value Function

We show that under the assumption that all variables are
integer, the value function for maximizing throughput given
in equation (1) can be expressed as equation (3) for ak > 0.

We first reformulate the dynamic programming equation
with the following lemma:



Lemma 1:
For ak > 0,

Jk(ak, qk) = max
0≤ck≤ak

{qk min(ck, P ) + Jk+1(ak − ck)}

= Jk+1(ak) +

min(ak,P )∑
ck=1

max(qk − J
′
k+1(ak − ck), 0)

where J
′
k(ak) is the first difference of Jk(ak):

J
′
k(ak) = Jk(ak + 1)− Jk(ak)

Proof:
This lemma results from the fact that every incremen-

tal unit of energy consumed generates qk units of immediate
throughput and each such unit causes J

′
k+1(·) units of future

throughput to be lost. Then, if c∗k is the optimizing value of
ck in equation (1), we have for c∗k > 0

qk ≥ Jk+1(ak − c∗k + 1)− Jk+1(ak − c∗k)

Since Jk+1(ak) is concave in ak, the above equation holds for
0 < ck ≤ c∗k and in that range

max(qk − J
′
k+1(ak − ck), 0) = qk − J

′
k+1(ak − ck)

When ck > c∗k, or c∗k = 0,

max(qk − J
′
k+1(ak − ck), 0) = 0

Then we obtain

min(ak,P )∑
ck=1

max(qk − J
′
k+1(ak − ck), 0)

= qkc∗k + Jk+1(ak − c∗k)− Jk+1(ak)

Adding Jk+1(ak) to both sides yields the lemma.

By definition, the expected value function is

Jk(ak) =Eqk [Jk(ak, qk)]

Writing out the expectation,

Jk(ak) =

∞∑
qk=0

pqk(qk)Jk(ak, qk)

Using lemma 1,

Jk(ak) =
∞∑

qk=0

pqk(qk)
{

Jk+1(ak)

+

min(ak,P )∑
ck=1

max(qk − J
′
k+1(ak − ck), 0)

}

=Jk+1(ak)

+

min(ak,P )∑
ck=1

{ ∞∑
qk=0

pqk (qk)max(qk − J
′
k+1(ak − ck), 0)

}

Eliminating the maximization by restating the summation
limits,

Jk(ak) =Jk+1(ak) +

min(ak,P )∑
ck=1

{
∞∑

qk=�J
′
k+1(ak−ck)�

pqk(qk)
[
qk − J

′
k+1(ak − ck)

]}

=Jk+1(ak) +

min(ak,P )∑
ck=1

{[ ∞∑
qk=�J

′
k+1(ak−ck)�

pqk(qk)qk

]

− J
′
k+1(ak − ck)

[ ∞∑
qk=�J

′
k+1(ak−ck)�

pqk(qk)
]}

Equation (3) directly follows.
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