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Abstract— We consider a two transmit antenna broadcast
system with heterogeneous users, and tackle the problem
of maximizing a weighted sum rate. We establish a novel
upper bound for the weighted sum capacity, which we then
use to show that the maximum expected weighted sum rate
can be asymptotically achieved by transmitting to a suitably
selected subset of at most2C users, where C denotes the
number of distinct user classes. Numerical experiments indicate
that the asymptotic results are remarkably accurate and that
the proposed schemes operate close to absolute performance
bounds, even for a moderate number of users.

I. I NTRODUCTION

In the present paper we consider the downlink transmis-
sion from a single base station equipped withM transmit
antennas toK independent users each with a single receive
antenna. In information-theoretic terms, this may be mod-
eled as a multi-antenna Broadcast Channel (BC). Caire &
Shamai [1] were the first to obtain the sum capacity expres-
sion for the Gaussian BC with two receivers, and to suggest
the use of Dirty Paper Coding (DPC) [2] for transmitting
over this channel. Viswanath & Tse [24] and Vishwanath
et al. [23] extended the result for the sum capacity to an
arbitrary number of users and receive antennas by exploiting
a powerful duality relation with the multi-access channel
which was further explored in Jindalet al. [12]. Recently,
Weingartenet al. [28] showed that DPC in fact achieves the
full capacity region of the multi-antenna Gaussian BC, thus
providing a characterization of the entire capacity region.

Various researchers have investigated the sum capacity
gains achievable in the above-described system by simul-
taneously transmitting to several users. In particular, Jindal
& Goldsmith [10] show that the sum capacity gain over
a TDMA strategy is approximatelymin{M,K}, i.e., the
minimum of the number of transmit antennas and the number
of users. Jindal [8] demonstrates that the sum capacity grows
with the SNR at ratemin{M,K}. In other words, multiple
transmit antennas can potentially provide anM -fold gain in
the sum capacity.
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The above capacity results rely on the assumption that
perfect channel state information is available at the trans-
mitter, which may involve a significant amount of feedback
overhead. In addition, DPC is quite a sophisticated technique
and challenging to implement in an actual system. Motivated
by these issues, extensive efforts have been made to devise
practical transmission and coding schemes and find ways to
reduce the amount of channel feedback information required.
Hochwald et al. [4], [5] describe an algorithm based on
channel inversion and sphere encoding, and demonstrate that
it closely approaches the sum capacity while being simpler
to operate than DPC. Jindal [9] considers a multi-antenna BC
with limited channel feedback information, and shows that
the full sum capacity gain at high SNR values is achievable
as long as the number of feedback bits grows linearly with
the SNR (in dB).

As mentioned above, multiple transmit antennas can po-
tentially yield an M -fold increase in the sum capacity.
However, it is necessary that at leastM users are served
simultaneously in order to reap the full benefits. Transmitting
to fewer thanM users falls short of the maximum rate as
it fails to fully exploit the available degrees of freedom.
Transmitting to more thanM users may be necessary to
achieve the sum capacity in general, but the upper bound
in [10] suggests that transmitting to a suitably selected subset
of M near-orthogonal users is close to optimal. When the
total number of users to choose from is sufficiently large,
such a subset exists with high probability [19], [20].

Clearly, the above principle allows for a reduction of the
amount of channel feedback and coding complexity. In par-
ticular, it suggests beam-forming schemes which construct
M (random) orthogonal beams and serve the users with the
largest channel gains on each of them with equal power.
Transmission schemes along these lines are presented in
Viswanath et al. [25], Sharif & Hassibi [15], and Vakili
et al. [22]. Viswanathan & Kumaran [26] proposed fixed-
beams and adaptive steerable-beams schemes grounded on
that principle as well. Further related results may be found
in Sharif & Hassibi [16], [17] who derive the asymptotic
sum capacity for TDMA, DPC and beam-forming in the limit
where the number of users grows large.

In [7], we considered a two transmit antenna broad-
cast system with homogeneous users, and derived an exact
asymptotic characterization of the gap between the full sum
capacity and the rate that can be achieved by transmitting to
a suitably selected pair of users. In particular, we proposed a
scheme that picks the user with the largest channel gain, and



then selects a second user from the nextL−1 strongest ones
to form the best possible pair with it, taking channel orien-
tations into account as well. We showed that the expected
rate gap converges to1/(L− 1) nats/symbol when the total
number of usersK tends to infinity. AllowingL to increase
with K, we concluded that the gap asymptotically vanishes,
and that the sum capacity is achievable by transmitting to a
properly chosen pair of users.

In the present paper, we generalize the above results to a
system with heterogeneous user characteristics. In this case,
the sum capacity is no longer an appropriate performance
measure, because it does not reflect the potential fairness
issues that arise. Hence, we will focus on maximizing a
weightedsum rate, where the users with weaker channels
would typically be assigned higher weights. Leaving fairness
considerations aside, maximizing a weighted sum rate is also
of critical importance in so-called queue-based scheduling
strategies where the user weights are taken to be functions of
the respective queue lengths. Queue-based scheduling strate-
gies are particularly attractive because under mild assump-
tions they are known to achieve stability whenever feasible
without explicit knowledge of the system parameters, see for
instance [14], [18], [21].

Although the sum rate expression for the multi-antenna
Gaussian BC and associated bounds have been thoroughly
investigated, the problem of maximizing a general function
over the capacity region has not attracted nearly as much
attention. To the best of our knowledge, Viswanathanet
al. [27] are among the few authors who consider the problem
of attaining more general points on the boundary of the
capacity region. In particular, they present an algorithm for
finding the power allocation to achieve any weighted sum
rate maximizing point. However, the optimization procedure
is computationally demanding, especially for large numbers
of users, and requires perfect channel state information. Lee
& Jindal [13] study the problem of obtaining the symmetric
capacity, i.e., the maximum rate that can be provided to each
of the users simultaneously.

In the present paper, we consider a two-antenna broadcast
system with a user population that consists ofC distinct
classes, where each class is assigned a non-negative weight.
We derive a generic upper bound for the weighted sum
capacity, which includes as a special case the sum capacity
bound in [10]. We then proceed to show that the upper
bound is in fact attained for a particular ‘ideal’ configuration
of 2C channel vectors. Finally, we prove that a nearly
ideal configuration of such channel vectors exists with high
probability, and that the maximum expected weighted sum
rate can thus be asymptotically achieved, when the total
number of users grows large.

The above results, as well as their homogeneous coun-
terparts in [7] have significant ramifications for the design
of channel feedback mechanisms and scheduling strategies.
Since the proposed schemes only transmit to a small fraction
of the users, they provide significant scope for reducing the
feedback overhead and operational complexity. We further

Fig. 1. The multi-antenna BC (left) and the MAC (right) have the same
capacity region.

remark that even though this paper only treats the case of
two transmit antennas in detail, the results extend naturally to
an arbitrary number of antennas. Specifically, we can show
that in aM -antenna system withC user classes, the weighted
sum capacity can be asymptotically attained by transmitting
to a suitably chosen set ofMC users. See [6] for details.

The remainder of the paper is organized as follows. In
Section II we present a detailed model description and
review some relevant results for the capacity region of the
Gaussian multi-antenna BC. In Section III we briefly review
our results for a homogeneous system. Section IV addresses
the weighted sum rate maximization problem in a scenario
with heterogeneous users. In Section V we discuss the
numerical experiments we conducted, which indicate that the
asymptotics are surprisingly accurate, even for a moderate
number of users. Throughout the paper, we omit most of the
proofs due to length constraints.

II. M ODEL DESCRIPTION AND KNOWN RESULTS

A. Model description

We consider a broadcast channel (BC) withM > 1 trans-
mit antennas andK receivers each with a single antenna, as
schematically represented in Figure 1(a).

Let x ∈ CM×1 be the transmitted vector signal and let
hk ∈ C1×M be the channel gain vector of thek-th receiver.
Denote byH = [h†1h†2 · · ·h

†
K ]† the concatenated channel

matrix of all K receivers. For now, the matrixH is arbitrary
but fixed. We assume that the transmitter has perfect channel
state information, i.e., exact knowledge of the matrixH.
The circularly symmetric complex Gaussian noise at thek-
th receiver isnk ∈ C where nk is distributed according
to CN (0, 1). Thus the received signal at thek-th receiver
is yk = hkx + nk. The covariance matrix of the transmitted
signal isΣx = E

[
xx†
]
. The transmitter is subject to a power

constraintP , which impliesTr(Σx) ≤ P . (HereTr denotes
the trace operator, which is the sum of the diagonal elements
of a square matrix.)



Cw
BC(H, P ) = max

R∈CBC

K∑
k=1

wkRk = max
π

max∑K
k=1 Tr(Σk)≤P

K∑
k=1

wπ(k) log

(
1 + hπ(k)(

∑
l≤k Σπ(l))h

†
π(k)

1 + hπ(k)(
∑

l<k Σπ(l))h
†
π(k)

)
. (1)

B. Known information-theoretic results

Let π(k), k = 1, . . . ,K, be a permutation ofk =
1, . . . ,K. As shown in [23], the following rate vector
is achievable using Dirty Paper Coding (DPC), fork =
1, . . . ,K:

Rπ(k) = log

(
1 + hπ(k)(

∑
l≤k Σπ(l))h

†
π(k)

1 + hπ(k)(
∑

l<k Σπ(l))h
†
π(k)

)
.

The DPC region is defined as the convex hull of the

union of all such rate vectors, over all positive semi-
definite covariance matrices that satisfy the power constraint∑K

k=1 Tr(Σk) ≤ P , and over all possible permutationsπ(k).
As shown in [1], [28], DPC in fact achieves the entire
capacity region denoted asCBC . The weighted sum capacity
Cw

BC(H, P ) for any weight vectorw ∈ RK
+ can therefore be

written as in equation (1).

Unfortunately, the maximization in (1) involves a non-
concave function of the covariance matrices, which makes
it hard to deal with analytically as well as numerically.
However, in [23], [24], a duality is shown to exist between
the BC and the Gaussian multiple-access channel (MAC)
with a sum-power constraintP . That is, the dual MAC which
is formed by reversing the roles of transmitters and receivers,
as represented in Figure 1(b), has the same capacity region
as the BC. Note thatCw

BC(H, P ) =
∑K

k=1 ∆wkSk, with
Sk :=

∑k
l=1 Rl the partial sum rate of the firstk users and

∆wk := wk − wk+1, with the convention thatwK+1 = 0.
Without loss of generality we may assume thatw1 ≥ w2 ≥
· · · ≥ wK . Using the duality result, the weighted sum
capacity (1) of the BC can thus be expressed in terms of
the dual MAC weighted sum rate as

Cw
BC(H, P ) = max∑K

k=1 Pk≤P

K∑
k=1

∆wk log det

(
IM +

k∑
l=1

Plh
†
l hl

)
,

(2)
where Pk ≥ 0 denotes the power allocated to thek-th
receiver. As a special case of (2) withwk = 1, k = 1, . . . ,K,
the sum capacity is obtained as

Csum
BC (H, P ) = max∑K

k=1 Pk≤P
log det

(
IM +

K∑
k=1

Pkh†khk

)
. (3)

Sincelog det(·) is a concave function on the set of positive-

definite matrices, the problems in (2) and (3) only involve
maximizing a concave objective function subject to convex
constraints. Specialized algorithms have been developed to
solve these problems [11], [27].

III. H OMOGENEOUS USERS

In this section, we take a synoptic look at the problem
of maximizing the sum rate in a system with two transmit
antennas and statistically homogeneous user population. A
more detailed treatment of this problem can be found in [7].

The sum capacity is a key metric of interest for the
BC as it measures the maximum achievable total rate.
Since it only considers the aggregate throughput, it does
not reflect potential fairness issues that arise when users
with widely disparate channel characteristics obtain vastly
different throughput portions. In the present section, however,
we focus on the case of statistically identical users, which by
symmetry will obtain equal long-term throughput shares, so
that fairness is not a major issue. In the next section, we will
address the problem of maximizing aweightedsum rate in
a system where the users may have different characteristics.

We will show that the sum capacity can be closely
approached by transmitting to a suitably selected pair of users
as the total number of users grows large. In preparation for
that, we first present some useful lower and upper bounds
for the sum capacity.

A. Bounds for the sum capacity

Denote byh(k) the channel vector of the receiver with the
k-th largest norm, i.e.,||h(1)||2 ≥ ||h(2)||2 ≥ · · · ≥ ||h(K)||2.
The next upper bound for the sum capacity is established
in [10]:

Csum
BC (H, P ) ≤ M log

(
1 +

P

M
||h(1)||2

)
. (4)

Observe that the above bound can be achieved when there
are M receivers with orthogonal channel vectors tied for
the maximum norm||h(1)||2. For a two-antenna system, the
above bound becomes

Csum
BC (H, P ) ≤ 2 log

(
1 +

P

2
||h(1)||2

)
. (5)

Taking Pi = Pj = P/2 and Pk = 0 for all k 6= i, j in
Equation (3), we obtain a simple lower bound for the sum
capacity

Csum
BC (H, P ) ≥ C(hi, hj , P ) := log det

(
I2 +

P

2
(h†i hi + h†jhj)

)
,

(6)
which corresponds to transmitting to usersi andj at equal

power.

For any two vectorsg, h ∈ C2, let U(g, h) := |<g,h>|2
||g||2||h||2

be the squared normalized inner product. By expanding the
determinant in (6), we obtain

C(hi, hj , P ) = log

(
1 +

P

2
(||hi||2 + ||hj ||2) +

P 2

4
||hi||2||hj ||2Vij

)
,

(7)



with Vij = 1− U(hi, hj).

The lower bound expression (7) reflects the fact that the
sum rate for two users critically depends on the norms of the
respective channel vectors and their degree of orthogonality.
In particular, the sum rate is large when the channel vectors
are nearly orthogonal and have large norms. Indeed, the
lower bound coincides with the upper bound (5) when usersi
and j are orthogonal and tied for the maximum norm, i.e.,
||hi||2 = ||hj ||2 = ||h(1)||2 and< hi, hj >= 0.

B. Large-K asymptotics

The lower and upper bounds for the sum capacity in the
previous subsection hold for any arbitrary but fixed set of
channel vectors. In order to derive meaningful asymptotic
results, we will in the remainder of the section assume the
channel vectors to be random and focus on theexpected
sum rate. We will adhere to the common assumption that the
components of the channel vectors of the various users are
independent and distributed according toCN (0, 1), which
corresponds to independent Rayleigh fading. As it turns out,
this specific assumption is actually not essential for most
of the results to hold. We will not pursue this thread in
any detail here, but revisit the issue when we later consider
heterogeneous user scenarios.

As mentioned earlier, the upper bound in (5) for the sum
capacity can be achieved when there is a pair of orthogonal
users tied for the maximum channel norm||h(1)||2 by grant-
ing equal power to each of them. Intuitively, when the total
number of users is large, there exists with high probability
a pair of users which are nearly orthogonal and have norms
close to the maximum. This suggests that the sum capacity
can be closely approached by transmitting to such a pair of
users and allocating equal power to each of them.

We are now ready to formalize the above assertion. We
will consider three heuristic selection schemes for scheduling
a pair of users with equal power. Scheme I picks two
arbitrary users among theL strongest ones. Scheme II selects
an arbitrary user among theL strongest ones, and a second
one from the same group to form the best pair, i.e., the pair
that maximizes the sum rate. Scheme III picks the best pair
among theL strongest users, i.e., the pair that maximizes the
sum rate. Note that scheme II dominates scheme I and that
scheme III in turn dominates scheme II, and that all three
schemes coincide whenL = 2.

Our main theorems in this section consider the asymptotic
gap between the upper bound in (5) and the sum rate
achievable by scheme II.

Theorem 3.1:For any fixed value ofL ≥ 2, l ≤ L, the
difference

E
[
2 log

(
1 +

P

2
||h(1)||2

)]
− E

[
max

k=1,...,L,k 6=l
C(h(l), h(k), P )

]
converges to1/(L− 1) asK →∞.

Theorem 3.2:For any fixed valuel and sequenceL(K)
with limK→∞ L(K) →∞,

2E
[
log

(
1 +

P

2
||h(1)||2

)]
−E

[
max

k=1,...,L(K),k 6=l
C(h(l), h(k), P )

]
→ 0

asK →∞.

The next corollaries follow as immediate consequences
from Theorems 3.1 and 3.2.

Corollary 3.1: For any fixed value ofL, l ≤ L,

E [Csum
BC (H, P )]− E

[
max

k=1,...,L,k 6=l
C(h(l), h(k), P )

]
→ 1

L− 1

asK →∞.
The above corollary shows that the asymptotic perfor-

mance gap of scheme II decays as1/(L−1), which suggests
that a relatively moderate value ofL may be adequate for
most practical purposes.

Corollary 3.2: For any fixed valuel and sequenceL(K)
with limK→∞ L(K) = ∞,

E [Csum
BC (H, P )]− E

[
max

k=1,...,L(K),k 6=l
C(h(l), h(k), P )

]
→ 0

asK →∞.
The above corollary shows that scheme II is asymptotically

optimal when sufficiently many users are considered, and
thus implies that the dominating scheme III is asymptotically
optimal as well. As a by-product, we conclude that the upper
bound (5) is asymptotically tight.

Corollary 3.3:

E [Csum
BC (H, P )]− E

[
C(h(1), h(2), P )

]
→ 1

asK →∞.
This corollary corresponds to a special case of scheme I

with L = 2, and shows that simply selecting the two
strongest users leaves a performance gap of 1 nat/symbol.

In conclusion, the above results show that scheme II is
asymptotically optimal in the sense that the absolute gap to
the sum capacity vanishes to zero providedL(K) → ∞
as K → ∞. Thus, transmitting to a suitably selected pair
of users is asymptotically optimal, where one of them may
in fact be arbitrarily chosen from a fixed short list. The
gain from considering all pairs of users, as in scheme III,
is asymptotically negligible. However, picking an arbitrary
pair of users, as in scheme I, is not optimal even when the
users are the two strongest ones.

IV. H ETEROGENEOUS USERS

In this section, we extend our results in [7] to a system
in which the user channels are not identically distributed.
In particular, we turn our attention to a system where users
may have different statistical characteristics, and focus on
the problem of maximizing aweightedsum rate expression.
We will demonstrate that transmitting to a properly selected
group of users asymptotically achieves the maximum ex-
pected weighted sum rate, although scheduling just two users
will no longer be sufficient in general.



A. Bounds for the weighted sum rate

We first establish a generic upper bound for the weighted
sum rate for an arbitrary number ofM transmit antennas. Let
wk be the weight associated with thek-th user. For notational
convenience, define∆wk := wk−wk+1 with the convention
that wK+1 = 0. Without loss of generality, we assume that
the users are indexed such thatw1 ≥ w2 ≥ · · · ≥ wK .

Theorem 4.1:For any given set of channel vectors,

Cw
BC(H, P ) ≤ max∑K

k=1 Pk≤P
∆w1 log(1 + P1||h1||2)

+ M

K∑
k=2

∆wk log

(
1 +

k∑
l=1

Pl

M
||hl||2

)
. (8)

Proof
Equation (2) yields thatCw

BC(H, P ) =
∑K

k=1 ∆wkSk,
with

Sk = log det

(
IM +

k∑
l=1

Plh
†
l hl

)
.

Clearly,
S1 = log(1 + P1||h1||2). (9)

Using Hadamard’s inequality for Hermitian positive semi-
definite matrices [3], p. 502, and the concavity of the log
function, we obtain

Sk ≤
M∑

m=1

log

(
1 +

k∑
l=1

Plh
†
lmhlm

)
≤ log

(
1 +

k∑
l=1

Pl

M
||hl||2

)
(10)

for all k = 2, . . . ,K.
Substituting inequalities (9) and (10), the statement of the

theorem follows.
2

The next upper bound follows as a straightforward corollary
of Theorem 4.1.

Corollary 4.1: For any given set of channel vectors,

Cw
BC(H, P ) ≤ M max∑K

k=1 Pk≤P/M

K∑
k=1

∆wk log(1 +

k∑
l=1

Pl||hl||2).

(11)

In order to develop a suitable asymptotic framework, we
assume that there areC classes of users, withKc the number
of class-c users and

∑C
c=1 Kc = K. Let h(c)

k be the channel
vector of thek-th class-c user. With minor abuse of notation,
we let wc be the weight associated with classc, and define
∆wc := wc − wc+1, with the convention thatwC+1 = 0
as before. LetTc be the total rate received by classc. Thus
the weighted sum rate isT :=

∑C
c=1 wcTc. Without loss of

generality, we assume that the classes are indexed such that
w1 ≥ w2 ≥ · · · ≥ wC . Let h(c)

(k) be the channel vector of

the class-c user with thek-th largest norm, i.e.,||h(c)
(1)||

2 ≥
||h(c)

(2)||
2 ≥ · · · ≥ ||h(c)

(Kc)
||2.

The next corollary specializes the upper bound in (11) to
a class-based system.

Fig. 2. The optimal channel configuration for two user classes.

Corollary 4.2: For any given set of channel vectors,

C∑
c=1

wcTc ≤ M max∑C
c=1 Pc≤P/M

C∑
c=1

∆wc log

(
1 +

c∑
d=1

Pd||h(d)

(1)||
2

)
.

(12)

Note that when all weights are taken equal to one, the
upper bound in (11) reduces to that in Equation (4) for
the sum rate. Recall that the upper bound in (4) is tight
in the sense that it can actually be achieved when there
are M users with orthogonal channel vectors tied for the
maximum norm. Likewise, the upper bound in (12) can be
attained for a particular configuration of channel vectors.
Specifically, assume that there areM unit orthogonal vectors
um ∈ CM , m = 1, . . . ,M , i.e., ||um|| = 1 for all m,
< um, un >= 0, m 6= n, andMC users,M from each class,
with channel vectorsh(c)

um
c

, c = 1, . . . , C, m = 1, . . . ,M , that
satisfy the following two properties:
(i) within each class, allM users are tied for the maximum
norm, i.e., ||h(c)

um
c
||2 = ||h(c)

(1)||
2 for all c = 1, . . . , C, m =

1, . . . ,M ;
(ii) the channel vector of one of the users of each class
is parallel toum and thus orthogonal toun, m 6= n, i.e.,
< um, h(c)

um
c

>= ||h(c)
um

c
|| and < un, h(c)

um
c

>= 0 for all
c = 1, . . . , C.

The second property implies that all theum-users are
orthogonal to all theun-users, i.e.,< h(c)

um
c

, h(d)
un

d
>= 0

for all c, d = 1, . . . , C, m 6= n. For brevity, the above-
described constellation of channel vectors will be referred to
as the optimal configuration. Figure 2 provides a pictorial
representation of the optimal configuration for the case of
C = 2 user classes andM = 2 transmit antennas.

Let P ∗
1 (K), . . . , P ∗

C(K) be the optimizing power levels
of the upper bound in (12) for given values of||h(c)

(1)||
2, c =

1, . . . , C, i.e.,

P ∗(K) = (P ∗
1 (K), . . . , P ∗

C(K))

:= arg max∑C
c=1 Pc≤P/M

C∑
c=1

∆wc log

(
1 +

c∑
d=1

Pd||h(d)

(1)||
2

)
.

Now, by assigning powerP ∗
c (K) to all M class-c users in

the optimal configuration, and arranging the users in order



of increasing class index in the DPC sequence, we can show
that the upper bound in (12) is indeed achievable.

From now on, we focus on the case ofM = 2 transmit
antennas. The upper bound in (12) then becomes:

C∑
c=1

wcTc ≤ U(wc; ||h(c)

(1)||
2; P ) :=

2 max∑C
c=1 Pc≤P/2

C∑
c=1

∆wc log

(
1 +

c∑
d=1

Pd||h(d)

(1)||
2

)
. (13)

The next lemma provides a lower bound. Consider a
scheme that assigns powerP ∗

c to class-c usersuc andvc with
channel vectorsh(c)

uc
andh(c)

vc
, respectively,c = 1, . . . , C, and

arranges users in order of increasing class index in the DPC
sequence. Let̂Tc and Ŝc :=

∑c
d=1 T̂c be the resulting total

rate received by classc and the partial sum rate of the first
c classes, respectively.

Lemma 4.1:Let Vc := mind,e=1,...,c V (d),(e), with
V (d),(e) := 1−U(h(d)

ud , h(e)
ve ). Then

∑C
c=1 wcT̂c =

∑C
c=1 ∆wcŜc,

with

Ŝc ≥ log

(
1 +

c∑
d=1

P ∗
d ||h(d)

u ||2
)

+ log

(
1 +

c∑
d=1

P ∗
d ||h(d)

v ||2
)

+ log(Vc).

Note that the above lower bound coincides with the upper
bound in (13) ifh(c)

uc
, h(c)

vc
, c = 1, . . . , C, form the optimal

configuration of channel vectors, i.e.,||h(c)
uc
||2 = ||h(c)

vc
||2 =

||h(c)
(1)||

2 for all c = 1, . . . , C, and< h(c)
uc

, h(d)
vd

>= 0, so that

V (d),(e) = 1 for all d, e = 1, . . . , C.

B. Random channel vectors

The lower and upper bounds for the weighted sum rate
in the previous subsection hold for any arbitrary but fixed
set of channel vectors. In order to derive asymptotic results,
we will as before assume the channel vectors to be random
and focus on theexpectedweighted sum rate. Within each
class we assume the channel vectors to be independent and
identically distributed, i.e.,h(c)

1 , h(c)
2 , . . . are i.i.d. copies of

some random vectorh(c) ∈ C2. Among the various classes,
the channel vectors may however have different statistical
characteristics. To be specific, we assume that each class-c
channel is Rayleigh faded with parameterβc. In other words,
h(c) = βch, c = 1, . . . , C, where the components ofh are
independent and distributed according toCN (0, 1) as in the
homogeneous case. The numbers of users of the various
classes are assumed to grow large in fixed proportions,
i.e., Kc = αcK for fixed coefficientsα1, . . . , αC with∑C

c=1 αc = 1.

C. Large-K asymptotics

We now proceed to show that the upper bound in (13)
is asymptotically achievable by transmitting to a judiciously
chosen subset of2C users. Analogous to the homogeneous
case, there exists with high probability a group of2C users

with channel vectors close to the optimal configuration in the
heterogeneous case when the total number of users is large.
Thus, we will show that selecting such a group of2C users
and allocating powerP ∗

c to both class-c users, where

P ∗ = (P ∗
1 , . . . , P ∗

C) := arg max∑C
c=1 Pc≤P/2

C∑
c=1

∆wc log

(
c∑

d=1

Pdβ2
d

)
asymptotically achieves the upper bound in (13). We remark
that the power levels(P ∗

1 , . . . , P ∗
C) are the limiting values of

the sequence of random variables(P ∗
1 (K), . . . , P ∗

C(K)) when
the norms||h(c)

(1)||
2 grow large. It may in fact be shown that

(P ∗
1 (K), . . . , P ∗

C(K)) converge to(P ∗
1 , . . . , P ∗

C) in probability,
asK →∞.

We will now prove that transmitting to a carefully se-
lected subset of2C users asymptotically achieves the upper
bound (13) and thus maximizes the expected weighted sum
rate. Motivated by the knowledge of the optimal channel con-
figuration, we will consider the following two user selection
schemes which will be referred to as the ‘list’ scheme and
the ‘cone’ scheme, respectively.

List scheme
The ‘list’ scheme first identifies for each class the users
with norms close to the maximum, and then selects a
nearly orthogonal pair of users among these. Specifically,
the list scheme first selects the class-1 user with the largest
norm ||h(1)

(1)||
2. Let the channel vector of this user beh(1)

v1
=

h(1)
(1). It then considers the class-1 users with theL1 next

largest norms, and selects the user whose channel vector
is most orthogonal toh(1)

(1), i.e., the user that minimizes

U(h(1)
(k), h(1)

(1)). Let the channel vector of this user beh(1)
u1

,

and U1 := U(h(1)
u1

, h(1)
(1)). Next, it identifies the class-

c users with the2Lc largest norms and divides these in
two groups of sizeLc each, say odd ones and even ones.
Within the first group, it selects the user whose channel
vector is most parallel toh(1)

(1), i.e., the user that maximizes

U(h(1)
(2k−1), h(1)

(1)). Let the channel vector of this user beh(c)
vc

,

and Vc := 1 − U(h(1)
(1), h(c)

vc
). Finally, it selects within the

second group of class-c users the user whose channel vector
is most orthogonal toh(1)

(1), i.e., the user that minimizes

U(h(1)
(2k), h(1)

(1)). Let the channel vector of this user beh(c)
uc

,

andUc := U(h(1)
(1), h(c)

uc
).

Cone scheme
The ‘cone’ scheme first identifies users that are close to
orthogonal, and then selects the ones with the largest norms
among these. Specifically, it first picks two orthogonal vec-
tors u, v ∈ C2, i.e., < u, v >= 0 and some small tolerance
marginδ > 0. Then it finds the class-c user with the largest
norm among those withU(u, h(c)

k ) ≥ 1− δ. Let the channel
vector of this user beh(c)

uc
. Similarly, it selects the class-c user

with the largest norm among those withU(v, h(c)
k ) ≥ 1− δ.

Let the channel vector of this user beh(c)
vc

.

After selecting the users in the above-described fashion,



both the list and the cone schemes allocate powerP ∗
c to

both class-c users. DefinêTc as the rate received by classc
under the list scheme, i.e., the sum rate of the two class-
c users selected, and denote byT̂ :=

∑C
c=1 wcT̂c the total

weighted sum rate. The next two theorems show that the list
scheme achieves a finite rate gap that vanishes to zero as
the list size grows large, and thus asymptotically maximizes
the expected weighted sum rate. In a similar fashion, it can
be shown that the cone scheme asymptotically achieves the
maximum weighted sum rate.

Theorem 4.2:Assume thatLc(K) is such thatLc ≤
Lc(K) ≤ o(Kδ) for any δ > 0. Then

lim sup
K→∞

E
[
U(wc; ||h(c)

(1)||
2;P )

]
− E

[
T̂
]
≤ D(L),

with L := min{L1, . . . , LC},

D(L) := 4w1C
2
[
2L−α + C1(A(1−A/4))2(L−1) + C2e

−AL1−α
]
,

A := min{A1, A2}, α > 0, and C1, C2 > 0 constants
independent ofL1, . . . , LC .

The next result follows by lettingL →∞ in Theorem 4.2
and observing thatlimL→∞D(L) = 0 for any α ∈ (0, 1).

Theorem 4.3:Assume that Lc(K) is such that
limK→∞ Lc(K) = ∞ andLc(K) ≤ o(Kδ) asK →∞ for
any δ > 0. Then

lim
K→∞

E
[
U(wc; ||h(c)

(1)||
2;P )

]
− E

[
T̂
]

= 0.

The above theorem shows that scheduling a suitably
selected group of2C users asymptotically achieves the upper
bound (13) and thus maximizes the expected weighted sum
rate. In fact, it shows that scheduling two users of each of
the classesc ∈ C∗ is sufficient to asymptotically achieve the
maximum expected weighted sum rate, whereC∗ := {c :
P ∗

c > 0}.
While we have focused only on the case of two transmit

antennas, it can be shown along similar lines that in general
the upper bound (12) is asymptotically achievable by trans-
mitting to a suitably selected subset ofMC users. See [6]
for a treatment of the generalM -transmit antenna case.

V. NUMERICAL RESULTS

In this section, we discuss the numerical experiments that
we conducted for a two transmit antenna broadcast system
with a heterogeneous user population. These simulations
indicate that our asymptotic results tend to be remarkably
accurate, even for moderate population sizes. Similar results
for the homogeneous case were presented in [7].

A. Background for the numerical results

The simulation results which are provided below are for
a two-class system. The weights are taken to bew1 = 2,
w2 = 1 (although we equivalently normalized these to sum
to 1 over the users), and the coefficientsβ1 = 0.5, β2 = 1.0
determine the mean SNRs. The two populations of users are
of equal size,K1 = K2 = 10. Under these circumstances,

the asymptotically optimal power values areP ∗1 = 1/3,
P ∗

2 = 1/6, scaling outP , which is varied in most of the
results below. We will state its value when necessary.

We now describe the schemes themselves. As far as the
list and cone schemes are concerned, these are detailed in the
text. Throughout, the asymptotically optimal power settings
will be used, no power optimization is being employed. We
will also consider TDMA, by which we mean the scheme
that picks the user which has the maximum weighted rate
when assigned full power, over all the users. Thus, it selects
the k-th class-c user which maximizes

max
c=1,...,C

wc log(1 + P ||h(c)
(1)||

2).

Finally, we consider two beamforming (BF) versions. The
first version (referred to as BeamForm 2 in the figure)
schedules one user in each beam, with the powers equally
split and the user with the maximum weighted rate as
determined by the SINR being the one selected for each
beam. The second version (referred to as BeamForm 4)
schedules one user from each class in each of the beams.
In this case each user is assigned half its classes asymptotic
power. The latter scheme is not expected to perform well as
the interference between users on the same beam cannot be
resolved except by using DPC or some equivalent approach.

B. Graphs for basic schemes

Figure 3(a) shows results for all the main schemes as well
as the upper bound and the average maximum weighted
capacity limit. L = 5 was set for the list scheme and
δ = 0.2 for the cone scheme. (Further numerical experiments
indicated that the performance of the list scheme is quite
robust with respect to the list sizeL, so that the exact value
is not that critical.) As expected, the upper bound (13) is
loose and the list and cone schemes perform well at high
SNR values. For low SNR values, TDMA outperforms these
schemes. The BF schemes fall off at very high SNR as the
figure shows. All rates are given in nats.

As far as the list and cone schemes are concerned, good
performance at high SNR is expected. However, at low
SNR TDMA is close to optimal. (This latter conclusion
follows from the linearity of the log.) Thus for low to
moderate SNR’s one could make up for the loss of rate in
the list scheme by optimizing the powers. Similarly, the cone
scheme does well at high SNR but not at low SNR. This
loss in performance can also be addressed by assigning the
powers optimally. This is a concave optimization in three
independent variables, and is therefore potentially a time-
consuming calculation, since we have no explicit formula
for determining the optimal powers.

Figure 3(b) shows the same results, but gives the ratio
to TDMA. Note that unlike the homogeneous case [15],
BF is not asymptotically optimal as the number of users is
increased at fixed SNR. However, at low SNR’s (below 0 dB)
BeamForm 2 does better than cone or list. Figure 3(b) shows
that BeamForm 2 performs consistently worse than TDMA,
which was also observed in the homogeneous example in



[7] where we had a similar number of users. The results
for BeamForm 4 are worse than those for BeamForm 2 as
expected.

C. Additional compound schemes

We now look at simpler enhancements to avoid power
optimization. One such enhancement to the list scheme is
to identify the best possible pair among the already selected
four users. Consider the two-user weighted sum rates ob-
tained by scheduling all possible pairs of these users. The
power is split equally while scheduling two users of the same
class, but when scheduling one user from each class, we
allocate them powers2P ∗

1 and 2P ∗
2 respectively. The two-

user scheme picks the pair that corresponds to the highest
weighted sum rate among the six possible pairs.

We thus arrive at the following heuristic schemes. Com-
pound scheme I selects the better among TDMA and the
list schemes. Compound scheme II goes further and selects
the best among TDMA, the two-user scheme above, and
the original list scheme. A three-user heuristic scheme was
also considered, but since it did not provide any appreciable
improvement, it has been omitted from the results.

In Figure 4 we compare the list scheme with the two
heuristic schemes, Compound I and Compound II. These
results are more clearly seen as a ratio to TDMA rather
than the absolute rates which are difficult to distinguish.
Since Compound I takes the best of TDMA and the list
scheme, it cannot do worse than TDMA at any point and
list at any point. Hence, it does well at low SNRs and at
high SNRs. There is nevertheless a significant rate gap for
this scheme for moderate SNR’s, roughly in the range 0–
5dB. Here TDMA falls off, but the list scheme is not yet in
its most advantageous range. However, Compound II closes
most of this gap as can be seen. The results in Figures 3
and 4 were averaged over 50 channel realizations.
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Fig. 3. (a) Absolute weighted rates for various schemes and upper bound (b) Ratio to TDMA for various schemes.



Fig. 4. Relative weighted sum rates for compound schemes compared to TDMA.


