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Chapter 12

Cross-Layer Survivability*

Hyang-Won Lee, Kayi Lee, and Eytan Modiano

1 Introduction

The layered architecture of modern communication networks takes advantage of

the flexibility of upper layer technology, such as IP, and the high data rates of lower

layer technology, such as WDM. In particular, the WDM technology available

today can support up to several terabits per second over a single fiber [9], making

networks vulnerable to failures, because a failure for even a short period of time can

result in a huge loss of data. The main theme of network survivability is to prevent

such data loss by provisioning spare resources for recovery. In this chapter, we

focus on the impact of layering on network survivability.

In the layered network, a logical topology is embedded onto a physical topology

such that each logical link is spanned by using a path in the physical topology. This

is often referred to as lightpath routing. Obviously, a single fiber cut can lead

multiple logical links sharing the fiber to fail. Due to this correlation between

logical link failures, the layered network survivability problem exhibits vastly

different characteristics from the single-layer counterpart.
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The survivability of a layered network is dictated by the underlying lightpath

routing. As an example, consider the physical and logical topologies shown in

Fig. 12.1a,b. The lightpaths in the logical topology are routed over the physical

topology in two different ways in Fig. 12.1c,d. In Fig. 12.1c, a failure of physical

fiber (4, 5) would cause lightpaths (4, 5) and (2, 4) to fail. Consequently, node 4 will

be disconnected from other nodes in the logical topology. On the other hand,

in Fig. 12.1d, the logical topology will remain connected even if one of the fibers

fails. This example demonstrates that to design a survivable layered network, one

should carefully take into account the network structure across both the logical and

physical layers. This is typically referred to as the cross-layer survivability problem.

In [2, 6, 7], the impact of physical layer failures on the connectivity of the

logical topology was studied in the context of WDM-based networks. The authors

proposed heuristic lightpath routing algorithms that minimize the number of

disconnected logical node in the presence of a single physical link failure. The

work of [15] was the first to introduce the notion of Survivable Lightpath Routing,

which is defined to be a lightpath routing such that the logical topology remains

connected in the event of a single fiber failure, and developed a mathematical

formulation for finding a survivable lightpath routing. These results have been

improved with more efficient formulation and extended to account for multiple

physical failures [8, 11, 12, 18].

Most works in the literature consider the survivability as a constraint, however

this chapter takes a more fundamental approach to addressing cross-layer surviv-

ability. In particular, in Sect. 12.2, we study connectivity parameters of a layered

network, and observe that they exhibit vastly different properties compared to their

single-layer counterparts. This observation motivates a new survivability metric

called Min Cross Layer Cut (MCLC). The MCLC quantifies the connectivity of a

layered network and is used to develop survivable lightpath routing algorithms.

Simulation results show that these algorithms can find a better survivable layered

network. Going beyond connectivity, a new survivability metric is introduced and

analyzed in order to design a layered network that uses minimal spare capacity for

protection against single-fiber failures. In Sect. 12.3 we study cross-layer surviv-

ability in the presence of random physical link failures, and in Sect. 12.4 we discuss

future directions for cross-layer survivability.
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Fig. 12.1 Different lightpath routings can affect survivability. (a) Physical Topology, (b) Logical

Topology, (c) Unsurvivable Routing, (d) Survivable Routing
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2 Connectivity of Layered Networks

In this section we study key connectivity structures such as flows and cuts in

multi-layer graphs in order to develop insights into cross-layer survivability.

We will highlight the key differences in combinatorial properties between multi-

layer graphs and single-layer graphs. In particular, it turns out that fundamental

survivability results, such as the “Max-Flow Min-Cut Theorem”, are no longer

applicable to multi-layer networks. Consequently, metrics such as “connectivity”

have significantly different meaning in the layered setting. This motivates us to

revisit fundamental issues such as quantifying and maximizing survivability in the

layered setting.

2.1 Max Flow vs. Min Cut

For single-layer networks, the Max-Flow Min-Cut Theorem [1] states that the

maximum number of disjoint paths between two nodes s and t is always the same

as the minimum number of edges that need to be removed from the network in order

to disconnect the two nodes. Let MaxFlowst and MinCutst be integral s � t Max

Flow and Min Cut respectively, and let MaxFlowst
R and MinCutst

R be their fractional

(relaxed) values. The Max-Flow Min-Cut Theorem for single-layer networks can

then be stated as follows:

MaxFlowst ¼ MaxFlowR
st ¼ MinCutRst ¼ MinCutst:

Consequently, the term connectivity between two nodes can be used unambigu-

ously to refer to different measures such as the maximum number of disjoint paths

or the minimum size cut, and this makes it a natural choice as the standard metric

for measuring network survivability. The equality among these values has profound

implications on survivable network design for single-layer networks. Because all

these survivability measures take on the same value, it can naturally be used as the

standard survivability metric that is applicable to measuring both disjoint paths or

the minimum cut. Another consequence of this equality is that linear programs,

which are polynomial time solvable, can be used to find the minimum cut and

disjoint paths in the network.

Because of its fundamental importance, it is crucial to understand the Max-Flow

Min-Cut relationship in layered networks. The following is a generalization ofMax
Flow and Min Cut to the layered setting:

Definition 1 In a multi-layer network, the Max Flow between two nodes s and t in
the logical topology is the maximum number of physically disjoint s � t paths in
the logical topology. TheMin Cut between two nodes s and t in the logical topology
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is the minimum number of physical links that need to be removed in order to

disconnect the two nodes in the logical topology.

We model the physical topology as a network graph GP ¼ (VP, EP), where

VP and EP are the nodes and links in the physical topology. The logical topology

is modeled as GL ¼ (VL, EL) in a similar fashion. The light path routing is

represented by a set of binary variables fij
st, where a logical link (s, t) uses physical

fiber (i, j) if and only if fij
st¼ 1. Let pst be the set of all s � t paths in the logical

topology. For each path p 2 pst , let L(p) be the set of physical links used by the

logical path p, that is, LðpÞ ¼ [ðs;tÞ2pfði; jÞjf stij ¼ 1g. Then the Max Flow and Min

Cut between nodes s and t can be formulated mathematically as follows:

MaxFlowst : Maximize
X

p2pst
f p; subject to :

X
p:ði;jÞ2LðpÞ f p � 1 8ði; jÞ 2 EP

f p 2 f0; 1g 8p 2 pst

(12.1)

MinCutst : Minimize
X

ði;jÞ2EP
yij; subject to :

X
ði;jÞ2LðpÞyij � 1 8p 2 pst

yij 2 f0; 1g 8ði; jÞ 2 EP

(12.2)

The variable fp in the formulation MaxFlowstindicates whether the path p is

selected for the set of (s, t)-disjoint paths. Constraint (12.1) requires that no selected
logical paths share a physical link. Similarly, in the formulation MinCutst, the

variable yij indicates whether the physical fiber (i, j) is selected for the minimum

(s, t)-cut. Constraint (12.2) requires that all logical paths between s and t traverse
some physical fiber (i, j) with yij ¼ 1.

Note that the above formulations generalize the Max Flow and Min Cut for

single-layer networks. In particular, the formulations model the classical Max Flow

and Min Cut of a graph G if both GP and GL are equal to G, and fij
st ¼ 1 if and only

if (s, t) ¼ (i, j). Let us redefine MaxFlowst and MinCutst to be the optimal values of

the above Max Flow and Min Cut formulations. We also denote MaxFlowst
R and

MinCutst
R to be the optimal values to the linear relaxations of above Max Flow and

Min Cut formulations.

First, it is easy to verify that the linear relaxations for the formulations

MaxFlowst andMinCutst maintain a primal–dual relationship, which, by the Duality

Theorem [5], implies that MaxFlowst
R ¼ MinCutst

R. In addition, since any feasible

solution to an integer program is also a feasible solution to the linear relaxation, the

following relationship holds:

Observation 1 MaxFlowst � MaxFlowst
R ¼ MinCutst

R � MinCutst.

Therefore, just as with single-layer networks, the maximum number of disjoint

paths between two nodes cannot exceed the minimum cut between them in a multi-

layer network. However, unlike the single-layer case, the values of MaxFlowst,
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MaxFlowst
R and MinCutst are not always identical, as illustrated in the following

example. In our examples throughout the section, we use a logical topology with

two nodes s and t that are connected by multiple parallel lightpaths. For simplicity

of exposition, we omit the complete lightpath routing and only show the physical

links that are shared by multiple lightpaths. In fact, it can be shown that for a two-

node logical topology, any arbitrary fiber–sharing relationship can be realized by

reconstructing a physical topology and lightpath routing [14]. Therefore, in the

following discussion, we omit the details of the lightpath routing and only show the

fiber–sharing relationship of our two-node logical topology.

In Fig. 12.1, the two nodes in the logical topology are connected by three

lightpaths. The logical topology is embedded on the physical topology in such a

way that each pair of lightpaths shares a fiber. It is easy to see that no single fiber

can disconnect the logical topology, and that any pair of fibers would. Hence, the

value of MinCutst is 2 in this case. On the other hand, the value of MaxFlowst is

only 1, because any two logical links share some physical fiber, so none of the paths

in the logical network are physically disjoint. Finally, the value of MaxFlowst
R is 1.5

because a flow of 0.5 can be routed on each of the lightpaths without violating the

capacity constraints at the physical layer. Therefore, Fig. 12.1 is an example where

all three quantities differ.

It was shown in [14] that the gap between MaxFlowstand MaxFlowst
R is O(jELj),

and the gap between MinCutst and MinCutst
R is O(logjELj). Thus, the gaps among

the three values are not bounded by any constant. Therefore, a multi-layer network

with high connectivity value (i.e. that tolerates a large number of failures) does not

necessarily guarantee the existence of physically disjoint paths. This is in sharp

contrast to single-layer networks where the number of disjoint paths is always equal

to the minimum cut.

It is thus clear that network survivability metrics across layers are not trivial

extensions of the single layer metrics. New metrics need to be carefully defined in

order to measure cross-layer survivability in a meaningful manner. In Sect. 12.2.3,

we introduce two new metrics that can be used to measure the connectivity of multi-

layer networks.

2.2 Computational Complexity

In single-layer networks, because the integral Max Flow and Min Cut values are

always identical to the optimal relaxed solutions, these values can be computed in

polynomial time [1]. However, computing and approximating their cross-layer

equivalents turns out to be much more difficult. Theorem 1 describes the complex-

ity of computing the Max Flow and Min Cut for multi-layer networks.
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Theorem 1 ([14]) Computing Max Flow and Min Cut for multi-layer networks is
NP-hard. In addition, both values cannot be approximated within any constant
factor, unless P¼NP.

In summary, the notion of survivability in multi-layer networks bears subtle yet

important differences from its single-layer counterpart. Because of that, many new

issues arise in the layered setting, including defining, measuring and optimizing

survivability metrics. In what follows, our discussion will be focused on appropriate

metrics for layered networks and efficient algorithms to maximize the cross-layer

survivability.

2.3 Metrics for Cross-Layer Survivability

The previous section demonstrates some fundamental challenges in designing

survivable layered network architectures. In particular, choosing the right metric

to quantify survivability becomes an important and non-trivial question. Although

the right metric will depend on the particular survivability requirement (e.g.,

disjoint paths or minimum cut), any reasonable metric must be consistent in that

a network with a higher metric value should be more resilient to failures, monotonic
in that any addition of physical or logical links to the network should not decrease

the metric value, and compatible in that the metric should generalize the connec-

tivity metric for single-layer networks.

Next, we introduce two metrics that measure the ability of the network to

withstand multiple physical failures, while meeting the above criteria. Although

the two metrics appear to measure different aspects of network connectivity, they

are in fact closely related, as will be shown later.

2.3.1 Min Cross Layer Cut

The Min Cross Layer Cut (MCLC) is a natural generalization of Min Cut in single-

layer networks. Similar to the way MinCutst is defined in Sect. 12.2.1 between two

given nodes s and t in the network, the Min Cross Layer Cut of a layered network is

defined to be the smallest set of physical links whose removal will globally
disconnect the logical network. A lightpath routing with high Min Cross Layer

Cut value implies that the network remains connected even after a relatively large

number of physical failures. It is also a generalization of the survivable lightpath

routing definition in [15], since a lightpath routing is survivable if and only if its

Min Cross Layer Cut is greater than 1.

Let S be a subset of the logical nodes VL, and δ(S) be the set of the logical links
with exactly one end point in S. Let HS be the minimum number of physical links

failures required to disconnect all links in δ(S). The Min Cross Layer Cut can be

defined as follows:
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MCLC¼ min
S�VL

HS:

For each S, computing HS amounts to finding the Min Cut between the two

partitions S and VL � S. Therefore, by Theorem 1, computing HS is also NP-Hard.

Computing the Min Cross Layer Cut, which is defined to be the minimum among all

HS values, is therefore a difficult problem. However, for practical purposes, the

MCLC of a large multi-layer network (e.g. 100 nodes) can be computed reasonably

fast by solving the following integer linear program.

Given the physical and logical topologies (VP, EP), and (VL, EL), let fij
st be

binary constants that represent the lightpath routing, such that logical link (s, t)
uses physical fiber (i, j) if and only if fij

st¼ 1. The MCLC can be formulated as the

integer program below [14]:

MMCLC : Minimize
X

ði;jÞ2EP
yij; subject to :

dt � ds �
X

ði;jÞ2EP
yijf

st
ij 8ðs; tÞ 2 EL

(12.3)

X
n2VL

dn � 1; d0 ¼ 0

dn; yij 2 0; 1f g 8n 2 VL; ði; jÞ 2 EP

(12.4)

The integer program contains a variable yij for each physical link (i, j), and a

variable dk for each logical node k. Constraint (12.3) maintains the following

property for any feasible solution: if dk ¼ 1, the node k will be disconnected

from node 0 after all physical links (i, j) with yij ¼ 1 are removed. To see this,

note that since dk ¼ 1 and d0 ¼ 0, any logical path from node 0 to node k contains a
logical link (s, t) where ds ¼ 0 and dt ¼ 1. Constraint (12.3) requires that such a

logical link traverse at least one of the fibers (i, j) with yij ¼ 1. As a result, all paths

from node 0 to node k must traverse one of these fibers, and node k will be

disconnected from node 0 if these fibers are removed from the network. Constraint

(12.4) requires node 0 to be disconnected from at least one node, which ensures that

the set of fibers (i, j) with yij ¼ 1 forms a global Cross Layer Cut.

In Sect. 12.2.4, we will discuss several lightpath routing algorithms to maximize

the MCLC value.

2.3.2 Weighted Load Factor

Another way to measure the connectivity of a layered network is by quantifying the

“impact” of each physical failure. The Weighted Load Factor (WLF), an extension

of the metric Load Factor introduced in [10], provides such a measure of surviv-

ability. The WLF can be formulated as follows:
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MWLF : Maximize
1

z
; subject to :

z �
X

ðs;tÞ2δðSÞ
wst �

X
ðs;tÞ2δðSÞ

wstf
st
ij

8S � VL; ði; jÞ 2 EPX
ðs;tÞ2δðSÞ

wst > 0 8S � VL

0 � z;wst � 1 8ðs; tÞ 2 EL;

where δ(S) is the cut set of S, i.e., the set of logical links that have exactly one end

point in S.
The variables wst are the weights assigned to the lightpaths. Over all possible

logical cuts, the variable z measures the maximum fraction of weight carried by a

fiber within a single cut. Intuitively, if we interpret the weight to be the amount of

traffic in the lightpath, the value z can be interpreted to be the maximum fraction of

traffic across a set of nodes disrupted by a single fiber cut. The Weighted Load

Factor formulation, defined to maximize the reciprocal of this fraction, thus tries to

compute the logical edge weights that minimize the maximum fraction. This

effectively measures the best way of spreading the weight across the fibers for the

given lightpath routing. A lightpath routing with a larger Weighted Load Factor

value is more capable of spreading its weight within any cut across the fibers.

Recall that in [15], a lightpath routing is defined to be survivable if the resulting

layered network survives any single physical link failure. Hence, the survivable

lightpath routing ensures that not all of the links in a logical cut share the same fiber,

which in turn implies that theWeighted Load Factor 1
z is greater than one. Therefore,

the Weighted Load Factor captures the connectivity of a layered network, genera-

lizing the survivable lightpath routing. In fact, the Weighted Load Factor is closely

related to Min Cross Layer Cut. Given a lightpath routing, let MMCLC be the ILP

formation for its Min Cross Layer Cut, and let MCLC and MCLCR be the optimal

values for MMCLC and its linear relaxation respectively. In addition, letWLF be the

Weighted Load Factor of the lightpath routing. Then we have the following rela-

tionship [14]:

Theorem 2 MCLCR� WLF � MCLC
Therefore, although the two metrics appear to measure different aspects of

network connectivity, they are inherently related. In fact, the two values are often

identical as shown in Sect. 12.2.5.

2.4 Lightpath Routing Algorithms for Maximizing MCLC

A natural approach to maximizing the survivability of a layered network is to

design a lightpath routing that maximizes the number of failures the network can
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withstand, i.e., maximizes Min Cross Layer Cut (MCLC). All the lightpath routing

algorithms introduced in this section try to maximize the MCLC value. They are all

based on multi-commodity flows, where each lightpath is considered a commodity

to be routed over the physical network. Given the physical network GP ¼ (VP, EP)

and the logical network GL ¼ (VL, EL), the multi-commodity flow for a lightpath

routing can be generally formulated as follows:

MCFx : Minimize xðf Þ; subject to:

f stij 2 0; 1f g
ff stij : ði; jÞ 2 EPg forms an ðs; tÞ-path, 8ðs; tÞ 2 EL;

where f is the variable set that represents the lightpath routing, such that fij
st ¼ 1 if

and only if lightpath (s, t) uses physical fiber (i, j) in its route. The objective

function xðf Þ depends on the lightpath routing f. Ideally, xðf Þ should be the

MCLC value, however it turns out to be difficult to express the MCLC as a tractable

function. For this reason, it is desired to develop a tractable objective that

approximates the MCLC value [14].

2.4.1 Integer Programming Formulations

Let w be a weight assigned to each lightpath. The objective function ρw measures

the maximum load of the fibers, where the load is defined to be the total lightpath

weight carried by the fiber. The intuition is that the multi-commodity flow formu-

lation will try to spread the weight of the lightpaths across multiple fibers, thereby

minimizing the impact of any single fiber failure.

Such an objective can be formulated as an integer linear program as follows:

MCFw : Minimize ρw; subject to:

ρw �
X

ðs;tÞ2EL
wðs; tÞf stij 8ði; jÞ 2 EP

f stij 2 0; 1f g
ff stij :ði; jÞ 2 EPg forms an ðs; tÞ-path, 8ðs; tÞ 2 EL

The routing strategy of the algorithm is determined by the weight function w, and

with a careful choice of the weight function w, the value 1
ρw

gives a lower bound on

the MCLC. Therefore, a lightpath routing with a low ρw value is guaranteed to have

a high MCLC. For example, if w is set to 1 for all lightpaths, the integer program

will minimize the number of lightpaths traversing the same fiber. Effectively,

this will minimize the number of disconnected lightpaths in the case of a single

fiber failure.

It is conceivable that if the weight function somehow reflects the connectivity

structure of the logical graph, then it may lead to a better objective toward
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maximizing the MCLC of the solution. Consider a different weight function

wMinCut such that for each edge (s, t) ∈ EL, the weight wMinCut(s, t) is defined to

be 1
jMinCutLðs;tÞj , where MinCutL(s, t) is the minimum (s, t)-cut in the logical topol-

ogy. Therefore, if an edge (s, t) belongs to a smaller cut, it will be assigned a higher

weight. The algorithm will therefore try to avoid putting these small cut edges on

the same fiber.

If wMinCut is used as the weight function in MCFw, Lee et al. [14] shows the

following relationship between the objective value ρw of a feasible solution to

MCFwand the Weighted Load Factor of the associated lightpath routing:

Theorem 3 ([14]) For any feasible solution f of MCFw with wMinCut as the weight

function, 1
ρw

� WLF:

As a result of Theorems 2 and 3, the MCLC of a lightpath routing is lower

bounded by the value of 1
ρw
, which the algorithm will try to maximize.

2.4.2 An Enhanced Multi-Commodity Flow Formulation

As we discussed in Sect. 12.2.3.2, the Weighted Load Factor provides a good lower

bound on the MCLC of a lightpath routing. Here we discuss another multi-com-

modity flow based formulation whose objective function approximates the

Weighted Load Factor of a lightpath routing. The formulation, denoted as

MCFLF, can be written as follows:

MCFLF : Minimize γ; subject to:

γjδðSÞj �
X

ðs;tÞ2δðSÞ
f stij 8ði; jÞ 2 EP; S � VL

f stij 2 0; 1f g
ff stij :ði; jÞ 2 EPg forms an ðs; tÞ-path, 8ðs; tÞ 2 EL

Essentially, the formulation optimizes the unweightedLoad Factor of the

lightpath routing, (i.e., all weights equal one), by minimizing the maximum fraction

of a logical cut carried by a single fiber. As this formulation provides a constraint

for each logical cut, it captures the impact of a single fiber cut on the logical

topology in much greater detail. The following theorem shows that for any lightpath

routing, its associated Load Factor value 1
γ gives a tighter lower bound than 1

ρw
,

given by the MCFw formulation.

Theorem 4 ([14]) For any lightpath routing, let ρwbe its associated objective
value in the formulation MCFwwith wMinCutas the weight function, and let γ be its
associated objective value in the formulation MCFLF. In addition, let WLF be its
Weighted Load Factor. Then:

1

ρw
� 1

γ
� WLF:
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Therefore, the formulation MCFLFgives a lightpath routing that is optimized for

a better lower bound on the MCLC. An ILP is generally difficult to solve, and the

above two formulations may not scale to large networks. Nonetheless, randomized

rounding technique has been successfully used to solve multi-commodity flow

problems lightpath [4, 17]. The formulations MCFwand MCFLFcan also be solved

via randomized rounding, and more details can be found in [14].

2.5 Simulation

In order to evaluate the performance of the algorithms introduced in the previous

section, the NSFNET (Fig. 12.2) is augmented to have connectivity 4, and used as

the physical topology. For logical topologies, 350 random graphs are generated

such that each of them has connectivity 4 and its size ranges from 6 to 15 nodes. The

MCLC values of the lightpath routings generated by the algorithms introduced in

Sect. 12.2.4 will be compared as a measure of their survivability performance.

2.5.1 Survivability Performance of Different Lightpath Routing

Formulations

We first study the survivability performance of the lightpath routings generated by

the different formulations introduced in Sect. 12.2.4.1. Specifically, the following

three algorithms are compared:

1. MinCut: Multi-Commodity Flow MCFw, using the weight function wMinCut

2. LF: Enhanced Multi-Commodity Flow MCFLF.

3. SURVIVE: Survivable lightpath routing algorithm in [15] which computes the

lightpath routing that minimizes the total fiber hops, subject to the constraint that

the MCLC must be at least two.

Figure 12.4 compares the average MCLC values of the lightpath routings

computed by the four different algorithms. Overall, the formulations introduced

in this paper achieve better survivability than SURVIVE. This is because these

formulations try to maximize the MCLC in their objective functions, whereas

SURVIVE minimizes the physical hops. Therefore, even though SURVIVE does

well in finding a survivable routing (i.e. MCLC � 2), a more specialized formula-

tion is required to achieve even higher MCLC values.

S Fiber 1 Fiber 2 Fiber 3 t

Fig. 12.2 A logical topology with 3 logical links where each pair of links shares a fiber in the

physical topology
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The quality of the lightpath routing also depends on the graph structures cap-

tured by the formulations. Compared with MCFMinCut, the formulation MCFLF
captures the connectivity structure of the logical topology in much greater detail,

by having a constraint to describe the impact of a physical link failure to each

logical cut. As a result, the algorithm based on this enhanced formulation is able to

provide lightpath routings with higher MCLC values.

2.5.2 Comparison Among Metrics

Recall the lower bounds on the Min Cross Layer Cut in Theorem 4. In this section,

we study 350 different lightpath routings and measure these lower bound values for

each of the lightpath routing. As Fig. 12.5 shows, the Weighted Load Factor is a
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Fig. 12.4 MCLC performance of different lightpath routing formulations
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very close approximation of the Min Cross Layer Cut. Among the 350 routings

studied, the two metrics are identical in 308 cases. This suggests a very tight

connection between the two metrics, and the strong correlation between them

also justifies the choice of such metrics as survivability measures.

The figure also reveals a strong correlation between the MCLC performance and

the tightness of the lower bounds given by the multi-commodity flow formulations

in Sect. 12.2.4.1. Compared to MCFw, the formulation MCFLF provides an objec-

tive value that is closer to the actual MCLC value of the lightpath routing. This

translates to better lightpath routings, as we saw in Fig. 12.4. Since there is still a

large gap between the MCFLF objective value and the MCLC value, this suggests

room for further improvement with formulations that give a better MCLC lower

bound. A good formulation that properly captures the cross-layer connectivity

structure is essential for generating lightpath routings with high survivability, and

it gives a powerful tool for designing highly survivable layered networks.

2.6 Beyond Connectivity

So far, we have assumed that the survivability of a layered network is guaranteed

as long as the logical topology remains connected after a failure. Implicitly assumed

here is that there is sufficient capacity in the network, so that the disrupted traffic

can always be supported over available alternative paths. However, the capacity

of the network is finite, and thus it may not always be possible to support the

disrupted traffic. Therefore, it is important to take into account spare capacity as
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well as connectivity. To address this issue, we redefine survivability to meet two

conditions: (1) the logical topology remains connected after any physical link

failure and (2) there is sufficient capacity in the resulting network to support the

traffic requirement.

As mentioned above, the design of survivable lightpath routing has focused only

on the connectivity of the logical topology after a physical link failure. While there

are a number of works dealing with spare capacity allocation, they assume single-

link failures, and hence they are not applicable to the layered network where upon a

single physical link failure, multiple logical links can fail simultaneously. In this

section, joint survivable lightpath routing and capacity assignment problems are

considered for layered networks. We discuss a new metric, first introduced in [10],

that can measure the efficiency of spare capacity allocation. This metric is a

generalization of the connectivity metrics discussed earlier to account for spare

capacity, and can be used to formulate the problem of finding lightpath routings that

guarantee efficient use of link capacity for protection.

The new metric, called Load Factor[10], quantifies the fraction of working

capacity and spare capacity over each logical link. Assume that each link has

capacity C. Let α( ∈ [0, 1]) be the fraction of working capacity, i.e., αC is used

for working paths, and subsequently, (1 � α)C is reserved for backup paths. With-

out loss of generality, we assume C ¼ 1. For a given pair of logical and physical

topologies and its lightpath routing, we define the load factor of the layered network

to be the maximum value of α such that the two network survivability conditions

mentioned above are satisfied. Clearly, the load factor measures the efficiency of

capacity utilization, and it is desirable to find a lightpath routing with maximum load

factor. In [10], a necessary and sufficient condition on the load factor was identified

and used to develop an MILP formulation for finding a lightpath routing that

maximizes the load factor. The results from [10] are discussed below.

Recall that NL is the set of logical nodes. Denote by CS(S) the cut set

corresponding to a partition hS, N � Si of NL. Given a routing of the logical

topology denoted by [fij
st, (i, j) ∈ EP, (s, t) ∈ EL], the following theorem gives a

necessary and sufficient condition on the load factor.

Theorem 5 ([10]) A network is survivable if and only if for every cut-set CS(S) of
the logical topology and every physical link failure (i,j), the load factor satisfies the
following inequality:

X
ðs;tÞ2CSðSÞ

ðf stij þ f stji Þα �
X

ðs;tÞ2CSðSÞ
½1� ðf stij þ f stji Þ�ð1� αÞ: (12.5)

Rearranging the inequality (12.5), it can be shown that the load factor α is given by

α ¼ min
S�NL

ði;jÞ2EP

jCSðSÞj �Pðs;tÞ2CSðSÞ ðf stij þ f stji Þ
jCSðSÞj : (12.6)
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If there exists a cut-set CS(S) and fiber (i, j) such that all the links in CS(S) share
(i, j), then the value of α is zero. Clearly, in this case, the logical topology is

disconnected upon the failure of (i, j), meaning that the given lightpath routing

cannot survive a single failure. Note that survivable routing algorithms in the

literature such as [15] only guarantee α > 0, i.e., the network remains connected

after a single fiber failure. Therefore, the problem of finding a lightpath routing with

maximum load factor α can be viewed as a generalization of finding a lightpath

routing with connectivity guarantee.

The above result can be used to derive an optimal lightpath routing that

maximizes the load factor. Let {fij
st}∗ be the routing that maximizes the load factor,

and R denote the set of all possible routings. Then, it follows that

ff stijg� ¼ argmin

f stij 2 R

max
S � NL

ði; jÞ 2 EP

P
ðs;tÞ2CSðSÞðf stij þ f stji Þ

jCSðSÞj :
(12.7)

Note that the load factor is a special case of the weighted load factor discussed in

the previous section where the weight function wst ¼ 1 for every logical link (s, t).
The ratio in the above optimization is the fraction of logical links in a cut-set that

will fail in the event of a fiber failure. Hence, a high ratio implies that the fiber is

shared by many logical links, and it can be interpreted as the load on a fiber. The

above formulation minimizes the maximum load on each fiber. Intuitively, this will

minimize the amount of disrupted traffic in the event of a fiber cut, thereby reducing

the demand for spare capacity. Using the representation of an optimal routing in

(12.7), an MILP can be formulated for finding a lightpath routing with maximum

load factor [10].

3 Extension to Random Failures

So far we considered single physical link failures, and discussed survivability

metrics that account for a worst-case failure event. Failures in communication

networks can be modeled as random events. It is thus important to understand the

impact of random failures on the survivability of layered networks. In this section,

we study the relationship between cross-layer connectivity metrics discussed in the

previous section and the survivability of a layered network with random physical

link failures. Interestingly, maximizing the MCLC value has the effect of

maximizing cross-layer reliability in the low failure probability regime, and this

observation can be used to develop reliable lightpath routing algorithms.
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3.1 Cross-Layer Reliability under Random Failures

Consider a layered network that consists of the logical topology GL ¼ (VL, EL)

built on top of the physical topology GP ¼ (VP, EP) through a lightpath routing

f ¼ [fij
st, (i, j) ∈ EP, (s, t) ∈ EL]. If a physical link (i, j) fails, all of the logical

links (s, t) carried over (i, j) (i.e., (s, t) such that fij
st ¼ 1) also fail. A set S of

physical links is called a cross-layer cut if the failure of the links in S causes the

logical network to be disconnected. We also define the network state to be the

subset S of physical links that failed. Hence, if S is a cross-layer cut, the network

state S represents a disconnected network state. Otherwise, it is a connected state.

Each physical link fails independently with probability p. This probabilistic

failure model represents a snapshot of a network where links fail and are repaired

according to some Markovian process. Hence, p represents the steady-state proba-

bility that a physical link is in a failed state. The reliability of a multi-layer network

is defined to be the probability that the logical network remains connected. We call

this cross-layer reliability, and it is a natural survivability metric when the physical

topology experiences random failures.

It is important to note that the cross-layer reliability depends on the underlying

lightpath routing. For example, in Fig. 12.6, the logical topology consists of two

parallel links between nodes s and t. Suppose every physical link fails indepen-

dently with probability p. The first lightpath routing in Fig. 12.6c routes the two

logical links using link-disjoint physical paths (s, 1, 2, t) and (s, 2, 3, t). Under this

routing, the logical network will be disconnected with probability ð1� ð1� pÞ3Þ2.
On the other hand, the second lightpath routing in Fig. 12.6d, which routes the two

logical links over the same shortest physical route (s, 2, t), has failure probability

2p � p2. While disjoint path routing is generally considered to be more reliable, it

is only true in this example for small values of p. For large values of p(e.g.
p > 0. 5), the second lightpath routing is more reliable. Therefore, whether one

lightpath routing is better than another depends on the value of p.
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Fig. 12.6 Non-disjoint routings can sometimes be more reliable. (a) Physical Topology (b)
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3.2 Cross-Layer Failure Polynomial

In single-layer networks, with random failures, reliability can be expressed as a

polynomial in the failure probability p[3]. In [13], this polynomial expression was

extended to the layered setting. It turns out that this expression provides important

insights to the design of reliable lightpath routings.

Assume that there are m physical links, i.e.,jEPj ¼ m. The probability associated
with a network state S with exactly i physical link failures (i.e., jSj ¼ i) is

pið1� pÞm�i
. Let Ni be the number of cross-layer cuts S with jSj ¼ i, then the

probability that the network is disconnected is simply the sum of the probabilities

over all cross-layer cuts, i.e.,

FðpÞ ¼
Xm
i¼0

Nip
ið1� pÞm�i: (12.8)

Therefore, the failure probability of a multi-layer network can be expressed as a

polynomial in p. The function F(p) is called the cross-layer failure polynomial or
simply the failure polynomial. The vector [N0, . . ., Nm] plays an important role in

assessing the reliability of a network. In particular, given the Ni values the reliabil-

ity of the network can be computed using (12.8) for any value of p.
Clearly, if Ni > 0, then Nj > 0, 8j > i, because any cut of size i will still be a

cut with the addition of more failed links. The smallest i such that Ni > 0 is of

special importance because it represents the Min Cross Layer Cut (MCLC) of the

network, i.e., it is the minimum number of physical link failures needed to discon-

nect the logical network. Let d be the MCLC value of the network, and assume that

it is a constant independent of the physical network size. Note that Ni ¼ 0, 8i < d,

and the termNdp
dð1� pÞm�d

in the failure polynomial dominates all other terms for

small values of p. It was shown in [13] that there exists a region of probability

p over which a lightpath routing with higher MCLC is more reliable than any

lightpath routing with lower MCLC. Consequently, if a lightpath routing

maximizes MCLC, i.e., make d as large as possible, it will achieve optimal

reliability in the low failure probability regime.

Notice that we already discussed such lightpath routing algorithms in the

previous section. In the following, we verify that these algorithms yield good

reliability in the low failure probability regime.

3.3 Simulation

We used the augmented NSFNET (Fig. 12.3) as the physical topology, and

generated 350 random logical topologies with size from 6 to 12 nodes and connec-

tivity at least 4. We compare the reliability performance of the three lightpath
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routing algorithms SURVIVE, MinCut and LF presented in the previous section.

For each lightpath routing generated by the algorithms, the failure polynomial is

computed and compared.

The network failure probabilities of the three different lightpath routing

algorithms are shown in Fig. 12.7, where for each algorithm, network failure

probabilities were averaged over 350 different scenarios. When p is small, the two

routings MinCut and LF which attempt to maximize the MCLC value are clearly

more reliable than the SURVIVE algorithm. Note that in the lower failure probabil-

ity regime, the algorithm LF whose MCLC value is higher finds a more reliable

lightpath routing than the algorithmMinCut. This verifies that maximizingMCLC is

a good strategy for maximizing reliability in the low failure probability regime.

4 Future Directions

In this chapter, we reviewed recent advances in cross-layer survivability. In partic-

ular, we introduced several metrics that measure the survivability of a layered

network, and discussed survivable lightpath routing algorithms based on these

metrics. These metrics capture the fundamentals of cross-layer survivability. We

believe that many results are yet to be discovered in this context, and envision that

the metrics discussed in this chapter will play an important role toward a theory of

cross-layer survivability.

While this chapter focused on the role of lightpath routing in cross-layer

survivability, the survivable network design problem in a layered setting consists

of three components: logical topology design, physical topology design, and

lightpath routing algorithm design. Obviously, the connectivity performance of a
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layered network is limited by the logical and physical topology. For instance, the

MCLC value of a layered network is no greater than the min-cut value of either the

logical or physical topology. Therefore, for survivable layered network design, it is

necessary to have logical and physical topologies that allow good light path routing.
Note, however, that logical and physical topologies with better connectivity do not

necessarily guarantee a more survivable layered network because there may not

exist a mapping of the logical topology to physical topology that leads to better

survivability. Therefore, when designing a physical topology, the logical topology

should be taken into account and vice versa. As a consequence, the results in the

survivable single layer network design may not be applicable to the survivable

logical and physical topology design problem. This makes the topology design

problem an interesting problem for future research.

Indeed, addressing the topology design problem in the layered setting has been

largely unexplored. In [16], necessary conditions on physical topologies were

developed to ensure that a ring logical topology can be embedded and survive a

single fiber failure. These conditions are then used to find lower bounds on the

number of physical links needed for such an embedding to exist. Despite this work,

the problem of topology design remains largely unexplored.
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