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NETWORK FLOW AND CONGESTION CONTROL

Modern computer networks connect geographically dispersed
nodes using switches and routers, and transmission lines he-
tween them. In this way, bursty and random traffic streams
can be statistically multiplexed to make more efficient use of
resources. For example, the hub network in Fig. 1 is used to
connect N users with N shared links and an AT x TV switch.
Communication between pairs of users is accomplished hy go-
ing through the huh. If, instead, all nodes were to be con-
nected using dedicated links, NiN - l)/2 links would be re-
quired. However, at any point in time communication usually
takes place only between a small fraction of the users. Hence,
providing full and unshared connectivity between all users
would be wasteful of resources. The functionality of computer
networks in connecting users is quite similar, in many as-
pects, to that of highways and local streets in connecting
households. In both cases, effective traffic control mechanisms
are needed to regulate the flow of traffic and ensure high
throughput.

Unlike traditional voice communications, where an active
call requires constant bit rate from the network, data commu-
nication is bursty in its nature. A typical data session may
require very low data rates during periods of inactivity and
much higher rates at other times. Consequently, there may be
times when incoming traffic to a network exceeds its capacity.

Flow and congestion control are mechanisms used in com-
puter networks for preventing users from overwhelming the
network with more data than the network can handle. The
simplest way to handle network congestion is to temporarily
buffer the excess traffic at a congested switch until it can all
be transmitted. Yet, since switch buffers are limited in size,
there may be times when sustained excessive demand on
parts of the network causes buffers to fill-up, and excess pack-
ets can no longer be buffered and must he discarded.

When packets are discarded it is typically left up to higher-
layer protocols to recover the lost packets using an appro-
priate retransmission mechanism. For example, the Trans-
mission Control Protocol (TCP) recovers from such buffer
overflows by using a timed acknowledgment mechanism and
retransmitting packets for which an acknowledgment does
not arrive in time. Consequently, at times of congestion, pack-
ets may be retransmitted not only because of buffer overflows
but also because of the increased delay that is due to the con-
gestion. In the absence of flow control, this, sometimes unnec-
essary, retransmission of packets can lead to instahility
where little if any new traffic can fiow through the network. A
well-designed flow-control mechanism should keep the traffic
levels in the network low enough to prevent buffers from over-
flowing and maintain relatively low end-to-end delays. Fur-
thermore, in the event of congestion, the fiow-control mecha-

Figure 1. A hub network.
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Figure 2. An effective flow-control mechanism can yield both higher
throughputs and decreased delays.

nism should allow the network to stabilize. Figure 2
illustrates the benefits of an effective How-control mechanism.

In addition to the obvious objectives of limiting delays and
buffer overfiow, a good flow-control scheme should also treat
all sessions fairly. One notion of "fairness" is to treat all ses-
sions in the network equally. However, this notion is not ap-
propriate for networks that attempt to provide Quality-of-Ser-
vice {QoS) guarantees. In some networks users may be offered
service contracts guaranteeing minimum data rates, maxi-
mum packet delays, and packet discard rates, as well as other
performance measures. In such networks, it is up to the fiow-
control mechanism to make sure that these guarantees are
met. Clearly, in this case, sessions cannot be treated equally
and a different notion of fairness, related to the service
agreements of the users, must be used. A more detailed dis-
cussion of fairness and how flow-control mechanisms attempt
to provide fairness will be given in the next section.

There are a number of fiow-control mechanisms that are
used in practice, all of which attempt to limit delays and
buffer overflows in the network by keeping packets waiting
outside the network rather than in buffers within the net-
work. The simplest mechanism for preventing congestion in
the network is call admission. Here a call may he hlocked, or
prevented from entering the network, if it is somehow deter-
mined that the network lacks sufficient resources to accept
the call, Call admission is a passive fiow-control mechanism
in the sense that once a call is admitted, nothing further is
done to regulate traffic. It is therefore appropriate for traffic
with very predictable behavior. Typically, call-admission
mechanisms are used in circuit-switched networks (e.g,, the
telephone network); however, with the recent emergence of
packet network services offering QoS guarantees, call
blocking may also play a role in data networks, in conjunction
with additional mechanisms to regulate traffic among active
sessions. This article will focus on active fiow-control mecha-
nisms that attempt to regulate the traffic flow among active
sessions. A comprehensive discussion of flow control in data
networks can be found in Refs. 1 and 2.

As described in Ref, 3, one way to classify fiow-control
mechanisms is based on the layer of ISO/OSI reference model
at which the mechanism operates. For example, there are
data link, network, and transport layer congestion-control
schemes. Typically, a combination of such mechanisms is
used. The selection depends upon the severity and duration
of congestion. Figure 3 shows how the duration of congestion
affects the choice of the method.

In general, the longer the duration, the higher the layer at
which control should be exercised. For example, if the conges-
tion is permanent, the installation of additional links is re-
quired. If the congestion lasts for the duration of the connec-
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Figure 3. Control mechanisms based on congestion duration.

tion, admission control (e.g., use of busy signal) or dynamic
routing (i.e., rerouting of traffic into another less congested
path) is more appropriate. If the congestion lasts for several
round-trip delays, transport level control with end-to-end
feedback is more effective. If the congestion is of a short dura-
tion (less than a round-trip delay), link-by-link feedback or
sufficient buffering should be used. Since every network can
have overloads of all durations, every network needs a combi-
nation of control mechanisms at various levels. No single
scheme can solve all congestion problems. The rest of this ar-
ticle will focus on mechanisms that deal with congestion that
lasts only a few round-trip delays.

ISSUES AND MECHANISMS FOR CONGESTION CONTROL

Buffer Implementation and Management

As discussed earlier, call-admission-control mechanism alone
is only appropriate for regulating traffic with steady or pre-
dictable bandwidth requirements (e.g., voice), but not effec-
tive for dealing with unpredictable bursty traffic (e.g., data).
For efficient utilization of network bandwidth, it is often nec-
essary to buffer the traffic when the incoming traffic to a node
temporarily exceeds the capacity of its outgoing link. Flow
control thus involves buffer management at a node in such a
way that the service requirements of connections traversing
the node can be satisfied.

In general, packet loss at a node will occur less frequently
with a larger buffer than with a smaller one. However, a
larger buffer may also lead to larger packet delay. For most
data applications, an excessive packet delay will yield the
same eftect as a packet loss and will trigger a retransmission
of the delayed packet. Thus, there is a tradeoff between
throughput and delay in regulating network traffic. A key
challenge in flow control is to achieve good delay-throughput,
among connections with possibly different service require-
ments competing for network resources.

In addition to buffer size, another issue in buffer manage-
ment for flow control has to do with the order in which pack-
ets of various connections are stored into and transmitted out
of the buffer. The simplest way to buffer packets is to imple-
ment a single first-in-first-out (FIFO) queueing structure, in
which buffered packets of all connections are transmitted on
a first-come-first-serve (FCFS) basis. In other words, when a
packet arrives at a node and needs to be buffered, it will be
put at the end of a queue, regardless of which connection it
belongs to. The packet at the front of the queue is always
the first to be transmitted. Since the order of packet arrivals

determines the order of packet departure, it is difficult to sup-
port different service requirements to connections with FIFO
queueing. Moreover, since various traffic is mixed into the
same queue, some connections can overutilize the buffer
space, thereby preventing other connections from using it.

A more sophisticated way is to implement a separate
queue for each connection, that is, per-connection queueing,
so that buffered packets of different connections are isolated
from one another. With per-connection queueing, a scheduling
mechanism is used to decide, at any instant, which connection
can transmit its packet. Compared with FIFO queueing, per-
connection queueing is more expensive to implement, but of-
fers greater flexibility in exercising flow control. For traffic
with minimal and similar service requirements, FIFO
queueing is usually sufficient. When different classes of traffic
with different levels of service requirements are mixed to-
gether onto the same link, per-connection queueing may be
necessary (4).

In the following sections, the problems of packet schedul-
ing and packet discarding, which are closely related to buffer
management for flow control, will be discussed.

Packet Scheduling

In general, a network node can have multiple incoming and
outgoing links. Packets can be buffered at either the entrance
or the exit interface of a node. The former is called input buff-
ering and the latter output buffering. With input buffering,
packets of different connections from the same incoming link
of a node will first be buffered before they are transmitted to
different outgoing links. To resolve possible contention caused
by packets from different incoming links transmitting to the
same outgoing link, a scheduling mechanism is required, to
determine which packet should be transmitted at any instant.
Moreover, when input buffering is implemented using FIFO
queueing, packets of slow connections at the front of the
queue will block packets of fast connections that follow. This
is usually called the head-of-line (HOL) blocking problem. In
fact, it is known that under certain traffic assumptions (e.g.,
a packet from each incoming link is equally likely to be trans-
mitted to any outgoing link of the node), with input FIFO
buffering, at most 58% of the maximum possible throughput
can be achieved (5).

On the other hand, with output buffering, a packet arriv-
ing at a node is immediately transferred to the interface of
its destined outgoing link, and is buffered there before it is
transmitted. In this case, there is no HOL blocking problem
and no scheduling mechanism is needed to resolve transmis-
sion contention among packets from different incoming links.
However, since packets from all incoming links can poten-
tially go on the same outgoing link at any instant, a node with
output buffering needs to transfer packets at a rate that is
the aggregate speed of all incoming links. This also means
that faster (and, thus, more expensive) switching hardware is
usually required for nodes with output buffering than with
input buffering.

The problem of packet scheduling is further complicated
by the fact that different connections may have different
bandwidth or service requirements. Thus, a scheduling mech-
anism is needed to selectively expedite or transmit the buf-
fered packets of various connections. For example, if each con-
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nection should share the bandwidth of an outgoing link
equally, a node can transmit buffered packets of each connec-
tion in a round-robin fashion. Similarly, when a particular
connection has a minimum bandwidth requirement of R
packets/second, then a node should schedule the transmis-
sions so that, on the average, at least one packet of that con-
nection will he transmitted every IIR s. Furthermore, a node
may desire to delay the transmission of the packets of some
connections to avoid or relieve congestion further along the
paths used by those connections, when such congestion infor-
mation is available at the node. Simple FIFO queueing at a
node often cannot support these and various scheduling
mechanisms, and more expensive per-connection queueing is
necessary when the scheduling constraints are stringent.
More information on packet scheduling can be found in Refs.
6 and 7.

Packet Discarding

Since there is only a finite amount of available buffer space at
a node, packets will he discarded if congestion persists. When
packets of a connection get discarded, whether they will be
retransmitted depends on the service requirements of that
connection. For example, when the connection is a file trans-
fer application, where each packet carries essential informa-
tion, discarded packets need to be retransmitted by the
source. The retransmission is usually performed if the receipt
of a packet has not been acknowledged after a time-out pe-
riod. In the case of a TCP connection, the destination returns
to the source an acknowledgment packet corresponding to
each data packet received, and the retransmission time-out is
determined dynamically {8).

On the other hand, for real-time traffic such as voice or
video, discarded packets are usually not retransmitted be-
cause delayed information is useless in such cases. A common
approacb to flow control for real-time traffic is to assign differ-
ent priority levels to packets so that packets of highest prior-
ity will be discarded least often, if at all. Before a connection
is established, the network may exercise a call-admission
mechanism to ensure that tbe transmission of these highest
priority packets can be maintained above a certain rate in
order to support a minimum acceptable level of quality of ser-
vice. Tbis approach is also applicable to data traffic, wbere
each discarded packet needs to be retransmitted. In this case,
a network may offer several different classes of service with
different priority levels in terms of packet discarding. When
a connection is establisbed, it can negotiate with the network
to which service it wants to subscribe and, subsequently, dur-
ing periods of congestion its packets will be discarded, based
on their priority level.

It is sometimes desirable to discard packets even when
buffer space is still available, particularly if FIFO queueing
is used. This is because a connection overutilizing the buffer
space in a FIFO queue will cause packets of otber connections
sbaring tbe FIFO queue to be discarded. Thus, packets should
be discarded if they belong to connections that utilize more
than their fair share of buffer space, or if they may cause
packets of higher priority to be discarded. Furthermore, if
packets are to be discarded furtber down tbe path, because of
congestion there, they should be discarded as early as possi-
ble, to avoid wasting additional network resources unneces-
sarily (9,10).

Figure 4. Fair bandwidth allocation.

Fair Allocation of Bandwidth

In addition to limiting delay and buffer overflow, fairness in
network use is another objective of flow control. It is difficult
to define a simple notion of fairness when different connec-
tions with different service requirements are present in tbe
network. Here only a particular notion of fairness on band-
width allocation will be discussed.

First consider a simple network with two links and three
connections, as shown in Fig. 4. For the present, assume that
each link has equal capacity, supporting 1 unit/s of traffic.
If the fairness criterion is to allocate an equal rate to each
connection, then each connection should get a rate of j unit/s
and tbe total network throughput in tbis case would be i
units/s. Note, however, that tbe maximum network
throughput is 2 units/s, which can be achieved by shutting off
connection A and allowing connections B and C each to trans-
mit 1 unit/s of traffic. This example shows tbat fairness and
tbroughput are two independent (and sometimes conflicting)
objectives of flow control.

Now suppose the capacity of link 1 is changed to \ unit/s.
In tbis case, connections A and B can share tbe bandwidth of
link 1 equally, resulting in a throughput of \ unit/s for each.
However, it will be a waste of bandwidth in link 2 if connec-
tion C is allocated witb less tban I unit/s of bandwidth; it will
be unfair if the bandwidth allocated to connection C is more,
since it would furtber restrict the bandwidth allocated to con-
nection A. This example motivates the notion of max-min
fairness, which refers to maximizing bandwidtb utilization for
connections witb the minimum bandwidth allocation.

More formally, it can be said tbat a set of connections has
a max-min fair bandwidth allocation if the bandwidth allo-
cated to any connection C cannot he increased without fur-
ther decreasing the bandwidth allocated to another connec-
tion whose bandwidtb is already smaller than C . For
example, in Fig. 4 witb the capacity of link 1 being \ unit/s,
one cannot increase the bandwidth allocated to connection C
above I unit/s without making the bandwidth of connection A
smaller tban \ unit/s.

Max-min fairness can also be defined in terms of the no-
tion of a bottleneck link. With respect to some bandwidtb allo-
cation, a particular link L is a bottleneck link for a connection
C , which traverses L if the bandwidth of L is fully utilized
and if tbe bandwidtb allocated to C is no less tban tbe band-
widtb allocated to any otber connection traversing L. Tben a
max-min fair bandwidth allocation can be shown to be equiv-
alent to the condition that each connection has a hottleneck
link, with respect to tbat allocation.

The notion of max-min fairness needs to be modified if
eacb connection requires a minimum guaranteed data rate.
One possible way is first to define the excess capacity of each
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link L to be the bandwidth of L minus the aggregate guaran-
teed rates of all the connections that traverse L. Then a set
of connections has a max-min fair bandwidth allocation if the
excess capacity of each link is shared in a max-min fair man-
ner (according to the notion defined earlier). More information
on fair queueing algorithms and their performance can be
found in Refs. 11-14.

Window Flow Control

The oldest and most common flow-control mechanism used in
networks is window flow control. Window flow control has
been used since the inception of packet-switched data net-
works and it appears in X.25, SNA, and TCP/IP networks
(1,2). Window flow control regulates the rate with which ses-
sions can insert packets into the network with a simple ac-
knowledgment mechanism. Within a given session, the desti-
nation sends an acknowledgment to the source for every
packet tbat it receives. With a window size of W, the source
is limited to having W outstanding packets for which an ac-
knowledgment has not been received. Hence, the window
scheme limits the number of packets that a given session can
have inside the network to tbe window size, W. These packets
can be either in buffers throughout the network or propagat-
ing on transmission lines. This strategy is typically imple-
mented using a sliding transmission window, where the start
of tbe window is equal to the oldest packet for which an ac-
knowledgment has not yet been received. Only packets from
within the window can be transmitted, and the vnndow is ad-
vanced as acknowledgments for earlier packets are received.
An example with W - 4 is shown in Fig. 5. One reason that
this strategy is very popular is its similarity to window-based
retransmission mechanisms (e.g.. Go Back N or SRP), which
are used for error control in data networks, making it easy to
implement in conjunction witb the error-control scheme.

While window flow control, in effect, limits the number of
packets that a given session can have in the network, it also
indirectly regulates the rate of the session. Suppose that tbe
round-trip delay for transmitting a packet and receiving its
acknowledgment is D seconds. Then with a window of size
W, a session can at most transmit r - W/D packets per sec-
ond. This is because, after sending a full window of packets,
tbe sender must wait for tbe acknowledgment of the first
packet before it can send any new packets. As delays in tbe
network increase (i.e., D increases), the maximum session
rate r is forced to decrease, producing the desired effect of
slowing transmissions down at time of congestion. As conges-
tion is alleviated, D is decreased, allowing sessions to increase
their transmission rates.

One problem witb window flow control is that window flow
control cannot be used for sessions tbat require guaranteed

data rates, such as real-time traffic, because as delays
through the network vary, the rate of tbe session is forced to
vary as well. Another problem is in the choice of a window
size. On tbe one hand, one would like to keep window sizes
small, in order to limit tbe number of packets in tbe network
and prevent congestion. However, one would also want to
allow sessions the ability to transmit at tbe maximum rate,
at times when there is no congestion in the network. Consider
a network where tbe transmission time for a packet is X. In
order to allow unimpeded transmission, the window size W
must be greater than D/X. That is, the window size must be
large enough to allow a session to transmit packets continu-
ously, while waiting for acknowledgments to return. Clearly,
when W is greater than D/X, flow control is not active (i.e.,
the session can transmit at the maximum rate of 1/X packets
per second) and when W is smaller than D/X, flow control is
active and the session transmits at a rate of W/D < 1/X pack-
ets per second. The problem is in choosing a window size tbat
both allows sessions unimpeded transmission when there is
no congestion, and also prevents congestion from building up
in the network.

When there is no congestion in the network, tbe primary
source of delay is propagation delay. Since propagation delay
would be present, regardless of congestion, the window size
should be big enough to allow unimpeded transmission when
propagation is the only source of delay in tbe network. Hence
if the propagation delay is equal to Dp then the window size
should be at least equal to DJX, allowing transmission at a
rate of 1/X packets per second, when the only source of delay
is due to propagation. This is particularly needed in high-
speed networks, where propagation delays can be relatively
large. However, this can lead to the use of very large win-
dows. Consider, for example, transmission over a satellite,
where the round-trip propagation and signal processing de-
lays can be on the order of a second. Suppose that tbe trans-
mission rate is 10" bits/s and that the packet size is 1000 bits.
In order to allow sessions to transmit at the full rate of 10^
the window size must be at least 1000 packets. Hence, as
many as 1000 packets per second can be in the network for
each session. With so many packets in flight simultaneously,
attempting to control congestion in the network becomes very
difficult. First, tbe window mechanism becomes somewhat in-
effective, because delays tbat are due to congestion are likely
to be relatively small, compared with the propagation delay.
Recalling that when fiow control becomes active the allowable
session rate is r = W/D, and since the overall increase in de-
lay due to congestion is small, as compared with the overall
delay, the result is only small decrease in the session rate.
Also, with very large windows, sufficient buffering must be
present throughout the network, to prevent buffer overflows
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Figure 5. Sliding window mechanism
with W = 4. Destination
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in the event that congestion sets in. Clearly, a mechanism is
needed to dynamically alter the window size allocated to a
session, hased on estimated traffic conditions in the network.
In this way, when the network is not congested the window
size can be increased, to allow unimpeded transmission, but,
as congestion begins to set in, tbe window size can be reduced
to yield a more effective control of tbe allowed session rate.
An example of a dynamic window adjustment mecbanism is
given in Ref. 15.

In order to be able to adjust tbe window size in response
to congestion, a mecbanism must exist to provide feedback to
tbe source nodes, regarding tbe status of congestion in tbe
network. There are many ways in which tbis can be done, and
finding tbe best sucb metbod is an area of active researcb.
One approacb, for example, would require nodes in tbe net-
work, upon experiencing congestion, to send special packets
(sometimes called cboke packets) to tbe source nodes, notify-
ing tbem of tbe congestion. In response to these cboke pack-
ets, tbe source nodes would reduce tbeir window size. Other
mecbanisms attempt to measure congestion in tbe network,
by observing tbe delay experienced by packets and reducing
tbe window size as delay increases. Yet anotber mecbanism
used by the Transmission Control Protocol (TCP) reduces the
window size, in response to lost packets (packets for wbicb an
acknowledgment was not received), Tbis is done based on the
assumption that lost packets are due to buffer overflows and
are a result of congestion. The flow-control mecbanism used
by TCP, and some of tbe problems associated witb it, will be
discussed in more detail in tbe next section.

One problem witb using end-to-end windows for flow con-
trol is tbat, when congestion sets in on some link in the net-
work, the node preceding that link will have to buffer a large
number of packets. Consider, for example, a session operating
over a multi-bop network and suppose tbat congestion sets in
at one of tbe links along its patb. Witb a window size of W,
as many as W packets can be sent by tbe session into tbe
network witbout receiving an acknowledgment. Wben a link
becomes congested, all W packets associated witb tbat session
will arrive at tbe congested link and have to be buffered at
tbe node preceding tbat link, Witb many simultaneous ses-
sions, tbis can lead to significant buffering requirements at
every node. An alternative, known as link-by-link window
flow control, establishes for a session windows along every
link between the source and tbe destination. Tbese windows
can be tailored to tbe specific link, so tbat a long delay link
(e.g., satellite link) would have a large window, while a sbort
delay link would bave a smaller window. These link-by-link
windows can be mucb smaller tban tbe end-to-end windows
and, as a result, tbe amount of huffering at eacb node can be
significantly reduced. In effect, link-by-link windows distrib-
ute tbe buffering in tbe network evenly among all of tbe nodes
ratber tban require tbe congested nodes to bandle all of the
packets. Of course, link-by-link windows are not always possi-
ble, for example, in networks that use datagram routing, ses-
sions do not use a fixed patb between tbe source and destina-
tion; bence, setting up windows on a link-by-link basis is not
possible.

Rate Flow Control

One problem witb window flow control is that in very-bigb-
speed networks, wbere propagation delays are relatively

large, very large windows are required, making window flow
control ineffective. Anotber problem is tbat window flow con-
trol cannot be used for sessions tbat require guaranteed data
rates, such as real-time traffic, hecause as delays through tbe
network vary, tbe rate of tbe session is forced to vary as well.
An alternative mechanism, wbicb is more appropriate for
bigb-speed networks and real-time traffic, is based on explic-
itly controlling the rate at which users are allowed to trans-
mit. For a session tbat requires an average data rate of r
packets per second, a strict implementation of a rate-control
scbeme would allow the session to transmit exactly one
packet every 1/r s. Such implementation would amount to
time-division-multiplexing (TDM), wbich is appropriate for
constant rate traffic, but inefficient for bursty data traffic.
Data sessions typically do not demand a constant transmis-
sion rate but are ratber bursty, so tbat, at times, little if any
transmission is required, and at other times, much higher
rates are required. A more appropriate mecbanism for sup-
porting a bursty data session witb an average rate of r pack-
ets per second is to allow tbe transmission of B packets every
B/r seconds. In this way, bursts of up to B packets can he
accommodated.

A common metbod for accomplisbing this form of flow con-
trol is tbe leaky bucket metbod, sbown in Fig, 6. In tbis
scbeme, a session of rate r bas a "bucket" of permits for its
use. Tbe bucket, is constantly fed new permits at a rate of 1
every 1/r s and it can bold at most B permits. In order for a
packet to enter tbe network, it must first obtain a permit from
the bucket. If tbe bucket bas no more permits, it must wait
until sucb a permit becomes available. It is easy to see tbat,
in tbis way, up to B packets can burst into the network all at
once. An important parameter in the design of a leaky bucket
rate control scheme is the bucket size B. Clearly, a small
bucket size would result in strict rate control scbeme and
would be ineffective for bursty traffic. However, too large a
bucket would be ineffective in controlling congestion. Again,
as witb tbe dynamic adjustment of window size in tbe window
flow-control scheme, it is also sometimes desirable to dynami-
cally alter tbe bucket size and rates given to a session based
on traffic conditions in tbe network.

FLOW CONTROL IN PRACTICE

TCP Flow Control

Tbe transmission control protocol (TCP) is the most com-
monly used transport layer protocol in today's internet. Virtu-

Packet
buffer

Packets —i

Permits

Permit
Bucket

Figure 6. Leaky bucket flow control. Permits arrive at the bucket
one every 1/r s and a packet must obtain a permit before entering
the network.
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ally all session-based traffic in the internet uses TCP. Among
other things, TCP is responsible for flow control. There are a
number of different TCP implementations (16-18), the details
of which vary slightly from one another. The details of a par-
ticular standard are not emphasized here, but rather the gen-
eral concepts that guide TCP flow control (19) are described.

TCP controls the flow of traffic in a session, using end-to-
end windows. The key behind TCP flow control is the window
size allocated for a given connection. For each connection,
TCP determines a maximum allowable window size, Ŵ â̂ .
The value of W^̂ , is typically a function of the particular TCP
implementation. Most TCP implementations use a value of
^mai that is somewhere between 4 kbytes and 16 kbytes (20).
Upon connection setup, the value of Wniâ  is determined, based
on the version of TCP used by the end stations.

Once the maximum vnndow size is determined, the com-
munication can begin. However, in order to prevent a new
connection from overwhelming the system, communication
does not begin with the maximum window size. Rather, com-
munication starts with a window size of W ^ 1 packet, typi-
cally around 512 bytes, and the window size is gradually in-
creased, in what is known as a slow-start phase. During the
slow-start phase, the window size is increased by one packet
for every acknowledgment that returns from the destination.
Therefore, the window size is doubled with every successful
transmission of a complete window. The slow-start phase con-
tinues until the window size reaches half of the maximum
window size, at which point the communication turns into
what is known as the congestion-avoidance phase. During the
congestion-avoidance phase, the window size is increased by
one packet for every successful transmission of a full window.
Hence, during the congestion-avoidance phase, the window
size is increased much more slowly than during slow start.
The window size continues to increase in this way, until it
reaches its maximum value of W^^^.

In the above discussion we described how TCP sets its ini-
tial window size. In addition, TCP adjusts the window sizes
in response to congestion in the network. TCP assumes that
any packets lost in the network (e.g., packets that are not
acknowledged in time) are due to buffer overflows resulting
from congestion. In response, upon detecting a lost packet,
TCP reduces the window size. Most TCP implementations
(20) reduce the window size to one packet, at which point the
window size is increased gradually back to the maximum
value, in accordance with the slow-start and congestion-avoid-
ance algorithms described above.

While TCP has been used effectively for many years, there
are many shortcoming to its flow-control mechanism that
make it ineffective for networks of the future. First, as dis-
cussed for general window flow control, it is not an effective
mechanism for supporting sessions that require guaranteed
data rates, such as real-time traffic. Second, as network
transmission speeds increase, the window size needed to
maintain unimpeded transmission has to be very large, espe-
cially over long delay links. With most versions of TCP having
a maximum allowable window of around 16 kbytes, this is
much too small for future high-speed networks (21,22). Fur-
thermore, TCP's response to lost packets, as if they are due
to congestion, may be appropriate for networks that experi-
ence very little loss due to transmission errors. However, for
wireless or satellite networks, lost packets are likely to he due
to transmission errors and, hence, the TCP responses of clos-

ing the window is not appropriate, and results in significant
performance degradation (23). Finally, the TCP slow-start
mechanism, which gives a session a small window and gradu-
ally increases the window size with time, prevents TCP from
taking full advantage of the high transmission capacity of-
fered by networks of the future.

Flow Control in ATM Networks

Asynchronous transfer mode (ATM) is a network technology
developed to carry integrated traffic including data, voice, im-
ages, and video. ATM carries all traffic on a stream of fixed-
size packets (cells), each comprising 5 bytes of header infor-
mation and a 48 byte information fleld (payload). The reason
for choosing a flxed-size packet is to ensure that the switching
and multiplexing function could be carried out quickly and
easily. ATM is a connection-oriented technology, in the sense
that, before two systems on the network can communicate,
they should inform all intermediate switches about their ser-
vice requirements and traffic parameters. This is similar to
the telephone networks, where a flxed path is set up from the
calling party to the receiving party. In ATM networks, each
connection is called a virtual circuit or virtual channel (VC),
because it also allows the capacity of each link to be shared
by connections using that link on a demand basis, rather than
by fixed allocations. The connections allow the network to
guarantee the quality of service (QoS), by limiting the numher
of VCs. Typically, a user declares key service requirements at
the time of connection setup, declares the traffic parameters,
and may agree to control these parameters dynamically as
demanded by the network.

The available bit rate (ABR) service is one of the services
in ATM developed to support data traffic. In other ATM ser-
vices, network resources are allocated during connection es-
tablishment and sources are not controllable by feedback
after a connection is established. ABR service, on the other
hand, performs an end-to-end rate-based flow control, by re-
quiring data sources to adapt their rates to their proper share
of the available bandwidth by obtaining feedback information
from the network.

The feedback information is carried in resource manage-
ment (RM) cells of each connection. These RM cells are gener-
ated by the source between blocks of data cells and returned
by the receiver in the backward direction. The feedback con-
trol operates in two modes^explicit binary or explicit rate
indication. The explicit binary indication mode assumes that
a congested network node will mark a specific field (equiva-
lent to a binary bit) in the header of any passing data cell.
The receiver monitors the fields of the data cells it receives
and sets the congestion fields in the backward RM cells ap-
propriately. The data sources can then increase, decrease, or
stay at their current rates based on the congestion informa-
tion contained in the backward RM cells received. The explicit
rate indication mode assumes that network nodes are capable
of computing the proper share of available bandwidth for each
source and writing this amount into a specific field in passing
RM cells. The source will then adjust its rates to no more
than the amount indicated in the RM cells.

While the standards for ABR service specify the general
behavior of the source and the receiver, the speciflc mecha-
nism that governs when each network node should set the
congestion fleld, or how it should compute the explicit rate, is
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left to the discretion of network equipment vendors. Design
objectives of such a mechanism include maximal utilization of
network bandwidth, fairness in network use, and low cost, in
terms of algorithm complexity and buffer space. For a good
historic account of the development of the ABR service in
ATM, see Ref. 24. Detailed descriptions of various approaches
and mechanisms for flow control in ATM networks can also
be found in Refs. 24-28.

ADVANCED ISSUES

Because most Internet applications are currently supported
using TCP, a lot of research activities in the networking com-
munity have been focused on improving TCP performance. It
has been realized that, in a high-latency network environ-
ment, the window fiow-control mechanism of TCP may not he
very effective, because it relies on packet loss to signal conges-
tion, instead of avoiding congestion and buffer overflow (29).
For hulky data connections, the arrival time of tbe last packet
of data is of primary concern to the users, whereas delays
of individual packets are not important. However, for some
interactive applications such as Telnet, the user is sensitive
to the delay of individual packets. For such low-handwidth
delay-sensitive TCP traffic, unnecessary packet drops and
packet retransmissions will lead to significant delays per-
ceived by the users.

It is suggested in some recent work (30) that the perfor-
mance of TCP can be significantly improved if intermediate
routers can detect incipient congestion and explicitly inform
the TCP source to throttle its data rate before any packet loss
occurs. This explicit congestion notification (ECN) mechanism
would require modifications of existing TCP protocols. For ex-
ample, a new ECN field can be implemented in the packet
header, and will be used by an IP router, which monitors the
queue size and, during congestion, marks the ECN field of an
acknowledgment packet. The TCP source will then slow down
after receiving the acknowledgment and seeing the ECN field
being marked.

An additional motivation for using ECN mechanisms in
TCP/IP networks concerns the possibility of TCP/IP traffic
traversing networks that have their own congestion-control
mechanisms (e.g., ABR service in ATM). Figure 7 shows a
typical network scenario where TCP traffic is generated from
a source connected to a LAN (e.g., Ethernet) aggregated
through an edge router to an ATM network. Congestion at
the edge router occurs when the bandwidth available in the
ATM network cannot support the aggregated traffic gener-
ated from the LAN. Existing implementations of TCP only
rely on packet drop as an indication of congestion, to throttle

the source rates. By incorporating ECN mechanisms in TCP
protocols, TCP sources can be informed of congestion at net-
work edges and will reduce their rates before any packet loss
occurs. The use of such ECN mechanisms to inform TCP
sources of congestion would be independent of the congestion
control mechanisms within the ATM networks.

Instead of incorporating ECN mechanisms in TCP, which
requires modifications of TCP, it is proposed in Ref. 31, that
congestion can be controlled by withholding at network edges
the returned acknowledgments to the TCP sources. Such a
mechanism has the effect of translating the available band-
width in the ATM network to an appropriately timed se-
quence of acknowledgments. A key advantage of this mecha-
nism is that it does not require any changes in the TCP
end-.system software.

There are other research efforts in improving TCP perfor-
mance in a wireless network environment. The main problem
here is that the noise in wireless transmission medium often
can lead to corrupted TCP packets. Such corrupted packets
are usually discarded at the destination, and the flow-control
mechanism of TCP will mistakenly treat such packet loss as
an indication of congestion and will throttle the source rate.
Several solutions have been proposed to address this problem,
most of which require modifying TCP protocols by decoupling
the flow-control loops in the wireless medium from the wire-
line network. The readers are referred to Ref 32 for detailed
description of these mechanisms.
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NETWORK INTERCONNECTION. See INTERNET

WORKING.

NETWORK MANAGEMENT

The term network management is often used in an imprecise
way to capture multiple meanings. The first part, network,
can mean the entire range of network communications and
computing systems and services, or just a subset of these as-
sociated with the physical and network layers; in the latter
case one distinguishes network management from system
management. Management means both a collection of opera-
tions tasks handled by network and system administrators
and support staff, as well as technologies and software tools
intended to simplify these tasks. This article uses the term
network management in its broadest sense. Network here
means any system and service, whether associated with com-
munication or with computing functions of a network; in prac-
tical terms, the entire range of systems and services provided
by an information system. Management means both opera-
tions and administration tasks as well as technologies and
tools to support them.

This article is organized as follows: The first section de-
scrihes and illustrates the central operational problems that
network management technologies seek to resolve. The sec-
ond section describes the architecture, operations, and proto-
col standards underlying current network management sys-
tems. The final two sections describe emerging technologies
used in network management.

CHALLENGES AND PROBLEMS

Several factors render network management an area of in-
creasing importance. First, with rising scale, the complexity
and rate of changes of network information systems increase
the difficulties associated with their operations management.
Operations staff confront increasingly more complex chal-
lenges in configuring underlying network elements. Failure
modes can escalate rapidly among multiple components in a
manner that is unpredictable; and their diagnosis can involve
complex analysis requiring substantial knowledge about the
large variety of components composing a network. Frequent
changes in configuration, components, and applications often
introduce significant performance inefficiencies and increased
exposure to failures. With growing dependence on networks
to deliver mission-critical functions, organizations are in-
creasingly exposed to such failures and inefficiencies. Net-
work failures can paralyze not only an entire organization.








