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Abstract The joint problem of transmission-side diversity and routing in wireless
networks is studied. It is assumed that each node in the network is
equipped with a single omni-directional antenna and multiple nodes are
allowed to coordinate their transmissions to achieve transmission-side
diversity. The problem of finding the minimum energy route under
this setting is formulated. Analytical asymptotic results are obtained
for lower bounds on the resulting energy savings for both a regular
line network topology and a grid network topology. For a regular line
topology, it is possible to achieve energy savings of 39%. For a grid
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topology, it is possible to achieve energy savings of 56%. For arbitrary
networks, we develop heuristics with polynomial complexity which result
in average energy savings of 30%− 50% based on simulations.

Keywords: Wireless, Cooperation, Routing, Energy Efficiency, Diversity, Ad-Hoc
Networks

1. Introduction
In this chapter, we study the problem of routing, cooperation and en-

ergy efficiency in wireless ad-hoc networks. In an ad-hoc network, nodes
often spend most of their energy on communication [1]. In most applica-
tions, such as sensor networks, nodes are usually small and have limited
energy supplies. In many cases, the energy supplies are non-replenishable
and energy conservation is a determining factor in extending the life time
of these networks. For this reason, the problem of energy efficiency and
energy efficient communication in ad-hoc networks has received a lot
of attention in the past several years. This problem, however, can be
approached from two different angles: energy-efficient route selection
algorithms at the network layer or efficient communication schemes at
the physical layer. While each of these two areas has received a lot of
attention separately, not much work has been done in jointly addressing
these two problems. Our analysis in this chapter tackles this less studied
area.

Motivated by results from propagation of electromagnetic signals in
space, the amount of energy required to establish a link between two
nodes is usually assumed to be proportional to the distance between the
communicating nodes raised to a constant power. This fixed exponent,
referred to as the path-loss exponent, is usually assumed to be between
2 to 4. Due to this relationship between the distance between nodes and
the required power, it is usually beneficial, in terms of energy savings,
to relay the information through multi-hop route in an ad-hoc network.
Multi-hop routing extends the coverage by allowing a node to establish a
multi-hop route to communicate with nodes that would have otherwise
been outside of its transmission range. Finding the minimum energy
route between two nodes is equivalent to finding the shortest path in
a graph in which the cost associated with a link between two nodes is
proportional to the distance between those nodes raised to the path-loss
exponent. Figure 1.1 shows an example of a multi-hop route between
two nodes.

The problem becomes more interesting once some special properties
of the wireless medium are taken into account. In particular, there are
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Figure 1.1. Multi-hop Relaying

three properties of the wireless physical layer that have motivated our
work: the wireless broadcast property, the benefits of transmission side
diversity, and multi-path fading.

A wireless medium is a broadcast medium in which signal transmit-
ted by a node is received by all nodes within the transmission radius.
For example, in figure 1.2, the signal transmitted by s is received by
both nodes 1 and 2. This property, usually referred to as the Wire-
less Broadcast Advantage (WBA), was first studied in a network context
in [3]. Clearly, this property of the wireless physical medium significantly
changes many network layer route selection algorithm. The problem of
finding the minimum energy multi-cast and broadcast tree in a wireless
network is studied in [3] and [4]. This problem is shown to be NP-
Complete in [5] and [6]. WBA also adds substantial complexity to route
selection algorithms even in non-broadcast scenarios. For example, this
model is used in [8] in the context of selecting the minimum energy link
and node disjoint paths in a wireless network.
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Figure 1.2. Wireless Broadcast Advantage

Another interesting property of the wireless medium is the benefit of
space diversity at the physical layer. This type of diversity is achieved by
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employing multiple antennas on the transmitter or the receiver side. It is
well known that transmission side diversity, i.e. using multiple antennas
on the transmitter, results in significant energy savings (see [2]). In the
network setting studied in this chapter, we assume that each node is only
equipped with a single antenna. Hence, a straight forward extension of
multiple-antenna results to a network setting is not possible. However,
it might be possible that several nodes can cooperate with each other
in transmitting the information to other nodes, and through this coop-
eration effectively achieve similar energy savings as a multiple antenna
system. We call the energy savings due to cooperative transmission by
several nodes the Wireless Broadcast Advantage. An overview of differ-
ent transmission side diversity techniques is given in [2]. An architecture
for achieving the required level of coordination among the cooperating
nodes is discussed in [9].

In the problem studied in this chapter, we intend to take advantage of
the wireless broadcast property and the transmission side diversity cre-
ated through cooperation to reduce the end-to-end energy consumption
in routing the information between two nodes. To make it clear, let’s
look at a simple example. For the network shown in figure 1.1, assume
the minimum energy route from s to d is determined to be as shown. As
discussed previously, the information transmitted by node s is received
by nodes 1 and 2. After the first transmission, nodes s, 1 and 2 have
the information and can cooperate in getting the information to d. For
instance, these 3 nodes can cooperate with each other in transmitting
the information to node 3 as shown in figure 1.3.

Several questions arise in this context: how much energy savings can
be realized by allowing this type of cooperation to take place? What
level of coordination among the cooperating nodes is needed? And how
must the route selection be done to maximize the energy savings?

s

d

1

2

3

4

Figure 1.3. Cooperative Transmission
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These are the problems that we look at here. We develop a formula-
tion that captures the benefit of cooperative transmission and develop
an algorithm for selecting the optimal route under this setting. We for-
mulate the problem of finding the minimum energy cooperative route
as two separate minimization problems. First, we look at the problem
of optimal transmission of information between two sets of nodes. A
separate problem is how to decide which nodes must be added to the
reliable set in each transmission such that the information is routed to
the final destination with minimum overall energy. We use dynamic
programming to solve this second minimization problem. We present
analytical results for the lower-bound of savings in networks with regu-
lar line or grid topology. We also propose two heuristics for finding the
optimal path in arbitrary networks and present simulation results for
the average energy savings of those heuristics.

2. Cooperative Transmission
Consider a wireless ad-hoc network consisting of arbitrarily distributed

nodes where each node has a single omni-directional antenna. We as-
sume that each node can dynamically adjust its transmitted power to
control its transmission radius. It is also assumed that multiple nodes
cooperating in sending the information to a single receiver node can pre-
cisely delay their transmitted signal to achieve perfect phase synchro-
nization at the receiver. Under this setting, the information is routed
from the source node to the destination node in a sequence of trans-
mission slots, where each transmission slot corresponds to one use of
the wireless medium. In each transmission slot/stage, either a node is
selected to broadcast the information to a group of nodes or a subset of
nodes that have already received the information cooperate to transmit
that information to another group of nodes. As explained shortly, under
our assumption it is only reasonable to restrict the size of the receiving
set to one node when multiple nodes are cooperating in the transmis-
sion. So, each transmission is either a broadcast, where a single node is
transmitting the information and the information is received by multiple
nodes, or a cooperative, where multiple node simultaneously send the in-
formation to a single receiver. We refer to the first case as the Broadcast
Mode and the second case at the Cooperative Mode. In the Broadcast
Mode, we take advantage of the known Wireless Broadcast Advantage.
In the Cooperative Mode, we benefit from the newly introduced concept
of Wireless Cooperative Advantage.

The routing problem can be viewed as a multi-stage decision problem,
where at each stage the decision is to pick the transmitting and the
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receiving set of nodes as well as the transmission power levels among all
nodes transmitting in that stage. The objective is to get the information
to the destination with minimum energy. The set of nodes that have the
information at the kth stage is referred to as the kth-stage Reliable Set,
Sk, and the routing solution may be expressed as a sequence of expanding
reliable sets that starts with only the source node and terminates as
soon as the reliable set contains the destination node. We denote the
transmitting set by S and the receiving set by T. The link cost between
S and T, LC(S,T), is the minimum power needed for transmitting from
S to T.

In this chapter, we make several idealized assumptions about the phys-
ical layer model. The wireless channel between any transmitting node,
labeled si, and any receiving node, labeled tj, is modeled by two param-
eters, its magnitude attenuation factor αij and its phase delay θij. We
assume that the channel parameters are estimated by the receiver and
fed back to the transmitter. This assumption is reasonable for slowly
varying channels, where the channel coherence time is much longer than
the block transmission time. We also assume a free space propagation
model where the power attenuation α2

ij is proportional to the inverse of
the square of the distance between the communicating nodes si and tj.
For the receiver model, we assume that the desired minimum transmis-
sion rate at the physical layer is fixed and nodes can only decode based
on the signal energy collected in a single channel use. We also assume
that the received information can be decoded with no errors if the re-
ceived Signal-to-Noise ration, SNR, level is above a minimum threshold
SNRmin, and that no information is received otherwise. Without loss of
generality, we assume that the information is encoded in a signal φ(t)
that has unit power Pφ = 1 and that we are able to control the phase
and magnitude of the signal arbitrarily by multiplying it by a complex
scaling factor wi before transmission. The transmitted power by node
i is |wi|2. The noise at the receiver is assumed to be additive, and the
noise signal and power are denoted by η(t) and Pη, respectively. This
simple model allows us to find analytical results for achievable energy
savings in some simple network topologies.

Link Cost Formulation
In this section, our objective is to understand the basic problem of

optimal power allocation required for successful transmission of the same
information from a set of source nodes S = {s1, s2, · · · , sn} to a set of
target nodes T = {t1, t2, · · · , tm}. In order to derive expressions for the
link costs, we consider 4 distinct cases:
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1 Point-to-Point Link: n = 1,m = 1: In this case, only one node is
transmitting within a time slot to a single target node.

2 Point-to-Multi-Point, Broadcast Link: n = 1, m > 1: This type of
link corresponds to the broadcast mode introduced in the last sec-
tion. In this case, a single node is transmitting to multiple target
nodes.

3 Multi-Point-to-Point, Cooperative Link: n > 1, m = 1: This type
of link corresponds to the cooperative mode introduced in the last
section. In this case, multiple nodes cooperate to transmit the
same information to a single receiver node. We will assume that
coherent reception, i.e. the transmitters are able to adjust their
phases so that all signals arrive in phase at the receiver. In this
case, the signals simply add up at the receiver and complete decod-
ing is possible as long as the received SNR is above the minimum
threshold SNRmin. Here, we do not address the feasibility of precise
phase synchronization. The reader is referred to [9] for a discussion
of mechanisms for achieving this level of synchronization.

4 Multi-Point-to-Multi-Point Link: n > 1,m > 1: This is not a valid
option under our assumptions, as synchronizing transmissions for
coherent reception at multiple receivers is not feasible. Therefore,
we will not be considering this case.

Point-to-Point Link: n = 1, m = 1. In this case, S = {s1} and
T = {t1}. The channel parameters may be simply denoted by α and
θ, and the transmitted signal is controlled through the scaling factor w.
Although in general the scaling factor is a complex value, absorbing both
power and phase adjustment by the transmitter, in this case we can ig-
nore the phase as there is only a single receiver. The model assumptions
made in Section 2 imply that the received signal is simply:

r(t) = αejθwφ(t) + η(t)·

where φ(t) is the unit-power transmitted signal and η(t) is the receiver
noise with power Pη. The total transmitted power is PT = |w|2 and
the SNR ratio at the receiver is α2|w|2

Pη
. For complete decoding at the

receiver, the SNR must be above the threshold value SNRmin. Therefore
the minimum power required, P̂T, and hence the point-to-point link cost
LC(s1, t1), is given by:

LC(s1, t1) ≡ P̂T =
SNRminPη

α2
· (1.1)
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In equation 1.1, the point-to-point link cost is proportional to 1
α2 , which

is the power attenuation in the wireless channel between s1 and t1, and
therefore is proportional to the square of the distance between s1 and t1
under our propagation model.

Point-to-Multi-Point, Broadcast Link: n = 1, m > 1. In
this case, S = {s1} and T = {t1, t2, · · · , tm}, hence m simultaneous SNR
constraints must be satisfied at the receivers. Assuming that omni-
directional antennas are being used, the signal transmitted by node s1
is received by all nodes within a transmission radius proportional to the
transmission power. Hence, a broadcast link can be treated as a set of
point-to-point links and the cost of reaching a set of node is the maxi-
mum over the costs for reaching each of the nodes in the target set. Thus
the minimum power required for the broadcast transmission, denoted by
LC(s1, T), is given by:

LC(s, T) = max{LC(s1, t1), LC(s1, t2), · · · , LC(s1, tm)}· (1.2)

Multi-Point-to-Point, Cooperative Link: n > 1, m = 1. In
this case S = {s1, s2, · · · , sn} and T = {t1}. We assume that the n trans-
mitters are able to adjust their phases in such a way that the signal at
the receiver is:

r(t) =
n∑

i

αi1|wi|φ(t) + η(t)·

The total transmitted power is
∑n

i=1 |wi|2 and the received signal
power is |∑n

i=1 wiαi1|2. The power allocation problem for this case is
simply

min
n∑

i=1

|wi|2

s.t.
|∑n

i=1 wiαi1|2
Pη

≥ SNRmin· (1.3)

Lagrangian multiplier techniques may be used to solve the constrained
optimization problem above. The resulting optimal allocation for each
node i is given by

|ŵi| = αi1∑n
i α2

i1

√
SNRminPη· (1.4)
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The resulting cooperative link cost LC(S, t1), defined as the optimal total
power, is therefore given by

LC(S, t1) = P̂T

=
n∑

i=1

|ŵi|2

=
1

∑n
i=1

α2
i1

SNRminPη

· (1.5)

It is easy to see that it can be written in terms of the point-to-point
link costs between all the source nodes and the target nodes (see Equa-
tion 1.1) as follows:

LC(S, t1) =
1

1
LC(s1,t1)

+ 1
LC(s2,t2)

+ · · ·+ 1
LC(sn,t1)

· (1.6)

A few observations are worth mentioning here. First, based on equa-
tion 1.4, the transmitted signal level is proportional to the channel at-
tenuation. Therefore, in the cooperative mode all nodes in the reliable
set cooperate to send the information to a single receiver. In addition,
based on equation 1.6, the cooperative cost is smaller than each point-
to-point cost. This conclusion is intuitively plausible and is a proof on
the energy saving due to the Wireless Cooperative Advantage.

Optimal Cooperative Route Selection
The problem of finding the optimal cooperative route from the source

node s to the destination node d, formulated in Section 2, can be mapped
to a Dynamic Programming (DP) problem. The state of the system at
stage k is the reliable set Sk, i.e. the set of nodes that have completely
received the information by the kth transmission slot. The initial state
S0 is simply {s}, and the termination states are all sets that contain d.
The decision variable at the kth stage is Uk, the set of nodes that will be
added to the reliable set in the next transmission slot. The dynamical
system evolves as follows:

Sk+1 = Sk ∪ Uk k = 1, 2, · · · (1.7)

The objective is to find a sequence {Uk} or alternatively {Sk} so as to
minimize the total transmitted power PT, where

PT =
∑

k

LC(Sk, Uk) =
∑

k

LC(Sk,Sk+1 − Sk)· (1.8)
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We will refer to the solution to this problem as the optimal transmis-
sion policy. The optimal transmission policy can be mapped to finding
the shortest path in the state space of this dynamical system. The state
space can be represented by as graph with all possible states, i.e. all
possible subsets of nodes in the network, as its nodes. We refer to this
graph as the Cooperation Graph. Figure 1.6 show the cooperation graph
corresponding to the 4-node network shown in Figure 1.1.

{s} D
{s,1} {s,1,2}

{s,1,d}

{s,1,2,d}
20.3

{s,2}

{s,2,d}{s,4}

Layer 0 Layer 1 Layer 3Layer 2 Terminal Node

Figure 1.4. Cooperation Graph for a 4-Node Network

Nodes in the cooperation graph are connected with arcs represent-
ing the possible transitions between states. As the network nodes are
allowed only to either fully cooperate or broadcast, the graph has a spe-
cial layered structure as illustrated by Figure 1.6. All nodes in the kth

layer are of size k + 1, and a network with n + 1 nodes the cooperation

graph has n layers, and the kth layer has
(

n
k

)
nodes. Arcs between

nodes in adjacent layers correspond to cooperative links, whereas broad-
cast links are shown by cross-layer arcs. The costs on the arcs are the
link costs defined in Section 2.0. All terminal states are connected to
a single artificial terminal state, denoted by D, by a zero-cost arc. The
optimal transmission policy is simply the shortest path between nodes
s and D. There are 2n nodes in the cooperation graph for a network
with n + 1 nodes. Therefore standard shortest path algorithms will in
general have a complexity of O(22n). However, by taking advantage of
some special properties of the cooperation graph, we are able to come up
with an algorithm with complexity reduced to O(n2n). This algorithm
is based on scanning the cooperation graph from left to right and con-
structing the shortest path to each nodes at the kth layer based on the
shortest path to nodes in the pervious layers. The Sequential Scanning
Algorithm is outlined below.
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Sequential Scanning Algorithm This is the algorithm for
finding the optimal cooperative route in an arbitrary network based
on finding the shortest path in the corresponding cooperation graph.

Initialize Initialize the cooperation graph data structure. Initialize
the layer counter k to k = 1.

Repeat Construct to the shortest path to all nodes at the kth layer
based on the shortest path to all nodes in the previous layers.
Increment the counter.

Stop Stop when D is reached. i.e. when k = n + 1.

For a network with n + 1 nodes, the main loop in this algorithm is

repeated n times and at the kth stage the shortest path to
(

n
k

)
nodes

must be calculated. This operation has a complexity of order O(2n),
hence finding the optimal route is of complexity O(n2n).

Although the Sequential Scanning Algorithm substantially reduces the
complexity for finding the optimal cooperative route in an arbitrary
network, its complexity is still exponential in the number of nodes in the
wireless network. For this reason, finding the optimal cooperative route
in an arbitrary network becomes computationally intractable for larger
networks. We will focus on developing computationally simpler and
relatively efficient heuristics and on assessing their performance through
simulation.

Example
Having developed the necessary mathematical tools, we now present

a simple example that illustrates the benefit of cooperative routing. Fig-
ure 1.5 shows a simple network with 4 nodes. The arcs represent links
and the arc labels are point-to-point link costs. The diagrams below
show the six possible routes, P0 through P5. P0 corresponds to a simple
2-hop, non-cooperative minimum energy path between s and d. P1, P2,
and P3 are 2-hop cooperative routes, whereas P4 and P5 are 3-hop co-
operative routes. Figure 1.6 shows the corresponding cooperation graph
for this network. Each transmission policy corresponds to a distinct
path between {s} and D in this graph and the minimum energy policy
of P3 corresponds to the shortest path. Table 1.1 lists the costs of the
six policies.
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Figure 1.5. 4-Node Network Example
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Figure 1.6. 4-Node Cooperation Graph
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No. Policy Cost

P0 NonCooperative 65

P1 ({s}, {s, 2}, {s, 2, d}) ≈ 61.5

P2 ({s}, {s, 1}, {s, 1, d}) ≈ 57.9

P3 ({s}, {s, 1, 2}, {s, 1, 2, d}) ≈ 55.9

P4 ({s}, {s, 2}, {s, 1, 2}, {s, 1, 2, d}) ≈ 73.6

P5 ({s}, {s, 1}, {s, 1, 2}, {s, 1, 2, d}) ≈ 65.2

Table 1.1. Transmission Policies for Figure 1.5

3. Analytical Results for Line and Grid
Topologies

In this section, we develop analytical results for achievable energy sav-
ings in line and grid networks. In particular, we consider a Regular Line
Topology (see Figure 1.7) and a Regular Grid Topology (see Figure 1.8)
where nodes are equi-distant from each other. Before proceeding further,
let us define precisely what we mean by energy savings for a cooperative
routing strategy relative to the optimal non-cooperative strategy:

Savings =
PT(Non− cooperative)− PT(Cooperative)

PT(Non− cooperative)
· (1.9)

where PT(strategy) denotes the total transmission power for the strategy.

Line Network-Analysis
Figure 1.7) shows a regular line where nodes are located at unit dis-

tance from each other on a straight line. In our proposed scheme, we re-
strict the cooperation to nodes along the optimal non-cooperative route.
That is, at each transmission slot, all nodes that have received the in-
formation cooperate to send the information to the next node along the
minimum energy non-cooperative route. This cooperation strategy is
referred to as the CAN (Cooperation Along the Minimum Energy Non-
Cooperative Path) strategy.

0 1 2 3 nn-1

s d

0 1 2

s d

Figure 1.7. Regular Line Topology

For the 3-node line network in Figure 1.7, it is easy to show that
the optimal non-cooperative routing strategy is to relay the information
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through the middle node. Since a longer line network can be broken
down into short 2-hop components, it is clear that the optimal non-
cooperative routing strategy is to always send the information to the
next nearest node in the direction of the destination until the destination
node is reached. From Equation 1.1, the link cost for every stage is
SNRminPη

α2 , where α is the magnitude attenuation between two adjacent
nodes 1-distance unit apart. Under our assumptions, α2 is proportional
to the inverse of the distance squared. Therefore,

PT(Non− cooperative) = n
SNRminPη

α2
· (1.10)

With the CAN strategy, after the mth transmission slot, the reliable set
is Sm = {s, 1, · · · , m}, and the link cost associated with the nodes in Sm

cooperating to send the information to the next node (m + 1) follows
from Equation 1.6 and is given by

LC(Sm, m + 1) =
SNRminPη∑m+1

i=1
α2

i2

· (1.11)

Therefore, the total transmission power for the CAN strategy is

PT(CAN) =
n−1∑

m=0

LC(Sm, m + 1)

=
SNRminPη

α2

n−1∑

m=0

1

C(m + 1)
, (1.12)

where C(m) =
m∑

i=1

1

i2
· (1.13)

Before moving to find the savings achieved by CAN in a line, we need to
proves the following simple lemma regarding the existence of the average
of terms for a decreasing sequence.

Lemma 1.1 Let an be a decreasing sequence with a finite limit c, then
limm→∞

∑m
n=1 an

m = c.
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Proof : For any value of m, let m0 be an arbitrary integer less than m:

lim
m→∞

∑m
n=1 an

m
= lim

m→∞
1

m

(
m0∑

n=1

an +
m∑

n=m0+1

an

)

= lim
m→∞

1

m

m0∑

n=1

an + lim
m→∞

1

m

m∑

n=m0+1

an

= 0 + lim
m→∞

1

m

m− (m0 + 1)
m− (m0 + 1)

m∑

n=m0+1

an

= lim
m→∞

m− (m0 + 1)
m

1

m− (m0 + 1)

m∑

n=m0+1

an

= lim
m→∞

m− (m0 + 1)
m

lim
m→∞

1

m− (m0 + 1)

m∑

n=m0+1

an

= lim
m→∞

1

m− (m0 + 1)

m∑

n=m0+1

an ·

(1.14)

Since an is a decreasing sequence, all terms in the final sum are less
than am0 . Furthermore, limn→∞an = c. So, all terms in the final sum are
greater than c. Hence:

c ≤ lim
m→∞

∑m
n=1 an

m
= lim

m→∞
1

m− (m0 + 1)

m∑

n=m0+1

an ≤ am0 ·

For increasing values of m, m0 may be chosen such that am0 is arbitrarily
close to c and the proof is established.

Theorem 1.2 For a regular line network as shown in Figure 1.7, the
CAN strategy results in energy savings of (1− 1

n

∑n
m=1

1
C(m)). As the

number of nodes in the network grows, the energy savings value ap-
proaches (1− 6

π2 ) ≈ 39%.

Proof : The minimum energy non-cooperative routing a regular line net-
work with n hops has cost equal to n. The cost of the optimal coopera-
tion scheme, i.e. the CAN strategy, is:

PT(Cooperative) =
n∑

m=1

LC({s, · · · ,m− 1}, m) =
n∑

m=1

1

C(m)
(1.15)
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where C(m) is defined by equation 1.13. The energy savings achieved,
as defined by equation 1.11, is:

Savings(n) =
PT(Non− Cooperative)− PT(Cooperative)

PT(Non− Cooperative)
(1.16)

=
n−∑n

m=1
1

C(m)

n
(1.17)

= 1− 1

n

n∑

m=1

1

C(m)
(1.18)

1
C(m) is a decreasing sequence with limit of 6

π2 . So, based on lemma 1.1
we have:

lim
n→∞Savings(n) = 1− lim

n→∞
1

n

n∑

m=1

1

C(m)
= 1− 6

π2
(1.19)

This establishes the claim and completes the proof.

Grid Network
Figure 1.8 shows a regular n× n grid topology with s and d located at

opposite corners. A n× n grid can be decomposed into many 2× 2 grid.
Assuming that the nodes are located at a unit distance from each other,
in a 2× 2 grid, a diagonal transmission has a cost of 2 units, equal to
the cost of one horizontal and one vertical transmission. For this reason,
in an n× n grid there are many non-cooperative routes with equal cost.
Figure 1.8 shows two such routes for an n× n grid.

s

d

2x2 nxn

s

d

C
o
st

=
2


Cost=1

C
o
s
t=

1


Figure 1.8. Regular Grid Topology

The minimum-energy non-cooperative route is obtained by a stair-like
policy (illustrated in Figure 1.8), and its total power is 2n. We will base
our analysis for deriving the bound for saving based on this stair-like
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non-cooperative path. The following theorem stated the energy savings
achieved by the CAN strategy applied to this non-cooperative route.

Theorem 1.3 For a regular grid network as shown in Figure 1.8, the
energy savings achieved by using the CAN strategy approaches 56% for
large networks.

Proof: Figure 1.9 shows an intermediate step in routing the information
is a regular grid. At this stage, all the nodes with a darker shade,
nodes 1 through 8, have received the information. In the next step, the
information must be relayed to node 9. The cooperative cost of this
stage is

s

d
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2

4

3

5

6 7

8 9

Figure 1.9. Cooperative Routing in a Grid Topology

LC({1, · · · , 8}, 9) =
1∑8

i=1
1

LC(i,9)

=
1

1
1 + 1

2 + 1
5 + 1

8 + 1
13 + 1

18 + 1
25 + 1

32

(1.20)

=
1

1
1

+
1
5

+
1
13

+
1
25︸ ︷︷ ︸

+
1
2

+
1
8

+
1
18

+
1
32︸ ︷︷ ︸

(1.21)

In general, the cooperative cost of the mth stage of the proposed strategy
is

Cgrid(m) = LC({1, · · · , m}, m + 1)

=
1∑m

i=1
1

LC(i,m)

(1.22)

It is not too hard to see that the point-to-point costs have the following
form

LC(i, m) =
(⌈

m− i

2

⌉)2

+
(⌊

m− i

2

⌋)2

(1.23)
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Using Equation 1.23, Equation 1.22 can be written as

Cgrid(m) =
1∑m

i=1
1

LC(i,m)

=
1∑m

i=1
1

(dm−i
2 e)2

+(bm−i
2 c)2

=
1

∑dm
2 e

k=1
1

2k2−2k+1
+

∑bm
2 c

k=1
1

2k2

(1.24)

Comparing Equation 1.21 and Equation 1.24, it is easy to see that the
first group of terms is generated by the first sum term and the second
group is generated by the second sum term. Cgrid(m) is a decreasing
sequence of numbers and can be shown, using Maple, to have a limit
equal to 0.44.

The total cost for the cooperative route in an n× n grid is

PT(Cooperative) =
2n∑

m=1

Cgrid(m) (1.25)

The energy saving, as defined by equation 1.9, is

Savings(n) =
PT(Non− Cooperative)− PT(Cooperative)

PT(Non− Cooperative)

=
2n−∑2n

m=1 Cgrid(m)
2n

= 1− 1

2n

2n∑

m=1

Cgrid(m) (1.26)

Since Cgrid(m) is a decreasing sequence and limm→∞ Cgrid(m) = 0.44,
by lemma 1.1, the savings in the case of a regular grid, as calculated
in equation 1.26, approaches 1− 0.44 = 56%. This establishes the claim
and completes the proof for the lower bound of achievable savings in a
regular grid.

4. Heuristics & Simulation Results
We present two possible general heuristic schemes and related sim-

ulation results. The simulations are over a network generated by ran-
domly placing nodes on an 100× 100 grid and randomly choosing a pair
of nodes to be the source and destination. For each realization, the
minimum energy non-cooperative path was found. Also, the proposed
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heuristic were used to find co-operative paths. The performance results
reported are the energy savings of the resulting strategy with respect
to the optimal non-cooperative path averaged over 100, 000 simulation
runs.

The two heuristics analyzed are outlined below.

CAN-L Heuristic Cooperation Along the Non-Cooperative Opti-
mal Route:

This heuristic is based on the CAN strategy described Section
3. CAN-L is a variant of CAN as it limits the number of nodes
allowed to participate in the cooperative transmission to L. In
particular, these nodes are chosen to be the last L nodes along the
minimum energy non-cooperative path. As mentioned before, in
each step the last L nodes cooperate to transmit the information to
the next node along the optimal non-cooperative path. The only
processing needed in this class of algorithm is to find the optimal
non-cooperative route. For this reason, the complexity of this class
of algorithms is the same as finding the optimal non-cooperative
path in a network or O(N2).

PC-L Heuristic Progressive Cooperation:

Initialize Initialize Best Path to the optimal non-cooperative
route. Initialize the Super Node to contain only the source
node.

Repeat Send the information to the first node along the current
Best Path. Update the Super Node to include all past L
nodes along the current Best Path. Update the link costs
accordingly, i.e. by considering the Super Node as a single
node and by using equation 1.6. Compute the optimal non-
cooperative route for the new network/graph and update the
Best Path accordingly.

Stop Stop as soon as the destination node receives the infor-
mation.

For example, with L = 3, this algorithm always combines the last
3 nodes along the current Best Route into a single node, finds
the shortest path from that combined node to the destination and
send the information to the next node along that route. This
algorithm turns out to have a complexity of O(N3) since the main
loop is repeated O(N) times and each repetition has a complexity
of O(N2).
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A variant of this algorithm keeps a window W of the most recent
nodes, and in each step all subsets of size L among the last W nodes
are examined and the path with the least cost is chosen. This

variant has a complexity of O

((
W
L

)
× N3

)
, where W is the

window size. We refer to this variant as Progressive Cooperation
with Window.
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Figure 1.10. Performance of CAN
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Figure 1.11. Performance of PC
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Figures 1.10 and 1.11 show average energy savings ranging from 20%
to 50% for CAN and PC algorithms. It can be seen that PC-2 performs
almost as well as CAN-3 and PC-3 performs much between than CAN-
4. This show that the method for approximating the optimal route is
very important factor in increasing the savings. Figures 1.12 compares
CAN, PC, and PC-W on the same chart. It is seen that PC-3-4 performs
better than PC-3, which performs substantially better than CAN-4. In
general, it can be seen that the energy savings increase with L, and that
improvements in savings are smaller for larger values of L. As there is
a trade-off between the algorithm complexity and the algorithm perfor-
mance, these simulation results indicate that it would be reasonable to
chose L to be around 3 or 4 for both the CAN and PC heuristics.
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Figure 1.12. Comparison

5. Conclusions
In this chapter we formulated the problem of finding the minimum

energy cooperative route for a wireless network under idealized channel
and receiver models. Our main assumption were that the channel states
are known at the transmitter and precise power and phase control, to
achieve coherent reception is possible. We focused on the optimal trans-
mission of a single message from a source to destination through sets of
nodes, that may act as cooperating relays. Fundamental to the under-
standing of the routing problem was the understanding of the optimal
power allocation for a single message transmission from a set of source
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nodes to a set of destination nodes. We presented solutions to this
problem, and used these as the basis for solving the minimum energy
cooperative routing problem. We used Dynamic Programming (DP)
to formulate the cooperative routing problem as a multi-stage decision
problem. However, general shortest algorithms are not computationally
tractable and are not appropriate for large networks. For a Regular Grid
Topology and a Regular Grid Topology, we analytically obtained the en-
ergy savings due to cooperative transmission, demonstrating the benefits
of the proposed cooperative routing scheme. For general topologies, we
proposed two heuristics and showed significant energy savings (close to
50%) based on simulation results.
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