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Abstract -- In this paper we develop fundamental convexity
properties of unfinished work and packet waiting time in a work
conserving */*/1 queue. The queue input consists of an uncontrol-
lable background process and a rate-controllable input stream.
We show that any moment of unfinished work is a convex func-
tion of the controllable input rate. The convexity properties are
then extended to address the problem of optimal routing of arbi-
trary input streams over a collection of N queues in parallel with
different (possibly time-varying) linespeeds (µ1(t),...,µN(t)). Our
convexity results hold for stream-based routing (where individual
packet streams must be routed to the same queue) as well as for
packet-based routing where each packet is routed to a queue
using some pre-determined splitting method, such as probabilis-
tic splitting. Our analysis of these general systems is carried out
by introducing a new function of the superposition of two input
streams that we call theblocking function. Using this function
facilitates analysis and provides much insight into the sample
path dynamics of */*/1 queues.

I. INTRODUCTION

In this paper we examine a work conserving */*/1 queue
and develop fundamental monotonicity and convexity proper-
ties of unfinished work and packet waiting time in the queue
as a function of the packet arrival rateλ. The “*/*” notation
refers to the fact that the input process has arbitrarily distrib-
uted and correlated interarrival times and packet lengths. (This
differs from the standard GI/GI description, where interarrival
times and packet lengths are independent and identically dis-
tributed). The arrival process consists of the superposition of
two component streams: an arbitrary and uncontrollable back-
ground input of the */* type, and a rate-controllable packet
stream input (Fig. 1). The rate-controllable stream contains a
collection of indistinguishable */* substreams, and its rate is
varied in discrete steps by adding or removing these sub-
streams as inputs to the queue. We show that any moment of
unfinished work is a convex function of this input rate. Under
the special case of FIFO service, we show that waiting time
moments are also convex.

We then extend the convexity result to address the problem
of optimally routing input streams over a parallel collection of
N queues with different linespeeds (µ1,...,µN). We show that
cost functions consisting of convex combinations of unfin-
ished work moments in each of the queues are convex in the
N-dimensional rate tuple (λ1,...,λN). In the symmetric case
where theN queues are weighted equally in the cost function
and have identical background processes, this convexity result
implies that the uniform rate allocation minimizes cost. In the

case of an asymmetric collection ofN parallel queues, we
develop a sequentially greedy routing algorithm that is opti-
mal.

The convexity results and optimization methods are
extended to treat queues with time-varying linespeeds
(µ1(t),...,µN(t)). We show that the amount of unprocessed bits
in the multi-queue system remains convex in the input rate
vector (λ1,..., λN). However, we demonstrate that waiting
times are not necessarily convex for general time varying
linespeed problems. For simplicity of exposition, we postpone
the time-varying analysis until section VI.

Convexity of single and parallel collections of queues has
been addressed previously with various assumptions about the
nature of the input processes and the service time processes. In
[1], the authors develop a convexity theory of “multi-modular
functions” and use this theory to develop an optimal admis-
sion control in a D/D/1 queue with fixed batch arrivals. In
[2,3], the authors analyze the expected packet occupancy in
tree networks of deterministic service time queues. It is shown
that expected occupancy of any interior queue of the tree is a
concave function of the multiple exogenous input rates, while
occupancy in queues on the edge of the network are shown to
be convex. Convexity properties of parallel GI/GI/1 queues
with packet-based probabilistic “Bernoulli” routing are devel-
oped in [4].

Our treatment of the convexity problem for streams of
inputs is an important feature, since packets from a single
source often must be routed together to maintain predictability
and to prevent out-of-order delivery. However, we also treat
the packet-based routing method of [4] in a more general (yet
simpler) context. Rather than emphasizing the differences
between packet-based and stream-based routing, we discover
a fundamental similarity. We consider packet-based routing of
a general */* input stream whose rate can be split according to
a continuous rate parameter, using a splitting method such as
the probabilistic “Bernoulli” splitting in [4]. We find that con-
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Figure 1: A work conserving queue with server linespeedµ, a */*
background inputθ(t), and rate-controllable */* inputsX(t) =
{ X1(t),...,XM(t)}.
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vexity for this packet-based routing problem is a consequence
of our stream-based results.

Our analysis is carried out by introducing a new function of
the superposition of two input streams that we call theblock-
ing function. Properties of the blocking function are developed
by examining sample paths of work conserving queues, and
each property corresponds to an intuitive comparison of two
different queueing system configurations. These properties are
then used to establish the convexity and optimal routing
results.

II. THE BLOCKING FUNCTION FOR */*/1 QUEUES

Consider a work conserving queue with a single server that
can process packets at a line speed ofµ bits/second (Fig. 2).
Variable length packets from input streamX flow into the
queue and are processed at the single server according to any
work-conserving service discipline (e.g., FIFO, LIFO, Short-
est Packet First, GPS, etc.). The input stream is characterized
according to two random processes: (i) The sequence {ak} of
inter-arrival times, and (ii ) The sequence {lk} of packet
lengths.

We assume the processes {ak} and { lk} are ergodic with
arrival rateλ and average packet lengthE(L), respectively. In
general, inter-arrival times may be correlated with each other
as well as jointly correlated with the packet length process.
We maintain this generality by describing the input to the
queue by the single random processX(t), which represents the
amount of bits brought into the queue as a function of time. As
shown in Fig. 2, a particular inputX(t) is a non-decreasing
staircase function. Jumps in theX(t) function occur at packet
arrival epochs, and the amount of increase at these times is
equal to the length of the entering packet. The accumulated
amount ofwork brought into the queue can be written asX(t)/
µ, which has units of time.

For a given queue with input processX(t), we represent the
amount ofunfinished workin the system at timet asUX(t)--
the total amount of time for all packets in the queueing system
(queue plus server) to empty if no more packets were to arrive.
We assume the queue is initially empty at timet=0. It is clear
that UX(t) is the same for all work conserving service disci-
plines. It is completely determined byX(t) as well as the
server linespeedµ. An example unfinished work function
UX(t) is shown in Fig. 2. Notice the triangular structure and
the fact that each new triangle emerges at packet arrival times
and has a downward slope of -1.

Now consider a new input streamX1+X2 which is the super-
position of two input streamsX1, X2. We make the following
sample path observation, which holds for any arbitrary set of
sample pathsX1(t), X2(t):

Observation 1: For all timest, we have:

Thus, for any two inputsX1 andX2, the amount of unfin-
ished work in a work conserving queueing system with the

superposition processX1+X2 is alwaysgreater than or equal to
the sum of the work in two identical queues with these same
processesX1 andX2 entering them individually. This is illus-
trated in Fig. 3.

Proofof Observation1: We compare the two system config-
urations of Fig. 3. SinceUX1+X2(t) is the same for all work
conserving service disciplines, we can imagine that packets
from theX1 stream have preemptive priority overX2 packets.
The queueing dynamics of theX1 packets are therefore unaf-
fected by any low priorityX2 packets. Thus, theUX1+X2(t)
function can be written asUX1(t) plus an extra amount
extra_X2(t) due to theX2 packets, as shown in Fig. 4. This
extra amount (represented as the striped region in Fig. 4) can
be thought of as the amount of unfinished work remaining in
the queue with theX2 input stream alone, where the server
goes on idle “vacations” exactly at times whenUX1(t) is non-
zero. Clearly, this unfinished work is greater than or equal to
the unfinished work there would be if the server did not go on
vacations--which isUX2(t). Thus:

. ❑
This simple observation motivates the following definition:

Definition: The Blocking FunctionβX1, X2(t) between two
streamsX1 andX2 is the function:

Thus, the blocking function is a random process which rep-
resents the extra amount of unfinished work in the system due
to the blocking incurred by packets from theX1 stream mixing
with theX2 stream. From this definition, we immediately find
for all timest:

Lemma 1:
Lemma 2:
Lemma 3:

The non-negativity lemma above is just a re-statement of
(1), while the symmetry property is obvious from the blocking

UX1 X2+ t( ) UX1 t( ) UX2 t( )+≥ (1).

µX

l1

l2

l3

a1 a2 a3
t

X(t)

UX(t)

t
Figure 2: A work conserving */*/1 queue, and typical sample
paths of accumulated and unfinished work.

UX1 X2+ t( ) UX1 t( ) extraX2 t( )+ UX1 t( ) UX2 t( )+≥=

βX1 X2, t( ) UX1 X2+ t( ) UX1 t( )– UX2 t( )–= (2).

βX1 X2, t( ) 0≥ (3)(non-negativity)
βX1 X2, t( ) βX2 X1, t( )= (symmetry) (4)
βX1 X2+ X3, t( ) βX1 X3, t( )≥ (monotonicity) (5)
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function definition. Below we prove the monotonicity lemma.
Proof of Lemma3 (Monotonicity): From the definition of

the blocking function in (2), we find that the monotonicity
statement is equivalent to the following inequality at every
time t:

We have illustrated (6) in Fig. 5. We thus prove that the sum
of the unfinished work in Systems A and B of Fig. 5 is greater
than or equal to the sum in A’ and B’.

In a manner similar to the proof of Observation 1, we give
packets from both theX1 andX2 streams preemptive priority
over X3 packets. The queues of Fig. 5 can thus be treated as
having servers that take “vacations” from servingX3 packets
during busy periods caused by the other streams. Comparing
the A and A’ systems, as well as the B and B’ systems, we
have:

whereextra_in_System_A(t)represents the amount of unfin-
ished work fromX3 packets in a queue whose server takes
vacations during busy periods caused by theX1 and X2
streams. Likewise,extra_in_System_B’(t)represents the
amount of unfinished work fromX3 packets when vacations
are only duringX1 busy periods. Since busy periods caused by
the X1 stream are subintervals of busy periods caused by the
combinedX1+X2 stream, theX3 packets in System A experi-
ence longer server vacations, and we have:

Using (7)-(9) verifies (6) and concludes the proof.❑
Intuitively interpreted, the monotonicity Lemma 3 means

that the amount of blocking incurred by the (X1+X2) process
intermixing with theX3 process is larger than the amount
incurred by theX1 process alone mixing with theX3 process.

These three lemmas alone are sufficient to develop some
very general convexity results for unfinished work in */*/1
queues. It seems reasonable to suspect that the same three
lemmas can be re-formulated in terms ofpacket occupancy
(rather than unfinished work) when all packets have FIFO ser-
vice. More precisely, suppose thatNX(t) represents the number

of packets in a FIFO queueing system with input streamX(t).
We can define theOccupancy Blocking FunctionαX1,X2(t) in a
manner similar to (2):

With this new definition of blocking in terms of packet
occupancy, it can be shown that the non-negativity and sym-
metry properties still hold ( ,

). However, below we furnish a coun-
terexample that demonstrates that, even under FIFO service,
the occupancymonotonicity property does not hold for gen-
eral variable length service time systems.

(Counter) Example: Under FIFO service with variable
length packets, the monotonicity property of the packet occu-
pancy blocking function does not hold, i.e., it isnot true that

for all time t. The counterexample
is to consider streamsX1, X2, X3 consisting only of one packet
each, where:

-TheX3 packet enters at time 0 with service time 11.
-TheX2 packet enters at time 1 with service time 10.
-TheX1 packet enters at time 2 with service time 1.

We look at timet=4. At this time, we have:NX1(4) = 0.
WhenX1 andX2 are combined, theX2 packet blocks theX1
packet from being served, henceNX1+X2(4) =2. Likewise,
NX1+X3(4)=2, since theX2 and X3 packets are both long in
comparison to theX1 packet. However, because of this, when
theX3 packet is applied to a queue with theX1 andX2 packets,
it will not generate any extra packets due to blocking. Hence,
NX1+X2+X3(4) =3, and:

UX1 X2 X3+ + t( ) UX1 t( )+ UX1 X2+ t( ) UX1 X3+ t( )+≥ (6)

X1

X2

X1

X2

µ

µ

µ ≥

UX1+X2(t) UX1(t) + UX2(t)

Figure 3: A queueing illustration of the non-negativity property
of the blocking function.

UX1 X2 X3+ + t( ) UX1 X2+ t( )= + extra_in_System_A(t)(7)

UX1 X3+ t( ) UX1 t( )= + extra_in_System_B’(t) (8)

≥extra_in_System_A(t) extra_in_System_B’(t) (9).

αX1 X2, t( ) NX1 X2+ t( ) NX1 t( )– NX2 t( )–= (10)

αX1 X2, t( ) 0≥
αX1 X2, t( ) αX2 X1, t( )=

X1

X3

µ

X1

X1

µ

µ

X1

X2

µ
X2
X3 ≥

UX1+X2+X3(t) + UX1(t) UX1+X2(t) + UX1+X3(t)

Figure 5: A queueing illustration of the monotonicity property
(5) and (6).

A A’

B B’

αX1 X2+ X3, t( ) αX1 X3, t( )≥

t
Figure 4: An example sample path of the unfinished work function
UX1+X2(t) in a system whereX1 packets have preemptive priority.

X1

X2

NX1 X2 X3+ + 4( ) NX1 4( )+ 3=

4< NX1 X2, 4( ) NX1 X3, 4( )+= (11).
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Thus,αX1+X2,X3(4) < αX1,X3(4), completing the example.❑
Such an example relies heavily on the fact that we have

variable length packets. Indeed, it can be shown that if all
packets have fixed lengthsL and service is non-preemptive
work conserving, then the packet occupancy blocking func-
tion αX1,X2(t) satisfies the non-negativity, symmetry, and
monotonicity properties for all time.

III. I NDISTINGUISHABLE INPUTS ANDCONVEXITY

In this section and the next, we use the non-negativity, sym-
metry, and monotonicity properties to show that any moment
of unfinished work in a */*/1 queue is a convex function of the
input rateλ. To do this, we must first specify how an arbitrary
input process can be parameterized by a single rate value.
Here, we consider the input rateλ as a discrete quantity which
is varied by adding or removing streams of the same “type”
from the overall input process. We begin by developing the
notion ofindistinguishable random variables.1

Definition: A collection ofM random variables areindistin-
guishable if:

for every  permutation of (X1,...,XM).
Thus, indistinguishable random variables exhibit a simple

form of symmetry in their joint distribution functions. Defini-
tions for random variables to beconditionally indistinguish-
able given some eventω can be similarly defined: The
distributions in (12) are simply replaced by conditional distri-
butions. It is clear that any set of independent and identically
distributed (iid) random variables are indistinguishable. Thus,
indistinguishable variables form awider classthan iid vari-
ables, and hence statements which apply to indistinguishable
variables are more general. Unlikeiid variables, however, it
can be seen that if random variables (X1,...,XM) are condition-
ally indistinguishable given some other random variableθ,
then they are indistinguishable.

We can extend this notion of indistinguishability to include
randomprocessesthat represent packet arrival streams. The
reformulation of the definitions is clear:A collection of ran-
dom processes (X1(t),...,XM(t)) are indistinguishable if their
joint statistics are invariant under every permutation. Indis-
tinguishable processes have the same properties (mentioned
above) as their random variable counterparts. Below we pro-
vide three examples of indistinguishable input processes that
can act as input streams to a queueing system:

Example1: Any general */* processXi(t) independent and
identically distributed overM input lines (Fig. 6a).

Example2: Any general */* processX(t) which is split into
M streams by routing each packet to streami with equal prob-
ability ( ) (Fig. 6b).

Example 3: Any arbitrary collection of M processes
(X1(t),...,XM(t)) which are then randomly permuted (with each
permutation equally likely).

Notice that Example 1 demonstrates the fact thatiid inputs
are indistinguishable. However, Example 2 illustrates that
indistinguishable inputs form a more general class of pro-
cesses by providing an important set of input streams which
are not independent yet are still indistinguishable. Notice that
this probabilistic routing can be modified to include “state-
dependent” routing where the probability of routing to queuei
depends on where the last packet was placed. The third exam-
ple shows that an indistinguishable input assumption is a good
a-priori model to use when an engineer is given simply a “col-
lection of wires” from various sources, and has no a-priori
way of distinguishing the process running over “wire 1” from
the process running over “wire 2.”

We now examine how the unfinished work in a queue
changes when a sequence of indistinguishable inputs are
added. Letθ(t) be an arbitrary background input process, and
let X1(t) and X2(t) be two processes which are conditionally
indistinguishable givenθ(t). Let UX represent the unfinished
work in a queue at a particular timet* with an input process
X(t) running through it (we suppress thet* subscript inUX for
simplicity). Furthermore, letf(u) represent any convex, non-
decreasing function ofu for . We assume that the
expected value off(UX) is well defined. (Note that expecta-
tions over functions of the form representkth

moments of unfinished work). The following theorem shows
that incremental values of queue cost are non-decreasing with
each additional input.

Theorem 1: For any particular timet*, we have:

Proof: Define the following processes:

We then find, by using the blocking function properties
developed in the previous section:

1. Our definition of “indistinguishable random variables” is identi-
cal to the established notion of “exchangeable random variables,”
see [8] for an interesting treatment.

pX1 X2 … XM, , , x1 … xM, ,( ) p
X1˜ X2˜ … XM̃, , ,

x1 … xM, ,( )= (12)

X̃1 … X̃M, ,( )

i 1 … M, ,{ }∈

X1(t)
X2(t)

XM(t)

Figure 6:M indistinguishable inputs in the case of (a) the col-
lection of iid */* processes {Xi} and (b) probabilistic splitting
of */* processX into M substreams.

Splitter

1
2

M

X(t)

(a)

(b)

1/M

u 0≥

f u( ) uk=

E f Uθ X1 X2+ +( )[ ] E f Uθ X1+( )[ ]– ≥

(13)E f Uθ X1+( )[ ] E f Uθ( )[ ]–

∆1 Uθ X1+ Uθ–=

∆2 Uθ X1 X2+ + Uθ X1+–=

(14)

(15)
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where we have defined . BecauseX2(t) and
X1(t) are indistinguishable givenθ(t), has the same distri-
bution as∆1. Indeed,∆1(t) and are indistinguishable
processes givenθ(t). Thus, inequality (16) states that∆2 is a
random process which is always greater than or equal to
another random process which has the same distribution as∆1.

We now use an increasing increments property of non-
decreasing, convex functionsf(u): For non-negative real num-
bersa, b, x, where :

Hence:

Inequality (18) follows from (17) and the fact that
. Inequality (19) follows from (16). Taking

expectations of the inequality above, we find:

Using the fact that and∆1 are indistinguishable given
θ(t), we can replace the term on the right
hand side of (20) with , which yields the
desired result.❑

The theorem above immediately suggests a convexity prop-
erty of unfinished work in a work conserving queue with a
collection of indistinguishable inputs. Assume we have such a
collection of M streams (X1,...,XM) which are indistinguish-
able given another background streamθ(t). Assume that each
of the streamsXi has rateλδ. The total input process to the
queue can then be viewed as a function of a discrete set of
ratesλ = nλδ for . Let repre-
sent the expectation of a functionf() of the unfinished work (at
some particular timet*) when the input process consists of
streamθ(t) along with a selection ofn of theM indistinguish-
able streams. Hence:

Corollary 1: At any specific time t*, the function
is monotonically increasing and convex in the dis-

crete set of ratesλ (λ = nλδ , ). In particu-
lar, any moment of unfinished work is convex.

Proof of Corollary 1: Convexity of a function on a discrete
set of equidistant points is equivalent to proving successive
increments are monotonically increasing (Fig. 7). Hence, the
statement is equivalent to:

Inequality (22) follows immediately from Theorem 1.❑

A. Waiting Times: Notice that in Theorem 1 and its Corol-
lary, expectations were taken at any particular timet*. If
inputs are stationary and yield steady state expected moments
of unfinished work, we lett* be large so that the queue is in
steady state at that time. This implies that any moment of time
averaged (steady state) unfinished work is a convex function
of the input rate. Moreover, we can allowt* to be a time of
special interest, such as the time when a packet from theX1
stream enters the system. In FIFO queues, the unfinished work
in the system at this special time represents the amount of
waiting timeW that the entering packet spends in the queue
before receiving service. Hence, waiting time increments are
convex after the first stream is added, and we have:

Corollary 2: In FIFO queueing systems, ifW represents the
waiting time of packets from the indistinguishable streams,
thenEf[W(λ)] is a convex function of the discrete set of input
ratesλ>0 (i.e.,λ = nλδ , ).

B. Packet OccupancyN(t): Notice that the non-negativity,
symmetry, and monotonicity properties of the blocking func-
tion βX1,X2(t) were the only queueing features needed to estab-
lish convexity of unfinished workU(t). Now suppose that all
packets have fixed lengthsL, and letN(t) represent the number
of packets in the queueing system at timet for some arbitrary
arrival process. If service in the queue is work conserving and
non-preemptive, it can be shown that the occupancy blocking
function αX1,X2(t) satisfies the non-negativity, symmetry, and
monotonicity properties. We can thus reformulate Theorem 1
and Corollary 1 in terms of packet occupancy. Suppose again
that input streams(X1,..., XM) are indistinguishable given
background streamθ. We find:

Corollary 3: If all packets have fixed lengthsL and service
is non-preemptive work conserving, then at any particular
time t*, the expectationEf[N(λ)] is a convex function of the
discrete rateλ ( ).

IV. CONVEXITY OVER A CONTINUOUSRATE PARAMETER

In the previous section we dealt with streams of inputs and
demonstrated convexity of unfinished work and waiting time
moments as streams are removed or added. Here, we extend
the theory to include input processes which are parameterized
by a continuous rate variableλ. The example to keep in mind
in this section is packet-by-packetprobabilistic splitting,

∆2 UX2 βθ X1+ X2,+= UX2 βθ X2,+≥

(16)Uθ X2+ Uθ– ∆1
˜= =

∆1
˜ Uθ X2+ Uθ–=

∆1
˜

∆1
˜ t( )

a b≥

f a x+( ) f a( )– f b x+( ) f b( )–≥ (17).

f Uθ X1+ ∆2+( ) f Uθ X1+( )– f Uθ ∆2+( ) f Uθ( )–≥

f Uθ ∆1
˜+( ) f Uθ( )–≥

(18)

(19).

Uθ X1+ Uθ≥

E f Uθ X1+ ∆2+( )[ ] E f Uθ X1+( )[ ]– ≥

(20)E f Uθ ∆1
˜+( )[ ] E f Uθ( )[ ]– .

∆1
˜

E f Uθ ∆1
˜+( )[ ]

E f Uθ ∆1+( )[ ]

n 0 1 … M, , ,{ }∈ Ef U nλδ( )[ ]

Ef U nλδ( )[ ] Ef Uθ X1 … Xn+ + +[ ]= 0 n M≤ ≤( ) (21).

Ef U λ( )[ ]
n 0 1 … M, , ,{ }∈

Ef U n 2+( )λδ( )[ ] Ef U n 1+( )λδ( )[ ]–

(22)Ef U n 1+( )λδ( )[ ] Ef U nλδ( )[ ]–≥ .

Ef[U(λ)]

0 1 2 3 4 5
Figure 7: Convexity of unfinished work as a function of the dis-
crete rate parameterλ.

n 1 2 … M, , ,{ }∈

λ 0 λδ 2λδ … Mλδ, , , ,{ }∈
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where individual packets from an arbitrary packet stream are
sent to the queue with some probability . However,
the results apply to any general “infinitely divisible” input:

Definition:A packet input processX(t) together with a split-
ting method is said to beinfinitely divisible if:

(1) It can be split into an arbitrarily large number of sub-
streams.
(2) Any two disjoint substreams which have the same rate
are indistinguishable given the rest of the process.
(3) If x2 is a substream which has a larger rate than another,
disjoint substreamx1, thenx2 can be split into two compo-
nents, one of which has the same rate asx1.

Notice that any */* processX(t) is infinitely divisible when
using the probabilistic splitting method of independently
including packets in a new substreami with some probability
pi. With the above definition, it can be seen that an infinitely
divisible input processX(t) can be written as the sum of a
large number of indistinguishable substreams. Specifically, it
has the property that for anyε>0, there exists a large integerM
such that:

where (x1(t),..., xM(t)) are indistinguishable substreams, each
with rateλδ,  has rate , and .

Our definition of infinitely divisible processes above is sim-
ilar in spirit to the infinitely divisible laws detailed in [9].
There, random variables decomposable intoiid components
are considered. Here, identical rate components of our process
are indistinguishable but not necessarilyiid.

We now use the blocking function to establish continuity of
expected moments of unfinished work as a function of the
continuous rate parameterλ. As before, these results also
apply to waiting times in FIFO systems.

Again we assume thatf(u) is a non-decreasing convex func-
tion over . SupposeX(t) is an infinitely divisible input
process with total rateλtot. Suppose also that all indistinguish-
able component processes ofX(t) are conditionally indistin-
guishable given the background input processθ(t). Let
Ef[U(λtot)] represent the expectation of a function of unfin-
ished work at a particular timet* in a queue with this input
and background process. We assume here thatEf[U(λtot)] is
finite.

Theorem2: Ef[U(λ)] can be written as a pure function of the
continuous rate parameterλ, where is a rate
achieved by some substream of the infinitely divisibleX(t)
input. Furthermore,Ef[U(λ)] is a monotonically increasing
and continuous function ofλ.

Proof: See Appendix.❑
The continuity property of Theorem 2 allows us to easily

establish the convexity of any moment of unfinished work
(and packet waiting time) in a */*/1 queue as a function of the
continuous input rateλ. Let X(t) be an infinitely divisible

input process, and suppose that every collection of indistin-
guishable components ofX(t) are conditionally indistinguish-
able given the background processθ(t). Then:

Theorem3: At any particular timet*, the functionEf[U(λ)]
is convex over the continuous variable . Like-
wise, if service is FIFO, thenEf[W(λ)] is also convex.

Proof: We wish to show that the functionEf[U(λ)] always
lies below its chords. Thus, for any three rates ,
we must verify that:

We know from Theorem 1 and Corollary 1 in Section III
that the unfinished work function is convex over a discrete set
of rates when the input process is characterized by a finite set
of M indistinguishable streams (x1,..., xM). We therefore con-
sider a discretization of the rate axis by considering the sub-
processes (x1,..., xM) of the infinitely divisible processX(t),
where eachxi has a small rateδ. In this discretization, we have
rates:

where the rates can be made arbitrarily close to
their counterparts by choosing an appropriately
small value ofδ. Now, from the discrete convexity result, we
know:

By continuity of theEf[U(λ)] function, we can choose the
discretization unitδ to be small enough so that the right hand
side of (26) is arbitrarily close to the right hand side of the
(currently unproven) inequality (24). Simultaneously, we can
ensure that the left hand sides of the two inequalities are arbi-
trarily close. Thus, the known inequality (26) for the dis-
cretized inputs implies inequality (24) for the infinitely
divisible input. We thus have convexity of unfinished work at
any point in time, which also implies convexity of waiting
time in FIFO systems.❑

V. MULTIPLE QUEUES INPARALLEL

We now consider the system ofN queues in parallel as
shown in Fig. 8. The servers of each queue have linespeedsµi
and arbitrary background packet input processesθi(t). An
arbitrary input processX(t) also enters the system, andX(t) is
rate-controllable in that a router can splitX(t) into substreams
of smaller rate. These substreams can be distributed according
to anN-tuple rate vector (λ1,...,λN) over the multiple queues.

We consider both the case whenX(t) is an infinitely divisi-
ble process (as in packet-based probabilistic splitting), and the

p 0 1,[ ]∈

X t( ) xi t( )
i 1=

M

∑ x̃ t( )+= (23)

x̃ t( ) λ̃δ λ̃δ λδ ε< <

u 0≥

λ 0 λtot,[ ]∈

λ 0 λtot,[ ]∈

λ1 λ2 λ3< <

Ef U λ2( )[ ] Ef U λ1( )[ ] +≤

λ2 λ1–( )
Ef U λ3( )[ ] Ef U λ1( )[ ]–( )

λ3 λ1–( )
----------------------------------------------------------------- (24)

λ̃2 k2δ=λ̃1 k1δ= λ̃3 k3δ=, , (25)

λ̃1 λ̃2 λ̃3, ,( )
λ1 λ2 λ3, ,( )

Ef U λ̃2( )[ ] Ef U λ̃1( )[ ] +≤

λ̃2 λ̃1–( ) Ef U λ̃3( )[ ] Ef U λ̃1( )[ ]–( )
λ̃3 λ̃1–( )

----------------------------------------------------------------- (26)
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case whenX(t) is composed of a finite collection ofM indis-
tinguishable streams. The problem in both cases is to route the
substreams by forming an optimal rate vector that minimizes
some network cost function. We assume the cost function is a
weighted summation of unfinished work and/or waiting time
moments in the queues. Specifically, we let {fi(u)} be a collec-
tion of convex, non-decreasing functions on . Suppose
that the queues reach some steady state behavior, and let
Ui(λi) represent the steady state value of unfinished work in
queuei when an input stream of rateλi is applied. LetWi(λi)
represent the steady state waiting time for queue i.

Theorem4: If queues are work conserving andX(t) is either
a finitely or infinitely rate divisible process given {θi(t)}, then:

(a) Cost functions of the form

are convex in the multivariable rate vector (λ1,...,λN).
(b) If service is FIFO, then cost functions of the form

are convex.
(c) If service is FIFO andNk(λk) represents the number of
packets in queuek in steady state, then cost functions of the
following form are convex:

Proof: SinceEfk[Wk(λk)] is convex and non-decreasing for
λk>0, the functionλkEfk[Wk(λk)] is convex on . Thus,
the cost functions in (a) and (b) are summations of convex
functions, so they are convex. Part (c) follows from (b) and
noting that, from Little’s Theorem, .❑

Convexity of the cost function can be used
to develop optimal rate distributions over the
simplex constraintλ1+...+λN=λtot. For symmetric cost func-
tions, which arise when the background processes {θi(t)} and
the linespeeds {µi} are the same for all queues

, the optimal solution is particularly simple. It
is clear in this case that the uniform distribution

(or as near to this as can
be achieved) is optimal and minimizes cost. Thus, in the sym-
metric case we want to spread the total input stream evenly
amongst all of the queues in order to take full advantage of the
bandwidth that each queue provides. In the asymmetric case
when background streams and linespeed processes are not the
same, the optimal rate vector deviates from the uniform allo-
cation to favor queues with faster linespeeds and/or less back-
ground traffic.

Let us suppose the cost function is known.
Convexity of tells us that any local minimum of the cost
function we find must also be a global minimum. It also tells
us a great deal more, as we illustrate for both finitely divisible

and infinitely divisible inputsX(t) below:

A. (Stream-Based)Finitely Divisible X(t): Here we assume
that the inputX(t) is a finite collection ofM streams, which are
indistinguishable given the background processes {θi(t)}. We
want to distribute the streams over theN queues available. We
can thus write the cost function as a function of an integer
N-tuple (rather than a rateN-tuple) which
describes the number of streams we route to each queue. If the
queues are weighted the same and have indistinguishable
background inputs and identical linespeeds, then the cost
function is convex symmetric and the optimal
solution is to allocate streams to of
the queues, and streams to the remaining queues. In
the non-symmetric case, we must consider other allocations
and test them by evaluating the cost function.

Theorem5: Given a convex cost function of
the form specified in Theorem 4, the optimal allocation vector
can be obtained by sequentially adding streams, greedily
choosing at each iteration the queue which increases the total
cost the least. This yields a cost-minimizing vector

after M+N-1 evaluations/estimations of the cost
function.

Proof: The theorem is clearly true forM=1 stream. We
assume that it is true forM=k streams, and by induction prove
it holds forM=k+1.

Let represent the optimal allocation vector for
M=k streams, which is obtained by the sequentially greedy
algorithm. We thus have .

Now we add an additional stream in a greedy manner by
placing it in the queue which increases the cost function the
least. Without loss of generality, we assume this queue is
queue 1, and we have a new allocation vector

. Suppose there is some other vector
whose elements sum tok+1, such that

.

u 0≥

Φ λ1 … λN, ,( ) E f k Uk λk( )[ ]
k 1=

N

∑= (27)

Φ λ1 … λN, ,( ) λkE f k Wk λk( )[ ]
k 1=

N

∑= (28)

Φ λ1 … λN, ,( ) akE Nk λk( )[ ]
k 1=

N

∑= (29)ak{ } 0≥( ).

λk 0≥

E N[ ] λE W[ ]=
Φ λ1 … λN, ,( )

λ1
o … λN

o, ,( )

i 1 … N, ,{ }∈

λ1
o … λN

o, ,( ) λtot N⁄ … λtot N⁄, ,( )=

Φ λ1 … λN, ,( )
Φ

1

2

N

θ1(t)

θ2(t)

θN(t)
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µ2

µN

X(t)

λ1

λ2

λN

Figure 8: Multiple queues in parallel with different background
processes {θi(t)} and server rates {µi}.
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Case 1: . In this case, we take away an input
stream from the first entry of both vectors. This effects only
the queue 1 term in the cost function. Because this
function is convex and non-decreasing,
decreases by less than or equal to the amount that
decreases. Hence, it must be that:

, which contradicts the fact
that the  is optimal for M=k streams.❑

Case 2: . In this case, there exists some queuej
such that . We take the additional input we added to
queue 1 and move it to queuej, forming a new vector

. Notice that this change cannot
decrease the cost function, since this input was originally
added greedily to queue 1. We now have , which
reduces the problem to Case 1.❑

Thus, the sequentially greedy algorithm is optimal. It can be
implemented withM+N-1 evaluations of the cost function by
keeping a record of theN-1 queue increment values for theN-
1 queues not chosen at each step.❑

Example:We consider the system of Fig. 8 when there are
N=4 queues and the inputX(t) consists of 200 independent
streams that produce packets periodically everyP seconds.
Packets have a fixed length ofL bits. The streams are unsyn-
chronized, and hence 200 packets arrive in a uniformly dis-
tributed fashion over any time interval of lengthP. Such input
streams are models for continuous bit rate traffic, such as digi-
tal voice or video data.

The problem is to distribute the streams over the 4 queues
while minimizing the cost function, which we take to be the
total expected number of packets in the system (this is the cost
function of Theorem 4c). We first assume all server speedsµi
are the same, and all background streamsθi(t) are indistin-
guishable. In this case, we immediately know the optimal
stream allocation vector is (50, 50, 50, 50).

Now suppose that we have server speeds (2, 1, 1, 1) and that
there are 10 background streams of the same type at queue 4.
In this asymmetric case, we must use the cost function to
determine optimal allocation using the sequentially greedy
method. The complementary occupancy distribution in a sin-
gle queue withK inputs of periodP, lengthL, and server rateµ
has been derived explicitly in [5]. The result is:

The expected number of packets is hence:

We therefore use the greedy algorithm with cost function:

UsingL=1, P=75, we find that the optimal allocation vector
is: (100, 37, 37, 26). From this solution, we see that--as
expected because of the 10 background streams in queue 4--
there are approximately 10 more streams allocated to queues 2
and 3 than queue 4. Interestingly, the speed of queue 1 is twice
that of the other queues, although, due to statistical multiplex-
ing gains, the number of streams it is allocated is more than
twice the number allocated to the others.

B. (PacketBased)InfinitelyDivisibleX(t): Here we consider
an infinitely divisible processX(t) with total rateλtot as an
input to the system of Fig. 8. The problem is to optimally dis-
tribute the total rate over theN queues so as to minimize a cost
function . We assume the cost function is of
one of the forms specified in Theorem 4. Each of these had the
structure:

for some convex, non-decreasing functions gi(λi).
If background inputs are indistinguishable, and if all queues

are weighted the same in the cost function, then is convex
symmetric and the optimal rate allocation is (λtot/N,...,λtot/N).
Otherwise, we take advantage of the structure of the func-
tion to determine the optimal solution.

Each of the functions gi(λi) is non-decreasing and convex on
some interval . It can be shown that these properties
ensuregi(λi) is right-differentiable. They are also sufficient to
establish the correctness of a Lagrange Multipliers approach
to cost minimization. Given the Lagrangian:

whereγ is the Lagrange Multiplier, we differentiate (from the
right) with respect toλi to obtain

subject to the simplex constraintλ1+...+λN = λtot. Fig. 9 illus-
trates this solution. If we define:

then from the figure we see that we increase the value ofγ
until . The resulting rate vector
yields the optimal solution.

k̃1 k1
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Notice that a fast bisection type algorithm can be developed
to find this optimal rate vector. First, two bracketing values
γLow andγHi are found which yield val-
ues above and belowλtot, respectively. The bisection routine
proceeds as usual until the rate vector converges to a solution
within acceptable error limits.

Example:The following simple example for systems with
memoryless arrivals and packet lengths demonstrates the
method. Suppose, for simplicity, that there are no background
arrivals {θi(t)}. Let the arrival process be Poisson with rateλ,
and the packet length process beiid and memoryless with an
average packet length of 1 unit. We assume that we are using
probabilistic Bernoulli routing where each packet is routed
independently of the next. Let represent the average num-
ber of packets in queue i, and define cost function:

where

The expected number of packets in an M/M/1 queue is:

Multiplying the above equation byai, taking derivatives with
respect toλi and setting the result equal toγ for all i, as well as
considering the constraintλ1+...+λN = λtot, we find for all

:

The above equation is a bit deceptive, in that the summa-
tions are taken over alli for which λi is positive. The positive
λi’s are determined by first assuming that all are positive and
applying the above equation. If any of theλi’s found are zero
or negative, theseλi’s are set to zero and the calculation is
repeated using the remaining subset ofλi’s.

This approach to optimal rate allocation is similar to the
convex optimization routines described in [6]. There, the
authors address packet routing in general mesh networks
when input streams can be continuously split according to a
rate parameter. They pre-suppose some convex cost function
at each node of the network, which (as an idealization) is com-
pletely a function of the overall rate routed to that node. Here,
we have considered cost functions which reflect the actual
queuing congestion at each node when a general */* input is
applied. We have established that, for a simple network con-
sisting ofN parallel queues, the cost functions at each queue
are continuous and non-decreasing in the rate parameter, and
they are indeed convex.

VI. TIME-VARYING SERVERSPEEDS

Here we consider the system of Fig. 1 when the constant
server of rateµ is replaced by a time varying server of rate
µ(t). DefineU(bits)(t) to be the amount of unprocessed data (in
units of bits) in the system at timet. This value is different
from the unfinished workU previously considered--which had
units of time (U(time)(t)). Note thatU(bits)(t) = µU(time)(t) for
constant server rate systems, whileU(time)(t) is not causally
known from the system state for time varying systems.

Characteristics of aU(bits)(t) sample path are similar to
those illustrated in Fig. 2 for constant server systems, with the
exception that theU(bits)(t) function decreases with a time
varying slope -µ(t). We can define the unfinished data block-
ing function:

By repeating the arguments of section II in terms of this new
blocking function, we can establish that the non-negativity,
symmetry, and monotonicity properties hold forβ(bits)

X1,X2(t).
Likewise, if all packets have fixed lengthsL and service is
non-preemptive, it can be shown that the occupancy blocking
functionαX1,X2(t) satisfies these three properties in this time-
varying server setting.

Consequently, given a collection ofN queues with back-
ground input processes {θi(t)} and server rate processes
{ µi(t)}, together with a (finitely or infinitely distributable)
inputX(t), we can establish:

Theorem6: If the indistinguishable components ofX(t) are
conditionally indistinguishable given {θi(t)} and {µi(t)}, then

is convex in the rate vector (λ1,...,λN). If
all packets have a fixed length ofL bits and service is non-pre-
emptive, then  is convex in the rate vector.❑

Recall from Little’s Theorem that if the expected waiting
time E[W(λ)] is convex inλ, then so is the expected packet
occupancyE[N(λ)]. However, the converse implication does
not follow. Indeed, below we provide a (counter) example
which illustrates that--even for fixed length packets under
FIFO service--waiting times are not necessarily convex for
time varying servers.

(Counter)Example:Consider identical input processesX1,
X2, X3 which produce a single packet of lengthL=1 periodi-
cally at times {0, 3, 6, 9,...}. Let the server rate be periodic of
period 3 with µ(t)=1 for and µ(t)=100 for

. Then E[WX1]=1, E[WX1+X2]=1.5, and
E[WX1+X2+X3]=1.67. Clearly the increment in average waiting
time when streamX2 is added islarger than the successive
increment when streamX3 is added. Hence, waiting time is
not convex in this time-varying server setting. However,
notice that minimizing in a parallel queue configuration
(Fig. 8) is accomplished by minimizing (since =

). For fixed length packets, Theorem 6 ensures this is
a convex optimization even for time varying servers.
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VII. CONCLUSIONS

We have developed general convexity results for */*/1
queues using a new function of two packet stream inputs
called theblocking function. Non-negativity, Symmetry, and
Monotonicity properties of the blocking function were estab-
lished. These properties proved to be valuable tools for estab-
lishing convexity of unfinished work and waiting time
moments (Ef[U(λ)] and Ef[W(λ)]) in terms of both a discrete
and a continuous input rateλ.

We then addressed both stream-based and packet-based
routing of general inputs over a collection ofN parallel queues
with arbitrary background inputs and different linespeeds.
Optimal routing algorithms were developed utilizing the con-
vexity results.

This convexity theory can be extended to address more
complex variants of the parallel queue problem. One might
consider a case when we have a collection ofK sets of indis-
tinguishable inputs, where each set categorizes a different type
of input process. For example, setS1 could contain multiple
indistinguishable inputs of the “bursty” type, while setS2 con-
tains indistinguishable inputs of the “continuous bit rate” type.
This variation of the problem is closely related to the NP-com-
plete bin packing problem. It would also be interesting to
explore convexity and optimal routing in more general mesh
networks using these techniques. Such an approach could per-
haps establish the validity of known convex optimization rou-
tines, as well as provide insights into developing new ones.

APPENDIX:
Here we show thatEf[U(λ)] is a continuous, increasing function of

λ (Theorem 2 of Section IV). We utilize the following facts about
convex, non-decreasing functions:

Fact 1: If f(u) is non-decreasing and convex, then for any fixed
there is a functiong(a, x) such that ,

whereg(a, x) is a convex, non-decreasing function ofx for .
Fact 2: Any convex, non-decreasing functiong(x) with g(0)=0 has

the property that  for any .
Proof of Theorem2: It is straightforward to verify thatEf[U(λ)] is

a pure, monotonically increasing function ofλ. Here we prove that
the function is continuous from the right. Left continuity can be
proven in a similar manner.

Take anyλ in the set of achievable rates. We show that:

whereδ is the rate of a component process ofX(t) which we let get
arbitrarily small. By monotonicity, ifδ decreases to zero, then
Ef[U(λ+δ)]-Ef[U(λ)] decreases toward some limitε, where .
Suppose now that this inequality is strict. We reach a contradiction.

Consider disjoint component streams (x1,..., xM), eachxi of rateδ,
for some yet-to-be-determinedδ andM. We assume that theseM sub-
streams are disjoint from another substreamθ of rateλ, all of which
are components of the entire processX(t). Let Uθ+x1+...+xM represent
the unfinished work in the system at some particular timet*, with
input processes (θ, x1,...,xM). From the definition of the blocking
function, we have:

By recursively iterating (42), we find:

Applying the monotonicity property of the blocking function to
(43), we obtain:

Now applying the monotonically increasing, convex functionf(u)
to both sides of (44) and writingf(Uθ+x) = f(Uθ) + g(Uθ, x) (from
Fact 1), we have:

Inequality (46) holds becauseg(U, x) is a convex function ofx and
is zero at x=0 (Fact 2). Now notice thatEf[U(λ+δ)]-Ef[U(λ)]=
Ef[Uθ+xi]-Ef[Uθ] =E[g(Uθ,Uxi+βθ,xi)] for any θ substream of rateλ,
and any disjointxi substream of rateδ. Hence, by assumption:

Taking expectations of (46) and using (47), we find:

Inequality (48) above holds wheneverθ+x1+...+xM is a substream
of the entire, infinitely divisible processX(t). We now chooseM large
enough so thatMε is greater than the expectation off(U) when the
entire inputX(t) is applied, i.e.,Mε>Ef[UX]. However, we choose a
rateδ for each of thexi substreams that is small enough so that we
can still findM such substreams to ensureθ+x1+...+xM is still a com-
ponent process of X(t). This implies that, from (48),

, which contradicts monotonicity.
Hence,ε=0, (41) holds, and the theorem is proven.❑
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