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Abstract | This paper considers the link capacity

requirement for a N �N mesh-torus network under a

uniform all-to-all traÆc model. Both primary capac-

ity and spare capacity for recovering from link failures

are examined. In both cases, we use a novel method

of \cuts on a graph" to obtain lower bounds on capac-

ity requirements and subsequently �nd algorithms for

routing and failure recovery that meet these bounds.

Finally, we quantify the bene�ts of path based restora-

tion over that of link based restoration; speci�cally,

we �nd that the spare capacity requirement for a link

based restoration scheme is nearly N times that for a

path based scheme.

I. Introduction

The total capacity required by a satellite network to sat-
isfy the demand and protect it from failures contributes sig-
ni�cantly to its cost. To maximize the utilization of such a
network, we explore the minimum amount of spare capacity
needed on each satellite link, so as to sustain the original traf-
�c ow during the time of a link failure. In general, for a
link failure, restoration schemes can be classi�ed as link based
restoration, or path based restoration. In the former case, af-
fected traÆc (i.e. traÆc that is supposed to go through the
failed link) is rerouted over a set of replacement paths through
the spare capacity of a network between the two nodes termi-
nating the failed link. Path restoration reroutes the a�ected
traÆc over a set of replacement paths between their source
and destination nodes [1, 2, 3, 5, 6]. The obvious advantages
of using the link restoration strategy are simplicity and abil-
ity to rapidly recover from failure events. However, as we will
show later, the amount of spare capacity needed for the link
based scheme is signi�cantly greater than that of path based
restoration since the latter has the freedom to reroute the com-
plete source-destination using the most eÆcient backup path.
On the other hand, the path restoration scheme is less exible
in handling failures [1, 2, 3].

We investigate the optimal spare capacity placement prob-
lem based on mesh-torus topology which is essential for
the multisatellite systems. An n � n mesh-torus is a two-
dimensional (2-D) n-ary hypercube and di�ers from a binary
hypercube in that each node has a constant number of neigh-
bors (4), regardless of n. For the remainder of the paper, we
will refer to this topology simply as a mesh. In particular,
we are interested in the scenario where every node in the net-
work is sending one unit of traÆc to every other node (also
known as complete exchange or all-to-all communication) [7].
This type of communication model is considered because the
exact traÆc pattern is often unknown and an all-to-all model
is frequently used as the basis for network design. Even in
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the case of a predictable traÆc pattern, links of a particular
satellite will experience di�erent traÆc demand as the satel-
lite ies over di�erent location on earth. Thus, each link of
that satellite must satisfy the maximum demand. Again, all-
to-all traÆc model helps capturing this e�ect. Hence we also
assume that each satellite link has an equal capacity. Our
results, while motivated by satellite networks [9, 10, 11], are
equally applicable to other networks with a mesh topology
such as multi-processor interconnect networks [12, 13, 14] and
optical WDM mesh networks [2, 3]. Furthermore, while our
results are discussed in the context of an n� n mesh for sim-
plicity, they can be trivially extended to a more general n�m

topology, which is typically more representative in satellite
constellations.

When using the path restoration schemes, the restoration
can be performed at the global level by rerouting all the traf-
�c (both those a�ected or una�ected by the link failure) in
a network. However, this level of restoration requires recom-
puting a new path for each source-destination pair, thus it is
impractical if a restoration time limit is imposed or when dis-
ruption of existing calls is unacceptable. We can also perform
path restoration at the local level by rerouting only the traÆc
which is a�ected by the link failure. Obviously, the local level
recon�guration will require at least as much spare capacity
as the global level recon�guration since the former is a sub-
set of the latter. Nevertheless, as we show in section IV, the
lower bound on the spare capacity needed, using global level
recon�guration, can be achieved by using local level recon�g-
uration.

To obtain the necessary minimum spare capacity, our ap-
proach is to �rst �nd the minimum capacity, say C1, that
each link must have in order to support the all-to-all traÆc.
We then obtain a lower bound, C2, for the capacity needed
on each link to satisfy the all-to-all traÆc when one of the
links fails. Consequently, the minimum spare capacity needed,
Cspare, should be greater than the di�erence of C2 and C1.
Since we do not restrict the recon�guration (global level or
local level) used to calculate C2; C2 � C1 is a lower bound
on Cspare, both at global level and local level. We will show
that this lower bound on Cspare is achievable by using a path
based restoration algorithm at a local level. Thus, the mini-
mum spare capacity needed using path restoration strategy is
Cspare. Table I summarizes capacity requirements under link
based and path based restoration. Communication on a mesh
network has been studied in [4, 11, 14]. In [4], the authors
consider processors communicating over a mesh network with
the objective of broadcasting information. The work in [11]
presents routing algorithm generating minimum propagation
delay for satellite mesh networks. In [14], the authors propose
new algorithms for all-to-all personalized communication in
mesh-connected multiprocessors. These papers mentioned so
far did not look into capacity provisioning and spare capacity
requirement of the mesh network.
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Table 1: Capacity requirements under link based and

path based restoration.

Path based and link based restoration schemes have been
extensively researched [1, 2, 3, 5]. In [1], the authors study
and compare spare capacity needed by using link based and
path based schemes. The work of [5] provides a method for
capacity optimization of path restorable networks and quan-
tify the capacity bene�ts of path over link restoration. In [2,
3], the authors examines di�erent approaches to restore mesh-
based WDM optical networks from single link failures. In all
the aforementioned papers, the spare capacity problem is for-
mulated as an integer linear programming problem which is
solved by standard methods. Our paper addresses the mesh
structure for which we can get a closed form results for the
spare capacity.

The structure of this paper is as follows: Section II gives
necessary de�nitions and statement of the problem. In sec-
tion III, a lower bound on C1 is given along with a routing
algorithm achieving this lower bound. The lower bound C2

is presented also. We then show in section IV that the lower
bound on Cspare, C2 � C1, can be achieved by a path based
restoration algorithm. Section V concludes this paper.

II. Preliminaries

We start out with a description of the network topology and
traÆc model, and follow it with a sequence of formal de�ni-
tions and terminology that will be used in subsequent sections.

De�nition 1. The 2-dimensional N-mesh is an undirected
graph G = (V;E), with vertex set

V = f~a j ~a = (a1; a2) and a1; a2 2 ZNg;

where ZN denotes the integers modulo N , and edge set

E = f(~a;~b) j 9 j such that aj � (bj � 1) mod N

and ai = bi for i 6= j; i; j 2 f1; 2gg:

The above de�nition is from [7]. A 2-dimensional N -mesh
has a total of N2 nodes. Each node has two neighbors in the
vertical and horizontal dimension, for a total of four neighbors.
We associate each satellite with a �xed node, (a1; a2), in the
mesh. Undirected edges of the mesh are also referred to as
links. Fig. 1 shows a 2-dimensional 5-mesh. The notion 2-
dimensional 1-mesh is used to denote the case where N is
arbitrarily large, and it is the same as an in�nity grid.

De�nition 2. A cut (S; V � S) in a graph G = (V;E) is
partition of the node set V into two nonempty subsets, a set
S and its complement V � S.
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Figure 1: A 2-dimensional 5-mesh.

Here the notation Cut-Set(S; V � S) = f(~a;~b) 2 E j ~a 2
S;~b 2 V �Sg denotes the set of edges of the cut (i.e. the set of
edges with one end node in one side of the cut and the other
on the other side of the cut).

De�nition 3. The size of a Cut-Set(S; V � S) is de�ned as
C(S; V � S) =j Cut-Set(S; V � S) j.

For G = (V;E) and P(V ) denote the power set of the set
V (i.e. the set of all subsets of V ). Let Pn(V ) denote the set
of all n-elements subsets of V .

De�nition 4. Let G = (V;E) be a 2-dimensional N-mesh,
the function "N : Z+ ! Z+ is de�ned as

"N (n) = min
S2Pn(V )

C(S; V � S):

The function "N(n) returns the minimum number of edges
that must be removed in order to split the 2-dimensional N -
mesh into two parts, one with n nodes and the other with
N2�n nodes. Similarly, "1(n) is de�ned to be the minimum
number of edges that must be removed in order to split the
1-mesh into two disjoint parts, one of which containing n

nodes.
To achieve the minimum spare capacity, we consider the

shortest path algorithm. Shortest paths on 2-dimensional N -
mesh are associated with the notion of cyclic distance which
we will de�ne next [8].

De�nition 5. Given three integers, i, j, N , the cyclic dis-
tance between i and j modulo N is given by

DN (i; j) = minf(i� j)modN); (j � i)mod N)g:

III. Capacity Requirement without Link

Failures

To obtain the necessary capacity, C1, that each link must
have in order to support the all-to-all traÆc without link fail-
ure, we �rst provide a lower bound on C1. An algorithm
achieving the lower bound will also be presented. For the
proof of the lower bound on C1, we are aware of the existance
of a simpler proof (using Proposition 1 in [4]) than the one we
described below. However, the cut method we used here will
help us �nd the lower bound, C2, on the minimum capacity
needed on each link in the event of a link failure. Therefore,
we decide to use the same cut method consistently in proving
the lower bound on C1 and the lower bound C2.



A. A Lower Bound on the Primary Capacity

To �nd a lower bound on C1, we state the following lemmas
which will prove to be useful tools in the subsequent sections.
Proofs of these lemmas are omitted for brevity, and they can
be found in [16].

Lemma 1. Let G = (V;E) be an in�nite mesh. An arbitrary
set Wn 2 V such that "1(n) = C(Wn;Wn) must satisfy the
following properties:

1. 8x 2 Wn; 9 y 2 Wn such that (x; y) 2 E. In other
words, nodes in Wn should be connected.

2. Nodes in Wn should be clustered together to form a rect-
angular shape (including square) if possible.

3. "1(n) is an even number for all n 2 Z+.

4. "1(n) is a monotonically nondecreasing function of n.

Lemma 2. Let G = (V;E) be an in�nite mesh, then

"1(n2) = 4n

and

"1(n2 + k) =

�
4n+ 2 for 1 � k � n

4n+ 4 for n+ 1 � k � 2n+ 1

for n; k 2 Z+ where Z+ denotes the set of positive integer.

The above lemma gives the minimum number of edges that
must be removed from E in order to split a speci�ed number
of nodes from the mesh. Intuitively, the set of n nodes to be
removed from the mesh must be clustered together.

Corollary 1. For "1(n) de�ned in above lemma, "1(n) �
4
p
n for n 2 Z+.

Corollary 2. Let G = (V;E) be an in�nite mesh with an
arbitrary link failure, then

"1(n2) = 4n� 1

and

"1(n2 + k) =

�
4n+ 1 for 1 � k � n

4n+ 3 for n+ 1 � k � 2n+ 1

for n; k 2 Z+ where Z+ denotes the set of positive integer.

So far the function "1(n) has been the focus of our dis-
cussion. Since the satellite network that we model is a 2-
dimensional N -mesh, it is essential to know "N(n). In a 2-
dimensional N -mesh, a horizontal row of nodes (a vertical
column of nodes) forms a horizontal (vertical) ring. When n

is very small compared toN , splitting a set of n nodes from the
N -mesh is similar to cutting the set of n nodes from1-mesh;
more precisely, "1(n) = "N(n). The ring structure of the
2-dimensional N -mesh does not a�ect the minimum size of a
cut when n is relatively small. Nevertheless, when n is large,
taking advantage of the ring structure of the 2-dimensional
N -mesh will result in "N(n) < "1(n).

Now, let's de�ne the following sets:

A1 �f1; 2; : : : ; N
2

4
g;

A2 �fx j x 2 fN
2

4
+ 1; : : : ;

N2

2
g and (xmod N) 6= 0g;

A3 �fx j x 2 fN
2

4
+ 1; : : : ;

N2

2
g and (xmod N) = 0g;

O1 �f1; 2; : : : ; N
2 � 1

4
g;

O2 �fx j x 2 fN
2 � 1

4
+ 1; : : : ;

N2 + 1

2
g

and (xmod N) 6= 0g; and

O3 �fx j x 2 fN
2 � 1

4
+ 1; : : : ;

N2 + 1

2
g

and (xmod N) = 0g:

Lemma 3. Let G = (V;E) be a 2-dimensional N-mesh, for
N even,

"N(n) =

8<
:

"1(n) for n 2 A1

2N + 2 for n 2 A2

2N for n 2 A3

for N odd,

"N(n) =

8<
:

"1(n) for n 2 O1

2N + 2 for n 2 O2

2N for n 2 O3

Theorem 1. On a 2-dimensional N-mesh, the minimum ca-
pacity, C1, that each link must have in order to support all-

to-all traÆc is at least N3

4
for N even, and N3�N

4
for N odd.

Proof. Consider a �xed n between 1 and N2 � 1. The idea
is to use a cut to separate the network (N -mesh) into two
disjoint parts, with one part containing n nodes and the other
containing N2�n nodes. Based on the all-to-all traÆc model,
we know the exact amount of traÆc, Ccross = 2n(N2 � n),
that must go through the cut. Therefore, from max-ow min-
cut theorem [15] we know that simply dividing Ccross by the
minimum size of cutset "N (n) will give us a lower bound on C1,
and let's call this bound Bn. It implies that each link in the
network must have capacity of at least Bn in order to satisfy
the all-to-all traÆc demand. This prompts us to �nd BC1

max

which is the maximum of Bn over all n 2 f1; : : : ; N2 � 1g.
We say that BC1

max is the best lower bound for C1 in the sense
that it is greater or equal to any other lower bound for C1.

For N even, let

B
C1
max = max

n2f1;::: ;N2�1g

�
2(N2 � n)n

"N (n)

�
(1)

= max

�
max
n2A1

�
2(N2 � n)n

"1(n)

�
;

max
n2A2

�
2(N2 � n)n

2N + 2

�
;

max
n2A3

�
2(N2 � n)n

2N

��
: (2)

The case for N odd is the same except that A1;A2; and A3 in
(2) are replaced byO1;O2; and O3. Solving the maximization
problem, we get

B
C1
max =

8<
:

max
n
�e;

N4

2(2N+1)
; N

3

4

o
for N even

max
n
�o;

N4�1
2(2N+1)

; N
3�N
4

o
for N odd



where �e (�o) in the above equation is the result of the �rst
term of equation (2) for N even (odd). Here, explicit evalua-
tion of �e and �o is unnecessary. Instead, by using Corollary
1, an upper bound on �e and �o will be suÆcient for us to solve
the maximization problem. Since "1(n) � 4

p
n for n 2 Z+,

the following equation holds:

�e = max
n2A1

�
2(N2 � n)n

"1(n)

�
� max

n2Z+

�
2(N2 � n)n

"1(n)

�

� max
n2Z+

�
2(N2 � n)n

4
p
n

�
=

3N3

16
<

N3

4

�o <
N3�N

4
can be shown similarly. Thus, we have

B
C1
max =

(
N3

4
for N even

N3�N
4

for N odd

Corollary 3. On a 2-dimensional N-mesh with an arbitrary
link failed, the lower bound, C2, on the minimum capacity
that each link must have in order to support all-to-all traÆc

is N4

2(2N�1)
for N even, and N2(N2�1)

2(2N�1)
for N odd.

B. Algorithm Achieving the Lower Bound on C1

In this section, we show that the lower bound on C1 can be
achieved by using a simple routing algorithm called the Di-
mensional Routing Algorithm. As we have mentioned ear-
lier, the routing algorithm will use the shortest path between
source and destination nodes. Below is a description of the
Dimensional Routing Algorithm:

1. From the source node ~p = (p1; p2), move horizontally in
the direction of shortest cyclic distance to the destina-
tion node ~q = (q1; q2); if there is more than one way to
route the traÆc, pick the one that moves in the (+) di-
rection (mod N), i.e. (p1; p2)! ((p1+1)modN; p2)!
((p1 + 2)mod N; p2)! � � � ! (q1; p2): Route the traÆc
for DN (p1; q1) hops where DN (p1; q1) denotes the short-
est cyclic distance (hops) between ~p and ~q in horizontal
direction.

2. Move vertically in the direction of shortest cyclic dis-
tance to the destination node; if there is more than one
way to route the traÆc, pick the one that moves in the
(+) direction (mod N). Route the traÆc for DN (p2; q2)
hops where DN (p2; q2) denotes the shortest cyclic dis-
tance (hops) between ~p and ~q in vertical direction.

Theorem 2. Let G = (V;E) be a 2-dimensional N-mesh, by
using the Dimensional Routing Algorithm above, to satisfy the

all-to-all traÆc, the maximum load on each link is N3

4
for N

even and N3�N
4

for N odd.

IV. Capacity Requirement for Recovering from

A Link Failure

Under the condition of an arbitrary link failure, we inves-
tigate the spare capacity needed to fully restore the original
traÆc, using the link based restoration method and path based
restoration method.

A. Link Based Restoration Strategy

Consider that an arbitrary link, l~u~v (connecting nodes ~u and
~v), failed in the 2-dimensional N -mesh. We know from the

previous section that there are N3�N
4

(N
3

4
) units of traÆc on

l~u~v have to be rerouted for N odd (even). Since the link based

restoration strategy is used here, these N3�N
4

units of traÆc in
and out of node ~u have to be rerouted through the remaining
three links connecting to node ~u (l~u~v is already broken). We
then have the following theorem:

Theorem 3. Using link based restoration strategy in the
event of a link failure, the minimum spare capacity that each

link must have in order to support the all-to-all traÆc is N3�N
12

for N odd and N3

12
for N even.

Proof in [16].

B. Path Based Restoration Strategy

B.1 Lower Bound on the Minimum Spare Capacity

Theorem 4. On a 2-dimensional N-mesh with an arbitrary
failed link, the minimum spare capacity, Cspare, that each
link must have in order to support all-to-all traÆc is at least

N3

4(2N�1)
for N even, and N3�N

4(2N�1)
for N odd.

Proof. From Theorem 2, for a regular 2-dimensional N -mesh,
we know that the capacity that each link must have in order

to satisfy all-to-all traÆc is N3

4
for N even, and N3�N

4
for N

odd. In case of an arbitrary link failure, from Corollary 3, at

least a capacity of N4

2(2N�1)
(N

2(N2�1)
2(2N�1)

) is needed on each link

to sustain the original traÆc ow for N even (odd). We need
to have an extra capacity of Cspare � C2 � C1 on each link.
Thus, we have

Cspare �
(

N4

2(2N�1)
� N3

4
= N3

4(2N�1)
for N even

N2(N2�1)
2(2N�1)

� N3�N
4

= N3�N
4(2N�1)

for N odd

B.2 Algorithm Using Minimum Spare Capacity

In this section, we will show that the minimum spare capac-

ity needed on each link is N3

4(2N�1)
for N even and N3�N

4(2N�1)

for N odd. In other words, the lower bound in Theorem 4
is tight. We show the achievability by presenting a primary
routing algorithm, and subsequently, a path-based recovery
algorithm which fully restores the original traÆc by using the
minimum spare capacity in case of a link failure. We focus
on the case of N odd for simplicity. To show the achievability
for N even, a di�erent set of primary routing algorithm and
recovery algorithm is needed (not presented in this paper).

First, we describe the primary routing algorithm that we
call Rotational Symmetric Routing Algorithm, or RS Rout-
ing Algorithm, used to route the all-to-all traÆc. We use the
RS Routing Algorithm instead of the Dimensional Routing
Algorithm as our primary routing algorithm because the for-
mer simplify the construction and analysis of the restoration
algorithm. Speci�cally, with the Dimensional Routing Algo-
rithm, the traÆc routes on horizontal and vertical links are
not symmetric; hence a di�erent restoration algorithm would
be required for vertical and horizontal link failure. In con-
trast, the RS Routing Algorithm is symmetric and vertical or



horizontal link failure can be treated using the same recovery
algorithm. The case of a horizontal link failure is the same as
the vertical link failure if we rotate the topology by 90Æ.

RS routing algorithm

Each node ~a in a 2-dimensional N -mesh has a pair of integers
(a1; a2) associated with it. To route one unit of traÆc from
the source node ~p to the destination node ~q, do the following:

1. Change coordinate and compute the relative position of
the destination node with respect to the source node.
Speci�cally, shift the source node to (0; 0) by apply-
ing the transformation T~p. Here, the transformation

T~p : ZN � ZN ! ZN � ZN is de�ned as ~d = T~p(~q) =
T~p(q1; q2) = (d1; d2), where for i = 1; 2

di =

8>>>>>><
>>>>>>:

qi � pi;

if � N�1
2

� qi � pi � N�1
2

(qi � pi) mod N;

if � (N � 1) � qi � pi < �N�1
2

�([�(qi � pi)] mod N);
if N�1

2
< qi � pi � N � 1

Here, (�n) mod p is de�ned as p � n mod p if 0 <

n mod p < p. Thus, we will have T~p(~p) = (0; 0). Fig. 2
illustrates this transformation.
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Figure 2: Change of coordinate by using transformation

T~p.

2. Divide the nodes of the 2-dimensional N -mesh into four
quadrants with the source node as the origin (shown in
Fig. 2). Spec�cally, let

Q1 = f(a; b) j a; b 2 ZN

and 0 � a � N � 1

2
; 0 < b � N � 1

2
g;

Q2 = f(a; b) j a; b 2 ZN

and � N � 1

2
� a < 0;�N � 1

2
� b � 0g;

Q3 = f(a; b) j a; b 2 ZN

and � N � 1

2
� a � 0;�N � 1

2
� b < 0g; and

Q4 = f(a; b) j a; b 2 ZN

and 0 < a � N � 1

2
;�N � 1

2
� b � 0g:

3. If ~d = T~p(~q) 2 (Q1 [ Q3), route the traÆc vertically in
the direction of shortest cyclic distance to the destina-
tion node by DN (p2; q2) hops. Then, route the traÆc
horizontally in the direction of shortest cyclic distance
to the destination node by DN (p1; q1) hops.

If ~d = T~p(~q) 2 (Q2 [ Q4), route the traÆc horizontally
in the direction of shortest cyclic distance to the desti-
nation node by DN (p1; q1) hops. Then, route the traÆc
vertically in the direction of shortest cyclic distance to
the destination node by DN (p2; q2) hops.

Now, considering all traÆc that has a particular node ~c as
their destination, their routing paths are rotational symmetric
by the above algorithm. That is, rotating all of the routing
paths by an integer multiple of 90Æ will result in having the
same original routing con�guration. RS routing algorithm also
achieves the lower bound on C1. The proof is straightforward
and thus omitted here.
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Figure 3: Routing path of the restoration algorithm

Our goal here is to recover the original traÆc ow by adding
an extra amount of capacity, which is equal to the lower bound



calculated in Theorem 4, on each link. Now, we present an
example to illustrate the key ideas of the recovery algorithm.
Without loss of generality, suppose that link l

~c~d
failed in the

2-dimensional 7-mesh shown in Fig. 3(a). We need to �nd all
possible source destination pairs (S-D pairs) that are a�ected
by the failed link �rst. From theRS routing algorithm, these S-
D pairs can be determined exactly. Speci�cally, let the source
node be ~s and destination node be ~t. The set of failed traÆc
F is de�ned as F = F1 [ F2 [ F3 [ F4 [ F5 [ F6 where

F1 = f(~s;~t) j ~s 2 A2 and ~t 2 L4;DN (s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g;

F2 = f(~s;~t) j ~s 2 L2 and ~t 2 A3;DN (s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g;

F3 = f(~s;~t) j ~s 2 A4 and ~t 2 L2;DN (s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g;

F4 = f(~s;~t) j ~s 2 L4 and ~t 2 A1;DN (s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g;

F5 = f(~s;~t) j ~s 2 L4 and ~t 2 L2;DN (s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g; and

F6 = f(~s;~t) j ~s 2 L2 and ~t 2 L4;DN (s1; t1) � N � 1

2

and DN (s2; t2) � N � 1

2
g:

In the 2-dimensional 7-mesh with a link failure, the sets A1,
A2, A3, A4, L2 and L4 are shown in Fig. 3(a). More generally,
with a failed vertical link connecting nodes ~v = (v1; v2) and
~u = (v1; (v2 + 1)modN), after taking the transformation T~v,
we can de�ne these sets as the following:

A1 = f(a; b) j a; b 2 ZN and 1 � a � N � 1

2
;

1 � b � N � 1

2
g;

A2 = f(a; b) j a; b 2 ZN and � N � 1

2
� a � �1;

1 � b � N � 1

2
g;

A3 = f(a; b) j a; b 2 ZN and � N � 1

2
� a � �1;

� [
N � 1

2
� 1] � b � 0g;

A4 = f(a; b) j a; b 2 ZN and 1 � a <
N � 1

2
;

� [
N � 1

2
� 1] � b � 0g;

L2 = f(a; b) j a; b 2 ZN and a = 0;

1 � b � N � 1

2
g; and

L4 = f(a; b) j a; b 2 ZN and a = 0;

� [
N � 1

2
� 1] � b � 0g:

A simple way for recovering a failed traÆc is to reverse its
routing order. That is, if the primary routing scheme is to
route the traÆc horizontally in the direction of shortest cyclic
distance �rst, the recovery algorithm will route the traÆc ver-
tically �rst (shown in Fig. 3(b)). Thus, traÆc that is supposed
to go through the failed link will circumvent the failed link.
Consider now the vertical links crossing line � in Fig. 3(a)
and the a�ected traÆc in the set F1 [F2 [F3 [F4. Rerouting
(i.e. reversing the routing order) all of the a�ected traÆc in
F1[F2[F3[F4 through the vertical links crossing line � will
add an additional 12 units of traÆc on each of these six vertical
links. Fig. 4(a) illustrates the recovering paths of the traÆc
(originating from nodes a0, b0, and c0) in the set F1, which are
being rerouted through the link l~c0 ~d0

. Recovering paths for the
traÆc in F2, although not shown here, is just a ip of Fig. 4(a)
with respect to the line �. The total amount of rerouted traf-
�c in F1 [ F2 added on link l~c0 ~d0

, which is 12, exceeds the

lower bound of spare capacity, C2 � C1 = d N3�N
4(2N�1)

e = 7.
However, utilizing the ring structure of the mesh topology, we
can reroute half of the a�ected traÆc through links crossing
line � (illustrated in Fig. 4(b)). This way, we have a total of
six units traÆc through the link l~c0 ~d0

(three from F1 and three
from F2). For the traÆc in the set F5[F6, we can reroute half
of them (six units) through the link l~g~a. The remaining six
units of traÆc can be routed evenly through the six vertical
links crossing line �. Thus, we can restore the original traÆc
ow by using only an additional C2 � C1 amount of capacity
on each vertical link.
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Figure 4: Restoration path for the 2-dimensional 7-mesh

So far we have only discussed the load on a vertical link.
Now, we will address the question of whether the additional
traÆc on each horizontal link will exceed C2 � C1. For ex-
ample, on the link l~d0 ~d

in Fig. 3(a), one may �nd that the
number of rerouted traÆc from the set F1 [ F2, nine, exceeds
C2 � C1 = 7 after reversing the routing order of the a�ected
traÆc. However, as we reroute the a�ected traÆc circumvent-
ing the failed link, we not only put an additional nine units
of traÆc (~s 2 A2;~t = ~d) on link l~d0 ~d

but also take nine units

of traÆc (~s 2 L2;~t 2 L3) away from link l~d0 ~d
. Overall, we

have zero additional rerouted traÆc from the set F1 [ F2 go
through link l~d0 ~d

. Nevertheless, traÆc in the set F5 [ F6 does
add extra units of traÆc on the link l~d0 ~d

. By rerouting half
of the traÆc in F5 [ F6 (six) through the link l~g~a (without
using any horizontal link), we can then distribute the rest of



the traÆc in F5 [ F6 (six) evenly, so as to satisfy the spare
capacity constraint.

As we have mentioned earlier, only the traÆc in the setS6
i=1 Fi are being rerouted in our path based recovery algo-

rithm. TraÆc which is una�ected by the failed link remains
intact in the recovery algorithm.

Lastly, we cannot include the full details of the path based
restoration algorithm in this paper due to space limitation.
For the same reason, we state the following theorem, which
shows that the lower bound on the spare capacit (C2 �C1) is
indeed achievable, without proof.

Theorem 5. On a 2-dimensional N-mesh, to restore the
original all-to-all traÆc in the event of a link failure, we need a

spare capacity of N3�N
4(2N�1)

on each link for N odd and N3

4(2N�1)

for N even by using the restoration algorithm.

V. Conclusion

This paper examines the capacity requirements for mesh
networks with all-to-all traÆc. This study is particularly use-
ful for the purpose of design and capacity provisioning in satel-
lite networks. A novel technique of cuts on a graph is used
to obtain a tight lower bound on the capacity requirements.
This cut technique provides an eÆcient and simple way of ob-
taining lower bounds on spare capacity requirements for more
general failure scenarios such as node failures or multiple link
failures.

Another contribution of this work is in the eÆcient restora-
tion algorithm that meets the lower bound on capacity re-
quirement. Our restoration algorithm is relatively fast in that
only those traÆc streams a�ected by the link failure must be
rerouted. Yet, our algorithm utilizes much less spare capacity
than link based restoration (factor of N improvement). Fur-
thermore, in order to achieve high capacity utilization, our
algorithm makes use of capacity that is relinquished by traÆc
that is rerouted due to the link failure (i.e. stub release [5]).

Interesting extensions include the consideration of node
failures, for which �nding an eÆcient restoration algorithm
is challenging, as well as considering the impact of multiple
link failures. Finally, for the application to satellite networks,
it would also be interesting to examine the impact of di�erent
cross-link architectures.
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