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Abstract -- In this paper we develop fundamental convexity 8(t) (Uncontrollable

properties of unfinished work and packet waiting time in a work background input)
conserving */*/1 queue. The queue input consists of an uncontrol- Collection of
lable background process and a rate-controllable input stream. INputs Xy,... %}
We show that any moment of unfinished work is a convex func- LM
tion of the controllable input rate. The convexity properties are 1——» @—>
then extended to address the problem of optimal routing of arbi- 2——»
trary input streams over a collection of N queues in parallel with M _._> \
different (possibly time-varying) linespeeds fi;(t),... iy (t)). Our X(t) (Rate controllable)

convexity results hold for stream-based routing (where individual Figure 1: A work conserving queue with server linespged */*
packet streams mgst be routed to the same queue) as well as for background inputd(t), and rate-controllable */* inputsX(t) =
packet-based routing where each packet is routed to a queue {X4(0),.. X (O},

using some pre-determined splitting method, such as probabilis-

tic splitting. Our analysis of these general systems is carried out case of an asymmetric collection of parallel queues, we
by introducing a new function of the superposition of two input develop a sequentially greedy routing algorithm that is opti-
streams that we call theblocking function. Using this function mal.

facilitates analysis and provides much insight into the sample  The convexity results and optimization methods are
path dynamics of */*/1 queues. extended to treat queues with time-varying linespeeds
(1 (D),..., uN(D). We show that the amount of unprocessed bits

in the multi-queue system remains convex in the input rate

In this paper we examine a work conserving */*/1 queUgqcior o, . A). However, we demonstrate that waiting
and develop fundamental monotonicity and convexity prop&fges are not necessarily convex for general time varying

ties of unfinished work and packet waiting time in the queygegpeed problems. For simplicity of exposition, we postpone
as a function of the packet arrival rake The “*/*" notation 4 time-varying analysis until section V.

refers to the fact thqt the input process has arbitrarily diSt”beonvexity of single and parallel collections of queues has
uted and correlated interarrival imes and packet lengths. (TRiSe, addressed previously with various assumptions about the
differs from the standard GI/G! description, where interarivaj,y e of the input processes and the service time processes. In
times and packet lengths are independent and identically d[l " the authors develop a convexity theory of “multi-modular
tributed). The arrival process consists of the superposition f‘g{wctions” and use this theory to develop an optimal admis-
two component streams: an arbitrary and uncontrollable baglf(-)n control in a D/D/1 queue with fixed batch arrivals. In
ground input of the */* type, and a rate-controllable packgb 31 e authors analyze the expected packet occupancy in
stream input (Fig. 1). The rate-controllable stream containg2e networks of deterministic service time queues. It is shown
collection of indistinguishable */* substreams, and its rate ig, 5 expected occupancy of any interior queue of the tree is a

varied in discrete steps by adding or removing these syls,caye function of the multiple exogenous input rates, while

streams as inputs to the queue. We show that any momengaf,hancy in queues on the edge of the network are shown to
unfinished work is a convex function of this input rate. Undgla ~onvex. Convexity properties of parallel GI/GI/1 queues

the special case of FIFO service, we show that waiting timyg, packet-based probabilistic “Bernoulli” routing are devel-
moments are also convex. oped in [4].

We .then exter_ld the convexity result to address the p.robler'rbur treatment of the convexity problem for streams of
of optimally routlr)g input _streams over a parallel collection %puts is an important feature, since packets from a single
N queues with different linespeedsy(...,iy). We show that g rce often must be routed together to maintain predictability
cost functions consisting of convex combinations of unfiy,q 14 prevent out-of-order delivery. However, we also treat
ished work moments in each of the queues are convex in {i nacket-based routing method of [4] in a more general (yet
N-dimensional rate tupleAg,...Ay). In the symmetric case gjmpier) context. Rather than emphasizing the differences
where theN queues are weighted equally in the cost functiogeyeen packet-based and stream-based routing, we discover
and have identical background processes, this convexity resif, , yamental similarity. We consider packet-based routing of
implies that the uniform rate allocation minimizes cost. In thg general */* input stream whose rate can be split according to

This work was supported by the Defense Advanced Research Project® continuous rate parameter, using a splitting method such as

Agency (DARPA) under the Next Generation Internet (NGI) initiative.  the probabilistic “Bernoulli” splitting in [4]. We find that con-
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vexity for this packet-based routing problem is a consequence

of our stream_-b_ased r_esults. _ _ _ X > L&
Our analysis is carried out by introducing a new function of

the superposition of two input streams that we call thaxk-

ing function Properties of the blocking function are developed X(t) I3

by examining sample paths of work conserving queues, and

each property corresponds to an intuitive comparison of two

different queueing system configurations. These properties are '1 ,
then used to establish the convexity and optimal routing N A a3 t
results.

Ux(t)

Il. THE BLOCKING FUNCTION FOR */*/1 QUEUES

Consider a work conserving queue with a single server that
can process packets at a line speedgl dits/second (Fig. 2). ) ) .t
Variable length packets from input streaxhflow into the Figure 2: A work conserving */*/1 queue, and typical sample
queue and are processed at the single server according to ajAths ©f accumulated and unfinished work.
work-conserving service discipline (e.g., FIFO, LIFO, Shortsuperposition proces§ +X, is alwaysgreater than or equal to
est Packet First, GPS, etc.). The input stream is characterizg@ sum of the work in two identical queues with these same
according to two random processe3:The sequenced} of  processeX; andX, entering them individually. This is illus-
inter-arrival times, andii) The sequence I} of packet trated in Fig. 3.
lengths. Proof of Observationl: We compare the two system config-
We assume the processegg{ and {I,} are ergodic with urations of Fig. 3. Sinc&x;,x A1) is the same for all work
arrival rate and average packet lengg{L), respectively. In  conserving service disciplines, we can imagine that packets
general, inter-arrival times may be correlated with each othéfom the X; stream have preemptive priority ovks packets.
as well as jointly correlated with the packet length processhe queueing dynamics of thg packets are therefore unaf-
We maintain this generality by describing the input to théected by any low priorityX, packets. Thus, th&y.x(t)
queue by the single random proce&s), which represents the function can be written asJy,(t) plus an extra amount
amount of bits brought into the queue as a function of time. Agxtra_X%(t) due to theX, packets, as shown in Fig. 4. This
shown in Fig. 2, a particular inpuX(t) is a non-decreasing extra amount (represented as the striped region in Fig. 4) can
staircase function. Jumps in tit) function occur at packet be thought of as the amount of unfinished work remaining in
arrival epochs, and the amount of increase at these timestig: queue with theX, input stream alone, where the server
equal to the length of the entering packet. The accumulatefes on idle “vacations” exactly at times whigg4(t) is non-
amount ofwork brought into the queue can be writtenX{$)/  zero. Clearly, this unfinished work is greater than or equal to

H, which has units of time. the unfinished work there would be if the server did not go on
For a given queue with input proceXgt), we represent the vacations--which i&Jy,(t). Thus:
amount ofunfinished workn the system at time as Uy(t)-- Uy +xa(t) = Uyq(t) +extraXy(t) = Uy (t) + Uy,(t). O

the total amount of time for all packets in the queueing system This simple observation motivates the following definition:
(queue plus server) to empty if no more packets were to arrive.

We assume the queue is initially empty at titw@. It is clear  Definition: The Blocking FunctionBy; xo(t) between two
that Ux(t) is the same for all work conserving service discistreamsx; andX, is the function:

plines. It is completely determined bX(t) as well as the :

server linespeeqi. An example unfinished work function B, x2() = Uz +xa(t) =Uxa(t) = Uxa(t). )

Ux(t) is shown in Fig. 2. Notice the triangular structure and g, the blocking function is a random process which rep-
the fact that each new triangle emerges at packet arrival timgSsents the extra amount of unfinished work in the system due
and has a downward slope of -1. to the blocking incurred by packets from tkg stream mixing

Now consider a new input streaky+X; which is the super- it the X, stream. From this definition, we immediately find
position of two input streamX;, X,. We make the following ¢or 411 timest:

sample path observation, which holds for any arbitrary set of

sample pathiy(t), X(0): Lemma 1By, y,(t) 20 (non-negativity) (3)
Observation 1for all timeg, we have: Lemma 2By, x»(t) = Byz xa(t) (Symmetry) (4)
Uyq +xo(t) 2 Uy (1) + Uyo(t) | 1) Lemma 3 By, , xp x3(t) 2 Bxy, x3(t) (Monotonicity) (5)

Thus, for any two input(; and X5, the amount of unfin-  The non-negativity lemma above is just a re-statement of
ished work in a work conserving queueing system with thél), while the symmetry property is obvious from the blocking
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Figure 4: An example sample path of the unfinished work function
Uypxo(t) Uyq(t) + Uyo(t) Ux1+x2(t) in a system wher¥, packets have preemptive priority.
Figure 3: A queueing illustration of the non-negativity property Of Packets i_” a FIFO queueing system With.input Str@?('")l
of the blocking function. We can define th®ccupancy Blocking Functiamy; xAt) ina

manner similar to (2):
function definition. Below we prove the monotonicity lemma.
Proof of Lemma3 (Monotonpicitv) From the defini)t/ion of O, x2(t) = Nxaxa(t) =Nya(t) =Ny (1) (10)
the blocking function in (2), we find that the monotonicity \jith this new definition of blocking in terms of packet
statement is equivalent to the following inequality at everyccypancy, it can be shown that the non-negativity and sym-
timet: metry  properties  stil  hold  dyy xo(1)20
(6) Oy x2(t) = axy xi(t) ). However, below we furnish a coun-
terexample that demonstrates that, even under FIFO service,

Uxp+xz2+x3(t) + Uyxg(t) 2 Uy o xo(t) + Uyq o xa(t)

We have illustrated (6) in Fig. 5. We thus prove that the sur%he occupancymonotonicity property does not hold for gen-

. : : . eral variable length service time systems.
of the unfinished work in Systems A and B of Fig. 5 is greater (Counter) Example: Under FIFO service with variable

than or equal to the sum in A' and B' length packets, the monotonicity property of the packet occu-
In a manner similar to the proof of Observation 1, we give ginp ' Y Property P

packets from both thX; and X, streams preemptive priority pancy bIock|n>g function dfoes I?O.t hold_,r;].e., st true thaﬁ
over X3 packets. The queues of Fig. 5 can thus be treated géél"xzyx?ét) ‘tGXL X3(t)x o)r(a t'm?tt'. © ciour]:terexamiet
having servers that take “vacations” from servixgpackets 'S fo const e'r streams;, X, X5 consisting only of one packe
during busy periods caused by the other streams. Compariﬁ%Ch’ where:

the A and A systems, as well as the B and B’ systems, we -The X3 packet enters at t!me 0 W!th service t!me 1.
have: -The X, packet enters at time 1 with service time 10.

) -TheX; packet enters at time 2 with service time 1.
Uxisx2+xa(t) = Uxgxo(t) +extra_in_System_A(f]) We look at timet=4. At this time, we haveNy;(4) = 0.
. , When X; and X, are combined, th&, packet blocks theX

Uxtaxs(t) = Ua(t) +extra_in_System_B'(t) (8) packet %rom béing served, hen¢d;<i+x2(4) =2. Likewisé,
whereextra_in_System_A(tepresents the amount of unfin-Nx1.4x3(4)=2, since theX, and X3 packets are both long in
ished work fromX3 packets in a queue whose server takesomparison to th&; packet. However, because of this, when
vacations during busy periods caused by #g and X, theXzpacketis applied to a queue with thgandX, packets,
streams. Likewise, extra_in_System_B’(t)represents the it will not generate any extra packets due to blocking. Hence,
amount of unfinished work frorXs packets when vacations Nx1+x2+x3(4) =3, and:
are only duringX; busy periods. Since busy periods caused by Ny . o+ x3(4) + Ny1(4) = 3
the X; stream are subintervals of busy periods caused by the
combinedX;+X, stream, theXs packets in System A experi- <4 = Nyq xo(4) + Nyq x3(4). (11)
ence longer server vacations, and we have:

extra_in_System_A(#) extra_in_System_B'(t) (9
extra_in_System_A() extra_in_System B0 () X, _p——) X, —
Using (7)-(9) verifies (6) and concludes the praof. Xo — — X : A |
Intuitively interpreted, the monotonicity Lemma 3 means X5 > > 2
that the amount of blocking incurred by th¥;¢X,) process =

intermixing with the X3 process is larger than the amount u X1 — B’ M
incurred by theX; process alone mixing with thé; process. X, — B [ Xy — P —
These three lemmas alone are sufficient to develop some 3
very general convexity results for unfinished work in */*/1 U
+ t) + U t
queues. It seems reasonable to suspect that the same thredx1ex2xal) + Uxa() xaxa) + Uxaxall)
lemmas can be re-formulated in terms mEcket occupancy  Eigyre 5: A queueing illustration of the monotonicity property
(rather than unfinished work) when all packets have FIFO ser-(5y and (6).
vice. More precisely, suppose thég(t) represents the number
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Thus,ax1+x2 x44) <axj x44), completing the examplél X (0)

Such an example relies heavily on the fact that we have -
variable length packets. Indeed, it can be shown that if all XZ.(t) . >
packets have fixed lengths and service is non-preemptive —IL>
work conserving, then the packet occupancy blocking func- Xu(®) - (a)
tion ayj x4t) satisfies the non-negativity, symmetry, and
monotonicity properties for all time. 1
X(t) M 2
[1l. I NDISTINGUISHABLE INPUTS AND CONVEXITY ! 5
In this section and the next, we use the non-negativity, sym- (b) —>M

metry, and monotonicity properties to show that any moment Figure 6:M indistinguishable inputs in the case of (a) the col-
of unfinished work in a */*/1 queue is a convex function of the lection ofiid */* processes ¥} and (b) probabilistic splitting
input rate\. To do this, we must first specify how an arbitrary of */* processX into M substreams.

input process can be parameterized by a single rate valuegxample 3: Any arbitrary collection of M processes

Here, we consider the input rakeas a discrete quantity which (X1 (t),... Xy (t)) which are then randomly permuted (with each
is varied by adding or removing streams of the same “typegermutation equally likely).

from the overall input process. We begin by developing the Notice that Example 1 demonstrates the fact titatnputs

notion ofindistinguishable random variablés ~ are indistinguishable. However, Example 2 illustrates that
.Def|n|t|(.)n:A collection of M random variables aradistin- indistinguishab'e inputs form a more genera' class of pro-
guishableif: cesses by providing an important set of input streams which

are not independent yet are still indistinguishable. Notice that
this probabilistic routing can be modified to include “state-
dependent” routing where the probability of routing to queue
gepends on where the last packet was placed. The third exam-
ple shows that an indistinguishable input assumption is a good
a-priori model to use when an engineer is given simply a “col-
lection of wires” from various sources, and has no a-priori
way of distinguishing the process running over “wire 1” from

Px1, x2, ..., xm(Xys - Xpp) = Py iz,___’x”M(Xl- - %) (12)

for every (X, ..., Xm) permutation ofqy,..., Xp)-

Thus, indistinguishable random variables exhibit a simpl
form of symmetry in their joint distribution functions. Defini-
tions for random variables to beonditionally indistinguish-
able given some eventw can be similarly defined: The
distributions in (12) are simply replaced by conditional distri . L i
butions. It is clear that any set of independent and identicall')f/1e Process running over *wire 2.

distributed {id) random variables are indistinguishable. Thus, hWe now Examine how the 1;n_fir(lji_sh_ed \{v%rkblin a queue
indistinguishable variables form ider classthaniid vari- ¢"anges when a sequence of Indistinguishable inputs are

ables, and hence statements which apply to indistinguishatﬂgd;d' Let?}?( be z;n arbitrary backgroirjdhinput prog_e_ss, a}lnd
variables are more general. Unlikid variables, however, it _e;_ 1_(t) a_nh lza(lt) e t\go prLocejses whic arﬁ conf_m_oEa dy
can be seen that if random variablég,(.. Xy,) are condition- indistinguishable giverb(t). Let Uy represent the unfinishe

ally indistinguishable given some other random variaje WO'K in @ queue at a particular tinte with an input process
then they are indistinguishable. X_(t) running through it (we suppress tttesubscript inUy for
We can extend this notion of indistinguishability to incIude(Sj'mp“C'ty)' Ffurthe_rmor(iej, Ifet(u) r:greisnt any conve;]x, n(;]n-
randomprocesseshat represent packet arrival streariide ecreas(ljng IunCt'OS ot or"u d_ f.' d eNassur;le that the
reformulation of the definitions is clea# collection of ran- €XPected value of(Uy) is well defined. (Note that expecta-

: : _ .k
dom processes ¢X),...,Xu(t)) are indistinguishable if their tions over Iuncf‘qo_nﬁ zf thekfo_rrnr:f(?)”— u hreprese h
joint statistics are invariant under every permutatidndis- moments of unfinished work). The following theorem shows

tinguishable processes have the same properties (mentiorliifslﬁt incremental values of queue cost are non-decreasing with

above) as their random variable counterparts. Below we pr8§_|(_3r:' add't'iﬂfl input. lar time have:
vide three examples of indistinguishable input processes thafn€0em 1:For any particular time', we have:

can act as input streams to a queueing system: E[f(Ugsx1+x2)] —E[f(Ug.x1)] 2
Examplel: Any general */* process(t) independent and E[ f(Ug. )] —E[ f(Ug)] (13)

identically distributed ove input lines (Fig. 6a).
Example2: Any general */* proces¥X(t) which is split into Proof: Define the following processes:
M streams by routing each packet to straamith equal prob-

O . = — 14
ability (i 0 {1, ..., M} ) (Fig. 6b). Ay = Ugixi—Ug (14)
Ay = Ugixiex2—Ugaxa (15)
L. Our definition of “indistinguishable random variables” is identi- . . ) . )
cal to the established notion of “exchangeable random variables,” We then find, by using the blocking function properties
see [8] for an interesting treatment. developed in the previous section:
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Dy = Uy +Boixs x22Uxa + Bo x2

= Ug,yp—Ug = A, (16) EfUR]

where we have definefl; = Uy, y,— Uy . Becausst) and
X1(t) are indistinguishable give®(t), A; has the same distri- 1 ! } | | | |
bution asA;. Indeed,A(t) and A,(t) are indistinguishable o 1 2 3 4 5
processes givefi(t). Thus, inequality (16) states thap is a Figure 7: Convexity of unfinished work as a function of the dis-
random process which is always greater than or equal tocrete rate parametar
another random process which has the same distributidg.as Inequality (22) follows immediately from Theorem(l.
We now use an increasing increments property of non-
decreasing, convex functiofi@): For non-negative real num- A, Waiting Times Notice that in Theorem 1 and its Corol-

bersa, b, x,wherea= b : lary, expectations were taken at any particular tithef
f(a+x)—f(a)=f(b+x)—f(b). (17) inputs' are stationary and yield steady state expected mpments
of unfinished work, we let* be large so that the queue is in
Hence: steady state at that time. This implies that any moment of time

f(UgixitDy)—T(Ugix) 2 F(Ug+A,)—T(Ug) (18) averaged (steady state) unfinished work is a convex function
~ of the input rate. Moreover, we can allawto be a time of

_ 2 F(Ug+8,) - f(Ug). (19) special interest, such as the time when a packet fronkihe
Inequality (18) follows from (17) and the fact thatstream enters the system. In FIFO queues, the unfinished work
Ug+x12Ug. Inequality (19) follows from (16). Taking in the system at this special time represents the amount of
expectations of the inequality above, we find: waiting time W that the entering packet spends in the queue
E[ f(Ugix1+A)] —E[f(Ug,x)] = before receiving service. Hence, waiting time increments are

~ convex after the first stream is added, and we have:
E[f(Up+2y)] —E[f(Up)]. (20) Corollary 2: In FIFO queueing systems, i/ represents the

Using the fact thath, and, are indistinguishable given waiting time of packets from the indistinguishable streams,
o(t), we can replace th&[ f(Uy+A;)]  term on the rightthenEfW(A)] is a convex function of the discrete set of input
hand side of (20) WIithE[ f(Ug +A,)] , which yields the ratesh>0 (i.e.A=nAs, n0{1,2 ..., M} ).
desired result]

The theorem above immediately suggests a convexity prop-B._Packet OccupancyN(t): Notice that the non-negativity,
erty of unfinished work in a work conserving queue with &ymmetry, and monotonicity properties of the blocking func-
collection of indistinguishable inputs. Assume we have suchtn Bxi x4t) were the only queueing features needed to estab-
collection of M streams Xy,... Xyy) Which are indistinguish- lish convexity of unfinished worki(t). Now suppose that all
able given another background stre@(t). Assume that each Packets have fixed lengths and letN(t) represent the number
of the streams; has rate\s. The total input process to the Of packets in the queueing system at tifer some arbitrary
queue can then be viewed as a function of a discrete set &ffival process. If service in the queue is work conserving and
ratesh = Az for n0{0, 1, ..., M} . Let Ef[U(nA;)] repre- non-preemptive, it can be shown that the occupancy blocking
sent the expectation of a functié) of the unfinished work (at functionay; xAt) satisfies the non-negativity, symmetry, and
some particular timé*) when the input process consists of Mmonotonicity properties. We can thus reformulate Theorem 1

streamB(t) along with a selection af of the M indistinguish- ~and Corollary 1 in terms of packet occupancy. Suppose again
able streams. Hence: that input streamgX,,..., Xy) are indistinguishable given

_ background streaf. We find
Ef[U(Mg)] = EffUguxas  oxal  (0sn= M) (21) Corollary 3: If all packets have fixed lengtHsand service
Corollary 1: At any specific time t*, the function is non-preemptive work conserving, then at any particular
Ef{U(A)] is monotonically increasing and convex in the distime t*, the expectatiorEfflN(A)] is a convex function of the
crete set of rated (A = nAs, nJ{0, 1, ..., M} ). In particu-  discrete rat& (A 0 {0, A5, 2A5, ..., MA}).
lar, any moment of unfinished work is convex.
Proof of Corollary 1: Convexity of a function on a discrete IV. CONVEXITY OVER A CONTINUOUS RATE PARAMETER
set of equidistant points is equivalent to proving successive In the previous section we dealt with streams of inputs and
increments are monotonically increasing (Fig. 7). Hence, thdemonstrated convexity of unfinished work and waiting time
statement is equivalent to: moments as streams are removed or added. Here, we extend
the theory to include input processes which are parameterized
EffU((n+2)A5)] - EF[U((n+ 1)A)] by a continuous rate variable The example to keep in mind

> Ef[U((n+1)A5)]-Ef[U(n\y)]. (22) in this section is packet-by-packegrobabilistic splitting
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where individual packets from an arbitrary packet stream aiaput process, and suppose that every collection of indistin-
sent to the queue with some probabilipy] [0, 1] . Howeverguishable components &{t) are conditionally indistinguish-
the results apply to any general “infinitely divisible” input:  able given the background proc&gy. Then:
Definition: A packet input procesX(t) together with a split-  Theoem3: At any particular tima*, the functionEffU(A)]
ting method is said to kifinitely divisibleif: is convex over the continuous variable [0, A,,,] . Like-
(1) It can be split into an arbitrarily large number of sub-wise, if service is FIFO, theBfW(A)] is also convex.
streams. Proof: We wish to show that the functioBffU(A)] always
(2) Any two disjoint substreams which have the same ratigees below its chords. Thus, for any three rates<A, <A, ,
are indistinguishable given the rest of the process. we must verify that:
(3) If X, is a substream which has a larger rate than another,
disjointzsubstreaml, thenx, can be split into two compo- EffU(A)] <Ef[UA)] +
nents, one of which has the same rate,as (Ef[U(A5)] - EF[U(A

()\2_)\1) ()\ —A )

Notice that any */* proces¥(t) is infinitely divisible when 7
using the probabilistic splitting method of independently We know from Theorem 1 and Corollary 1 in Section Il
including packets in a new substreamith some probability that the unfinished work function is convex over a discrete set
p;. With the above definition, it can be seen that an infinitel@f rates when the input process is characterized by a finite set
divisible input proces(t) can be written as the sum of a Of M indistinguishable streams..., x). We therefore con-
large number of indistinguishable substreams. Specifically, $ider a discretization of the rate axis by considering the sub-
has the property that for amy0, there exists a large integelr ~ Processesx..., Xy) of the infinitely divisible proces(t),

such that: where eaclx; has a small ratd. In this discretization, we have
M rates:
X(t) = in(t)+x(t) (23) A=k, ha= kB, As = kgd (25)
i=1 o
where {(t)...., x(t)) are indistinguishable substreams, eaclwhere the rategA1, A2, A3)  can be made arbitrarily close to
with rateds, X(t) has rate\s , andls<As<e . their counterpart{A,, A,, A;) by choosing an appropriately

Our definition of infinitely divisible processes above is simsmall value of5. Now, from the discrete convexity result, we
ilar in spirit to the infinitely divisible laws detailed in [9]. know:;
There, random variables decomposable iidocomponents " >
are considered. Here, identical rate components of our processEf[ UQr2)] < BFLUA)] +
are indistinguishable but not necessaiidy o Gromi )(Ef[u(f\3)] —Ef[UAD)]) (26)

We now use the blocking function to establish continuity of 2—M N

' ) (Az—A1)

expected moments of unfinished work as a function of the
continuous rate parametdr. As before, these results also By continuity of theEff[U(A)] function, we can choose the
apply to waiting times in FIFO systems. discretization unid to be small enough so that the right hand

Again we assume th#u) is a non-decreasing convex func-side of (26) is arbitrarily close to the right hand side of the
tion over u=0 . Suppos&(t) is an infinitely divisible input (currently unproven) inequality (24). Simultaneously, we can
process with total rats;,;. Suppose also that all indistinguish-ensure that the left hand sides of the two inequalities are arbi-
able component processes Xft) are conditionally indistin- trarily close. Thus, the known inequality (26) for the dis-
guishable given the background input proced($). Let cretized inputs implies inequality (24) for the infinitely
EfU(\ o] represent the expectation of a function of unfindivisible input. We thus have convexity of unfinished work at
ished work at a particular timg in a queue with this input any point in time, which also implies convexity of waiting
and background process. We assume hereBEfjat(\,,)] is time in FIFO systems.
finite.

Theoem?2: EffU(A)] can be written as a pure function of the ) )
continuous rate parameté; where A [0, A,,,] is a rate We now _conS|der the system &f queues in pgrallel as
achieved by some substream of the infinitely divisiblg) Shown in Fig. 8. The servers of each queue have linespgeds

input. FurthermoreEflU(\)] is a monotonically increasing @nd arbitrary background packet input proces8gs. An
and continuous function of arbitrary input procesX(t) also enters the system, akK) is

Proof: See Appendix_] rate-controllable in that a router can spfift) into substreams
The continuity property of Theorem 2 allows us to easily?f smaller rate. These substreams can be distributed according

establish the convexity of any moment of unfinished worke anN-tuple rate vectorA,...,Ay) over the multiple queues.
(and packet waiting time) in a */*/1 queue as a function of the We consider both the case whi(t) is an infinitely divisi-

V. MULTIPLE QUEUES IN PARALLEL
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case wherX(t) is composed of a finite collection ®f indis-
tinguishable streams. The problem in both cases is to route the

substreams by forming an optimal rate vector that minimizes 10
some network cost function. We assume the cost function is a 1 —
weighted summation of unfinished work and/or waiting time
moments in the queues. Specifically, we teif} be a collec- X(®)
tion of convex, non-decreasing functions are 0 . Suppose 2 Ho
that the queues reach some steady state behavior, and let :
Uj(A;) represent the steady state value of unfinished work in X
gueuei when an input stream of radg is applied. LetW(A;) : .
represent the steady state waiting time for queue .UN

Theoem4: If queues are work conserving aXdt) is either N ——p
a finitely or infinitely rate divisible process give®{t)}, then:

(a) Cost functions of the form

N (1)
DAy, .. Ay) = Z Ef U] 27) Figure 8: Multiple queues in parallel with different background
processesgj(t)} and server ratesy{}.

are convex in the multivariable rate vectdy, (.., Ap)- and infinitely divisible input¥(t) below:
(b) If service is FIFO, then cost functions of the form
N A. (Strram-BasedFinitely Divisible X(t): Here we assume

P(Ay, .. Ay = Z ME T W (AY)] (28)  thatthe inpuiX(t) is a finite collection oM streams, which are
indistinguishable given the background proces&:&)f. We
are convex. want to distribute the streams over tRejueues available. We

(c) If service is FIFO andN,()\,) represents the number of can thus write the cost functio®  as a function of an integer
packets in queukin steady state, then cost functions of theN-tuple (ky, ..., ky) (rather than a ratéN-tuple) which
following form are convex: describes the number of streams we route to each queue. If the
N gueues are weighted the same and have indistinguishable
P(Ay, Ay = ZakE[Nk()\k)] {aJ =20). (29) background inputs and identical linespeeds, then the cost
= function ®(k, ..., ky) is convex symmetric and the optimal
Proof: SinceEfJW,(A\W)] is convex and non-decreasing for solution is to allocatg M/N|  streams {M)mod(N)  of
A0, the functiom\ EfJW(A)] is convex onA, =0 . Thus, the queues, andM/N | streams to the remaining queues. In
the cost functions in (a) and (b) are summations of convee@ non-symmetric case, we must consider other allocations
functions, so they are convex. Part (c) follows from (b) an@nd test them by evaluating the cost function.
noting that, from Little’s TheorenE[N] = AE[W] 0O Theoemb5: Given a convex cost functio®(k,, ..., ky)  of
Convexity of the cost functiomd()\,, ..., A,) can be usedthe form specified in Theorem 4, the optimal allocation vector
to develop optimal rate distribution@\f, ..., Ay)  over thecan be obtained by sequentially adding streams, greedily
simplex constrain +...+\\=Ao. FOr symmetric cost func- choosing at each iteration the queue which increases the total
tions, which arise when the background proces€g$)f and ~ cost ® the least. This yields a cost-minimizing vector
the linespeeds I} are the same for all queues (kl, kﬁ,) after M+N-1 evaluations/estimations of the cost

i0{1, ..., N}, the optimal solution is particularly simple. It function. _
is clear in this case that the uniform distribution Proof: The theorem is clearly true foM=1 stream. We

()\1, N) = (Ao’ N - Ao/ N) (Or as near to this as can assume that it is true favi=k streams, and by induction prove

be achleved) is optlmal and minimizes cost. Thus, in the synf-holds forM= k+1

metric case we want to spread the total input stream evenlyLet (K3, ..., Ky) represent the optimal allocation vector for

amongst all of the queues in order to take full advantage of tHd=k streams which is obtained by the sequentially greedy

bandwidth that each queue provides. In the asymmetric cagigorithm. We thus haveE kW =k

when background streams and linespeed processes are not the

same, the optimal rate vector deviates from the uniform allo- Now we add an additional stream in a greedy manner by

cation to favor queues with faster linespeeds and/or less bad¥acing it in the queue which increases the cost function the

ground traffic. least. Without loss of generality, we assume this queue is
Let us suppose the cost functiob(Ay, ..., Ay) s knowngueue 1, and we have a new allocation vector

Convexity of ® tells us that any local minimum of the cost(k; +1,k3, ..., k). Suppose there is some other vector

function we find must also be a global minimum. It also tells(Ka, .- kN) whose elements_ sum tdk+1, such that

us a great deal more, as we illustrate for both finitely divisibléP(k; +1, k3, ..., ky) > ®(Ky, ..., kn) -
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Case 1:k; = k‘; +1. In this case, we take away an input UsingL=1, P=75, we find that the optimal allocation vector
stream from the first entry of both vectors. This effects onlys: (100, 37, 37, 26). From this solution, we see that--as
the queue 1 ternk f,[k] in the cost function. Because thiexpected because of the 10 background streams in queue 4--
function is convex and non-decreasing: fl[ki +1] there are approximately 10 more streams allocated to queues 2
decreases by less than or equal to the amountBEHgfki;]  and 3 than queue 4. Interestingly, the speed of queue 1 is twice

decreases. Hence, it must be that: that of the other queues, although, due to statistical multiplex-
CD(kcl’, k(,il) >®d(ky -1, ..., kn) , which contradicts the fact ing gains, the number of streams it is allocated is more than
that the(ky, ..., ky) is optimal foM=k streams[] twice the number allocated to the others.

Case 2:k; <kj +1. In this case, there exists some qu¢ue
such thatk; > k? . We take the additional input we added to B. (PacketBased)nfinitely Divisible X(t): Here we consider
gueue 1 and move it to queue forming a new vector an infinitely divisible proces(t) with total rateA;,; as an
(ki, k‘j) +1, ..., k&) . Notice that this change cannotinput to the system of Fig. 8. The problem is to optimally dis-
decrease the cost function, since this_input was originallyibute the total rate over thé queues so as to minimize a cost
added greedily to queue 1. We now hake= kj’ +1 , whictiunction ®(A,, ..., Ay) . We assume the cost function is of
reduces the problem to Caséll. one of the forms specified in Theorem 4. Each of these had the
Thus, the sequentially greedy algorithm is optimal. It can bstructure:
implemented withM+N-1 evaluations of the cost function by
keeping a record of thd-1 queue increment values for the Py - Ay) = Gi(Ag) + -+ On(An) (33)

1 queues not chosen at each step. _ for some convex, non-decreasing functiof{a;ly
Example:We consider the system of Fig. 8 when there are ¢ packground inputs are indistinguishable, and if all queues

N=4 queues and the inp{(t) consists of 200 independent 5a \yeighted the same in the cost function, tilen  is convex
streams that produce packets periodically ev@rgeconds. symmetric and the optimal rate allocation Asgf/N. ..., Ao/ N).-
Packets have a fixed length bfbits. The streams are unsyn- otherwise, we take advantage of the structure ofthe  func-
chronized, and hence 200 packets arrive in a uniformly digion to determine the optimal solution.

tributed fashion over any time interval of lengthSuch input  £ach of the functions;@\;) is non-decreasing and convex on
streams are models for continuous bit rate traffic, such as digig e interval(0, f\i) . It can be shown that these properties

tal voice or video data. ensureg;(\;) is right-differentiable. They are also sufficient to

The problem is to distribute the streams over the 4 queUgStapish the correctness of a Lagrange Multipliers approach
while minimizing the cost function, which we take to be theq st minimization. Given the Lagrangian:

total expected number of packets in the system (this is the cost 0 N4
function of Theorem 4c). We first assume all server spgeds |\ A = d(\ A +FVIA . — S AD (34

are the same, and all background stredh( are indistin- (g A Y) (Agy e A y[] tot izl 0 (34)
guishable. In this case, we immediately know the optimal . - e

stream allocation vector is (50, 50, 50, 50). wherey is the Lagrange Multiplier, we differentiate (from the

Now suppose that we have server speeds (2, 1, 1, 1) and tngt) with respect td; to obtain
there are 10 background streams of the same type at queue 4. di)\gi()\i) =y forall iO{1 ..,N} (35)
In this asymmetric case, we must use the cost function to i
determine optimal allocation using the sequentially greedsubject to the simplex constraikg+...+AN = Ayor. Fig. 9 illus-
method. The complementary occupancy distribution in a sirrates this solution. If we define:
gle queue witlK inputs of period, lengthL, and server ratp _ ,
has been derived explicitly in [5]. The result is: Ai(y) = LargestA such thag'(A) <y (36)

oL KO = K_nD K il f*" iL (TUP/ L—K + n] the_n from the figure we see that we incregse the valug of
anvl_ 0~ z G +npO %l_u_p[m pP/L—i O until A;(y) + ... +Ay(Y) = Ap;- The resulting rate vector

i=1 yields the optimal solution.
(0OsnsK-1). (30) ar'(Ay)
The expected number of packets is hence:
K-1
NOL kO = oL kO 1 5 (M)
Nquv KD ZanJP’ KD. (31) vl . RS A
n=0
We therefore use the greedy algorithm with cost function: : , ; >
4 . A(Y)  AAY)  As(Y) A
D(Ky, Ky Kg Ky) = .le ELTIS' Ki%_ (32) Figure 9: A sample set %%gi()\i) curves.
| =
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Notice that a fast bisection type algorithm can be developed VI. TIME-VARYING SERVER SPEEDS

to find this optimal rate vector. First, two bracketing values Here we consider the system of Fig. 1 when the constant
YLow @ndyy; are found which yield\,(y) + ... +An(y)  val- server of ratey is replaced by a time varying server of rate
ues above and beloW,, respectively. The bisection routine |(t). DefineU( ItS)(t) to be the amount of unprocessed data (in
proceeds as usual until the rate vector converges to a solutighits of bits) in the system at timie This value is different
within acceptable error limits. from the unfinished workJ previously considered--which had
Example:The following simple example for systems with ynits of time (UMe)t)). Note thatu®its)t) = puime)t) for
memoryless arrivals and packet lengths demonstrates th@nstant server rate systems, whildimeXt) is not causally
method. Suppose, for simplicity, that there are no backgrounghown from the system state for time varying systems.
arrivals {8;(t)}. Let the arrival process be Poisson with rate  Characteristics of aJ®*)t) sample path are similar to
and the packet length processilteand memoryless with an those illustrated in Fig. 2 for constant server systems, with the
average packet length of 1 unit. We assume that we are usiggception that theJ®™S)t) function decreases with a time

probabilistic Bernoulli routing where each packet is routegarying slope H(t). We can define the unfinished data block-
independently of the next. Léf;  represent the average nuiig function:

ber of packets in queueand define cost function: (bits)
B x1, xa2(t) =

DAy Ay = S aN () 37 _ _ .
(1 N) Za (M) ( ) U(bItS)X1+X2(t)—U(bltS)Xl(t)_U(bltS)XZ(t). (41)

By repeating the arguments of section Il in terms of this new
ai(\) = aN,(\). (38) blocking function, we can establish that the non-negativity,
symmetry, and monotonicity properties hold §PS) ;  {t).
The expected number of packets in an M/M/1 queue is: | jkewise, if all packets have fixed lengthsand service is
Ni(A) = Ai/ W 39 non-preemptive, it can be shown that the occupancy blocking
o 1-N/W - (39) function ay; xAt) satisfies these three properties in this time-
varying server setting.
Consequently, given a collection &f queues with back-
ground input processesBft)} and server rate processes
{1i(®)}, together with a (finitely or infinitely distributable)

where

Multiplying the above equation bg, taking derivatives with
respect td\; and setting the result equalydor all i, as well as
considering the constraifg+...+Ay = Ao, We find for alll

kO{L,....N}: input X(t), we can establish:
akuk%\mt_ z Ui% Theoem6: If the indistinguishable components Xft) are
—_— | (40) conditionally indistinguishable giverB{(t)} and {p;(t)}, then
k= Hi ' Ef,[U,""™(A)] is convex in the rate vecton{,...\y). If

Z m all packets have a fixed length obits and service is hon-pre-
' emptive, theny Ef,[N;(A;)] is convex in the rate vector.

The above equation is a bit deceptive, in that the summa-Recall from Little’s Theorem that if the expected waiting
tions are taken over ailfor which A; is positive. The positive time E[W(A)] is convex inA, then so is the expected packet
Ai’'s are determined by first assuming that all are positive angtcupancyE[N(A)]. However, the converse implication does
applying the above equation. If any of thgs found are zero not follow. Indeed, below we provide a (counter) example
or negative, thes@;'s are set to zero and the calculation iswhich illustrates that--even for fixed length packets under
repeated using the remaining subset; st FIFO service--waiting times are not necessarily convex for

This approach to optimal rate allocation is similar to th@me varying servers.
convex optimization routines described in [6]. There, the (Counter)Example:Consider identical input processks,
authors address packet routing in general mesh networks, X, which produce a single packet of lendtk1 periodi-
when input streams can be continuously split according to glly at times {0, 3, 6, 9,...}. Let the server rate be periodic of
rate parameter. They pre-suppose some convex cost functigéviod 3 with p(t)=1 for t0[0,2] and u(t)=100 for
at each node of the network, which (as an idealization) is com{1 (2, 3). Then E[Wy]=1, E[Wy4x2l=1.5, and
pletely a function of the overall rate routed to that node. Hereg[W, ., ,«3]=1.67. Clearly the increment in average waiting
we have considered cost functions which reflect the actuime when streanX, is added idlarger than the successive
gqueuing congestion at each node when a general */* input ifcrement when strea; is added. Hence, waiting time is
applied. We have established that, for a simple network cofot convex in this time-varying server setting. However,
sisting of N parallel queues, the cost functions at each queusstice that minimizingW,,, in a parallel queue configuration
are continuous and non-decreasing in the rate parameter, qpg. 8) is accomplished by minimizingl,,;  (Sind8,,; =
they are indeed convex. MotWiot)- For fixed length packets, Theorem 6 ensures this is

a convex optimization even for time varying servers.
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VII. CONCLUSIONS By recursively iterating (42), we find:

We have developed general convexity results for */*/1 M M-1
queues using a new function of two packet stream inputsVg+xi+..+xm =Yg+ 2%* Z Bo+x1+... +xk x(k+1), (43)
called theblocking function Non-negativity, Symmetry, and i=1 k=0
Monotonicity properties of the blocking function were estab- Applying the monotonicity property of the blocking function to
lished. These properties proved to be valuable tools for esta§3), we obtain:

lishing convexity of unfinished work and waiting time M
moments EfU(A)] and EfWQ)]) in terms of both a discrete Ugsxi+..+xm2Ye* Z [Uyi* B xil . (44)
and a continuous input rake i=1

We then addressed both stream-based and packet-basd¥PW applying the monotonically increasing, convex functfu
routing of general inputs over a collection®parallel queues © Poth S'dis of (44) and writingUg+x) = f(Ug) + g(Ue, ) (from
with arbitrary background inputs and different linespeedd2ct . we have: y

Optimal routing algorithms were developed utilizing the con-

ul 0
vexity results. (Wgrsar. o2 (V91000 D Wbo il (45
This convexity theory can be extended to address more e
complex variants of the parallel queue problem. One might > f(ug)+ Zg(ue'[uxﬁﬁe,xi])- (46)
consider a case when we have a collectioiKafets of indis- =

tinguishable inputs, where each set categorizes a different typanequality (46) holds becausgU, X) is a convex function ok and
of input process. For example, s®t could contain multiple is zero atx=0 (Fact 2. Now notice thatEfU(A+3)]-EfU\)]=
indistinguishable inputs of the “bursty” type, while &tcon-  EfflUg,il-EffUg] =E[g(Ug,Uyi*+Bg xi)] for any 6 substream of rata,
tains indistinguishable inputs of the “continuous bit rate” typeand any disjoink; substream of rat& Hence, by assumption:

This variation of the problem is closely related to the NP-com- E[9(Ug Uy * By, xi)12€>0. (47)
plete bin packing problem. It would also be interesting taraking expectations of (46) and using (47), we find:
explore convexity and optimal routing in more general mesh EflUg, 1+ +xml ZEf[Ugl +Me. (48)

networks uglng these Fephnlques. Such an appr.oallch _COUld pe'iﬁequality (48) above holds whenev@tx,+...+x, is a substream

haps establish the validity of known convex opt|m|zat|0n rOUaf the entire, infinitely divisible proces(t). We now choos# large

tines, as well as provide insights into developing new ones. enough so thamle is greater than the expectation f6€)) when the

entire inputX(t) is applied, i.e.Me>Ef{Uy]. However, we choose a
APPENDIX rate d for each of thex; substreams that is small enough so that we

Here we show thaEf[U(A)] is a continuous, increasing function of can still findM such substreams to ens@ex;+...+x; is still a com-

A (Theorem 2 of Section 1V). We utilize the following facts aboutponent process of X( This implies that, from (48),

convex, non-decreasing functions: EffUg,x1+ .. +xml >Ef[Uy], which contradicts monotonicity.
Fact 1: If f(u) is non-decreasing and convex, then for any fixedHenceg=0, (41) holds, and the theorem is provén.

a=0 there is a functiorg(a, x) such thatf(a+x) = f(a)+g(a » ,

whereg(a, ¥ is a convex, non-decreasing functiorkdér x=0. REFERENCES
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