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A Strong Approximation Theorem for
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Abstract. The constant stepsize analog of Gelfand-Mitter type
discrete-time stochastic recursive algorithms is shown to track an associ-
ated stochastic differential equation in the strong sense, i.e., with respect
to an appropriate divergence measure.
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Here, {Ek} is a sequence of random variables representing measurement
noise; { W k } is i.i.d. N(0,I ) noise (I being the identity matrix) added deliber-
ately to avoid being trapped in local minima. The stepsize sequence {an} is
of the usual stochastic approximation algorithm, i.e., it is square-summable,
but not summable. The sequence {bn} is another positive decreasing
sequence chosen appropriately. Gelfand and Mitter show that (1) tracks in
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1. Introduction

In Refs. 1 and 2, Gelfand and Mitter studied the following stochastic
recursive algorithm for finding a global minimum of a smooth function
U:Rd-+R:
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where W ( . ) is a standard Brownian motion in Rd and e(t) is a positive
function decreasing to zero at a suitable rate. Then, (1) asymptotically mim-
ics the asymptotic behavior of (2), which is to converge in probability to
the set of global minima of U( •).

There are situations, however, when one would like to replace {an},
{bn} by constants a, b > 0. This is often done for ease of hardware implemen-
tations when the algorithms are hard-wired. Even more significantly, one
does so when the environment [i.e., U( •)] is actually varying slowly in time
and one is expected to track its global minimum. However, with constant
a, b the algorithm (1) will not converge in general to a point, even in prob-
ability. For example, if {En} are i.i.d., (1) is a time-homogeneous Markov
process which will converge to a stationary distribution at best. Therefore,
one has to rephrase the desired behavior of the constant stepsize algorithm
as follows: its limiting distributions should be concentrated near the global
minima.

This is usually achieved in two steps. The first step is to show that, as
a->0, the discrete recursion tracks an associated stochastic differential equa-
tion better and better. In particular, its limiting distributions remain close
to the invariant probability distribution of the Markov process generated
by the stochastic differential equation. The second step is to show that the
latter, in turn, have the desired limiting behavior (e.g., concentrate on global
minima) in the small-noise limit b->0. Traditionally, both these limits are
in the weak sense, i.e., in the sense of weak convergence of probability
measures (Ref. 3, Chapter 2). The aim of this paper is to show a stronger
approximation theorem for the first step, viz., in the sense of information
theoretic (Kulback-Leibler) divergence. This is useful, because usually it is
only the invariant distributions of the s.d.e. that are analytically accessible.
As for the second step, i.e., the small-noise limit, such a strong approxima-
tion is usually not possible because the limit of invariant distributions as
b->0 is usually singular with respect to any of them.

We should also add that our proof technique provides a stochastic
analog of the Hirsch lemma (Ref. 4, Theorem 1) for ordinary differential
equations, which gives conditions under which perturbed trajectories of the
same track the original asymptotic behavior closely. This proof technique
is of independent interest. In addition to yielding a stronger approximation
result, it has the added advantage of not requiring the asymptotic stationarity
of the discrete recursions or an a priori condition of tightness on their
limiting distributions as the stepsize decreases to zero. In addition, the way
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an appropriate sense the continuous-time simulated annealing algorithm, or
Langevin algorithm, given by the stochastic differential equation



with W( •) as before. Our assumptions, spelled out in the next section, ensure
that (4) has a unique invariant probability measure nb(- )eP(Rd); here and
later on, P(...) stands for the Polish space of probability measures on the
Polish space "..." with Prohorov topology (see Ref. 3, Chapter 2). The aim
is to show that the laws of Xk as k-»oo converge to a neighborhood of rjb,
in the strong sense alluded to earlier, for sufficiently small a. The next section
spells out the assumptions under which this will be achieved. Section 3
proves an approximation result for approximating (4) by a suitably interpo-
lated version of (3) on finite time intervals. Section 4 uses this result to prove
the main convergence theorem.

2. Preliminaries

We shall state our assumptions, including for convenience the ones that
were already mentioned in passing in the Introduction. Before doing so, we
recast (3) as an It6 differential equation. Since { W k } are i.i.d. N (0 , i ) ,
we may view them as Brownian increments. Specifically, we postulate a d-
dimensional standard Brownian motion W( •) such that

where h: Rd - >R is Lipschitz, X0 is prescribed in law with E [ \ \X 0 \ \ m ]<°Q,
Vw, {Wk} is as before, and {Mk} is a martingale difference sequence rep-
resenting the measurement noise. We compare (3) with the stochastic differ-
ential equation

our proof is structured, it is likely to provide a useful starting point for a
quantitative estimation of the approximation error involved.

We shall consider a somewhat more general situation than (1) and (2),
not restricting necessarily to a gradient search. Thus, we consider a more
general discrete recursion given by
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This may require an enlargement of the underlying probability space, but
that does not affect our analysis. Our first assumption is:

This ensures a unique strong solution to (4); see Ref. 5.
Define
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for t>0, a>0, and

Then, the process X( •) defined by

for t>0 satisfies, by construction,

Our next assumption concerns { M n } . Let

Then:

(A2) {Mn} is a sequence of Rd-valued integrable random variables
satisfying

(i) s u p n E [ \ \ M ( n ) \ \ 2 ] ± C < c c ,
(ii) E[M n /&„} = 0,
(iii) Wn is independent of Fn v a(Mn), Vn,
(iv) E [ \ \ M n \ \ / F n ] < C 1 ( 1 + \\Xn\\), for some constant C,>0.

Condition (ii) characterizes [Mn, Fn} as a martingale difference sequence.
Combining (A1) with (iv) above, a standard argument using the Gronwall
inequality shows that X ( - ) , and therefore { M n } , has bounded moments at
all times, bounded uniformly on every compact time interval. The same
obviously holds true for X( •). The next assumption is:

(A3) X ( - ) is stable, i.e., positive recurrent (Ref. 6).

Assumption (Al) is sufficient to ensure that (4) will have strictly positive
transition probability densities for positive times. Assumption (A3) then
ensures that it will be ergodic with a unique invariant probability measure
rib( •), which has a strictly positive density (Ref. 6).

Sufficient conditions for Assumption (A3) to hold can be given in terms
of stochastic Liapunov functions. As an example, we cite one from Ref. 7:

(C1) There exists a twice continuously differentiable function
w:Rd->R+ such that

(i) lim||x||_ao w(x) = <x> uniformly in ||x[|,
(ii) w(x), ||Vw(x)|| have polynomial growth,
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(iii) there exists a1 >0, e>0such that, for ||x||>a1,

See Ref. 7, Section 5, for details. Our next assumption is:

(A4) There exists a c>0 such that, for all b>0,

and 77o = limb->0 nb is well defined, the limit being in P(Rd).

We also need a stability condition on (3):

(A5) For sufficient small a, (3) is stable, i.e., the laws of Xk, k>0,
remain tight. As in traditional stochastic approximation theory,
sufficient conditions for such stability to hold tend to be problem
specific. Important examples are the Liapunov and perturbed
Liapunov methods (Ref. 8). Since (3) is an algorithm, we can
modify the dynamics if need be and, in particular, ensure a
Liapunov-type condition by modifying h(x) for very large ||x||
by incorporating a suitable penalty term.

By way of illustration, we state below one Liapunov-type condition for
stability of (3).

(C2) This condition is the same as (C1), except that (iii) is replaced
by:

(i i i ) There exist R, a1, e>0, such that, for \\x\\ >a1,

for all x satisfying \\x-x\\ <R\\x\\.

Lemma 2.1. Under Condition (C2), Assumption (A5) holds.

Sketch of Proof. Fix k > 1. Let



3. Approximation on Finite Time Intervals

The aim of this section is to show that y(X(t)) approximates b ( X ( t ) )
in a strong sense, uniformly on compact time intervals. Set X ( 0 ) = X 0 and
W{ •) = W( •). That is, we solve (4) with these specifications. This is possible
because of the existence and uniqueness of a strong solution to (4). Let L
be the Lipschitz constant for h( •), let C be the constant in Assumption (A2)
(i), and let
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Then,

for a suitable constant A>0. It is not difficult to show that the second term
on the r.h.s. can be made less than ea/2 by making a sufficiently small. The
rest of the proof then follows as in Ref. 9. D

Letting &(...) stand for "the law of .. . ," Assumption (A5) allows
us to postulate a compactset <$<^P(Rd) such that ^f(X(t))e, vt>0.

We conclude this section with the observation that, in many cases,
condition (i) of Assumption (A2) follows from condition (iv) of Assumption
(A2) and a Liapunov-type condition imposed to ensure Assumption (A5).

Lemma 3.1. at, E [ \ \ X ( t ) - X ( t ) ] - > 0 as a->0.

Proof. Fix T>0. Let N = the least integer exceeding T/a. Then, for
fe[0, T], (4) and (6) lead to
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From (6), we have

Thus, (7) leads to

where we use the fact that aNe[T, T+ 1]. By the Gronwall inequality, it
follows that E[\\X(t) -X(T)\\2] is O(a) for Te[0, T]. Since T> 0 was arbitrary,
the claim follows. D

Let p(x, t), p(x, t) denote the probability densities of X(t), X(t), respec-
tively, for t>0. Let T>0, T0>1 and &(X0) = ne<e.

Lemma 3.2. There exist constants a(1), o(2), B(1), B(2) >0 such that

for all xeRd, te[T0, T0+T], and any choice of ueG.

Proof. For t>s, x, yeRJ, let p(y, s; x, t) denote the transition prob-
ability density of the Markov process X( •). Then, by the estimates of Ref.
10, there exists constants c1, c2, c3, c4>0 such that

for 0 <t< T0-+T. Thus, for te[T0, T0+T],

where

Now, for any b > 0,
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The limit is uniform over neW by Dini's theorem. Thus, <p(x) is boundec
by Kb exp(b\\x\\2)c2(T0 + T)-1/22 for any b>0 and a corresponding constani
Kb>0. Pick

and set

to obtain the upper bound on p(x,t). uniform in xeRd, te[T0, T0+ T], andp
//e#. The lower bound is obtained similarly. For p(x, t), use the fact that
the one-dimensional marginals ^f(X(t)), t>0, of the non-Markov process
X ( - ) in fact equal the one-dimensional marginals R?(X( t ) ) , />0, of a Mar-
kov process X( •) satisfying a stochastic differential equation similar to (4),
but with h ( - ) replaced by a suitable measurable function h(- ) R d - > R d

(Refs. 11 and 12). The above arguments can then be applied to X( •). D

Corollary 3.1. p ( - , •) ->p(-, •) as a->0 in C(Rd* [T0, T 0 +T] ) ,
uniformly with respect to pe'if.

Proof. By localizing the estimates of Ref. 13 (Theorem 1.1, p. 419),
we conclude that, for some a > 0, p(x, t) is Holder continuous with exponent
a in x and with exponent a/2 in t. We use once again the fact that p(x, t)
is also the probability density of X ( t ) , X( •) a Markov process (Refs. 11 and
12) and, hence, satisfies the appropriate parabolic p.d.e., viz., the associated
forward Kolmogorov equation. Moreover, its Holder constant in any
bounded open subset of Rd depends only on the bound on p(x, t) on that
set. By the preceding lemma, this bound is uniform in x, t, u. Therefore, the
family {p( •, •); a>0, u e #} <= C ( R d x - [ T 0 , T0+T]) is bounded equicontinu-
ous and, by the Arzela-Ascoli theorem, relatively compact. Let 0 (•, •) be
a limit point thereof. Then, in particular, for fixed t and u,p(x,t)-> (x, t)-*0(x, t)
uniformly on compacts as a-»0 along a certain subsequence. Since p( •, /),
t satisfies the bound of the preceding lemma, one can invoke the dominated
convergence theorem to conclude that, for feCb(Rd),

as a-»0 along the appropriate subsequence. However, by Lemma 3.1,
X(t)-+X(t) in law and, therefore,
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Thus,

completing the proof.

Let qb(.) denote the density of N b ( - ) with respect to the Lebesgue
measure on Rd.

Corollary 3.2. f qb (x) log(qb (x)/p(x, t)) dx -»

Proof. We need to show that

uniformly in te[T0, T0 + T], n€<£.

This follows easily by combining the foregoing with the observation that
\log(p(x, t)/p(x, t))/ has a uniform quadratic bound in x, uniform in
te[T0, T0+ T] and u e#, using the first half of Assumption (A4). D

4. Main Results

We shall proceed through a sequence of lemmas. For a probability
density p( •) on Rd, define

with +00 a possible value for the integral.

Lemma 4.1. V(qb( •)) = 0, V(p( •))2:0 and =0 if, and only if, p( •) =
qb(-) a.e. Furthermore, V(p(-,t)) is strictly decreasing in f as long as
p(.,t)<?qb(.).

Proof. Note that (8) defines V(p( •)) as the information theoretic
divergence between qb( •) and p( •). The first sentence of the lemma is imme-
diate. The second also follows exactly as in the discrete case; see for example,
Ref. 14 (pp. 34). We include the details for the sake of completeness. Let
t>.s and let X1 •), X2( •) be the solutions of (4) with initial law u/ (dx)eP(R d )
and ub(dx), respectively, with u*nb. Let p 1 , x ,y) , px), p\y), p\y\x),
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p1 ( x \ y ) denote, respectively, the joint density of ( X 1 ) , X*(t)), density of
X ' ( s ) , density of X 1 ( t ) , conditional density of X1( t) given X 1 s ) , and condi-
tional density of X ' ( s ) given X 1 ( t ) , respectively. Let p2(x, y), p2(x), p2(y),
P2(y\ x), p 2 ( x \ y ) denote the corresponding entities for X2( •). Then,

Therefore,

Also,

The first term of the right-hand side is V(p 1 ( • ) ) . The second term is non-
negative and is in fact strictly positive unless

Since
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this reduces to

By continuity, the qualification "a.e." can be dropped from this equality.
Clearly, both sides must equal a constant. However,

implying

a contradiction. It follows that

proving the claim.

Let T, T0 be as before, and let F = the closure in P(Rd) of
{&(X(t))\te[T0, T0 + T], y (X(0) )e<#} . In view of the estimates of Lemma
3.2, it follows that T is tight and therefore compact in P(Rd). Let e>0
and denote by Be the set of u e P ( R d ) having a density p ( - ) that satisfies
V ( p ( • ) ) < € . Let fe, = r\Be.

Lemma 4.2. There exists a A > 0 such that the following holds. When-
ever S ( X ( 0 ) ) e V and X ( X ( t ) ) e r e Vte[T0, T0+T], one has

Proof. Suppose (9) does not hold. Then, there exist solutions X n ( - )
of (4) with initial laws un <e, n= 1, 2 , . . . , such that the corresponding laws
e ( X n ( t ) ) have densities p n ( • , t), t>0, satisfying

for n = 1 ,2 , . . . . Since # is compact, we may drop to a subsequence if
necessary and suppose that un -*ux in E. Now, the map

defined by (4), is continuous. Thus, along the above subsequence,
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for a process X*( •) satisfying (4) with &(X ' x > (0) )=u x , . In particular,

As in Corollary 3.1, p n ( - , t ) - * p ( ' , t) uniformly on compacts, where
p*(- , 0 is the density of X(X°*(t)). It follows that y(X"(t))eTe. for
te[T0,T0+T]. Furthermore, passing to the limit in (10), we get

a contradiction to Lemma 4.1. The claim follows.

Our main result is the following theorem.

Theorem 4.1. For any S > 0, <£(Xn) -»Bs for sufficiently small a.

Proof. It suffices to prove that C(X(t)) -> Bs for sufficiently small a.
Choose a so small that, for a given ve(0, A/6), we have

This is possible by Corollary 3.2. For n^0, let Xn_(t), te[nT, T0 + ( n + 1 ) T ] ,
denote the solutions of (4) with initial law ^ > (X n ( nT) ) = ̂ '(X(nT)). Let
p n ( - , t ) denote the probability density of X n ( t ) for te[nT, T0 + (n + 1 ) T ] . By
Lemma 4.2,

whenever

By (11),

whenever (12) holds. If ^(X(t)), te[T0 + nT,T0 + (n + 1 ) T ] , does not
intersect Be + v, it follows from (11) that (12) must hold and therefore (13)
and (14) must hold. However, (14) can hold for at most finitely many
consecutive values of n. Thus eventually, L ( X ( t ) ) and < f ( X n ( t ) ) , for
t e [ t 0 + nT, T0 + ( n + 1 ) T ] , must intersect Be+v, Be, respectively. Now, for
all n,

Hence, for all «,
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That is, if f ( X ( t ) ) , te[T0 + nT, t0 + (n+ 1 ) T ] , intersects Bc+v, it remains in
Be+3v. However, since

(14) ensures that &(X( t ) ) , te[T0 + (n + 1)T, T0 + (n + 2)T], will intersect
Be+v again. It follows that y(X(t)) remains in Be+5v once it hits B e + v ,
which it does in finite time. Choose, e, v>0 such that e + 5v<8. This
concludes the proof. D

Suppose that nb -> n in P(Rd) as b -> 0 and let

where p is the Prohorov metric on P(R d ) (Ref. 3, Chapter 2) and e>0 is
arbitrary.

Corollary 4.1. Given e > 0, &(Xn) -> Ge for sufficiently small a, b > 0.

Proof. By the Csizar inequality (Ref. 15),

The integral on the right is the total variation norm of the signed measure
p(x) d x - n b ( d x ) . The total variation norm topology on P(Rd) is stronger
than the Prohorov topology (Ref. 3, Chapter 2). Thus, the claim is immediate
from Theorem 4.1 and the fact that nb -» TJ in P(Rd) as b -» 0. D

Remark 4.1. Let S= support(n). Since r]b -> 77 in P ( R d ) for any open
set ScP(Rd) containing S,

Thus,

By Corollary 4.1,

for every open neighborhood S of S. Such a conclusion is of interest, e.g.,
when h ( - ) = -VU(-) as in the Gelfand-Mitter algorithm, with S=the set
of global minima of U ( • ) . A more interesting result in this context would
be to replace the triple limit above by a double limit, without lim^o, but



for appropriately defined Z( •), (7) can again be verified. The results of Refs.
10, 11, and 13, on which the rest of the argument hinges, continue to apply
and, therefore, the conclusions remain unaltered.
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