Convexity and Duality in Optimization Theory

Stephen Kinyon Young

Preface

This doctoral thesis was written under my direction in 1977. Chapters VIII and IX of the thesis have been published in 1984 Annali di Matematica pura ed applicata (IV), Vol. CXXXVII, pp. 1-39. The remainder of the thesis has never been published. I am issuing this as a technical report after fifteen years since I believe that it contains material which might still be new and have relevance to optimization problems arising in control systems design.

Sanjoy K. Mitter
August 1992

CONVEXITY AND DUALITY IN OPTIMIZATION THEORY

by
Stephen Kinyon Young

This report is based on the unaltered thesis of Stephen Kinyon Young submitted to the Department of Mathematics on July 15, 1977 in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
by

```
Stephen Kinyon Young
B.S., Yale
```

(1971)

SUBMITEED IN PARTIAL FULETEMENT

OF THE REQUIREMENTS FOR THE

DEGREE OE
DOCTOR OE DHILOSOPHY
at the
MASSACHUSETTS INSTITETE OF TECHVOLOGY
September 1977

NOTICE: THIS MATEALAL MAY BE PROTECTED BY COPYRIGHT LAW (TITLE 17 U.S. CODE)

DISCLAIMER OF QUALITY
Due to the condition of the original material, there are unavoidable flaws in this reproduction. We have made every effort to provide you with the best copy available. If you are dissatisfied with this product and find it unusable, please contact Document Services as soon as possible.

Thank you.

$$
\begin{aligned}
& \text { poor text quality } \\
& \text { very light in areas }
\end{aligned}
$$

CONVEXIZY AND DUAIIMY IN OPRIMIZARION THEORY
by
Stephen K. Young
Submitted to the Department of Mathematics on July 15, 1977 in partial Eulfillment of the requirements for the degree of Doctor of Ehilcsophy.

ABSTRACT

The duality avoroach to solving convex optimization problem $i=$ studied in detail using tools in convex analysis and the theory of conjugate functions. Conditions for the duality formaiisn to hold are developed which require that the optimal value of the original problem vary continuously with respect to Derturbations in the constraints only along Eeasible directions; this is sufficiont to imply existence for the dual problem and no duality gap. These conditions are also posea as certain local compactness requirements on the dual feasibility set, based on a characterization of locally compact convex sets in locally convex spaces in terms of nonempty relative interiors cf the corresponding polar sets.

These resilits are apolied to minimum norm and spline problems ana imnrove previous existerce results, as well as expressing them in a duality framework. Related results include conditions for the sum of two closed convex sets to be closed, leading to an extended separation principle for closed convex sets.

The continuous linear programming froblem is also studied. An extended dual problen is formulated, and a condition sufficient for dual solutions to exist rith no duality gap is given which is natural in the context of several examples. Moreover the dual solutions car be taken to be extreme points, which suggests the oossibility of a simplex-like algorithm.

Finally, the problem of characterizing optimal quantum detection and estimation is studied using duality techniques. The duality theory for the quantum estimation problem entails sturying ceprator-valued measures, developing a generaliped Riesz Representation Theorem, and looking at the approximation property for the space of linear operators on a lilibert space.

Thesis Supervisor: Sanjoy k. Mitter
Title: ProEsssor of Electrical Ensinsering

Acknowledgements

I wish to thank Professor Sanjoy K. Mitter for his contributions to and supervision of this research, and for his guidance and encouragement throughout my period of graduate study; Professor Gilbert Strang for his continued interest and support; Proiessor David Schaeffer for acting as reacer; Ms. Phyllis Ruby for her skill, speed, and patience in tyoing the thesis; finally, my parents for their implicit support and understanding; and my wife Micheline, who provided love and care ard joy in living.

I gratefuily ackno: ledge the financial support of the M.I.T. Nathematics Department, and of the National Science Foundation under grant NSF ENG76-02860.
page
I. Overview of Thesis6
II. Convex Analysis 10

1. Notation and basic definitions 11
2. Recession cones, lineality subspaces, 17recession functionals
3. Directional derivatives, suivgradients 25
4. Relative interiors of convex sets and 34
local equicontinuity of polar sets
5. Continuity of convex functions and 53
equicontinuity of conjugate functions
6. Closed subspaces with finite codimension 65
7. Weak dual topologies 69
8. Relative continuity points of convex 74
functions
9. Determining continuity points 59
III. Duality Approach to 'ptimization
10. Introduction 70
11. Problem formuiation 97
12. Juality theorems for oŋtimization problems 108
IV. Ainimum Norm and Spline Problems and 119
a Separation Theorem
13. :Inimum norm extremals anc the spline 120problem2. On the separation of ciosed convex sets132
14. Continuous-Time Linear Erogramming (Note: Chapter V $i ミ 5$
i. Introcuction from thesis) 136
15. Formulation of the problem 138
16. The perturbed groblem anc its conjugate 142
5
17. Duality theorem 147
18. Sufficient conditions for duality to hold 152
19. Communications network problem 155
20. Linear dynamic economic model 158
21. Looking for extreme point soiutions, and 153
a simple example
VII. Optimal Quantum Detection !.S
22. Introduction 166
23. The finite dimensional case 172
24. A linear proframming problem with 174
non-polyhedral cone which has a duality gap
25. The quantum detection problem and its cual177
VIII. Operator-Valued Measures 192
IX. Optimal Quanium Estimation 225
26. Int-oduction 226
27. Integration of real-valued Eunctions with $23{ }^{\circ}$
respect to operator-valued measures
28. Integration of $\bar{i}_{s}(\mathrm{H})$ - valued functions 238
29. $M(S) \quad 2$ - $2(i)$ is a subspace of $M(S, \mathcal{Z}(H))$ 245
30. A Fubini theorem for the Sayes posterior 252
expected cost
31. The quantum estimation problem and its dual 200
X. References 270

$$
6
$$

Overview of thesis

The idea of duality theory for solving convex optimization problems is to transform the original problem into a "dual" problem which is easier tc solve and which has the same value as the original problem; constructing the cual solution corresponds to tormulating extremality conditions which characterize optima?lity in the oricinal problen. This thesis investigates and extends the juality approach to optimization and applies this approach to several problems of interest.

Chapter II defines basic concepts and develops basic techniques in convex analysis and the theory of conjugate functions which are relevant to studying the duality formalism. It includes an investigation of the relationships between nonempty relative interiors of convex sets and local compactness of the polar sets, which culminates in a characterization of relative continuity points of convex functions in terms of local compactness properties of the conjugate functions.

Chapter III presents a detailed study of the duality approach to optimization using the techniques developed in Chapter II. Conditions for duality to ho. 1 are derived which require that the optimal value of the originai problem
vary "relatively continuously" with respect to perturbations in the constraints oniy along feasible directions; this is sufficient to imply existence for the dual problem and no duality gap. These conditions are also posed as certain local compactness requirements on the dual feasibility set, based on the work in Chapter II.

Chapter IV applies the cuality approach of Chapter III to minimum norm and spline problems, thereby yielding improved existence results as well as expressing them in a duality framework. Related results include conditions for the sum of two closed convex sets in a Banach space to be closed, extending Dieudonne's results and leading to an extended separation principle for disjoint closed convex (possibly unbounded) sets.

Chapter V studies the continuous-time linear programming problem. Previous results in the literature have formulated the dual linear programing problem in too restrictive a space, so that conditions guaranteeing dual solutions are not satisfied in interesting cases. By imbedding the dual problem in a larger space, it is possible to get dual solutions wiht ro duality gap under assumptions which are natural in the context of a comunications network problem and a dynamic economic model. Moreover, the dual solutions may be taken to be extrame points of the (possibly unbounded, but locally compact) feasibility set; a simple example is
presented which shows how this might lead to a "primal-dual" type of algorith (in analogy to the finite dimensional simplex algorithm) for solving the linear problem. However, much work renains in investigating this approach and in understanding the extreme point structure of the feasibility set.

The remaining chapters consider the problem of characterizing optimal quantum detection and estimation. The quantum nature of these statistical problems requires the use of operator-valued measures; a chapter is devoted to developing general integration theory for operator-valued measure and proving ar extended Riesz Representation Theorem for duality purposes. The estimation problem also entails looking at certain somewhat esoteric properties of tensor product spaces, needed to properly formulate the problem; however, the actual duality results then follow without too much difficulty.
10.

II. Convex Analysis

Abstract. Techniques in convex analysis and the theory of conjugate functions are studied. E characterization of locally compact convex sets in locally convex spaces is given in terms of nonempty relative interiors of the corresponding polar sets. This result is extended in a detailed investigation of the relationships between relative continuity points of convex functions and local compactness properties of the level sets of corresponding conjugate functions.

1. Notation and basic definitions

This section assunes a knowledge of topological
vector spaces and only serves to recall some concepts in functional analysis which are relevant for optirization theory. The extended real line $[-\infty,+\infty]$ is dencted by \bar{R}. Cperations in \bar{P} have the usual meaning with the additional convention that

$$
(+\infty)+(-\infty)=(-\infty)+(+\infty)=+\infty \text {. }
$$

Let X he a set, $f: X \rightarrow \bar{R}$ a man from X into $[-\infty,+\infty]$. The -picraon of is

$$
\text { epif } \stackrel{\measuredangle}{=}\{(x, r) \in X \times R: r \geq f(x)\}
$$

The effective comain of f is the set

$$
\operatorname{com} E \stackrel{\triangleq}{=}\{x \in X: f(x)<+\infty\}
$$

The function f is proper iff $£ \not \equiv+\infty$ and $f(x)>-\infty$ for every $x \in X$. The indicator function of a set $A \subset X$ is the map $\hat{c}_{A}: X \rightarrow \bar{R}$ defined by

$$
\delta_{A}(x)=\left\{\begin{array}{rll}
+\infty & \text { if } & x \hat{F} A \\
0 & \text { if } & x \in A
\end{array} .\right.
$$

Let X be a vector space. A map $f: X \rightarrow \bar{R}$ is convex iff epif is a conver subset of $X \times R$, or equivalently iff

$$
f\left(\varepsilon x_{1}+(1-\varepsilon) x_{2}\right) \leq \varepsilon f\left(x_{1}\right)+(1-\varepsilon) f\left(x_{2}\right)
$$

for every $x_{1}, x_{2} \in X$ and $\varepsilon \in[0,1]$. The convex hull of f is the largest convex function which is evervwhere less than or equal to f; it is given by

$$
\begin{aligned}
(\operatorname{cof})(x) & =\sup \left\{f^{\prime}(x): f^{\prime} \text { is convex } x \rightarrow \bar{R}, f^{\prime} \leq f\right\} \\
& \left.=\sup f^{\prime}(x): f^{\prime} \text { is linear } x \rightarrow \bar{R}, f^{\prime} \leq £\right\}
\end{aligned}
$$

Equivalently, the epigraph of cof is given by

$$
\text { epi }(\operatorname{cof})=\{(x, r) \in X \times R:(x, s) \in \text { ccepif Eor every } s>r\}
$$

where coepif denotes the corvex hull of epif.
Let X be a topological space. A map $\mathrm{f}: \mathrm{X} \rightarrow \overline{\mathrm{P}}$ is lower semicontinuous (1sc) iff epī is a closec subset Of $x \times R$, or equivalently iff $\{x \in X: f(x) \leq r\}$ is a closed subset 0 f X for every $=\in R$. The map $f: X \rightarrow \bar{R}$ is 1 Sc at x_{0} iff given any $r \in\left(-\infty, \equiv\left(x_{0}\right)\right)$ there is a neighborhood N of x_{0} such that $r<f(x)$ for every $x \in M$. The lower semicontinuous hull of f is the largest lower semicontinuous functional on X wich everymere minorizes f, i.e.

$$
\begin{aligned}
(\operatorname{lscf})(x) & \left.=\operatorname{supi} E^{\prime}(x): f^{\prime} \text { is } \operatorname{lsc} X \rightarrow \bar{P}, f^{\prime} \leq f\right\} \\
& =\lim _{x^{\prime} \rightarrow X} \inf f\left(x^{\prime}\right) .
\end{aligned}
$$

Equivalently, $\operatorname{epi(lscF)=cl(epif)}$ in $X \times P$.

A duality $\left\langle X, X^{*}\right\rangle$ is a pair of vector spaces X, X^{*} with a bilinear form <•, •> on $X \times X^{*}$ that is separating, i.e. $\langle x, y\rangle=0 \forall \underline{y} \in X^{*} \Rightarrow>x=0$ and $\left\langle x, y^{\prime}\right\rangle=0 \forall x \in X \Rightarrow x=0$. Every duality is equivalent to a Hausdorff locally convex space X paired with its topological dual space $X *$ under the natural bilinear form $\langle x, y\rangle \triangleq y(x)$ for $x \in X, y \in X^{*}$. We shall also write $x y \equiv\langle x, y\rangle \equiv y(x)$ when no confusion arises.

Let X be a (real) Hausdorfí locally convex space (HICS), which we shall alvays assume to be real. X^{*} denotes the topological dual space of X . The polar of a set $A \subset X$ and the (pre-)polar of a set $B \subset X^{*}$ are defined by +

$$
\begin{aligned}
& A^{\circ} \triangleq\left\{y \leq x^{*}: \sup _{x \in A}\langle x, y\rangle \leq 1\right\} \\
& O_{B} \triangleq\left\{x \in X: \sup _{y \in B}\langle x, y\rangle \leq 1\right\} .
\end{aligned}
$$

The conjugats of a functional $f: X \rightarrow \overline{\mathrm{~F}}$ and the (pre-)conjugate of a functional $G: X^{*} \rightarrow \bar{R}$ are defined by

$$
\begin{aligned}
& f^{*}: X^{*} \rightarrow \bar{R}: Y \mapsto \sup _{x \in X}[\langle x, y\rangle-f(x)] \\
& g^{*}: X \rightarrow \bar{R}: x \mapsto \sup _{Y \in \underline{Y}}[<x, y>-g(y)] .
\end{aligned}
$$

Foe use the convention sup $\not \subset=-\infty$, in $\nexists=+\infty$. Hence $\emptyset^{0}=X^{*}$.

If X is a HLCS there are several topologies on X which are important. By τ we denote the original topology on x; by the definition of equicontinuity, τ is precisely that topology which has a basis of 0 -neighborhoods consisting of polars of equicontinuous subsets of X^{*}. The weak topology $w\left(X, X^{*}\right)$ is the weakest topology compatible with the duality $\left\langle x, X^{*}\right\rangle$, i.e. it is the weakest topology on X for which the linear functionals $x \rightarrow\langle x, y\rangle, y \in X^{*}$ are continuous. Equivalently, w(X, $\left.X *\right)$ is the locally convex topology on X qenerated by the seminorms $x \mapsto|\langle X, y\rangle|$ for $Y \in X^{*}$; it has a basis of 0 -neighborhoods given by polars of finite subsets of X^{*}. The Mackev topology $m\left(X, X^{\star}\right)$ on X is the stronc̣est topolory on X compatible with the duality $\left\langle X, X^{*}\right\rangle^{\dagger}$; it has a 0 -neighborhood basis consisting of polars of all w($\left.\mathrm{X}^{*}, \mathrm{y}\right)$ compact convex ${ }^{+1}$ subsets of X^{*}. The stronc topoloay $s\left(X, X^{*}\right)$ is the stroncest locally convex topology on X that still has a basis consisting of $w\left(X, X^{\star}\right)$-closed sets;

it haz as 0-neighborhood basis all w(X, X*)-closed convex absorbing subsets of X, or equivalently all polars of $W\left(X^{*}, X\right)$-bounded subsets of X^{*}. We shall often write $m\left(x, x^{*}\right)$, $\mathrm{w}, \mathrm{m}, \mathrm{s}$ for $\mathrm{w}\left(\mathrm{X}, \mathrm{X}^{*}\right) \mathrm{A}_{\mathrm{s}}\left(\mathrm{X}, \mathrm{X}^{*}\right)$, and also w^{*} for $\mathrm{w}\left(\mathrm{X}^{*}, \mathrm{X}\right)$. The strong topolocy need not be compatible with the cuality <X, $X *$. In general ve have $\forall(X, X) \subset \tau \subset m\left(X, X^{*}\right) \subset$ $s\left(X, X^{*}\right)$. For a convex set A, however, it folloris from the Hahn Eanach separation theoren that A is closed iff A is $w\left(X, X^{*}\right)-c l o s e c$ i $i E A$ is $m\left(X, X^{*}\right)$-closed. iore aenerally,

$$
\because-c l A=c 1 A=m-c I A \supset s-c l A
$$

when A is convex. Sirilarly, if a convex function $f: X \rightarrow \overline{\mathrm{R}}$ is $\mathrm{m}\left(\mathrm{X}, \mathrm{K}^{*}\right)-1 \mathrm{sc}$ then it is lsc and even $\mathrm{w}\left(\mathrm{X}, \mathrm{X}^{*}\right)-1 \mathrm{sc}$. It is also true that the bounded sets are the same for every conpatible topology on X .

Let X be a HLCS and $E: X \rightarrow \bar{R}$. The conjugate function I*: $X^{*} \rightarrow \bar{R}$ is convex and $W\left(X^{*}, X\right)-1 s c$ since it is the supremur of the $w\left(X^{*}, X\right)$-continuous affine functions $y \mapsto\langle x, y\rangle-f(x)$ over all $x \in$ domf. Similarly, for $g: X^{*} \rightarrow \bar{R}$ it follows that the preconjugate * $G: X \rightarrow R$ is convex and lsc. The conjugate functions f^{*}, *g never take on $-\infty$ values, unless they are identically $-\infty$ or eçuivalently $f \equiv+\infty$ or $\mathrm{g} \equiv+\infty$. Finally, from the Hahn-Banach separation theorem it follows that

$$
\begin{equation*}
*(f *)=\operatorname{lsccof} \tag{1}
\end{equation*}
$$

whenever f has an affine minorant, or equivalently whenever $\mathrm{f}^{*} \equiv+\infty$; otherwise Isccof takes on $-\infty$ values and

The following lema is very useful.
1.1 Lemma Let X be a HLCS, $f: X \rightarrow \bar{P}$. Then $\operatorname{co}(\mathrm{donf})=\operatorname{dom}(\operatorname{cof})$. If $\mathrm{f}^{*} \neq+\infty$, then clcodomf $=\operatorname{cldom}\left(\mathrm{f}^{*}\right)$.

Proof. Now cof $\leq f$, so don $(\operatorname{cof}) \geq$ domf and hence (since
 $\hat{\delta}^{\text {codonf }}$ is a convex function everywere dominated by f , hence by cof, and so codomf D dom(COE). Thus dom(cof) $=$ co(donf).

Similarly, * $\left(f^{*}\right) \leq f$ so $\operatorname{com}^{*}\left(f^{*}\right)>$ domf and hence cldon* $\left(\mathrm{f}^{*}\right) \supset$ clcodonf (since dom*(f*) is convex). Conversely, * $(\overline{\mathrm{I}}$ * $)+\delta$ clcodomf is a convex lsc function everywhere dominated by f, and since * (f*) is the largest convex lsc function dominated by f (in the case that $f * \not \equiv+\infty$, by (I)) we have
 cidom*(f*) $=$ clcodorf and the lema is proved. Δ

A barrelled space is a ELCS X for which every closed convex absorbing set is a 0-neighborhood; equivalently,
 $X^{*}\left(X^{*}, X\right)$-compaci. It is then clear that the $r\left(X, X^{*}\right)$ topolory
is the original topology, and the equicontinuous sets in X* are the concitionally w*-compact sets. Every Banach space or Frechet space is barrelled, by the BanachSteinhaus theorem.

We use the following notation. If $A \subset X=$ HiLCS, then intA, corA, riA, rcorA, clA, span $A, a f f A, c o A$ denote the interior of A, the algebraic interior or core of A, the relative interior of A, the relative core or algebraic interior of A, the closure of A, the span of A, the affine hull of A, and the convex hull of A. By relative interior of A ve nean the interior of A in the relative topoloqy of X on affa; that is $x \in r i A$ iff there is a 0 -neighborhood in such that $(x+N) \cap$ affa $\subset A$. Similarly, $x \in r c o r A$ iff $x \in A$ and $A-x$ absorbs affA-x, or equivalently iff $x+[0, \infty) \cdot A \supset A$ and $x \in A$. By affine hull of A we mean the smallest (not necessarily closed) affine subspace containing $A ;$ aff $A=A+\operatorname{span}(A-A)=x_{0}+\operatorname{span}\left(A-x_{0}\right)$ where x_{0} is any element of A.

Let A be a subset of the HLCS X and B a subset of $X *$. We have already defined A°, O_{B}. In addition, we make the following useful definitions:

$$
\begin{aligned}
& A^{+} \triangleq\left\{y \in X^{*}:\left\langle x, Y^{\prime} \geq 0 \forall x \in A\right\}\right. \\
& A^{-} \triangleq-A^{+}=\left\{y \in X^{*}:\langle x, y\rangle \leq 0 \forall x \in A\right\} \\
& A^{+} \triangleq A^{+} \cap A^{-}=\left\{y \in X^{*}:\langle x, y\rangle=0 \forall x \in A\right\} .
\end{aligned}
$$

18.

Similarly, for $B \subset X^{*}$ the sets ${ }^{+} B,{ }_{B} \mathcal{B}^{\perp} \perp_{B}$ are defined in X in the same way. Using the Hahn-Banach separation theorem it can be shown that for $A \subset X,{ }^{\circ}\left(A^{\circ}\right)$ is the smallest closed convex set containing $A \cup\{0\} ;{ }^{+}\left(A^{+}\right)={ }^{-}\left(A^{-}\right)$is the smallest closed convex cone containing A; and $\mathcal{L}^{(}\left(A^{\perp}\right)$ is the smallest closed subspace containing A. Thus, if A is nonempty ${ }^{\dagger}$ then

$$
\begin{aligned}
& { }^{\circ}\left(A^{0}\right)=\operatorname{clco}(A \cup\{0\}) \\
& +\left(A^{+}\right)=\operatorname{cl}\{0, \infty) \cdot \operatorname{coA} \\
& +\left(A^{+}\right)=\operatorname{cls} \sin A \\
& \left.A^{+}+(A-A)^{\prime}\right)=\operatorname{claff} A .
\end{aligned}
$$

[^0]2. Recession cones, lineality subspaces, recession functionals

Let A be a nonempty subset of the HLCS X. The recession cone of A is defined to be the set A_{∞} of all half-lines contained in clcoA; that is, a vector x is in A_{∞} iff for any fixed point $a \in A$ the half-line $a+[0, \infty) \cdot x$ starting at a and passing through x is entirely containeß in clcoA. A_{∞} is a closed convex cone with vertex at 0 ; in fact $A_{\infty}={ }^{-}\left(\mathcal{P}^{0}\right)$. For consistency we define $\emptyset_{\infty}=\{0\}$. The following proposition (modelled after [R66]) proviães a detailed characterization of A_{∞}.
2.1 Proposition. Let A be a nonempty subset of the HLCS X. Then the following are equivalent:

1) $x \in A_{\infty}$
2) $A+[0, \infty) \cdot x \subset c l c o A$
3) $x \in \underset{t>0}{\cap} \cap \cap_{a \in A} t \cdot(c l \operatorname{coA}-a)$
4) $\exists a \in A$ st $a+[0, \infty) \cdot x<\operatorname{clcoA}$
5) $\exists a \in A$ st $x \in \bigcap_{t>0} t \cdot(c l \operatorname{coA}-a)$
6) \exists nets of scalars $t_{i}>0$ and vectors $x_{i} \in \operatorname{coA}$ st $t_{i} \rightarrow 0, t_{i} x_{i} \rightarrow x$
7) $x \in \bigcap_{\varepsilon>0}[c 1(0, \varepsilon) \cdot \operatorname{coA}]$
8) $x \in{ }^{-}\left(\operatorname{com}_{A}^{*}\right)$
9) $x \in{ }^{-}\left(A^{\circ}\right)$
10) $A+x \in$ clcos.

Proof. 1) \Leftrightarrow 2) is the definition of A_{∞}. 2) $<=>3$), 2) \Rightarrow 4), 4) \Leftrightarrow 5) are trivial.
4) \Rightarrow (6). Let ${ }^{B}$ be a basis of 0-neighborhoods in X and consider the directed set $\times(0, \infty)$ with the ordering $(B, \varepsilon) \geq\left(B^{\prime}, \varepsilon^{\prime}\right)$ iff $B \subset B^{\prime}, \varepsilon \leq \varepsilon^{\prime}$. For every $B \in B^{B}, \varepsilon>0$ taine $t_{B, \varepsilon}=\varepsilon$ and $x_{B, \varepsilon} \in \operatorname{coA} \cap\left(a+\varepsilon^{-1} x+B\right)$, where the intersection is nonempty since $a+\varepsilon^{-1} x \in$ clcoa by hypothesis 4). Then $t_{B, \varepsilon} \rightarrow 0$ and $t_{B, \varepsilon} \cdot{ }_{B, \varepsilon} \in x+\varepsilon \cdot a+\varepsilon \cdot B$, so $t_{B, \varepsilon}{ }^{\bullet} x_{B, \varepsilon} \rightarrow x$.
6) \Rightarrow 7). By hypothesis $\exists t_{i} \rightarrow 0^{+}, x_{i} \in \operatorname{coA}, t_{i} x_{i} \rightarrow x$. Given any $\varepsilon>0$, the t_{i} eventually belong to $(0, \varepsilon)$, so $t_{i} x_{i} \in(0, \varepsilon) \cdot \operatorname{CoA}$. But then $x=\lim t_{i} x_{i} \in \operatorname{cl}(0, \varepsilon) \cdot \cos$.
7) \Rightarrow 6). Again, consider the directed set $\delta \times(0, \infty)$. For every 0 -neighborhood $B \in D, \varepsilon>0$ take $t_{B, \varepsilon} \in(0, \varepsilon)$ and $X_{B, \varepsilon} \in \operatorname{coA}$ such that $t_{B, \varepsilon} \cdot x_{B, \varepsilon} \in x+B$; this is possible since $x \in c l(0, \varepsilon) \cdot \operatorname{coA}$ by hypothesis 7). Then $t_{B, \varepsilon} \rightarrow 0$ and $t_{B,}{ }^{\cdot} x_{B, \varepsilon} \rightarrow x_{.}$
6) \Rightarrow 8). Suppose $y \in \operatorname{dom} \delta_{A^{\prime}}^{*}$, i.e. $M=\sup _{a \in A}\langle a, y>$ is
finite. Now $\left\langle x_{i}, y\right\rangle \leq \mathrm{n}$ since $\mathrm{x}_{\mathrm{i}} \in \operatorname{COA}$, so $\langle\mathrm{x}, \mathrm{y}\rangle=$ $\lim \left\langle t_{i} x_{i} y\right\rangle \leq \lim t_{i} \cdot ?=0$. Thus $\langle x, y\rangle \leq 0$ whenever $y \in \operatorname{dom} \delta_{A}^{*}$.
8) $\Leftrightarrow 9$). By definition dom $\delta_{A}^{*}=[0, \infty) \cdot A^{\circ}$; hence $-\left(\operatorname{dom} \delta_{A}^{*}\right)=-\left(A^{0}\right)$.
9) \Rightarrow 10). Suppose $A+x \notin$ clcoA; then $\exists a \in A$ st $a+t x \notin \operatorname{clcoA}$. By the Hahn-Banach separation theorem there is a separating linear functional $y \in X *$ for which $\sup _{x \in C l \operatorname{coA}}\langle x, y\rangle\left\langle\langle a+x, y\rangle\right.$, i.e. $\delta_{A}^{*}(y)\langle\langle a+x, y\rangle$. Clearly $y \in \operatorname{dor} \delta_{A}^{*}$. Also $\langle a, y\rangle<\langle a+x, y\rangle$, so $\langle x, y\rangle>0$ and $x \notin{ }^{-}\left[\operatorname{coms}_{A}^{*}\right]$.
10) \Rightarrow 1). Take any $a \in A$. By hypothesis 10), $a+x \in \operatorname{clcoA}$. But then, by repeated application of 10), $a+x+x \in \operatorname{clcoA}$, etc., so $a+n x \in \operatorname{clcoA}$ for $n=1,2, \ldots$, and by convexity 1) follows. \mathbb{Q}

Remarks. From 5) it is clear that $A_{\infty}=(c l \operatorname{coA})_{\infty}$, since $A_{\infty}=\underbrace{}_{t>0} t \cdot(c l \operatorname{coA}-a)$ for any fixed $a \in A$. Similarly, 3) implies that $A_{\infty}=\left({ }^{\circ}\left(A^{\circ}\right)\right)_{\infty}$, since $\left({ }^{\circ}\left(A^{\circ}\right)\right)^{\circ}=A^{\circ}$ and $A_{\infty}={ }^{-}\left(A^{\circ}\right)$. Thus $A, \operatorname{clcoA},{ }^{\circ}\left(A^{\circ}\right)=\operatorname{clco}(A \cup\{0\})$ all have the same recession cone. Applying 10) to cleo also yields

$$
\operatorname{clcoA}+A_{\infty}=c l \operatorname{coA}
$$

The linearity space of $A \subset X$ is defined to be the set of all lines contained in alcoA, ie. $\operatorname{lin} A \triangleq \hat{A}_{\infty} \cap\left(-\hat{A}_{\infty}\right)=$ $\bigcap_{t \in R} t \cdot(c l \operatorname{coA}-a)$ where a is any fixed element of A. Lin A
2π.
is a closed subspace; in fact it is the annihilator ${ }^{1}\left(\right.$ span $\left.A^{\circ}\right)$ of the snallest subspace containing A°.
2.2 Corollary. Let A be a nonempty subset of the filcs x. The following are equivalent:

1) $x \in \operatorname{lin} A$
2) $\quad \forall \quad a \in A, a+(-\infty,+\infty) \cdot x \in \operatorname{cicoA}$
3) ヨáf A st $a+(-\infty,+\infty) \cdot x \subset c l c o A$
4) $\left.x \in \perp\left(A^{\circ}\right) \equiv \dot{-10 n s} A^{*}\right) \equiv \perp\left(\operatorname{span} A^{\circ}\right)$
5) $(A+X) \cup(A-X) \subset$ clcoA.

Proof. Simply apply Proposition 2.1 to x and $-x$. $区$

The recession function $\overline{\mathrm{f}}_{\infty}$ of a function $\mathrm{f}: \mathrm{X} \rightarrow \overline{\mathrm{P}}$ is defined to be

$$
\begin{equation*}
f_{\infty}(x)=\sup _{y \in \operatorname{domf}}\langle x, y\rangle \tag{1}
\end{equation*}
$$

This is defined in analogy to the concept of recession cones; $f_{\infty}(\cdot)$ is that function whose epigraph is the recession cone of epif,

$$
\begin{equation*}
\operatorname{epi}\left(f_{\infty}\right)=(\operatorname{epif})_{\infty} \text {. } \tag{2}
\end{equation*}
$$

Since $\bar{I}_{\infty}(\cdot)$ is the suprenum of continuous linear Eunctionals on X, it is convex, positively homogeneous
$\left(f_{\infty}(t x)=t f_{\infty}(x)\right.$ for $\left.t>0\right)$, and Isc. The following

23.

proposition provides alternate characterizations of f_{∞} when f is convex and lsc. In general $f_{\infty}=(*(f *))_{\infty}$, since f* $=(*(f *))^{*}$.
2.3 Proposition. Let $\mathrm{f}: \mathrm{X} \rightarrow \overline{\mathrm{R}}$ be a convex lsc proper function on the HLCS X. Then $f_{\infty}(x)$ is given by each of the following:

1) $\min \left\{r \in R:(x, r) \in(e n i f)_{\infty}\right\}$
2) $\sup _{a \in d o m f} \sup _{t>0}[f(a+t x)-f(a)] / t$
3) $\sup _{t>0}[f(a+t x)-f(a)] / t$ for any fixed $a \in \operatorname{domf}$
4) $\sup _{a \in \operatorname{comf}}[f(a+x)-f(a)]$
5) $\sup _{y \in \text { Conf* }}\langle x, y\rangle$.

In 1) the minimun is always attained (whenever it is not $+\infty$), since (epif) ∞ is a closed set.

Proof. It suffices to show that for any $r \in R$, the following are equivalent:
l') $(x, r) \in(e p i f)_{\infty}$
2') $\forall a \in c o m f, \forall t>0,[f(a+t \mathrm{~K})-f(a)] / t \leq r$
3') $\exists a \in \operatorname{domf}$ st $\forall t>0,[f(a+t x)-f(a) / t \leq r$
$\left.4^{\prime}\right) \quad \forall a \in \operatorname{done}, f(a+x)-f(a) \leq x$
5') $\sup _{\underline{v} \in \operatorname{dom} £^{*}}\langle x, y\rangle \leq r$.

Using the fact that epif contains all points above the graph of f, it is easy to see that l' $^{\prime}$ througin 5') are respectively equivalent to

1") $(x, r) \in(\text { epif })_{\infty}$
$\left.2^{\prime \prime}\right) \quad \forall(a, s) \in$ epif, $\forall t>0,(a+t x, s+t r) \in$ epif
3") $\exists(a, f(a)) \in$ epif $s t \forall t>0,(a+t x, f(a)+t r) \in$ epif
4") $\quad \forall(a, s) \in$ epif, $(a+x, s+r) \in$ epif
5") $\sup _{y \in \operatorname{don} \tilde{E}^{*}}\langle x, y\rangle \leq I$.
The equivalence of $\mathbf{I "}^{\prime \prime}$) through 4") now follows clirectly from proposition 2.1. If 5") holds, then $\forall a \in d o m s$, $\forall s \geq f(a)$,

$$
\begin{aligned}
f(a+y) & =*(f *)(a+x)=\sup _{y \in \operatorname{con} f *}[\langle a+x, v\rangle-f *(y)] \\
& \leq \sup _{y \in \operatorname{don} f^{*}}\langle x, y\rangle+\sup _{y \in d o m f *}\left[\langle a, y\rangle-f^{*}(y)\right] \\
& \leq r+*\left(f^{*}\right)(a)=r+f(a),
\end{aligned}
$$

and hence 4') holds. Conversely, if 4') holds then

$$
\begin{aligned}
f *(y) & =\sup _{a \in \operatorname{dom}}\left[\langle a, y>-f(a)] \leq \sup _{a \in \operatorname{donf}}[\langle a, y\rangle+r-f(a+x)]\right. \\
& \leq r+\sup _{a \in X}[<a, y>-f(a+x)]=x+\sup _{a \in X}[\langle a-x, y\rangle-f(a)] \\
& =r-\langle X, y\rangle+f *(y) .
\end{aligned}
$$

Hence $\langle x, y\rangle \leq r$ whenever $f^{*}(y)<+\infty$ and $\left.5^{\prime \prime}\right)$ holds. \boxtimes
3. Direction derivatives, subgradients

Let X be a HLCS, f a function $X \rightarrow \bar{R}$. If $f\left(x_{0}\right)$ is finite, then the directional derivative $f^{\prime}\left(x_{0} ; \cdot\right)$ of f at x_{0} is defined to be

$$
f^{2}\left(x_{0} ; x\right) \triangleq \lim _{t \rightarrow 0^{+}}\left[f\left(x_{0}+t x\right)-f\left(x_{0}\right)\right] / t
$$

whenever the limit exists (it may be $\pm \infty$). In the case that $f(\cdot)$ is convex, $t \rightarrow\left[£\left(x_{0}+t x\right)-f\left(x_{0}\right)\right] / t$ is an increasing function for $t>0$, so that $f^{\prime}\left(x_{0} ; \cdot\right)$ exists whenever $f\left(x_{0}\right) \in R$ and is given by

$$
f^{\prime}\left(x_{0} ; x\right)=\inf _{t>0}\left[f\left(x_{0}+t x\right)-f\left(x_{0}\right)\right] / t
$$

Convexity of E also implies that $f^{\prime}\left(x_{0} ; \cdot\right)$ is posi¿ively homogeneous and convex (equivalently, sublinear), and $f(\cdot)$ is linearly minorized by its directional derivative in the sense that $\overline{\mathrm{I}}\left(\mathrm{x}_{0}+t x\right) \geq \mathrm{f}\left(\mathrm{x}_{0}\right)+\mathrm{tf} f^{\prime}\left(\mathrm{x}_{0} ; x\right)$ for every $x \in X, t \geq 0$.

The subgradient set of $\mathrm{f}: \mathrm{X} \rightarrow \overline{\mathrm{R}}$ at $\mathrm{X}_{\mathrm{O}} \in \mathrm{X}$ is defined to be

$$
\partial f\left(x_{0}\right) \triangleq\left\{y \in X^{*}: f(x) \geq f\left(x_{0}\right)+\left\langle x-x_{0}, y\right\rangle \forall x \in X\right\}
$$

Note that $\partial f\left(x_{0}\right)$ is always the empty set :henever $f\left(x_{0}\right)=+\infty$ (assuming $f \neq+\infty$). When $f\left(x_{0}\right)$ is finite,
$y \in \partial f\left(x_{0}\right)$ iff the functional $x \rightarrow f\left(x_{0}\right)+\left\langle x-x_{0}, y\right\rangle$ is a continuous affine minorant of $f(\cdot)$ exact at the point x_{0}. Since *(f*) is the supremum of all continuous affine minorants of f, it is clear that $\partial \bar{f}\left(x_{0}\right) \neq \varnothing$ implies that $f\left(X_{0}\right)=*\left(f^{*}\right)\left(X_{0}\right)$ and $\partial f\left(X_{0}\right)=\partial^{*}\left(f^{*}\right)\left(X_{0}\right)$; the latter follows since f and *(E*) have the same affine minorants which are exact at x_{0}. The subgradient set is alvays convex and $w\left(X^{*}, X\right)$ closed.
3.1 Proposition. Let $f: X \rightarrow \bar{R}$ be a function on the filcs X. The following are equivalent:

1) $y \in \partial f\left(x_{0}\right)$
2) $f(x) \geq f\left(x_{0}\right)+\left\langle x-x_{0}, y\right\rangle \forall x \in X$.
3) x_{0} solves $\inf _{x}[f(x)-x y]$, i.e. $f\left(x_{0}\right)-\left\langle x_{0}, y\right\rangle=$ $\inf _{x}[f(x)-\langle x, y\rangle]$
4) $f^{*}(y)=\left\langle x_{0}, y\right\rangle-f\left(x_{0}\right)$
5) $x_{0} \in \partial \hat{i} *(\underline{y})$ and $f\left(x_{0}\right)=*(f *)\left(x_{0}\right)$.

If $f(\cdot)$ is convex and $f\left(x_{0}\right) \in R_{\text {}}$, then each of the above is equivalent to
6) $f^{\prime}\left(x_{0} ; x\right) \geq\langle x, y\rangle \quad \forall x \in X$.

Prouf. 1) <=> 2). This is the definition of $\partial f\left(x_{0}\right)$. 2) => 3) => 4). Trivial. 4) \Rightarrow 5). Since *(£*) $\leq f, 4)$ implies
$\hat{I}^{*}(y) \leq\left\langle x_{0}, y^{\rangle}-*\left(f^{*}\right)\left(x_{0}\right)\right.$. But the definition of * $\left(f^{*}\right)\left(x_{0}\right)$ yields $f^{*}(y) \geq\left\langle x_{0}, y\right\rangle-*(f *)\left(x_{0}\right)$, so that $f^{*}(\underline{y})=\left\langle x_{0}, y\right\rangle-*\left(f^{*}\right)\left(x_{0}\right)$. Comparison with 4) now yields $f\left(x_{0}\right)=*\left(f^{*}\right)\left(x_{0}\right)$. Also $f *(y)=\left\langle x_{0}, y\right\rangle-*(f *)\left(x_{0}\right)=$ $\left\langle x_{0}, y^{\rangle}-\sup _{y^{2}}\left[\left\langle x_{0}, y^{\prime}\right\rangle-f *\left(y^{\prime}\right)\right]\right.$ so that $f *(y) \leq\left\langle x_{0}, y\right\rangle-$ $\left\langle x_{0}, y^{\prime}\right\rangle+\bar{y}^{*}\left(y^{\prime}\right)$ for every y^{\prime} and $x_{0} \in \partial f *(y)$.
5) \Rightarrow 2). Since $x_{0} \in \partial f^{*}(y)$, the implication 1) \Rightarrow 4) applied to \tilde{I}^{*} yields *(f*) $\left(x_{0}\right)=\left\langle x_{0}, y\right\rangle-£ *(v)$, and hence that $f\left(x_{0}\right)=\left\langle x_{0}, y\right\rangle-f^{*}(\underline{y})$ by 5). But then by definition of $f *, f\left(X_{0}\right) \leq\left\langle z_{0}, Y\right\rangle-\langle X, Y\rangle+f(x) \forall x$ and 2) follows.
6) \Leftrightarrow 2). Assuminc $f(\cdot)$ convex and finite at x_{0}, the directional derivative is given by $f^{\prime}\left(x_{0} ; x\right)=$ $\inf _{t \rightarrow 0}\left[f\left(x_{0} \div t x\right)-f\left(x_{0}\right)\right] / t$. Clearly 2) implies that for every $t>0,\left[f\left(x_{0}+t x\right)-f\left(x_{0}\right)\right] / t \geq\left\langle x_{0}+t x-x_{0}, y\right\rangle / t=$ <x,y> and hence 6) holds. Conversely, if 6) holds then $\left[f\left(x_{0}+t x\right)-f\left(x_{0}\right)\right] / t \geq\langle x, y\rangle$ for every $t>0$, and setting $t=1$ yieids 2). \mathbb{X}

Penark. Since it is always true that $f *(y) \geq<x_{0}, y>-f\left(x_{0}\right)$ we could replace 4) by $\left.4^{\prime}\right) f^{*}(y) \leq\left\langle x_{0}, y\right\rangle-f\left(x_{0}\right)$.

From condition 4) it follows that if $\partial f\left(x_{0}\right) \neq \emptyset$ for a convex function $f: X \rightarrow \bar{R}$, then the directional derivative
$f^{\prime}\left(x_{0} ; \cdot\right)$ is bounded below on some 0 -neighborhood in x, i.e. the value of f at x does not drop off too sharply as x moves away from the point x_{0}. The following theorem shows that this property is actually equivalent to the subdifferentiability of f at y_{o} when f is convex, and also provides other insights into what $\partial f\left(x_{0}\right) \neq \varnothing$ means.
3.2 Theoren. Let $f: X \rightarrow \bar{X}$ be a convex function on the HLCS x, with $f\left(x_{0}\right)$ finite. Then the following are equivalent:

1) $\partial \mathrm{f}\left(x_{0}\right) \neq \nexists$
2) $f^{\prime}\left(x_{0} ; \cdot\right)$ is bounced below on a 0-neighborhood in x, i.e. there is a 0-neighhornood N such that $\inf _{x \in N} f^{\prime}\left(x_{0} ; x\right)>-\infty$
3) $\exists 0-\operatorname{nbhd} N, \delta>0$ st $\inf _{\substack{x \in \mathbb{N} \\ 0<t<\delta}}^{f\left(x_{0}+t x\right)-f\left(x_{0}\right)} \underset{t}{ }>-\infty$
4) $\liminf _{x \rightarrow 0} f^{\prime}\left(x_{0} ; x\right)>-\infty$
5) $\quad \lim _{x \rightarrow 0} \inf ^{f\left(x_{0}+t x\right)-f\left(x_{0}\right)} \underset{t}{t}>-\infty$ $\underset{t \rightarrow 0}{ } \rightarrow$
6) $\exists y \in X^{*}$ st $f\left(x_{0}+x\right)-f\left(x_{0}\right) \geq\langle x, y\rangle \quad \forall x \in X_{0}$ If X is a normed space, then each of the above is equivalent to:
7) $\exists u>0$ st $f\left(x_{0}+x\right)-f\left(x_{0}\right) \geq-i-1|x| \quad \forall x \in X$
8) $\exists 甘>0, \varepsilon>0$ st whenever $|x| \leq \varepsilon, f\left(x_{0}+x\right)-f\left(x_{0}\right) \geq$ $-M|x|$
9) $\quad \liminf _{|x| \rightarrow 0} \frac{f\left(x_{0}+x\right)-f\left(x_{0}\right)}{|x|}>-\infty$.

Proof. 1) \Rightarrow 2). This follows directly from Proposition 3.1 1) \Rightarrow S).
2) \Rightarrow 1). Let. N_{1} be a convex 0-neighborhood in X such that $\inf _{x \in y_{1}} f^{\prime}\left(x_{0} ; x\right)>-c$, where c is a sufficiently large positive constant. Let $N=H_{1} / C$ and define tr \geq set E in $X \times R$ by

$$
E \triangleq\{(x,-t) \in X \times R: t>0, x / t \in H\}
$$

Since N is convex it follows that E is convex; for if $x_{1}=t_{1} n_{1}$ and $x_{2}=t_{2} n_{2}$ and $\varepsilon \in[0,1]$, where $n_{1}, n_{2} \in L$ and $t_{1}, t_{2}>0$, then $\varepsilon x_{1}+\left(1-e_{1}\right) x_{2}=$ $\left[\varepsilon t_{1}+(1-\varepsilon) t_{2}\right] \cdot\left[\frac{\varepsilon t_{1}}{\varepsilon t_{1}+(1-\varepsilon) t_{2}} n_{1}+\frac{(1-\varepsilon) t_{2}}{\varepsilon t_{1}+(1-\varepsilon) t_{2}} n_{2}\right] \in\left[\varepsilon t_{1}+(1-\varepsilon) \tau_{2}\right] \cdot N$ so $\left(\varepsilon X_{1}+(1-\varepsilon) x_{2},-\varepsilon t_{1}-(i-\varepsilon) t_{2}\right) \varepsilon E$. Since N is a U-neighborhood, E has nonempty interior; in fact, E contains $n \times[4, \infty)$. Horeover, E n epif' ($\left.x_{0} ; \cdot\right)$ is empty; for otherwise it would contain a point $(x,-t)$ satisfyinc $-t \geq f^{\prime}\left(x_{0} ; x\right)=\frac{t_{f}}{f^{\prime}}\left(x_{0} ; \frac{c x}{t}\right)>\frac{t}{c} \cdot(-c)=-t$, a contradiction.
30.

Hence it is possible to separate E and epif' ($x_{0} ; \cdot$) by a ciosed hyperplane, i.e. there is a nonzero $(y, r) \in X * \times R$ such that

$$
\inf _{(x, t) \leqslant \operatorname{epif}\left(x_{0} ; \cdot\right)}^{\langle x, y>+t \cdot r \geq} \sup _{(x,-t) \in E}<x, y>+(-t) \cdot r .
$$

Since epif: ($x_{0} ; \cdot$) is a convex cone ($f^{\prime}\left(x_{0} ;-\right)$ is convex and positively homogeneous), the infimum on the LHS can remain bounded below only if the infimun is 0 and (Y,r) is nonpositive on epif' ($\left.x_{0} ; \cdot\right)$; in particular $\langle x, y>+$ $f^{\prime}\left(x_{0} ; x\right) \cdot r \geq 0$ for every $x \in \operatorname{dome}\left(x_{0} ; \cdot\right)$. Moreover it must be true that $r \neq 0$; for if $r=0$ then in particular $0 \geq\langle x, y>$ for every $x \in \mathbb{l}$ (taking t sufficiently large in the RHS so that $\frac{x}{\dot{E}} \in N$ and $\left.(x,-t) \in E\right)$, implying the contradiction that y is also 0 (since 1 is a 0 -neighborhood). Thus $\left\langle x, \frac{V}{\underline{r}}\right\rangle+f^{\prime}\left(x_{0} ; x\right) \geq 0$ for every $x \in \operatorname{donf} '\left(x_{0} ; x\right)$, which by Proposition 3.1 6) \Rightarrow 1) yields $-\frac{Y}{r} \in \partial f\left(x_{0}\right)$.
2) \Leftrightarrow 3). If $f(\cdot)$ is convex and $f\left(x_{0}\right) \in R$, then $t \rightarrow \frac{f\left(x_{0}+t x\right)-f\left(x_{0}\right)}{t}$ is increasing in $t>0$. Hence, for any $\delta>0$,
$\inf _{t>0} \frac{f\left(x_{0}+t x\right)-f\left(z_{0}\right)}{t}=\inf _{0<t<0} \frac{f\left(x_{0}+t x\right)-f\left(x_{0}\right)}{t}=\lim _{t \rightarrow 0^{+}} \frac{f\left(x_{0}+t x\right)-f\left(x_{0}\right)}{t}$.

It is now imediate that 2) <=> 3).
2) $\Leftrightarrow 4$). This follows directly from the definition of lim inf, since

$$
\liminf _{x \rightarrow 0} f^{\prime}\left(x_{0} ; x\right) \equiv \sup _{N=0-n b h d} \inf _{x \in N} f^{\prime}\left(x_{0} ; x\right)
$$

is bounded below iff there is a $0-n b h d$ in such that 2) holds.
3) \Leftrightarrow 5). This is immediate as in 2) $\Leftrightarrow 4$), since $\lim _{\substack{x \rightarrow 0 \\ t \rightarrow 0^{+}}} \frac{f\left(x_{0}+t x\right)-f\left(x_{0}\right)}{t} \equiv \sup _{\substack{N=0-n b h d \\ 0>0}} \inf _{\substack{x \in \mathbb{N} \\ t \in(0, j)}} \frac{f\left(x_{0}+t x\right)-f\left(x_{0}\right)}{t}$.

1) \Leftrightarrow (). This is just the definition of subgracient as in Proposition 3.1, 2).
2) \Rightarrow 7) \Rightarrow 8) \Leftrightarrow 9). Immediaite.
3) $=>2$). Set $\delta=$ 2. Then for $t \leq 1,|x| \leq \varepsilon$, it follows from the hypothesis 8) that

$$
\begin{aligned}
\frac{f\left(x_{0}+t x\right)-f\left(x_{0}\right)}{\tau} & =\frac{f\left(x_{0}+t x\right)-f\left(x_{0}\right)}{|亡 x|} \cdot|x| \\
& \geq-M \cdot|x| \geq-N \varepsilon .
\end{aligned}
$$

Hence 2) holds. \boxtimes

Remarks. Scme parts of Theorem 3.2 are inplicit in Rockafellar's formula
32.

$$
f^{\prime}\left(x_{0} ; \cdot\right) *=\dot{o}_{\partial f\left(x_{0}\right)}(\cdot)
$$

where $f: X \rightarrow \bar{R}$ is convex and $f\left(x_{0}\right) \in R \quad[R 73$, Theorem 11]. In the finite dimensional case $X=R^{n}$, it is actually true that $\partial f\left(x_{0}\right)=\varnothing$ iff $f^{\prime}\left(x_{0} ; x\right)=-\infty$ for some $x \in X$, assuming $f: X \rightarrow \bar{R}$ convex and $f\left(x_{0}\right) \in R$. There is also a closelyrelated formula $\partial f\left(x_{0}\right)=\partial f^{\prime}\left(x_{0} ; \cdot\right)(0)$ given by [IL72]. Condition 8) is a kind of "local lower Lipschitzness" sequirement which is easy to verify in optimization problems in which "state constraints" are absent, as we shail see. The standard example for which the subgradient set is empty is $f(x)=\left\{\begin{aligned}-\sqrt{x}, & x \geq 0 \\ -\infty, & x<0\end{aligned}\right.$ for $x \in R$, Where $\partial f(0)=\mu, f^{\prime}(0 ; x)=-\infty$ whenever $x>0$, and the supporting hyperplane to epif at $(0, f(0))$ is vertical.

In the finite dimensional case, every convex
function has a derivative almost everywhere X on its domain. There is also an interesting result in [ET 73] which states that if X is a Eanach space, then the set of points where a convex lsc function $f: X \rightarrow \bar{R}$ is subdifferentiable s s dense in domf. The following theorem provides the simplest and most widely used condition winch guaranteas that the subgradient set is nonempty.
3.3 Theorem. Let $\mathrm{F}: \mathrm{X} \rightarrow \overline{\mathrm{R}}$ be a convex function on the HLCS X. If $f(\cdot)$ is bounded above on a neighborhood of $x_{0} \in X$, then $f(\cdot)$ is continuous at $x_{0}, \partial f\left(x_{0}\right) \neq \varnothing$, and (assuming $\left.f\left(x_{0}\right)>-\infty\right) \quad \partial f\left(x_{0}\right)$ is $w\left(X^{*}, X\right)$-compact.

Proof. This is a corollary of the more general Theoren 5.3 which we prove later, there $\partial f\left(x_{0}\right)$ is the level set

$$
\left\{y x^{\star}: f^{\star}(y)-\langle x, y\rangle \leq-f\left(x_{0}\right)\right\} \text {. } \boxtimes
$$

Remark. Convex functions thich have $-\infty$ values are very special and are generally excluded from consideration in meaningful situations. In particular, Isc convex Eunctions with -w values can have no finite values.

It is also a standard result that under the conditions of Theorem 3.3, there is a sensitivity interpretation of the subgradient set given by

$$
f^{\prime}\left(x_{0} ; x\right)=\max _{y \in \partial f\left(x_{0}\right)}\langle x, y>
$$

4. Relative interiors of convex sets and local equicontinuity of polar sets.

The relationship between neighborhoods of 0 in a locally convex space and equicontinuous sets in the dual space is well known: a subset which is a neighborhood of 0 has an equicontinuous polar, and an equicontinuous set in the dual space has a polar which is a neighborhood of 0. Hence, a closed convex set which contains 0 is a 0-neighborhood iff its polar is equicontinuous. We wish to extend this result to show the equivalence between convex sets with nonempty relative interior with respect to a closed affine hull of finite codimension, and local equicontinuity of the corresponding polar sets in an appropriate topology. This will also lead to a characterization of locally compact sets in locally convex spaces.

Throughout this section we shall assume that (X, τ) is a real Hausdorff locally convex topological linear space (HLCS) with topology τ and (continuous) dual space X^{*}. For $x \in X, y \in X^{*}$ we write $\langle x, y\rangle$ or simply $x y$ to denote $y(x)$. By a τ^{*}-topology on X^{*} we mean a Hausdorff locally convex topology τ^{*} on X^{*} which is compatible with the duality <X, $\left.X^{*}\right\rangle, i . e .\left(X^{*}, \tau^{*}\right) *$ is again $X,{ }^{\dagger}$ and which is sufficiently weak so that every equicontinuous set in X^{*} has τ^{*}-compact

[^1]closure. For example, given any topology τ on X we may always take τ^{*} to be the $W^{*}\left(X^{*}, X\right)$ topology on X^{*}, since by the Banach-Alaoglu Theorem every τ-equicontinuous set is w($\left.X^{*}, X\right)$-relatively compact. Conversely, a given (compatible) topology τ^{*} on X^{*} is a " τ^{*}-topology if τ is any compatible locally convex topology on X which contains the Arens topology $a\left(X, X^{*}\right)$ given by uniform convergence on τ^{*}-compact convex sets of X^{*} (with a basis of 0 -neighborhoods being the polar of i^{*}-compact convex sets in X^{*}). This generality allows us to specialize to various interesting cases later. The polar of a set A in X is defined to be
$$
A^{0}=\left\{y \in X^{*}: \sup _{x \in A} x y \leq 1\right\} .^{\dagger}
$$

Similarly, the polar of a set B in X^{*} is

$$
O_{B}=\left\{x \in X: \sup _{y \in B} x y \leq 1\right\}
$$

The following properties of polar sets are well known, where $A \subset X$ and $B \subset X^{*}$:

$$
\begin{aligned}
& \text { i). } A^{\circ} \text { and } O_{B} \text { are closed, convex, and contain } 0 . \\
& \text { ii). }{ }^{\circ}\left(A^{\circ}\right)=c l \operatorname{co}(A \cup\{0\}),\left({ }^{\circ} B\right)^{\circ}=c l \operatorname{co}(B \cup\{0\}) .
\end{aligned}
$$

[^2]iii). $0 \in \operatorname{inta} \Rightarrow A^{\circ}$ is equicontinuous (and hence compact).
iv). B is equicontinuous $\Leftrightarrow 0 \in \operatorname{int}^{\circ} B$.

Thus, we see that the closed convex 0-neighborhoods in X are precisely the polars of closed convex equicontinuous sets containing 0 in X^{*}, and vice versus.

It is also knwon that sets with nonempty interior in X have polars which, though not necessarily equicontinuous
 in X^{*} (Cf. [Fan 65]). Recall that a set B in X^{*} is locally compact (resp. locally equicontinuous) at a point $y_{0} \in B$ iff there is a neighborhood W of y_{0} in X^{*} such that $B \cap W$ is compact (resp. equicontinuous). We shall characterize local compactness and local equicontinuity in X^{*} by showing its ralation to nonempty relative interiors of polar sets in X. To provide some preliminary results (of interest in their own right), and to get a feel for what is going on, we first consider the case of locally equicontinuous convex cones.
4.1 Theorem. Let X be a HLCS, X^{*} its dual with a τ^{*}-topology, and C a convex cone in X^{*} with $C \cap(-C)=\{0\}$. Then the following are equivalent:
i). C has an equicontinuous base.
ii). int $^{\circ} C \neq g$ in X.
iii). C is locally equicontinuous.
iv). 0 has an equicontinuous neighborhood in C.

Proof. We assume $C \neq\{0\}$, since otherwise the theorem is trivial.
i) => ii). Recall that B is a base for C iff there is a closed affine set H such that $B=C \cap H$ and $[0, \infty) \cdot B \supset C$; it is then true that every nonzero $y \in C$ has a unique representation $t \cdot y_{0}$ where $t>0$ and $y_{0} \in B$. Let B be an equicontinuous base for C; then there exists an $x_{0} \in X$ with $B=C \cap\left\{y: x_{0} y=1\right\}$ and $[0, \infty) \cdot B \supset C$, and moreover $0 \in$ int $^{\circ} B$. Now for any $t \geq 0, y \in B$, and $x \in{ }^{0} B$ we have $\left(-x_{0}+x\right)(t y)=t(-1+x y) \leq t(-1+1) \leq 0$; hence $\left(-\mathrm{x}_{\mathrm{O}} \dot{ }^{O_{B}}\right) C^{-}([0, \infty) \mathrm{B}) C^{-} \mathrm{C}$. Thus ${ }^{\circ} \mathrm{C} \equiv{ }^{-} \mathrm{C}$ contains a neighborhood of $-x_{0}$, i.e. $-x_{0} \in$ int $^{\circ} C$. We remark that x_{0} is strictly positive on clc $\backslash\{0\}=C_{\infty} \backslash\{0\}$.

$$
\text { ii) } \Rightarrow \text { iii). Suppose }-x_{0} \in \text { int }{ }^{\circ} \mathrm{C} \text {; then } 0 \in \operatorname{int}\left(\mathrm{x}_{0}+{ }^{\circ} \mathrm{C}\right) \text {, }
$$ so $\left(x_{0}+{ }^{\circ} \mathrm{C}\right)^{\circ}$ is equicontinuous. Given $y_{o} \in C$, we wish to show that y_{0} has a τ^{*} neighborhood W such that $C \cap W$ is equicontinuous. Let $W=\left\{y: x_{0} y \leq 1+x_{0} y_{0}\right\}$; w is clearly a neighborhood of Y_{0}. But $C \cap W=\left\{y: Y \in C, x_{0} y \leq 1+x_{0} Y_{0}\right\}$ $C\left\{y:\left(x_{0}+x\right) y \leq 1+x_{0} y_{0}\right.$ for $\left.\operatorname{all} x \in{ }^{-} C\right\}=r \cdot\left(x_{0}{ }^{\circ}{ }^{\circ} C\right)^{0}$, so $\mathrm{C} \cap$: is equicontinuous.

iii) $=>$ iv). This trivial.
iv) => i). This is the difficult part of the proof, but the idea is well-known in the literature. Let W be a 0 -neighborhood in X^{*} such that $C \cap W$ is equicontinuous. In particular, clco $(C \cap W)$ is equicontinuous and hence τ^{*}-compact. Let $D=C \cap\left(W \operatorname{lint} \frac{W}{2}\right)$; note $0 \notin$ cld. We claim that $0 \dot{E}$ clcoD. For suppose $0 \in$ clcoD; then $0 \in \operatorname{extD}$ since $0 \in e x t C$ and $D C C$, and hence $0 \in c l D$ by the Krein-Milman Theorem on extreme points of compact sets, ${ }^{\dagger}$ which is a contradiction. Since $0 \notin$ clcoD there is a closed affine set H which strongly separates 0 from clcoD. But then $B=C \cap H$ is a base for C (since $[0, \infty) \cdot D \supset C$, so $[0, \infty) \cdot H \supset C)$ and $B \subset C \cap$ in, so B is equicontinuous. \triangle

Note that in Theorem 1.1 we assumed that C contained no lines, so that $\operatorname{span}{ }^{\circ} \mathrm{C}={ }^{-} \mathrm{C}-{ }^{-} \mathrm{C}$ was all of X and ${ }^{\circ} \mathrm{C}$ had nonempty interior. If however we allow $\mathrm{L}=\mathrm{C} \cap(-\mathrm{C})$ to be a (finite dimensional) subspace, local equicontinuity of C would no longer imply int ${ }^{\circ} \mathrm{C} \neq \varnothing$, but it would still be true that $r i^{\circ} C \neq \varnothing$ with respect to $\operatorname{span}{ }^{\circ} C={ }^{1} L$, a

[^3]39.
closed subspace of finite codimension. In fact, these results remain true for the case of an arbitrary convex set in X^{*}. The basic idea is as follows: if C is a nonempty convex localiy equicontinuous set in X^{*}, then the (finite dimensional) subspace $L=C_{\infty} \cap\left(-C_{\infty}\right)$ of all lines contained in clC is precisely the annihilator of $\operatorname{span}^{\circ} \mathrm{C}=\mathcal{1}_{\mathrm{L}}$ in X ; and those elements of X which are strictly negative on $a l l$ the remaining half-lines contained in clc (that is, on $C_{\infty} \cap M \backslash\{0\}$ where M is any closed complement of L in X^{*}) are relative interlor points of ${ }^{\circ} \mathrm{C}$ (if there are no such hał£-lines, i.e. C_{∞} is itself a subspace and $C_{\infty} \cap M=\{0\}$, then $\left.0 \in r i{ }^{\circ} C\right)$.

Before proceeding, we require some lemmas concerning decomposition of finite dimensional subspaces.
4. 2 Lemma. Let X be a HLCS. If L is a finite dimensional subspace of X, then there is a closed subspace M of X such that $X=L+M$ and $L \cap M=\{0\}$.

Proof. This is a standard application of the Hahn-Banach Theorem. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for L and define the continuous linear functionals y_{1}, \ldots, Y_{n} on L by $\left\langle x_{i}, Y_{j}\right\rangle=\delta_{i j}, I \leq i, j \leq n$. By the Hahn-Banach Theorem we may extend the functionals y_{j} so that they are elements

subspace of X. Moreover, $L \cap M=\{0\}$; for if $x \in L$, then $x=\sum_{j} a_{j} x_{j}$ for some $a_{j} \in R$, and if x is also in M then $0=\left\langle x, y_{j}\right\rangle=a_{j}$ for every j. Finally, any $x \in X$ can be (uniquely) expressed as
$x=\underset{j}{\left(\sum<x, y_{j}>x_{j}\right)+\left(x-\sum_{j}\left\langle x, y_{j}>x_{j}\right) \in L+M . \Delta\right.}$
4.3 Lemma. Let X be a HLCS with $X=I+M$, where I is a finite dimensional subspace, M is \exists closed subspace, and $\operatorname{In} M=\{0\}$. Then $X^{*}=L^{\perp}+M^{\perp}$, where $L^{\perp} \cap M^{\perp}=\{0\}$ and M^{\perp} is finite dimensional.

Proof. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a base for L. Note that the projection of X onto L is continuous since it has finite dimensional range anc its null space M is closed. Hnece, for $i=1, \ldots, n$ we can define the continuous linear functionals $y_{i} b \quad\left\langle\pi+\sum_{j} a_{j} X_{j}, y_{i}\right\rangle=a_{i}$ whenever $m \in M$ and $a_{j} \in R, L \leq j \leq n . \quad$ Clearly $\left.M \subset \mathcal{L}^{\mathcal{L}_{\{ }} y_{1}, \ldots, y_{n}\right\}$; moreover $I \cap^{\perp}\left\{y_{1}, \ldots, y_{n}\right\}=\{0\}$ so $M د^{\perp}\left\{y_{1}, \ldots, y_{n}\right\}$. Hence $\left.M={ }^{L_{\{ }} y_{1}, \ldots, y_{n}\right\}$ and $M^{\perp}=\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\}$. Also $L^{+} \cap \operatorname{span}\left\{y_{1}, \ldots, Y_{n}\right\}=\{0\}$, so $L^{\perp} \cap M^{\perp}=\{0\}$. Finally, $X^{*}=L^{\perp}+M^{\perp}$ since for any $y \in X^{*}$ we have $y=\left(y-\sum_{j}^{\sum\left\langle x_{j}\right.}, y>y_{j}\right)+\underset{j}{\left(\sum\left\langle x_{j}, y>y_{j}\right) \in L^{\perp}+M^{\perp} .\right.}$

We remark that for a convex subset C of X^{*}, local equicontinuity at a single point of C is sufficient to
imply local equicontinuity of the entire set, in fact of the closure of the set; later we shall see that it also implies iocal equicontinuity (and hence local compactness) of $\left({ }^{\circ} \mathrm{C}\right)^{\circ}$.
4.4 Proposition. Let X be a HLCS, X^{*} its dual with a r*-topology. Suppose C is a convex subset of X^{*} and C is locally equicontinuous at a point $y_{0} \in C$. Then C is locally equicontinuous and clc is locally equicontinuous (hence locally compact).

Proof. We may assume without loss of generality that $y_{0}=0$ (otherwise simply replace C by $C-y_{0}$). Let W be an open i* $^{*} 0$-neighborhood such that $C \cap W$ is equicontinuous. Now $C / t \subset C$ for any $t \geq I$ by convexity, hence $C \cap t W \in(C \cap W)$ is equicontinuous. Given any $y \in C$, we simply take t sufficiently large so that $y / t \in W$; then $C \cap$ th is an equicontinuous relative neighborhood of y in C, so C is iocally equicontinuous at every point in C.

To sho: that clC is locally equicontinuous, we need only show lby what we have just proved, since clc is convex) that 0 has an equicontinuous relative neighborhood in clc. But we claim that clCnW is a subset of $C I(C \cap W)$ which is equicontinuous since $C \cap W$ is; hence clC $\cap W$ is an equicontinuous relative neighborhood of 0 in
clC and we are done. To show that clCnWccl(Cnw), let $y \in c l C \cap W$; then $y \in W$ and there is a net $\left\{y_{i}\right\}_{i \in I}$ in C such that $Y_{i} \rightarrow Y$. But W is open so evencually the Y_{i} are contained in w, i.e. eventually the Y_{i} belong to $C \cap W$. But then $y=$ limy $_{i} \in c l(C \cap W) \cdot \Delta$

We now proceed to the main results. First, a lemma adapted from Dieudonne [D66] to show when a locally equicontinuous set is aquicontinuous.
4.5 Lemma. Let X be a HLCS, X^{*} its dual with a $\tau *$-topology. A nonempty convex locally equicontinuous subset C of X^{*} is equicontinuous iff $C_{\infty}=\{0\}$.

Proof. If C is equicontinuous, then it is certainly bounded, so $C_{\infty}=\{0\}$. Suppose C is not equicontir dous. We show that there is a nonzero $\mathrm{x}_{0} \in \mathrm{C}_{\infty}$. Without loss of generality we may suppose that $0 \in C$. Let W be a 0 -neighborhood witn $C \cap$ equicontinuous. Now for $t \geq 1, \quad C \cap t N C t(C \cap W)$ by convexity of C and hence $C \cap t W$ is equicontinuous; but C itself is not equicontinuous, so we must have $C \backslash t W \neq \nexists$ for all $t \geq 1$. For $t \geq 1$, define the sets $D_{t}=([0, \infty) \cdot(C \backslash t w)) \cap C \cap W \backslash i n t(W / 2)$; note that $C \cap N \backslash i n t(W / 2)$ intersects any nalf-line which intersects C, so that D_{t} is nonempey since $C \backslash t w i s n o n e m p t y$. The D_{t} are equicontinuous $\left(D_{t} \subset C N W\right)$ hence relatively compact,
and decrease as t increases; thus their clesure must have nonempty intersection, i.e. there is an $x_{0} \in \bigcap_{t \geq 1} C I D_{t}$. Clearly $x_{0} \neq 0$, since $\left.x_{0} \in W\right) \operatorname{int}(W / 2)$. All that remains is to show $x_{0} \in C_{\infty}$, i.e. $r \cdot x_{0} \in \operatorname{clC}$ for every $r>0$. Take any $r>0$. Now $x_{0} \in: 1[0, \infty) \cdot(C \backslash t w)$ for $t \geq 1$ and $x_{0} \in W$ hence $r x_{0} \in C 1[0, \infty) \cdot(C \backslash t W) \cap t W$ whenever $t \geq r$, i.e. $r x_{0} \in c l[0, I] \cdot C \subset c l C$. Thus x_{0} is in C_{∞}. Δ
4.6 Theorem. Let X be a HLCS, X^{*} its dual with a て*-topology, C a convex set in X^{*}. Then the following are equivalent:
i) . C is locally equicontinuous.
ii). $r i^{\circ} C \neq \not \subset$, where $\operatorname{span}^{\circ} C$ is closed and has finite codimension in X.

Moreover if either of the above is true then $\operatorname{span}^{\circ} \mathrm{C}={ }^{+}\left(C_{\infty} \cap\left(-C_{\infty}\right)\right)$, and $0 \in r i{ }^{\circ} C$ iff C_{∞} is a subspace, in which case $\operatorname{span}^{\circ}{ }^{C}={ }^{\perp}\left(C_{\infty}\right)$. If - is closed, it is also complete and locally compact.

Proor. i) \Rightarrow ii). Since clc is locally equicontinuous iff C is by Proposition 1.4 , and since $(C I C)_{\infty}=C_{\infty}$, we may assume C is closed. Let $L=C_{\infty} \cap\left(-C_{\infty}\right) ; L$ is a subspace, and since a translate of L iies in C, L is locally equicontinuous, hence locally totally bounded and finite
dimensional. By Lemmas 1.2 and 1.3 applied to L in X^{*}, there is a closed complement M of L in X^{*} with $X^{*}=L+M$, $L \cap M=\{0\}, X=\perp_{L}+^{\perp} M,{ }^{L_{L}} \cap^{+} M=\{0\}$, and M finite dimensional. If C is a subspace, ie. $C \subset L$, then we are done; hence we assume C is not a subspace and $C \cap M \neq\left\{0\right.$. Now $C_{\infty} \cap M$ is a convex cone which contains no lines, and since a translate of it lies in C it is locally equicontinuous. Applying Theorem I.l, we see that if $C_{\infty} \cap M \neq\{0\}$, there is an $x_{0} \in X$ such that x_{0} is strictly negative on $C_{\infty} \cap M \backslash\{0\}$; if $C_{\infty} \cap M=\{0\}$, i.e. in the case that C is a subspace and $I=C_{\infty}$, we simply take $x_{0}=0$. We may assume that $x_{0} \in L$ by taking its projection onto L.

Consider the sets $B_{r}=\{y \in C \cap M: X Y \geq r\}$ for $r \in R$. Each B_{r} is a subset of C, hence locally equicontinuous. Now $\left(B_{r}\right)_{\infty}=C_{\infty} \cap M \cap\left\{x_{0}\right\}^{+}$is $\{0\}$ since x_{0} is strictly negative on $C_{\infty} \cap M \backslash\{0\}$; thus the B_{r} are actually equicontinuous by Lemma 1.5 and hence compact. Clearly $\bigcap_{r>0} B_{r}$ is empty, and since the sets B_{r} are compact and monotone in r there is a finite $r_{0}>0$ for which $B_{r_{0}-1}=\not \equiv$, so that $\sup _{y \in C \cap M} x_{0} y \leq r_{0}-1$.

Take B to be any of the sets B_{r} which are nonempty; B is equicontinuous so ${ }^{\circ} B$ is a 0 -neighborhood. We shall show that $\left(X_{0}{ }^{+}{ }^{\circ} B\right) \cap^{\perp} L C r_{0} \cdot{ }^{\circ} C$, i.e. that x_{0} is in the
interior of ${ }^{\circ} \mathrm{C}$ relative to the subspace ${ }^{1_{L}}$; since ${ }^{{ }^{1}} \mathrm{I}_{\mathrm{L}}$ clearly contains ${ }^{\circ} \mathrm{C}$ (a translate of L lies in C), we then see that $\dot{L}_{L}=\operatorname{span}^{\circ} \mathrm{C}$ and $\mathrm{x}_{\mathrm{o}} \in \mathrm{ri}^{\circ} \mathrm{C}$. Moreover, $\operatorname{codim}^{\perp}=\operatorname{dim} X / \perp_{L}=\operatorname{dim} L$ is finite. So, all that remains is to show $\left(x_{0}+^{\circ} B\right) n^{+} L C r_{0} \cdot{ }^{\circ} \mathrm{C}$.

Take $x \in{ }^{\circ} B$ and $y \in C$ with $x_{0}+x \in^{\perp} L$. Now $y=l+m$ where $t \in L$ and $m \in M$; note m is also in C since $m=y-l \in C-I \subset C$ (recall $L \subset C_{\infty}$), i.e. $m \in C \cap M$. But then $\left(x_{0}+x\right) y=\left(x_{0}+x\right)(2+m)=\left(x_{0}+x\right) m \leq\left(r_{0}-1\right)+x m \leq$ $r_{0}+1-1=r_{0}$. Hence we have shown $x_{0}+x \in r_{0} \cdot{ }^{\circ} \mathrm{C}$ for every such x, so $\left(x_{0}+^{\circ} B\right) n^{\perp} C^{\circ} C$.

Concerning the remarks at the end of the theorem, we have already shown that $\operatorname{span}{ }^{\circ} \mathrm{C}=\mathcal{1}_{\mathrm{L}}$ and $0=\mathrm{x}_{0} \in \mathrm{ri}{ }^{\circ} \mathrm{C}$ if C_{∞} is a subspace. To complete the remarks, we need only show that $0 \in r i^{\circ} \mathrm{C}$ implies that $C_{c o}$ is a subspace. But if $0 \in r i{ }^{\circ} \mathrm{C}$ then ${ }^{\circ} \mathrm{C}$ absorbs $\operatorname{span}^{\circ} \mathrm{C}={ }^{\perp_{\mathrm{L}}}$ and hence $C_{\infty} \equiv\left({ }^{\circ} \mathrm{C}\right)^{-}=\left(\operatorname{span}^{\circ} \mathrm{C}\right)^{-}=\left({ }^{L_{L}}\right)^{-}=\mathrm{L}$.
ii) \Rightarrow i). In the next theorem we prove that for $A={ }^{\circ} C$, ii) implies that $A^{\circ}=\left({ }^{\circ} C\right)^{\circ}$ is complete and locally equicontinuous. But C is a subset of $\left({ }^{\circ} \mathrm{C}\right)^{\circ}$, so C is locally equicontinuous, also complete and locally compart if it is closed. Δ

We remark that in Theorem 4.6 we have $C=L+(C \cap M)$,
where $L=C_{\infty} \cap\left(-C_{\infty}\right)$ is finite dimensional and M is a closed complement of L. Moreover $C \cap M$ is equicontinuous iff its asymptotic cone is $\{0\}$, i.e. iff C_{∞} is a subspace or equivalently $0 \in r i^{\circ} \mathrm{C}$.
4.7 Theorem. Let X be a HICS, $X *$ its dual with a τ^{*}-topology. Suppose $A \subset X$ has riA $\neq \varnothing$, where affA is closed with Einite codimension in X. Then A° is complete and locally equicontinuous (also convex, closed, and hence locally compact). Moreover, $\left(A^{0}\right)_{\infty}=A^{-},\left(A^{0}\right)_{\infty} \cap\left(-A^{0}\right)_{\infty}=A^{\perp}$, and $0 \in r i^{\circ}\left(A^{O}\right)$ iff $\left(A^{0}\right)_{\infty}$ is a subspace.

Proof. Let $x_{0} \in r i A, ~ o r ~ e q u i v a l e n t l y ~ 0 \in r i\left(A-x_{0}\right)$. Define $M=\operatorname{span}\left(A-x_{0}\right)=a f f A-x_{0}$, a closed subspace of finite codimension. Let N be any (algebraic) complement of M in X; N is finite dimensional (hence closed) since it is isomorphic to X / M and $\operatorname{dim} X / M=\operatorname{codim} M$ is finite. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for Note $M^{\perp}=\left(\text { affA }-x_{0}\right)^{\perp}=$ $\left(A-x_{0}\right)^{\perp}$.

We frist prove that X^{0} is complete. Let $\left\{y_{i}\right\}$ i \mathcal{I} be a Cauchy net in A°, and define the linear functional f on X to be the pointwise limit $f(x)=\lim x y_{i}$. We will show that \bar{f} is continuous (i.e. can be taken as an element of X), and hence lies in A° since A° is closed. Now the y_{i} are bounded above by l on A, and $\left(x_{0} y_{i}\right)$ is Cauchy in R
so $x_{o} Y_{i}$ is bounded by some $r>0$; hence the Y_{i} are bounded above by $1+r$ on $A-x_{0}$, so f is bounded above by $1+r$ on $A-x_{0}$. But $A-x_{0}$ is a 0 -neighborhood in M, so f is continuous on M. Since f is certainly continuous on the finite dimensional subspace N, and since the projections from X onto M and N are continuous, f is continuous on $M \div N=x$.

We now show that A° is locally equicontinuous, i.e. that given any $y \in A^{0}$ there is a τ^{*} neighborhood W of y_{0} for which $A^{\circ} \cap W$ is equicontinuous. By Proposition 1.4 we may simply take $y_{0}=0$. The basic idea is to choose W so as to eliminate all half-lines in $\left(A^{\circ}\right)_{\infty}$. Hence, we set $W=\left\{y:-x_{0} y \leq 1\right.$ and $\left.\max _{I \leq i \leq n}\left|x_{i} y\right| \leq I\right\}=$ $\left\{-x_{0}, \pm x_{1}, \ldots, \dot{x_{n}}\right\}^{0}$. Clearly W is a 0 -neighbornood in X^{*}.
 0-neighborhood in X, and we will show that $A^{\circ} \cap W C r \cdot U^{\circ}$ for r sufficiently large, so that $A^{\circ} \cap W$ is equicontinuous; this finishes the proof that A° is locally equicontinuous. To show that U is a 0-neighborhood in X, we note that $\left(A-x_{0}\right)$ is a 0 -neignoorhood in M and $\left\{\sum_{j} x_{j}:\left|a_{j}\right| \leq 1\right\}$ is a 0-neighborhood in N. But the projections of X onto M and N are continuous, and U is simply the intersection of the inverse images of the two sets under the corresponding projections.

We now show that $A^{\circ} \cap W \subset 2(1+n) \cdot U^{\circ}$. Take any $y \in A^{\circ} \cap W$; then $\sup _{x \in A} x y \leq 1,-x_{0} y \leq 1$, and $\max _{1 \leq i \leq n}\left|x_{i} y\right| \leq 1$, so in particular $\sup _{x \in A}\left(x-x_{0}\right) y \leq 1+1=2$ and $\max _{1 \leq i \leq n}\left|x_{i} y\right| \leq 1<2$. Hence $y / 2 \in\left(A-x_{0}\right)^{\circ} \cap\left\{ \pm x_{1}, \ldots, \pm x_{n}\right\}^{\circ} \subset(1+n) \cdot U^{\circ}$.

All that remains is to verify the concluding remarks in the theorem. To show $\left(A^{\circ}\right)_{\infty}=A^{-}$, we have $y \in\left(A^{0}\right)_{\infty} \Leftrightarrow t y \in A^{0} \forall t>0 \Leftrightarrow x(t y) \leq 1 \forall t>0$, $x \in A \Leftrightarrow x y \leq 0 \forall x \in A \Leftrightarrow y \in \dot{i}^{-}$. Finally, the fact that $\left(A^{0}\right)_{\infty}$ is a subspace iff $0 \in r i^{\circ}\left(A^{\circ}\right)$ follows from Theorem 1.6 i) \Rightarrow ii) applied to $C=A^{\circ}$.

We now sumarize our results for the $w\left(X^{*}, x\right)$ topology on X^{*}, in whicn equicontinuous sets are always relatively compact.
4.8 Corollary. Let (X, τ) be a HLCS with dual space X^{*}, and suppose ACX, BCX*.

If A has nonempty relative interior, and if affA is closed and has finite codimension in X, then A° is complete and locally equicontinuous (also closed, convex and hence locally compact) in the $w\left(X^{*}, X\right)$ topology on X^{*}. Moreover $\left(A^{\circ}\right)_{\infty}=A^{-},\left(A^{\circ}\right)_{\infty} \cap\left(-A^{0}\right)_{\infty}=A^{\perp}$, and $0 \in \underline{Y i}^{\circ}\left(A^{0}\right)=\operatorname{rcor}^{\circ}\left(A^{\circ}\right)$ iEf $\left(A^{\circ}\right)_{\infty}=A^{-}$is a subspace.

Conversely, if B is convex and locally τ-equicontinuous in the $\left.W^{(} X^{*}, X\right)$ topology on X^{*} then ${ }_{B}$ has nonempty relative interior, $\operatorname{span}^{\circ} B={ }^{1}\left(B_{\infty} \cap\left(-B_{\infty}\right)\right)$ is closed with finite codimension, and $0 \in r i{ }^{\circ} B$ iff B_{∞} is a subspace. Moreover $C i B$ and $\left({ }^{\circ} B\right)^{\circ}$ are complete and locally compact intie $w\left(X^{*}, X\right)$ topology.

Proof. This is just a direct consequence of Theorems 4.6 and 4.7, where we take τ to be the original topology on X and τ^{*} the $w^{*}\left(X^{*}, X\right)$ topology on X^{*}.

We remark that if X is a barrelled space (i.e. every closed convex absoribing set has nonempty interior, for example any Banach space or Frechet space), then the given topology on X is the $m\left(x, X^{*}\right)$ topology and moreover every bounded set in X^{*} is relatively sompact in the $w\left(X^{*}, X\right)$ topology. In this case locally equicontinuous simply means $w\left(X^{*}, X\right)-l o c a l l y$ bounded in Corollary 4.8.

In the general case, we can still imbed X^{*} in the algebraic daul X^{\prime} to characterize local boundedness in X^{*}.
4.9 Corollary. Let x be a HLCS with dual space $X *$, and supoose $A \subset X, B \subset X^{*}$.

If affa is closed and has finite codimension, and if A has nonempty relative core, then A° is locally bounded
50.
in the $w\left(X^{*}, X\right)$ topology on X^{*}. Moreover $\left(A^{\circ}\right)_{\infty}=A^{-}$, $\left(A^{\circ}\right)_{\infty} \cap\left(-A^{\circ}\right)_{\infty}=A^{\perp}$, and $0 \in \operatorname{rcor}{ }^{\circ}\left(A^{\circ}\right)$ iff $\left(A^{0}\right)_{\infty}=A^{-}$ is a subspace. If X is a barrelled space, then A° is closed, convex, complete, and locally compact in the $w\left(X^{*}, X\right)$ topology on X^{*}.

Conversely, if B is convex and locally bounded in the $w\left(X^{*}, X\right)$ topology on X^{*}, then ${ }^{\circ} B$ has nonempty relative core, $\operatorname{span}^{\circ}{ }_{B}={ }^{\perp}\left(B_{\infty} \cap\left(-B_{\infty}\right)\right)$ is closed with finite codimension, and $0 \in \operatorname{rcor}^{\circ} B$ iff B_{∞} is a subspace. If X is a barrelled space, then $r i^{\circ} B \frac{1}{F} \not \equiv$, and ${ }^{\circ}\left(B^{\circ}\right)$ is complete and locally compact in the $w\left(X^{*}, X\right)$ topology.

Proof. Let X ' be the algebraic dual of X, put the "convex core" or strongest locally convex topology on x ii.e. every convex absorbing sat is a 0-neighborhood), and let A^{\oplus} denote the polar of A with respect to the duality between X and X '. Of course, $X^{*} C X^{\prime}$, the $w\left(X^{*}, X\right)$ topology is the restriction of the $w\left(X^{\prime}, X\right)$ topology to X^{*}, and $A^{\circ}=A^{\oplus} \cap X^{*}$. Moreover we note that X^{*} is $W^{\prime}\left(X^{\prime}, X\right)$-dense in X^{\prime}, since $w^{\prime}\left(X^{\prime}, X\right)-C l\left(X^{*}\right)=\left({ }^{\infty} X^{*}=\{0\}^{\infty}=X^{\prime}\right.$. Similarly, we have the decomposition $X^{\prime}=M^{\perp}+w\left(X^{\prime}, X\right)-\operatorname{cl}(N)$ with M^{\perp} finite dimensional, whenever $X=M+N$ and M is a closed subspace of X, N is a finite dimensional subspace of $X, M \cap N=\{0\}$.

The results then Eollow by a straightforward application of Corollary 4.8 to X and X^{\prime}.

Finally, we characterize local compactness in a HLCS in terms of the Arens topology $a\left(X^{*}, X\right)$ on X^{*} of uniform convergence on compact convex sets in X (a basis of 0 -neighborhoods for $a\left(X^{*}, X\right)$ being the polars of all compact convex sets in X; note this depends on the topology on X, not just on the duality between X and $X *$. . In pariicular, we characterize weak local compactness in terms of the Mackey topology $m\left(X^{*}, X\right)$ on X^{*}, which is the strongest locally convex topology on X^{*} which still has dual space X.
4.10 Corollary. Let A be a closed convex subset of a HLCS X. Then A is locally compact iff A° has nonempty relative interior in the $a\left(X^{*}, X\right)$ topology on X^{*} and $\operatorname{span}\left(A^{\circ}\right)$ is closed with finite codimension, in which case A is also complete. A is weakly locally compact iff A° has nonempty relative interior in the $m\left(X^{*}, X\right)$ topology on X^{*} and $\operatorname{span}\left(A^{\circ}\right)$ is closed with finite codimension, in which case A is also weakly complete. In either case, $\operatorname{span}\left(A^{0}\right)=\left(A_{\infty} \cap\left(-A_{\infty}\right)\right)^{\perp}$.

Droof. This is a direct consequence of Theorems 4.6 and 4.7 where τ is taken to be the $a\left(X^{*}, X\right)$ topology (resp. the

52.

$m\left(X^{*}, X\right)$ topolog $)$ on X^{*} and τ^{*} is the original topology (resp. the weak topology) on X.

An interesting consequence of this corollary is that if A is a closed convex locally compact subset of a HICS X, then $i t$ is actually weakly locally compact. For, A° has nonempty relative interior in $a\left(X^{*}, X\right)$ by Corollary 1.10 , so A° certainly has nonempty interior in $m^{\prime}\left(X^{*}, X\right)$, hence A is locally compact and complete in $w\left(X, X^{*}\right)$. Note it is obvious that compactness always implies weak compactness; nowever $i t$ is not so obvious that local compactness implies weak local compactness (for closed convex sets). However the proofs of the theorems show that the compact relative neighborhoods of any x_{0} in A can be taken to be of the form $A \cap\left(x_{0}{ }^{0}\left\{y_{0}, \pm y_{1}, \ldots, \pm y_{n}\right\}\right)$ where, for a complement L of the finite dimensional subspace $A_{\infty} \cap\left(-A_{\infty}\right)$, Yo is strictly positive on $A_{\infty} \cap L \backslash\{0\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ forms a basis for L^{\perp}.
5. Continuity of convex functions and equicontinuity of conjugate functions.

We wish to describe here the relationship between continuity of a convex function and equicontinuity of level sets of the conjugate function. Moreau [M64] and Rockafellar [R66] have shown that continuity of a convex function at a given point is equivalent to equicontinuity of certain level sets of the conjugate function. We shall complete this result and also extend it to show the equivalence between relative concinuity of a convex function with respect to a closed affine set of finite codimension and local equicontinuity of the level sets of the conjugate function. We then examine relative continuity in a more general context using quotient topologies.

We recall some basic definitions about conjugate functions. Throughout this section we shall again take (X, τ) to be a HLCS with topology τ and (continuous) dual space X^{*} topologized by a τ^{*}-topology, i.e. τ^{*} is compatible with the duality $\left\langle X, X^{*}\right\rangle$ and τ-equicontinuous sets in X^{*} have τ^{*}-compact closure. Let $R=[-\infty,+\infty]$; if S is a set and $£$ a function $f: S \rightarrow \bar{R}$, we define the effective domain of \bar{f} to be

$$
\operatorname{domf}=\{s \in S: E(s)<+\infty\}
$$

54.

and the epigraph of f to be

$$
\operatorname{epif}=\{(s, r) \in s \times R: f(s) \leq r\}
$$

If $\mathrm{f}: \mathrm{X} \rightarrow \overline{\mathrm{R}}$ and $\mathrm{g}: \mathrm{X}^{*} \rightarrow \overline{\mathrm{R}}$, the conjugate functions $f^{*}: X^{*} \rightarrow \bar{R}$ and ${ }^{*} g: X \rightarrow \bar{R}$ are defined by

$$
\begin{aligned}
& f^{*}(y)=\sup _{x \in X}(x y-f(x)) \\
& { }^{*} g(x)=\sup _{y \in X^{*}}(x y-g(y)) .
\end{aligned}
$$

The conjugate functions are always convex and lower semicontinuous (in fact, weakly lac), being the supremun of continuous affine functions (egg. f* is the supremun of the functions $y \mapsto x y-r$ over all $(x, r) \in$ enif), and they never take on $-\infty$ values except in the case they are identically $-\infty$. late that the conjugate of an indicator function $\delta_{A}(x)=\left\{\begin{aligned}+\infty, & x \in A \\ 0, & x \in A\end{aligned}\right.$ for $A \subset X$ is precisely the support function $\delta_{A}{ }^{*}(y)=\sup _{x \in A} x y$ of A. Finally, it
is well known that

$$
\left(E^{}\right)=1 \sec \mathrm{f}
$$

unless lac co takes on $-\infty$ values (or equivalently $\mathrm{f}^{*} \equiv+\infty$), in which case ${ }^{\left(f^{*}\right)} \equiv{ }^{-\infty}$. By cot we mean the largest convex function dominated by f, and by lscf we

55.

mean the largest lower semicontinuous function cominated by $f\left(i . e .(\operatorname{lscf})(x)=\lim _{x^{\prime} \rightarrow x} \inf f\left(x^{\prime}\right)\right)$, so that epi(lsccof) $=$ cico(epif). And since f^{*} is convex and lsc, we have (*(f*))* again equal to f^{*}.

We recall the following important property of convex functions: if $f: X \rightarrow \bar{R}$ is convex, then f is continuous relative to affdomf (that is, the restriction of f to affdome with the induced topology is continuous) at every point of ricons whenever $£$ is hounded abova on any relative neighoorhood in affdomf, or equivalently whenever riepif is nonerpty. Ve shall consider the relationship between points of continuity of f and equicontinuity of level sets of $f *$ of the form

$$
\left\{y \in X^{*}: f^{*}(y)-x \underline{y} \leq r\right\}, x \in X, r \in R .
$$

Note that by definition of *(f*) the level set is nonempty whenever $r>-*\left(E^{*}\right)(x)$ and empty whenever $r<-*\left(f^{*}\right)(x)$ (the latter entails $x \in \operatorname{don}^{*}\left(\mathrm{f}^{*}\right)$). We renark that the level set is precisely the ε-subgradient $\partial f_{\varepsilon}(x)$ of $£$ at x when $r=\varepsilon+f(x)$ and precisely the subgradient set when $r=f(x)$, assuming $f(x) \in R$. In the case that δ_{A} is the indicator function of a set $A \subset X$, then the level sets of \hat{o}_{A} * are precisely $r \cdot(A-x)^{\circ}$ when $r>0$; thus we have a generalization of the notion of

56.

polarity. More generally, the level set for a given $r \in R$ consists of all continuous linear functionals $y \in X^{*}$ for which $f(\cdot)$ dominates the affine functional $x \rightarrow x y-r$, i.e. it is $\left\{y \in X^{*}: f\left(x^{\prime}\right) \geq\left(x^{\prime}-x\right) y-r \forall x^{\prime} \in X\right\}$.

We first prove two lemas which relate polars of level sets of a function with level sets of the conjugate function.
5.1 Lemma. Let X be a HLCS, $f: X \rightarrow \bar{R}$. Then

$$
\left\{y \in X^{*}: f^{*}(\underline{y}) \leq s\right\} \subset(r+s) \cdot\{x \in X: f(x) \leq r\}^{\circ}
$$

Whenever r+s > 0 .

Proof. Let A denote the set $\{x \in X: f(x) \leq r\}$, Clearly $E \leq r+\delta_{A}$, so taking conjugates yields $f^{*} \geq-r+\delta_{A} *$. Hence $\left\{Y: f^{*}(y) \leq s\right\} \in\left\{y:-r+\hat{o}_{A}^{*}(y) \leq s\right\} \subset\left\{y: \sup _{x \in A} x y \leq r+s\right\} C(r+s) \cdot A^{0}$.
5.2 Lema. Let X be a HLCS with dual $X *, g$ convex $X^{*} \rightarrow \bar{R}$. Then for any $\varepsilon>0$,

$$
\varepsilon \cdot{ }^{\circ}\left\{y \in X^{*}: g(y) \leq \varepsilon+g(0)\right\} \subset\{x \in X: * g(x) \leq \varepsilon+* g(0)\}
$$

Proof. Let $\mathrm{f}={ }^{*} \mathrm{G}, \mathrm{B}=\left\{\mathrm{y} \in \mathrm{X}^{*}: \mathrm{g}(\mathrm{y}) \leq \varepsilon+\mathrm{g}(0)\right\}$. The trivial cases $g(0)=+\infty$ or $g(0)=-\infty$ are easily checked, so we assume $g(0)$ is finite. In particular, $f(x)>-\infty$ for every x. If $f(0)=+\infty$ the result is also trivial, so we assume $f(0)$ finite.

57.

We shall first show that $g(y) \geq-f(0)-\varepsilon+\varepsilon \delta_{O_{B}}{ }^{*}(y)$ for every $y \in X^{*}$. Now if $y \in\left({ }^{\circ} B\right)^{0}$, i.e. $\delta_{o_{B}} *(y) \leq 1$, then $0 \geq-\varepsilon+\varepsilon \delta_{O_{B}} *(y)$ and so $g(y) \geq-f(0)-\varepsilon+\varepsilon \delta_{O_{R}} *(y)$, since $f(0) \geq-g(y)$ for every y. on the other hand if $y \notin\left({ }^{\circ} B\right)^{\circ}$, i.e. $\delta_{O_{B}}^{*}(y)>I^{\prime}$, then $y / r \notin B$ whenever $1<r<\delta_{O_{B}}^{*}(y)$, i.e. $g(y / r)-g(0)>\varepsilon$. Now $g(y)-g(0) \geq r \cdot(g(y / r)-g(0))$ since $r>1$ and $(g(t y)-g(0)) / t$ decreases as $t \downarrow 0$ by convexity, so we have $g(y)-g(0)>\varepsilon \cdot r$. Taking $r \uparrow \delta_{O_{B}} *(y)$, wa get $g(y)-g(0) \geq \varepsilon \hat{o}_{O_{B}}^{*}(y), \operatorname{sog} g(y) \geq g(0)+\varepsilon \delta_{O_{B}}^{*}(y) \geq$ $-f(0)-\varepsilon+\varepsilon \delta_{O_{B}} *(\underline{v})$.

Thus $g \geq-f(0)-\varepsilon+\varepsilon \delta_{O_{B}} *$; taking conjugates yields $f(x) \leq f(0)+\varepsilon+\delta_{O_{B}}(x / \varepsilon)$. Hence if $x \in \varepsilon \cdot O_{B}$ we have $\delta_{O_{B}}(x / \varepsilon)=0$ and so $£(x) \leq f(0)+\varepsilon$, proving the lemma.

We are now in a position to use the results of Section 4 on polar sets to show the correspondence between continuity and equicontinuity of level sets.
5.3 Theorem. Let (X, τ) he a HLCS, X^{*} its dual with τ^{*}-topology, and let $E: X \rightarrow \bar{R}$. If affdomf is closed with finite codimension, and if f is bounded above on some relative neighborhood of affdomf, then cof is continuous
on ricodomf and the level sets

$$
B=\left\{y \in X^{*}: f^{*}(y)-x y \leq r\right\}, x \in X, r \in R,
$$

are complete and locally equicontinuous (also closed convex and hence locally compact). Moreover if B is nonempty then $B_{\infty}=(\text { domf-x })^{-}, B_{\infty} \cap\left(-B_{\infty}\right)=(\text { domf-x })^{\perp}$, $B=(d \cap a f-x)^{\perp}+\left(B \cap L^{\perp}\right)$ where L is any (finite dinensional) complement of $\operatorname{span}($ (Comf-x) in X, and the following are equivalent:
i). $x \in$ rcor co dome
ii). cof is finite and continuous at x
iii). B_{∞} is a subspace
iv). $B \cap L^{\perp}$ is compact.

We remark that B is always empty in the degenerate case $f^{*} \equiv+\infty$ and *(£*) $\equiv-\infty$. Otherwise $f^{*} \dot{f}+\infty$ and * (f*) and cof never take on $-\infty$ values, and $*(f *) \equiv$ cof except possibly on relative boundary points of codonf.

Proof. We assume $£^{*} \neq+\infty$, since otherwise E is always empty and *(f*) $\equiv-\infty$.

Take $x_{0} \in X$, and let $B=\left\{y \in X^{*}: f *(y)-x_{0} y \leq r\right\}$ be nonempty. Define $\tilde{E}(x)=E\left(x+x_{0}\right)$ and $\tilde{A}=\{x: \tilde{E}(x) \leq s\}=$ $\left\{x: f\left(x+x_{0}\right) \leq s\right\}$, where s is sufficiertly large so that $s+r>0$ and A contains a point in ridomf. We then have

$$
59 .
$$

riA $\neq \varnothing$, where aff $=$ affdomf-x is closed with finite codimer.sion. By Iemma 5.1 we have

$$
B=\left\{y: f^{*}(y)-x_{0} y \leq r\right\}=\{y: \tilde{f} *(y) \leq r\} \subset(r+s) \cdot A^{0} .
$$

But then by Theorem 4.7 we know that B is complete and locally equicontinuous, since it is a closed subset of $(r+s) \cdot A^{\circ}$ and riA $\neq \varnothing$. A straightforward calculation shows that $B_{\infty}=\left(\text { domf- } x_{0}\right)^{-}$when B is nonempty, and hence that $B_{\infty} \cap(-B)_{\infty}=\left(\text { dom } \bar{E}-x_{0}\right)^{\perp}$. Now span $\left(\operatorname{comf}-x_{0}\right)$ is a closed subspace with Einite codimension, since it ecuals (affdonf- $\left.x_{1}\right)+(-\infty,+\infty) \cdot\left(x_{1}-x_{0}\right)$ for any $x_{1} \in \operatorname{affdonf}$ and hence is the sum of the closed affine subspace affdomf and the subspace $(-\infty,+\infty) \cdot\left(x_{1}-x_{0}\right)$ of dimension at most one (note $\operatorname{span}($ domf-x) $=$ affdomf-xo precisely in the case $x_{0} \in \operatorname{affdomf).~Thus~by~Lemma~} 4.3$ we have the decomposition $X^{*}=\left(\text { donf- } x_{0}\right)^{\perp}+L^{\perp}$ where L is any (finite dimensional) complement of $\operatorname{span}\left(d o m f-x_{0}\right)$ and L^{\perp} is then a closed complement of $\left(\text { domf- } x_{0}\right)^{\perp}$. But then $B=\left(\operatorname{domf}-x_{0}\right)^{\perp}+\left(B \cap L^{\perp}\right)$ since $\left(\text { domf }-x_{0}\right)^{\perp} \subset B_{\infty}$. It only remains to show the equivalence of i) through iv).

Hote that since f is bounded above on a relative neighborhood in affdomf, cof is also bounded above on the same neighborhood (and of course affdomf = affdom(cof)), so that cof is continuous in ricodomf (note co domf $=$ dom cof by Lema 1.1) and i) is equivalent to ii)
by convexity. Moreover, $B \cap L^{\perp}$ is compact iff $\left(B \cap L^{\perp}\right)_{\infty}=B_{\infty} \cap L^{\perp}$ is $\{0\}$ by Lema 4.5; but $B_{\infty} \cap L^{\perp}=\{0\}$ precisely in the case that $B_{\infty} C\left(\operatorname{don} f-x_{0}\right)^{\perp}=B_{\infty} \cap\left(-B_{\infty}\right)$, i.e. B_{∞} is a subspace, so that iii) and iv) are equivalent. Now if $x_{0} \in$ rcorcodomf, then codomf- x_{0} absorbs affdomf- x_{0}, so that $\left(\text { domf- } x_{0}\right)^{-}=\left(\text {codomf- } x_{0}\right)^{-}$is actually $\left(\text {domf- } x_{0}\right)^{\perp}$; thus $B_{\infty}=\left(\text { domf- } x_{0}\right)^{\perp}$ and i) \Rightarrow ii). Conversely, suppose $x_{0} \in$ rcorcodomf; since codomf has nonempty relative interior in affdomf, there is a separating y \& X^{*} such that either $y \equiv 0$ on span $\left(\operatorname{domf}-x_{0}\right)$ anci $\sup _{x \in \operatorname{domf}} x y \leq x_{0} y$ (in the case $x_{0} \in \operatorname{affdomf),~or~} y \equiv 0$ on affdomf- x_{1} and $\left(x_{1}-x_{0}\right) y<0$ for some $x_{1} \in \operatorname{domf}$ (in the case $x_{0} \notin$ affdomf). But in both cases we then have $y \in\left(\operatorname{dom} f-x_{0}\right)^{-}=B_{\infty}$, with $y \notin\left(\operatorname{domf}-x_{0}\right)^{\dot{L}}=B_{\infty} \cap\left(-B_{\infty}\right)$, so that $B_{c o}$ is not a subspace and iii) \Rightarrow i).
5.4 Theorem. Let X be a HLCS, X^{*} its dual with a τ^{*}-topology, and suppose g is convex $X^{*} \rightarrow \bar{R},{ }^{*} G \equiv+\infty$. If the level set $B_{0}=\left\{y \in X^{*}: g(y)-x_{0} y<s_{o}\right\}$ is nonempty and locally equicontinuous for some $x_{0} \in X, s_{0} \in R$, then affdom*g is closed with finite codimension and *g is finite and relatively continuous on rcordon* $\neq \varnothing$. : Moreover all the level sets $B=\{y: g(y)-x y<s\}, x \in X, s \in R$ are locally equicontinuous, and if nonempty $\mathrm{B}_{\infty}=\left(\text { dom }^{*} \mathrm{~g}-\mathrm{x}\right)^{-}$, affiom $^{*} G=\mathrm{x}+{ }^{\perp}\left(\mathrm{B}_{\infty} \cap\left(-\mathrm{B}_{\infty}\right)\right)$ if $x \in a f f d o m^{*} g$, and ${ }^{*} G$ is finite and relatively continuous
at x iff B_{∞} is a subspace.

Proof. First, let us note that if B_{o} is locally equicontinuous then epig is locally equicontinuous (in the product topologies on $X \times R$ and $X * \times R$) and hence all the level sets B are equicontinuous. For, if $y_{0} \in R_{0}$ and W is a Y_{0}-neighborhood with $B_{0} \cap W$ equicontinuous, then $g\left(y_{0}\right)-1, x_{0} \times w$ is a neighborhood of $\left(g\left(y_{0}\right), y_{0}\right)$ whose intersection with epig is contained in $\left(g\left(y_{0}\right)-1, s_{0}\right) \times\left(B_{0} \cap W\right)$ which is equicontinuous. Since epig is convex, we have by Proposition 4.4 that all of epig is locally equicontinuous, and hence all the level sets E are locally equicontinuous. Note also chat ${ }^{*} g$ never has $-\infty$ values, since epig $\neq \varnothing$.

We wish to show that ${ }^{*} g$ has relative continuity points. Now *g $\neq+\infty$ by assumption; since all the level sets B are locally equicontinuous we nay assure that $x_{0} \in d o n * G$ in the definition of B_{0}. Let $y_{0} \in B_{0}$ and take some $\varepsilon>0$ such that $g\left(y_{0}\right)-x_{0} y_{0}<s_{0}-\varepsilon$, and define $B_{1}=$ $\left.f y: g(y)-x_{0} v \leq \varepsilon+g\left(y_{0}\right)-x_{0} y_{0}\right\}$. E_{1} clearly contains y_{0} and is locally equicontinuous since $B_{1} \subset E_{0}$. N:ow define $\tilde{g}(y)=\underline{q}\left(y_{0}+y\right)-x_{0} y$; then $B_{1}-y_{0}=\{y: \tilde{q}(y) \leq \varepsilon+q(0)\}$ and applying Lemma 5.2 yields
$\varepsilon \cdot{ }^{\circ}\left(B_{1}-y_{0}\right) \subset\{x \in K: \dot{x} \tilde{g}(x) \leq \varepsilon+* \tilde{g}(0)\}=\left\{x \in x: *_{G}\left(x_{0}+x\right)-x y_{0} \leq \varepsilon+{ }^{*} \sigma(0)\right\}$.

But $\left(B_{1}-y_{o}\right)$ is convex and locally equicontinuous, so by Theoren $4.6^{\circ}\left(B_{1}-y_{0}\right)$ has nonempty relative interior with respect to L, where $L=\left(B_{I}-y_{0}\right)_{\infty} \cap\left(-B_{I}+y_{0}\right)_{\infty}$. This means that $x \rightarrow{ }^{*} g\left(x_{0}+x\right)-x y_{0}$ is bounded above on some relative neighborhood of L, so that ${ }^{*} g$ is bounded above on some relative neighboriood of $x_{0}+L$. Ve need only show that $x_{0}+L$ contains affiom*g. Now since $L \subset\left(B_{I}-V_{0}\right)_{\infty}$, we see that $\tilde{g}\left(y_{0}+t y\right) \leq \varepsilon+\tilde{g}(0)$ for every $t>0, y \in L$ and so $\star \tilde{g}(x) \geq \sup _{\substack{y \in I \\ t>0}}\left(x\left(y_{0}+t y\right)-\tilde{g}\left(y_{0}+t \underline{y}\right)\right) \geq x y_{0}-\varepsilon-\tilde{a}(0)+\sup _{y \in L}^{y} \underset{t>0}{ } t \cdot x y$ is $+\infty$ unless $x \in^{\perp} L$. Thus don* $\tilde{a}^{\perp} L$, i.e. $\operatorname{dom}^{*} g x_{0}{ }^{+1} L$, so we see that *g is bounded above on some relative neighborhood of $x_{0}{ }^{+}+\mathcal{L}=$ affdor*g and hence is relatively continuous on rcordon*g.

To prove the remaris at the end of the theorem, we show that the level sets $B=\{y: g(y)-x y<s\}$ have closures which contain and are contained in the level sets of (*g)*, and then we simply apply Theorem 2.3 to $f=* g$. Since $(* g) * \leq g$, it is clear that $B \subset\left\{y:(* g)^{*}(y)-x y \leq s\right\}$, hence $B_{\infty} \subset\left(\operatorname{dom}^{*} g-x\right)^{-}$by Theorem 2.3. On the other hand, for any $\varepsilon>0$ we have $\{y:(* g) *(y)-x y \leq s-\varepsilon\} \subset c I B$ since $\left({ }^{*} g\right) *=1 s c q$. and hence (taking ε sufficiently small so that the level set of $\left({ }^{*} g\right)^{*}$ is nonempty) $\left(\text { don*}^{*} g-x\right)^{-} C B_{\infty}$ by Theorem 5.3 . Thus $B_{\infty}=$ (dom*g-x) ${ }^{-}$, and ${ }^{*} g$ is relatively continuous at x iff B_{∞} is a subspace

We note in particular that for any HLCS X Theorems 5.3 and 5.4 are true for the $w^{\prime}\left(X^{*}, x\right)$ topology on X^{*}, in which
5.5 Corollary. Let X be a HLCS, $f: X \rightarrow \bar{R}$ convex and lsc, $\underline{G}=f *$. If one of the level sets $B_{0}=\left\{x \in X: f(x)-x y_{0} \leq s_{0}\right\}$ is locally compact (resp. weakly locally compact) for some $y_{0} \in X^{*}, s_{0}>\underset{X}{\inf \left(f(x)-X Y_{0}\right)} \equiv-g\left(y_{0}\right)$, then affdonc is closed with finite codimension and the restriction of g to affdomg is continuous on rcordomg (which is nonempty unless $g \equiv+\infty$) in the $a\left(X^{*}, X\right)$ topology (resp. the $m\left(X^{*}, X\right)$ topology) on X^{*}. Conversely, if affdomg is closed with finite codimension and g has finite relative continuity points in affdong in the $a\left(X^{*}, X\right)$ topology (resp. the $m\left(X^{*}, X\right)$ topology), then all the level sets $B=\{x \in X: f(x)-x y \leq s\}$ are closed, convex, complete, and locally compact in X (resp. in the weak topology on X).

64.

and if B is nonenpty, $\mathrm{B}_{\infty}={ }^{-}$(dong-y), affdomg $=\mathrm{y}+$ $\left(B_{\infty} \cap\left(-B_{\infty}\right)\right)^{\perp}$ if $y \in$ affiong, and g is finite and relatively continuous at y iff $y \in r c o r d o n g$ iff B_{∞} is a subspace.

E
Proof. This is a direct consequence of Theorems 2.3 and 2.4 where τ is taken to be the $a(X *, X)$ topology (resp. the $\mathrm{m}\left(\mathrm{X}^{*}, \mathrm{X}\right)$ topology on X^{*}, τ^{*} is the original topology (resp. the weak topology) on x, and the roles of x and $x *$ have been reversed.
6. Closed subspaces with finite codimension.

This section serves only to provide sone very basic results about what it reeans to be a closed subspace with finite codimension; the ideas are simple but it is important to be careful here.

Let X be a HLCS. Let M be an affine subspace of X; the subspace parallel to N is $M-M=M-m_{0}$ where m_{0} is any fixed element of M . We have

$$
M=a f E M=(M-M)+M=\left(M-M_{0}\right)+M_{0}
$$

The dimension of M is defined to be the dimension of the subspace M-M. More generally, if CCX $t \quad n$ the dimension of C is desined to be the dimension of aff C :

```
dim C & बim aff C = din span(C-C),
```

where of course

$$
\begin{aligned}
\operatorname{aff} \mathrm{C} & =\mathrm{C}+\operatorname{span}(\mathrm{C}-\mathrm{C})=c_{0}+\operatorname{span}\left(C-c_{0}\right) \\
& =\left\{\sum_{i=1}^{n} t_{i} x_{i}: n \in \mathbb{R}, t_{i} \in R, x_{i} \in C, \sum_{i=1}^{n} t_{i}=1\right\} .
\end{aligned}
$$

If N is an affine subspace of M, then we say N has finite codimension in M iff the subspace $1-:$ parallel to n has finite codimension in the subspace $M-1$ parallel to N, i.e. if din (: $:-\mathrm{m} / \mathrm{m}-\mathrm{n})$ is finite.
6.1 Proposition. Let X be a HLCS, M an affine subspace of X, N an affine subspace of M . Let M have the topology induced by that of x. Then the following are equivalent:

1) N is closed with finite codimension in M
2) $N-N$ is closed with finite codimension in $M-M$
3) N is closed in M and $M-M / N-N$ is finite dimensional
4) N is closed in M and $M / N-1$ is a finite dimensional affine subspace of $\mathrm{X} / \mathrm{il}-\mathrm{ij}$
5) N is closed in M and \exists afinite dimensional subspace L such that $\because i+\mathrm{L}=\mathrm{H}$ and $(\mathrm{I}-\mathrm{N}) \cap \mathrm{L}=\{0\}$
6) N is closed in M and \exists afinite dimensional subspace L such that : Ifto:
7) \exists finite subset $F \subset X^{*}$ st $N=\left(n_{0}{ }^{+} F\right) \cap M$ for some (and hence every) $n_{o} \in \mathbb{N}$
8) $\exists r_{1}, \ldots, r_{n} \in$ P, $y_{1}, \ldots, X_{n} \in X^{*}$ st $N=M \cap \bigcap_{i=1}^{n} y_{i}^{-1}\left\{r_{i}\right\}$.

Proof. Throughout the proos we shall assume that n_{0} is a fixed element of N; in particular, $N-N=N-n_{0}$ and $M-M=M-n_{0}$.

1) \Leftrightarrow 2). :is closed in M iff $N-n_{0}$ is closed in $M-n_{0}$ by translation invariance of vector topologies. The result now follows from the definition of finite codimension.
2) \Leftrightarrow 3). The codimension of $\mathrm{H}-\mathrm{N}$ in $\mathrm{M}-\mathrm{M}$ is precisely $\operatorname{dim}(\mathrm{M}-\mathrm{M} / \mathrm{N}-\mathrm{N})$.
3) \Leftrightarrow 4). In 4) we are using the following notation:
if $C C X$ and if L is a subspace of X then C / L is the image of C under the canonical quotient map of X into x / L. Now $M / N-N=\left[n_{0}\right]+(M-M) / N-N$ is an affine subspace of $X / N-N$ which is a translation of the subspace $M-M / N-N$ (here [n_{0}] denotes the equivalence class of n_{0} in $\left.X / N-M\right)$; hence $\operatorname{dim}(M / N-N)=\operatorname{dim}(M-M / M-N)$.
4) \Rightarrow 5). Let I be an algebraic complement of N-iv in $M-M$, i.e. $L+(N-N)=N$ and $L \cap(N-N)=\{0\}$. Non L is algebraically isororphic to M-M/N-N under the quotient
 since $L \cap(N-K)=\{0\}$, and onto since $L+(N-i v)=M-M$. Thus by hypothesis 3), dim $(\mathbb{L})=\operatorname{dim}(1-M / 1-N)$ is finite. finally, we have

$$
M=n_{0}+(N-N)=n_{0}+L+(N-N)=L+N
$$

5) \Leftrightarrow 6). Trivially 5) \Rightarrow 6). Suppose 6) holds.

Let L ' be a complement of (N-N) in (M-M). Then $L^{\prime} \cap(N-I)=\{0\}$ and $L^{\prime}+N=$. ${ }^{\prime}$. But $L^{\prime} \subset(N-N)+L$; since $L^{\prime} \cap(N-N)=\{0\}, L^{\prime} \subset L . \quad$ Thus L^{\prime} is finite dinensional and 5) holds for L^{\prime}.
5) $=>$ 7). Define the projection map $P:(N-M) \rightarrow I$, Where $p \equiv 0$ on $(M-N), P \equiv I$ on L. Let $\left\{\rho_{1} \ldots . . \phi_{n}\right\}$ be a basis for L^{*}. p is a continuous map $(!!-1!) \rightarrow$ Lince p has finite dimensional range and the null space (i-v) of P
is closed in ($M-M$). Hence each $\phi_{i} 0 P \leq(M-M)$. By the Hahn-Banach extension theorem we may extend each $\phi_{i} \circ p$ to an element y_{i} of X^{*}, so that $y_{i}=\phi_{i} \circ P$ on ($M-M$). Let $F=\left\{y_{1}, \ldots, Y_{n}\right\}$. Clearly $N-N$, which is the null space of P, is contained in ${ }^{\perp} F$. Conversely, $(M-M) n^{\perp} F \subset N-N$; for if $x \in(M-M)$ then $x=n+\hat{l}$ where $n \in(N-N)$ and $\ell \in L$ and if also $x \in \perp^{\perp}$ then $f=0$ (since $n \in \mathcal{L}^{\perp} F$ and F spans L^{*}). Thus $(N-N)=(M-M) n^{\perp} F$. Equivalently, $\left(N-n_{0}\right)=\left(N-n_{0}\right) n^{\perp} F$ i.e. $N=M \cap\left(n_{0}+\perp\right)$.
7) \Rightarrow 8). Assume 7) holds, i.e. $F=\left\{\underline{v}_{1}, \ldots, y_{n}\right\} \subset x^{*}$ and $: M=M \cap\left(n_{0}{ }^{\perp} F\right)$. Set $r_{i}=v_{i}\left(n_{0}\right)$. Then $n_{0}+^{2} F=\left\{n_{0}+x: y_{i}(x)=0, i=1, \ldots, n\right\}=$ $\left\{x: y_{i}\left(x-n_{0}\right)=0 \forall i=1, \ldots, n\right\}=\bigcap_{i=1}^{n} y_{i}^{-1}\left\{r_{i}\right\}$, and 8) follows.
8) \Rightarrow 9). Cleariy in is closed in M, since each y_{i} is continuous on M. Now $Y_{i}(n)=r_{i}$ for every $n \in N$ and $i=1, \ldots, n$, so $y_{i}\left(n-n_{0}\right)=0$ and $n-n_{0} c^{1}\left\{y_{1}, \ldots, v_{n}\right\}$. But then dim $\left.\left(M-M / N-n_{0}\right) \leq \operatorname{din}\left(N-M / H_{1}, \ldots, y_{n}\right\}\right) \leq$ $\operatorname{dim}\left(x /{ }^{\perp}\left\{y_{1}, \ldots, y_{n}\right\}\right)=\operatorname{dim}\left({ }^{\perp}\left\{y_{1}, \ldots, y_{n}\right\}\right)^{\perp}=$ dirn span $\left\{y_{1}, \ldots, y_{n}\right\} \leq n$.
.
7. Weak dual topologies.

Let (X, τ) be a HLCS, and suppose il is a subspace of X with the induced topology $M \cap \tau$. By the Hahn-Banach theoren we may identify m* with $X * / M^{\perp}$, where $\langle x,[y]\rangle \equiv\langle x, y\rangle$ for $x \in M$ and $[y]$ the equivalence class $y+M^{\perp} \in X * / M$ of $y \in X^{*}$. Fa shall be concerned with various topolođies pertaining to the duality between M and X^{*} / M^{+}. The Eollowing notation will he used: if $B \subset X^{*}$, then B / M^{\perp} denotes $\{[b]: b \in B\}=\left\{b+x^{+}: b \in B\right\}$, a subset of $x *$.

We have already desined the $w\left(X^{*}, X\right)$ topology, with 0-neighborhood basis

$$
\left\{F^{\circ}: P \text { Einite } \subset X\right\}
$$

A net $\left\{Y_{i}\right\}$ converges to 0 in $w\left(X^{*}, X\right)$ iff $\left\langle X, Y_{i}\right\rangle \rightarrow 0$ for every $x \in X$. A set $P \subset X^{*}$ is boundec in $w\left(X^{*}, X\right)$ iff for every $x \in X$, sup $\langle x, y\rangle\left\langle+\infty\right.$. B is $v\left(Y^{*}, X\right)$ conditionally compact whenever $y \in B$
D is equicontinuous, or equivalently $0 \in \operatorname{int}^{\circ}{ }_{B}$.
A weaker topolocy is the $w\left(X^{*}, M\right)$ topology, with 0-neighborhood basis

$$
\left\{F^{0}: F \text { finite } \subset: 1\right\}
$$

A net $\left\{y_{i}\right\}$ converges to 0 in $\forall\left(X^{*}, U_{i}\right)$ iff $\left\langle y_{i}\right\rangle \rightarrow 0$ for every $x \in \because$, or equivalently iff eventually $v_{i} \in\left\{\therefore i^{\circ}=\right.$ $\{x\}^{\circ}+n^{\perp}$ for every $x \in H$. Note that the $y\left(x^{*}, 1\right.$) topoloqy
need not be Hausdorff; it is Hausdorif iff $M^{\perp}=\{0\}$, iff M is dense in X. Since the closure of $\{0\}$ in $w\left(X^{*}, M\right)$ is M^{\perp}, the associated HLCS is X^{*} / M with the $W\left(X^{*} / M^{\perp}, M\right)$ topology; hence $\underline{v}_{i} \rightarrow 0$ in $w\left(X^{*}, M\right)$ iff $\left[\mathrm{Y}_{\dot{i}}\right] \rightarrow 0$ in
 iff $\forall x \in \mathbb{H}$, sup $\langle x, y\rangle\langle+\infty$, iff B / M is $w(X * / M, M)$-bounded; $y \in B$
conditionally
B is compact in $w\left(X^{*}, M\right)$ whenever B is equicontinuous as a subset of M^{*}, or equivalently B / M^{\perp} is equicontinuous as a subset of ! ! ${ }^{*}$. Of course, ($\left.\mathrm{X}^{*}, \mathrm{w}\left(\mathrm{X}^{*}, \mathrm{~m}\right)\right)^{*}$ may be icentified with M; for if $z \in\left(X^{*}, w\left(X^{*}, N\right)\right) *$ then there is a finite subset F of it such that $|z(y)| \leq 1$ whenever $y \in F^{0}$, hence $\{y: z(v)=0\} \supset \bigcap_{x \in F}\{y:\langle x, y\rangle=0\}$ and $z \in \operatorname{span} F \in \mathbb{C l}$

We say that a subset B of X^{*} is M-equicontinuous iff the restri, on of the continuous linear functions in 3 to the subspace if is equicontinuous for the induced topology Mnt on M .
7.1 Proposition, Let (X, τ) be a HLCS, M a subspace of X with the incuced topology $\mathrm{K} \cap \tau$, and $\mathrm{BCX*}$. Then the following are equivalent:

1) B is M-equicontinuous
2) $\mathrm{B} / \mathrm{M}^{\perp}$ is equicontinuous as a subset of $\mathrm{n}^{*} \cong \mathrm{X}$ (M
3) $\quad O_{B}$ contains a relative $0-n b h a$ in M, i.e.

$$
\exists 0 \text {-nbinc } U \text { st } O_{B} \supset U \cap M
$$

4) $\exists 0$-nbhd u st $\sup _{x \in \operatorname{Un} M} \sup _{y \in B}\langle x, y\rangle \leq 1$, i.e. $B C(U \cap M)^{\circ}$
5) $\exists 0$-nbha U in X st $\mathrm{BCU} \mathrm{U}^{\mathrm{O}} \mathrm{M}$
6) \exists 0-nbhd u in X st $B / M^{\perp} \subset U^{0} / 1$.

Proon. I) <=> 2). This is simply the definition of M-eguicontinuous.
2) < \quad 3). This is what equicontinuity means, for linear functionals.
3) \Leftrightarrow 4). If U is a closed conver 0 -nbhd, then $O_{B} \supset U \cap M \Leftrightarrow B C(U \cap M)^{\circ}$ since ${ }^{\circ}\left((U \cap M)^{\circ}\right)=U \cap M$.
4) => 5). This is the only nontrivial part.

Suppose $B \subset(U \cap M)^{\circ}$. Let V be a closed convex 0-neighborhood such that $\forall \subset$ int U. Then $\operatorname{cl}(\mathrm{L} \cap \mathrm{M}) \sim \mathrm{V} \cap \mathrm{Clm}$; for if $x \in V$ is the limit of a net $\left\{x_{i}\right\}$ in M, then the $\left\{x_{i}\right\}$ eventually belong to U (since $x \in i n t U$) and hence $x \in \operatorname{cl}(U \cap M)$. Now y° is $w\left(X^{*}, X\right)$-compact, so $V^{\circ}+M^{+}$is a $w\left(X^{*}, X\right)$-closed convex set containing $V^{\circ} \cup n^{\perp}$; thus $v^{\circ}+m^{+}=\operatorname{clco}\left(v^{\circ} \cup n^{\perp}\right)$. But then ${ }^{\circ}\left(v^{\circ}+n^{\perp}\right)={ }^{\circ}\left(v^{\circ} \cup u^{\perp}\right)=$ ${ }^{\circ}\left(V^{\circ}\right) \cap^{O}\left(N^{\perp}\right)=V \cap c i{ }^{\prime}$, and so

$$
B \subset(U \cap M)^{\circ}=(C l(U \cap M))^{\circ} C(V \cap C l)^{\circ}=\left(^{\circ}\left(V^{\circ}+M^{\perp}\right)\right)^{\circ}=V^{\circ}+I^{\perp}
$$

72.

Thus 5) holds for the 0 -neighborhood V.
5; \Rightarrow 4). Immediate, since $U^{\circ}+M^{\perp} C(U \cap M)^{\circ}$.
5) \Leftrightarrow 6). Immediate, since $B / M^{\perp} \subset U^{0} / M^{\perp} \Leftrightarrow B \subset U^{O}+M^{\perp}$.

It is also natural to consider the quotient topology of $w\left(X^{*}, X\right)$ on X^{*} / M^{\perp}, i.e. the strongest topology on X^{*} / M^{\perp} for which the canonical quotient map Q: $\left(X^{*}, W\left(X^{*}, X\right)\right) \rightarrow X^{*} / M^{\perp}$ is continuous; we denote this topology by $w\left(X^{*}, X\right) / M^{\perp}$. A basis of 0 -neighborhoods for $W\left(X^{*}, X\right) / M^{\perp}$ is given by all sets of the form $F^{\circ} / M^{\perp}=\left(F^{\circ}+Y^{\perp}\right) / M^{\perp}$, where E is a finite subset of X; $\left\{\left[Y_{i}\right]\right\} \rightarrow 0$ in $W\left(X^{*}, X\right) / M^{\perp}$ iff eventually $y_{i} \in\{X\}^{0}+M^{\perp}$ for every $x \in X$. We shall also use $W\left(X^{*}, X\right) / M^{\perp}$ to denote the topology on X^{*} with 0-neighborhood basis all sets of the form $\mathrm{F}^{\mathrm{O}} \mathrm{H}^{\perp}$, F finite CX (it will be clear from context whether the topology is on X^{*} or on X^{*} / M^{\perp}), that is $w\left(X^{*}, X\right) / M^{\perp}=Q^{-1}\left(w\left(X^{*}, X\right) / M^{\perp}\right)$. Of course, $\left\{Y_{i}\right\} \rightarrow 0$ in $w\left(X^{*}, X\right) / M^{\perp}$ iff $\left\{\left[y_{i}\right]\right\} \rightarrow 0$ in $w\left(X^{*}, X\right) / M^{\perp}$ iff $\forall x \in X$, eventually $y_{i} \in\{x\}^{\circ}+M$. A subset B of X^{*} is bounded in $w\left(X^{*}, X\right) / M^{\perp}$ iff for every $\left.x \in X, \sup _{y \in B} \inf ^{\prime} \in M^{\perp}<x, y-y^{\prime}\right\rangle\langle+\infty$.

The $w\left(X^{*}, X\right) / M^{\perp}$ topology is closely reiated to the w(X*, M) topology.
7.2 Proposition. Let (X, T) be a HLCS, M a subspace of X. Then $w\left(X^{*}, X\right) / M^{\perp}=w\left(X^{*}, \bar{m}\right)$, where \bar{M} denotes the closure of M in X .
73.

Proof. Let F be a finite subset of \bar{M}. Since $F^{\circ} \supset F^{\circ}+M^{\perp}$, it is clear that E° has nonempty $w\left(X^{*}, X\right) / M^{\perp}$-interior; hence $w\left(X^{*}, X\right) / M^{\perp} \supset W^{*}\left(X^{*}, \bar{M}\right)$. Conversely, let F be an arbitrary finite subset of X. Since F is finite, it is straightforward to see that

$$
\operatorname{clco}(F \cup\{0\}) \cap \bar{M}=\operatorname{cico}((F \cap \bar{M}) \cup\{0\}),
$$

or equivalently ${ }^{\circ}\left(F^{\circ}\right) \cap \bar{A}={ }^{\circ}\left((F \cap \bar{M})^{\circ}\right)$. But then $(F \cap \bar{I})^{\circ}=\left(^{\circ}\left(F^{\circ}\right) \cap \bar{M}\right)^{\circ}=w^{*}-\operatorname{clco}\left(F^{\circ} \cup M^{\perp}\right) C w^{*}-C l\left(F^{\circ}+M\right) C$ $W\left(X^{*}, X\right) / M^{+}-c I\left(F^{O}+M^{+}\right)$,
where the last step follows since clearly the $w^{*}=w\left(X^{*}, X\right)$ topolugy is stronger than the $w\left(X^{*}, X\right) / M^{\perp}$ topology. Hence the closures of^{E} sets in the 0 -neighborhood base of $w\left(X^{*}, X\right) / M^{\perp}$ have nonempty $w\left(X^{*}, \bar{M}\right)$-interior, so $w\left(X^{*}, \bar{M}\right) \supset w\left(X^{*}, X\right) / M$.
7.3 Corollary. Let X be a HLCS, M a subspace. Then $\mathrm{w}\left(\mathrm{X}^{*}, \mathrm{M}\right)=\mathrm{w}\left(\mathrm{X}^{*}, \mathrm{X}\right) / \mathrm{M}$ on X^{*} iff M is closed. Equivalently $W\left(X^{*} / M^{\perp}, M\right)=W\left(X^{*}, X\right) M^{\perp}$ on X^{*} / M iff M is closed.

Proof. From Proposition 7.2 we have $W^{*}\left(X^{*}, X\right) / M^{\perp}=W\left(X^{*}, \bar{M}\right)$. But $w\left(X^{*}, \bar{M}\right)=w\left(X^{*}, M\right)$ iff $\bar{M}=M$, since $\left(X^{*}, w\left(X^{*}, \bar{M}\right)\right)^{*} \cong \bar{M}$ $\operatorname{and}\left(\mathrm{X}^{*}, \mathrm{w}\left(\mathrm{X}^{*}, \mathrm{M}\right)\right) \cong \cong$.
8. Relative continuity points of convex functions

The relationship between continuity points of a functional $\mathrm{f}: \mathrm{X} \rightarrow \overline{\mathrm{R}}$ and local equicontinuity of the level sets of the conjugate function f^{*} has been thoroughly investigated in Section 5 for the case that affdomf is closed with finite codimension. We may still ask what happens in the case that affdomf does not necessarily have finite cocimension; note that the level sets will contain the (inミinite dimensional) subspace (domf-domf) ${ }^{\text {i }}$ and we cannot hope for local equicuntinuity. However, by characterizing the level sets of $f *$ modulo their behavior on (domf-domf) ${ }^{\perp}$, i.e. by considering the duality between affdomf (the natural space determinea by fi) and $X^{*} /(\operatorname{domf-domf})^{\perp}$, we obtain a generalization of the previous results.

For simplicity we consider only the original topology on X and the waak * dual topologies. We consider the Eollowing propositions about a function $f: X \rightarrow \vec{R}$ and an affine subspace M of X which contains domf. Of course, M-M is the subspace parallel to M. We shall often
specialize to the case $M=$ affdomf, or $M=$ domf + $(\text { (ami-domf })^{\perp}=$ claffdomf.
la. \exists open set $U, Y_{1}, \ldots, Y_{n} \in X^{*}, r_{1}, \ldots, r_{n} \in R$ st $U \cap M \cap \bigcap_{i=1}^{n} y_{i}^{-1}\left\{r_{i}\right\} \neq \emptyset$ and $\tilde{r}(\cdot)$ is bounded above on $U \cap M \cap \bigcap_{i=1}^{n} \dddot{Y}_{i}^{-1}\left(r_{i}\right)$.
75.

1b. $f(\cdot)$ is bounded above on a subset C of X, where ric $\neq \varnothing$ and $a f f C$ is closed with finite codimer on in M .

2a. ricoepif $\neq \varnothing$ and affdomf is closed with finite codimension in M .

2b. rcorcodomf $\neq \emptyset$, coE P rcorcodomf is continuous, and affcomf is closed with finite codimension in M.

3a. $£ * \equiv+\infty$, or $\exists x_{0} \in M, r_{0}>-£\left(x_{0}\right)$ st
fy $\left.\in X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\}$ is $w^{*}\left(X^{*}, M-x_{0}\right)-$ locally ($\mathrm{n}-\mathrm{x}_{0}$)-equicontinuous.
3b. $f^{*} \equiv+\infty$, or $\exists x_{0} \in M, Y_{0} \in \operatorname{dom} f^{*}, r_{0}>f^{*}\left(y_{0}\right)-x_{0} Y_{0}$,
Einite FCM-x, 0 -nbhd U st
$\left\{y \in X^{*}: f *(y)-x_{0} y \leq r_{0}\right\} \cap\left(Y_{0}+F^{O}\right) \subset U^{O}+\left(M-x_{0}\right)^{\perp}$
3c. $\forall x_{0} \in M \quad \exists$ finite $E \subset M-x_{0}$ st $\forall y_{0} \in X^{*}, \forall r_{0} \in R$ $\left\{Y \in X^{*}: E^{*}(Y)-x_{0} Y \leq r_{0}\right\} \cap\left(Y_{0}+F^{0}\right)$ is $\left(M-x_{0}\right)-$ equicontinuous, i.e. $C U^{\circ}+\left(M-x_{0}\right)^{\perp}$ for some 0-nbhả U.
 $\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\}$ is $w\left(X^{*}, M-x_{0}\right)-$
locaily compact.
 finite FCA- x_{0} st $\left\{y \in X^{*}: F^{*}(y)-x_{0} y \leq r_{0}\right\} \cap\left(y_{0}+E^{\circ}\right)$ is $w\left(X^{*}, M-X_{0}\right)$-compact.

4c. $\forall x_{0} \in M \quad \exists$ finite $F \subset M-x_{0}$ st $\forall y_{0} \in X^{*}, \forall r_{0} \in R$, $\left\{Y \in X^{*}: f^{*}(Y)-x_{0} y \leq r_{0}\right\} \cap\left(Y_{0}+F^{\circ}\right)$ is $w\left(X^{*}, M-x_{0}\right)$-compact.
4d. affdom*(f*) is closed with finite codimension in M, rcordom*(f*) $\neq \emptyset$, and *(f*) \uparrow rcordomf is continuous for the topology $M+m\left(M-M, X * /(M-M)^{\perp}\right)$.

5a. $\mathrm{f} * \equiv+\infty$, or $\exists \mathrm{x}_{\mathrm{O}} \in \mathrm{X}, \mathrm{r}_{\mathrm{O}}>-\mathrm{f}\left(\mathrm{X}_{\mathrm{O}}\right)$ sit $\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\}$ is $w\left(X^{*}, X\right)$-locally (M-M)-equicontinuous.

5b. $\tilde{I}^{*} \equiv+\infty$, or $\exists x_{0} \in X, y_{0} \in \operatorname{domf} f^{*}, r_{0}>f^{*}\left(y_{0}\right)-x_{0} y_{0}$, finite $F \subset X, 0-n o h d U$ st $\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq x_{0}\right\} \cap$ $\left(\mathrm{Y}_{0}+\mathrm{F}^{\circ}\right) \subset U^{\mathrm{O}}+(\mathrm{M}-\mathrm{M})^{\perp}$.
5c. $\forall x_{0} \in X \quad \exists$ finite $E \subset X$ st $\forall Y_{0} \in X^{*}, r_{0} \in R$, $\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\} \cap\left(y_{o}+F^{0}\right)$ is $w\left(X^{*}, X\right)-$ locally (M-M)-equicontinuous.

5d. $\forall x_{0} \in X, r_{0} \in R,\left\{y \in X^{*}: f *(y)-x_{0} y \leq r_{0}\right\}$ is w ($\mathrm{X} *, \mathrm{X}$) -locally (M-M)-equicontinuous.

5e. epif* is $w(X * \times R, X \times R)$-locally ($M-M) \times R$-equicontinuous.
6a. $£ * \equiv+\infty$, or $\exists x_{0} \in X, r_{0}>-f\left(x_{0}\right)$ st
$\left\{y \in X^{*}: f *(y)-x_{0} y \leq r_{0}\right\}$ is $w\left(X^{*}, X\right) / N^{2}-$ locall y
compact.
6b. $f^{*} \equiv+\infty$, or $\exists x_{0} \in X, y_{0} \in \operatorname{domf*}, r_{0}>f^{*}\left(y_{0}\right)-x_{0} Y_{0}$, finite $F \subset X$ st $\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\} \cap\left(Y_{0}+F^{0}\right)$ is $w\left(X^{*}, X\right) / M^{\perp}-c o m p a c t$.

6c. $\forall x_{0} \in X \quad \exists$ Iinite $F \subset X$ st $\forall y_{0} \in X^{*}, r_{0} \in R$, $\left\{\underline{y} \in X^{*}=f^{*}(y)-x_{0} y \leq r_{0}\right\} \cap\left(y_{o}+F^{o}\right)$ is $w\left(X^{*}, X\right) / M^{\perp}-c o m p a c t$.

6d. $\forall x_{0} \in X, I_{0} \in R,\left\{y \quad X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\}$ is $w\left(X^{*}, X\right) / M^{\perp}$-compact.
6e. epif* is locally compact for the $w\left(X^{*}, X\right) / M^{2} \times R$ topology.

7a. $£ * \equiv+\infty$, or $\exists x_{0} \in x, r_{0}>-f\left(x_{0}\right)$ st $\left\{y \in X^{*}: \tilde{F}^{*}(y)-x_{0} v \leq r_{0}\right\}$ is $w\left(X^{*}, X\right) / M^{+}-l o c a l l y$ bounded.
 finite $E C X$ st $\forall x \in X$,

$$
\sup \left\{\inf _{y^{\prime} \in \mathbb{A}^{\perp}}\left\langle x, y-y^{\prime}\right\rangle: y \in y_{0}+F^{0}, f^{*}(y)-x_{0} y \leq I_{0}\right\}<+\infty .
$$

7c. $\forall x_{0} \in X, \exists$ finite $F C X$ st $\forall y_{0} \in X^{*}, r_{0} \in R, x \in X_{r}$ $\sup \left\{\inf _{y^{\prime} \in \mathbb{M}^{\prime}}\left\langle x, y-y^{\prime}\right\rangle: y \in Y_{0}+F^{0}, f *(y)-x_{0} y \leq I_{0}\right\}<+\infty$.
8.1 Theorem. Let X be a HLCS, $E: X \rightarrow \bar{R}, M$ an affine subset of X with the incuced topology, $\mathrm{M} \supset \mathrm{domf}$. Then we have the following relations:

Remarks. The degenerate case $\mathrm{I}^{*} \equiv+\infty$ is usually excluded in applications. $:$: have Mつdonf if (iff, assuming M closed) $M=x_{0}+{ }^{+} N$ where $X_{0} \in d o m f$ and N is a subspace satisfying n $C\left(\text { domf }-x_{0}\right)^{\perp}=\left\{y \in X^{*}: y \equiv\right.$ const on donf $\}=$ $\left\{y \in X^{\star}:\left(f^{*}\right)_{\infty}(-y)=-\left(f^{*}\right)_{\infty}(y)\right\}$. In particular, if $M=\perp_{N}$ where $N C(\operatorname{domf})^{\perp}$, then M is closed and M domf.
8. 2 Corollary. Let X be a metrizable HLCS, $f: X \rightarrow \bar{R}$ proper convex Isc, $: 1$ an affine subset \supset donf. If $!$ is closed, then all but 6 are equivalent. If M is complete, then all of 1-6 are equivalent.

Proof of Corollary. Since M is metrizable in the induced topology, its parallel subspace M-M has the Mackey topology $m(M-M,(M-M) *)$. If M is complete, then $M-M$ is also complete, hence barrelled.

Proof of Theoren.
la \Rightarrow lb. Take $C=U \cap M \cap \bigcap_{i=1}^{n} v_{i}^{-1}\left\{r_{i}\right\}$. Then aff $C=$ in $\bigcap_{i=1}^{n} Y_{i}^{-1}\left\{r_{i}\right\}$ is closed with Einite codumension in n by Proposition 6.1,8). Moreover Unaffccc, so Unaffc cric and ric $\neq \neq$.
lb \Rightarrow la. lote $C \subset$ dom 5 CM. By Proposition 6.1.8)
there are $\ddot{Y}_{\frac{1}{n}}, \ldots, v_{n} \in X^{*}$ and $r_{1}, \ldots, r_{n} \in R$ such that $\left.\operatorname{affC}=M \cap \bigcap_{i=1}^{\bar{n}} \bar{y}_{i}^{-1} \hat{r}_{i}\right\}$. Moreover riC $\neq \varnothing$, so \exists open set U such that $C \supset U \cap a f=C \neq D$. But $f(\cdot)$ is bouncied above on C, hence on $\mathrm{U} \cap$ affC $=\mathrm{U} \cap \mathrm{M} \cap \bigcap_{i=1}^{n} Y_{i}^{-1}\left\{r_{i}\right\}$.
lb $\Rightarrow 2 a$. This is essentially the same arçunent as that used to prove tinat every nonempty finite dimensional convex set has nonempty relative ints=ior. We argue by induction on the (finite) dimension of a complementary subspace of affdomif in \because. Let us first note that affdomf is closec vith Einite codinension in M; for affcc affdomf C, so that affdonf is the algebraic sur of
the closed (in II) flat aff C and an at rost finite dimensional subspace of (M-M), hence closed and finite codimensional. Equivalently, affepif is closec with Einite codimension in $M \times R$. Now by hypothesis lh, epif C Ux? and epif contains a set B_{0} with nonempty relative interior and with affBo closed with finite codinension in $M \times R$; for if f is bounded above by r_{0} on C, set $S_{0}=C \times\left[r_{0}, \infty\right)$ and $a f f R_{0}=a f f C \times R_{\text {. }}$ If affepif = affbo we are done, for then riepif $\mathrm{Jriepis}_{0} \neq \varnothing$. otherwise $\exists z_{1} \in$ epiflaffen . :ow $B_{1}=\operatorname{co}\left(\left\{z_{1}\right\} \cup B_{0}\right)$ is a subset of coepif, anc moreover E_{1} has nonempty interior in the flat $a f f B_{1}=\operatorname{aff}\left(\left\{z_{1}\right\} \cup D_{0}\right) \subset$ affepif. $\because r o c e e d i n g, ~ i f ~$ affepif $=a f f B_{1}$ we are done; othervise $\exists z_{2} \in$ epiflaff $_{1}$ for which $r_{2} \stackrel{\Delta}{\triangleq} \operatorname{co}\left(\left\{z_{2}\right\} \cup B_{1}\right)$ is contained in coepif and has nonempty relative interior in afin 2 . Eventually we obtain a linearly independent set $\left\{z_{1}, \ldots, z_{n}\right\}$ C coepif for which $B_{n} \triangleq \operatorname{co}\left(\left\{z_{1}, \ldots, z_{n}\right\} \cup B_{0}\right)$ is contained in coepif and has nonempty relative interior in $a f f B_{n}=\operatorname{aff}\left(\left\{z_{1}, \ldots, z_{n}\right\} \cup B_{o}\right) \supset$ epif. Hence ricoepif $\neq \nexists$.

$$
2 a \Rightarrow l b \text { if } f \text { convex. Take any }\left(x_{0}, r_{0}\right) \in \text { riepif; }
$$

since $\left(x_{0}, r_{0}\right) \in$ riepif, \exists open set $U, \varepsilon>0$ such that $\left(x_{0}, r_{0}\right) \in(U \cap$ affaiomf $) \times\left(r_{0}-\varepsilon, r_{0}+\varepsilon\right) \subset e p i f$. simply define $C=U \cap a f f d o m f$; then $\hat{f}(\cdot)$ is bounded above by r_{0} on C, and affc $=$ affcomf is closed with finite codimension in M .

$$
2 a \Rightarrow 2 b . \text { Epicof } \partial \text { coepif and affepicof }=\text { affcoepif, so }
$$ riepicof $\neq \notin$. It is now a well-known result in the literature that cof is relatively continuous on rcordonf, since cof is of course convex $X \rightarrow \bar{R}$. Note that if cof takes on $-\infty$ values, then coí $\equiv-\infty$ on ricocomf.

```
2b => 2a. Srivial.
2b => 3a, 3a => 2b rhen f=*(£*). Suppose E* ##+\infty;
```

in particular E cannot take on $-\infty$ values. Take any $x_{0} \in M, r>-E\left(X_{0}\right)$. Let $L=M-X_{0}$ be the subspace parallel to M, with the induced topology and associated dual space X^{*} / L^{+}. On L define the function $\tilde{E}: I \rightarrow \bar{R}: \ell \rightarrow \bar{f}\left(X_{0}+\ell\right)$. Then donf $=\operatorname{domf}-x_{0}, \tilde{f} *([y])=E *(y) \cdot x_{0} y$. Clearly
 in $L=M-x_{0}$ iff affdome is closed with finite codimension in M and \tilde{E} has relative continuity points in Le iff f has in M (using translation invariance of vector topolocies). Applying Corollary 5.5 we see that the level set $\left\{[y] \in X^{*} / L: \tilde{E} *([y]) \leq I_{0}\right\}=\left\{[y]: E *(y)-X_{O} y \leq r_{0}\right\}$ is locally ($L-$) equicontinuous in the $W\left(X^{*} / L, L\right)$-topology if (iff when $\hat{F}=*\left(\mathrm{f}^{*}\right)$) $\tilde{\mathrm{f}}$ has relative continuity points in L and affdoméf is closed vith finite codimension in L. But the former condition is equivalent to the local L-equicontinuity $o f\left(y: E *(y)-x_{0} y \leq y_{0}\right\}$ in the $w\left(X^{*}, I_{1}\right)$ topology by Proposition 7.1.

82

$3 a \Leftrightarrow 3 b$. Condition 30 simply states that
$\left\{y \in X^{*}: f^{*}(y)-X_{0} y \leq r_{0}\right\}$ is $W^{*}\left(X^{*}, L\right)$-locally L-equicontinuous at the point y_{0}. Since $\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\}$ is convex, It follows that $3 b$ is equivalent to local L-equicontinuity at every point $y \in\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\} ;$ simply apply Proposition 4.4 to the set $\left\{[y] \in X^{*} / L: f^{*}([y]) \leq r_{0}\right\}$. Hence $3 a \Leftrightarrow 3 b$.
$3 a=>3 c$. ine first note that all of the level sets $\left\{y: E *(y)-x_{0} y \leq I_{0}\right\}$ are $w\left(X^{*}, L\right)-l o c a l y$ L-equicontinuous -this is just a direct application of Theoren 2.4 to $\tilde{f} *$ jusc as in the proof of $2 b \Rightarrow 3 a$, where one of the level sets of \hat{f}^{*} being $w\left(X^{*}, L\right)-10 c a l l y$ L-equicontinuous implies that all of then are. ?ote also that *(f*) has relative continuity points and affdom*(f*) is closed fith finite codimension from $3 a \Rightarrow 2 b$. Now given $x_{0} \in M$, let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a basis for a complement of affiomf in M, let $L=M-X_{0}$, and let x_{n+1} be an elenent of L which is strictly positive on the $w^{*}\left(X^{*}, L\right)-l o c a l l y$ equicontinuous convex cone $\left(\text { domf }-x_{0}\right)^{-} / L^{\perp}$. Take $F=\left\{ \pm x_{1}, \ldots, \pm x_{n}, \pm x_{n+1}\right\}$. Since $\left\{[y] \in X^{*} / L: E^{*}(Y)-X_{0} y \leq r_{0}\right\}$ is $w\left(X^{*} / L^{\perp}, L\right)-$ locally L-equicontinuous, its intersection with $\left(y_{0}+F^{\circ}\right) / L^{+1}$ is for every $y_{0} \in X^{*}$. But the recession cone of $\left\{y^{\prime} \in X^{*}: E^{*}(Y)-x_{0} y \leq r_{0}\right\} \cap\left(y_{0}+F^{0}\right)$ is contained in L^{\perp}, hence $\left\{[y]: f *(y)-x_{0} y \leq r_{0}\right\} \cap\left(y_{0}+F^{O}\right) / L^{\perp}$ has recession cone
\{[0]\} and is actually L-equicontinuous by Lema 4.5. But this is precisely condition $3 c$ by Proposition 7.1.

3c $\Rightarrow 3 a$. If all the level sets are empty, then $f^{*} \equiv+\infty$. Otherwise there is a nonempty level set for which 3a is true.
$3 a \Rightarrow 4 a, 3 b \Rightarrow 4 b, 3 c \Rightarrow 4 c$. This is immediate since ($M-M$)-equicontinuity implies $w\left(X^{*}, M-M\right)$-compactness by the Banach-Alaoglu theoren applied to $(M-M) *=X * /(M-M)^{\perp}$.
$4 a \Rightarrow 3 a, 4 b \Rightarrow 3 b, 4 c \Rightarrow 3 c$ when the induced topology on $\mathrm{M}-\mathrm{M}$ is the mackey topology $\mathrm{m}\left(\mathrm{M}-\mathrm{M}, \mathrm{X}^{*} /(\mathrm{M}-\mathrm{M})^{+}\right)$, since then (M-M)-equicontinuity is equivalent to $w\left(X^{*}, M-M\right)$-compactness.
$4 a \Leftrightarrow 43$. Put the $m\left(M-M, X^{*} /(M-M)^{\perp}\right)$ topology on $M-M$; this induces a topology on M by transiation. But now $4 a \Leftrightarrow 4 d$ is equivalent to the result $2 b \Leftrightarrow 3 a$.
$3 a \Rightarrow 5 a, 3 b \Rightarrow 5 b, 3 c \Rightarrow 5 c$. This is immediate since $w\left(X^{*}, X\right) \supset w\left(X^{*}, M-M\right)$.
$5 a \Rightarrow 3 a, 5 b \Rightarrow 3 b, 5 c \Rightarrow 3 c$ if M is closed. Suppose $\left\{y \in X^{*}: E^{*}(u)-X_{0} y \leq r_{0}\right\}$ is $w\left(X^{*}, X\right)$-locally ($M-M$)-equicontinuous. Since $M \subset$ domf, we have $M^{\perp} \subset\left\{y \in X^{*}: f^{*}(y)-X_{0} y \leq r_{o}\right\}_{\infty}$;
 (M-M)-equicontinuous. But M is closed, so $w\left(X^{*}, X\right) /(M-M)^{\perp}=$ $w(X *, M-M)$.
$5 c \Rightarrow 5 d \Rightarrow 5 e \Rightarrow 5 a$. Imnediate.
$5 \Rightarrow 6$ if M closed. Suppose 5 holds. Define $I=\operatorname{span} M=M+(-\infty, \infty) \cdot\left\{m_{0}\right\}$ where $m_{0} \in M$. Clearly L is closed since it is the sum of the closed flat M and a l-dimensional subspace; moreover affdomf is closed with finite codimension in I since M is closed with finite codimension in L. Now 5 implies (since M is closed) that 3 and hence 2 a holds for ${ }^{*}\left(f^{*}\right)$ and M; thus $2 a$ also holds for * (f*) in L. But then 5 holds for L replacing M, that is $\left\{Y_{\in} \in X^{*}: f(y)-x_{0} y \leq f_{0}\right\}$ is $w\left(X^{*}, X\right)$-localiy L-equicontinuous, hence $W\left(X^{*}, X\right) / I^{\perp}$-locally L-equicontinuous. Since L-equicontinuity implies $w^{*}\left(X^{*}, I^{+}\right)$-compactness and $w^{*}\left(X^{*}, I^{+}\right)=$ $W\left(X^{*}, X\right) / L^{\perp}$ by Proposition 7.2 (L is closed), and $L^{\perp}=M^{\perp}$, 6 follows.

6 => 5 if M closed and has its mackey topology. As in $5 \Rightarrow 6$, define $L=\operatorname{span} M={ }^{1}\left(M^{\perp}\right)$, a closed subspace. If the level sets $\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq r_{0}\right\}$ are $w^{*}\left(X^{*}, X\right) I^{\perp}-$ locally compact, they are $w\left(X^{*}, X\right) /(M-M)^{\perp}$-locally compact since $L \supset M$ and hence $w\left(X^{*}, L\right) \supset w\left(X^{*}, M\right)$. But $M-M$ has its mackey topology, so $W\left(X^{*}, X\right) /(M-M)^{\perp}$-local compactness is equivalent to $w\left(X^{*}, X\right)-l o c a l(M-M)$-equicontinuity and 5 follows.

$$
6 \Rightarrow 7 . \text { Trivial since local compactness implies }
$$

local boundedness.

$$
\begin{aligned}
& 7 \Rightarrow 6 \text { if } M \text { closed and barrelled. In this case } \\
& w\left(X^{*}, X\right) / M^{\perp}=W\left(X^{*}, \perp_{\left(M^{\perp}\right)}\right) \text { since } M \text { is closed and } \\
& W\left(X^{*} / M^{\perp}, \perp^{\perp}\left(M^{\perp}\right)\right. \text {-boundedness is equivalent to compactness } \\
& \text { since } M \text { is barrelled. }
\end{aligned}
$$

9. Determining continuity points

In Theorem 8.1 we have given several conditions which characterize when a convex function $f: X \rightarrow \bar{R}$ has relative continuity points, or equivalently when riepıf $\neq \varnothing$. In this section we characterize those points at which f is relatively continuous assuming that f has such points.
9.1 Theorem. Let X be a HLCS, $f: X \rightarrow \vec{R}$ convex. Assume riepif $\neq \varnothing$. Then $\hat{f}\left({ }^{(}\right)$is continuous relative to affdomf on rcordomf, and the following are equivalent for a point $x_{0} \in X:$

1. $f(\cdot)$ is relatively continuous at $x_{0} \in \operatorname{dom} \mathbf{I}^{\prime}$
2. $x_{0} \in$ rcordomf
3. domi-x x_{0} absorbs x_{0}-domf
4. $\forall x \in \operatorname{domf}, \exists \varepsilon>0$ st $(1+\varepsilon) x_{0}-\varepsilon x \in \operatorname{domf}$
5. $\left[\text { domf }-x_{0}\right]^{-} \subset\left[\text { domf- } x_{0}\right]^{\perp} \equiv\left\{y \in X^{*}: ~ y \equiv\right.$ constant on domf $\}$
6. $\left[\text { domf }-x_{0}\right]^{-}$is a subspace
7. $\left\{y \in X^{*}:\left(f^{*}\right)_{\infty}(Y)-x_{0} y \leq 0\right\}$ is a subspace
8. $x_{0} \in$ domf, and $\left\{y \in X^{*}: f^{*}(y)-x_{0} y \leq r\right\}_{\infty}$ is a subspace for some $r \geq-f\left(x_{0}\right)$
9. $\partial f\left(x_{0}\right) \neq \varnothing$ and $\left(\partial f\left(x_{0}\right)\right)_{\infty}$ is a subspace
10. $\partial f\left(x_{0}\right)$ is nonempty and $w\left(X^{*}, a f f d o m f-x_{0}\right)$-compact.

Proof. $1 \Leftrightarrow 2$. Standard in the literature.

$$
2 \Leftrightarrow 3 \Leftrightarrow 4 . \text { Definition of relative core (relative }
$$ algebraic interior）．

$2 \Leftrightarrow$ 5．Let $C=$ domf－x $; C$ is convex and has nonempty relative interior．Hence by the Hahn－Banach separation and extension theorems， $0 \neq$ ric if and only if $\exists y \in X^{*}$ such that y is not constant on afic $=$ affaonf－x x_{0} and $\sup _{x \in C}\langle x, y\rangle \leq 0 ;$ equivalently，$y \in C^{-}=\left[\text {domf－} x_{0}\right]^{-}$and $x \in C$
$y \notin C^{\perp}=\left[\operatorname{com} \tilde{E}-x_{0}\right]^{\perp}$.

$$
\begin{aligned}
& 5 \Leftrightarrow 6 \text {. Immediヨさe. } \\
& 6 \ll 7 .\left\{y \in X^{*}:\left(f^{*}\right) \approx(y)-x_{0} y \leq 0\right\} \\
& =\left\{y \in X^{*}: \sup _{x \in \operatorname{Som}^{\dot{*}}\left(£^{*}\right)}\langle x, y\rangle-\left\langle x_{0}, y\right\rangle \leq 0\right\} \\
& =\left[\operatorname{aom}^{*}(\underset{\underline{*}}{*})-x_{0}\right]^{-}
\end{aligned}
$$

Now don＊$\left(\tilde{I}^{*}\right)$ Ccldomf，since $*\left(\right.$ İ＊$\left.^{*}\right)(\cdot)+\delta_{\text {cldomf }}(\cdot)$ is a convex Isc funztion dominated by f and hence ＊$\left(\mathrm{f}^{*}\right)+\delta_{\text {cldomf }}$ 上＊$\left(\mathrm{E}^{*}\right)$ ． Di_{i} course，$*\left(\mathrm{I}^{*}\right) \leq \mathrm{f}$ so domf \subset dom＊（f＊）．Thus

$$
\operatorname{domf}-x_{0} \subset \operatorname{dom}^{*}(f \dot{*})-x_{0} \subset c l d o m f-x_{0}
$$

and so

$$
\left[\text { domf }-x_{0}\right]^{-} \supset\left[\text { aom* }(f *)-x_{0}\right]^{-} \supset\left[\operatorname{cldomf}-x_{0}\right]^{-} .
$$

But $\left[\operatorname{domf}-x_{0}\right]^{-}=\left[c l \operatorname{dom} \tilde{-}-x_{0}\right]^{-}$，so $\left[\operatorname{domf}-x_{0}\right]^{-}=$ $\left[\operatorname{dom}^{*}\left(\mathrm{E}^{*}\right)-\mathrm{X}_{0}\right]^{-}=\left\{y \in \mathrm{X}^{*}:(\mathrm{f})_{\infty}(\mathrm{y})-\mathrm{x}_{0} \mathrm{y} \leq 0\right\}$ and $6 \Leftrightarrow 7$ holas．

$$
7 \Leftrightarrow 8 \text { 8. Suppose } x_{0} \in \text { dome and } r \geq-f\left(x_{0}\right) \text {. Then }
$$ $\left\{y \in X^{*}: \underset{\text { cone }}{ } f^{*}(y)-x_{0} y \leq r\right\}$ contains an element y_{O} and has recessionagiven by

$$
\begin{aligned}
\left\{y \in X^{*}:\right. & \left.f f^{*}(y)-x_{0} y \leq r\right\}_{\infty}=\left\{y \in X^{*}: f *\left(y_{0}+t y\right)-\left\langle x_{0}, y_{0}+t y>\leq r y t>0\right\}\right. \\
& =\left\{y \in X^{*}: \sup _{t>0}\left[\frac{f *\left(y_{0}+t y\right)-f^{*}\left(y_{0}\right)}{t}+\frac{f^{*}\left(y_{0}\right)-r-x_{0} y_{0}}{t}\right] \leq x_{0} y\right\} \\
& =\left\{y \in X^{*}: \sup _{t>0}\left[\frac{f^{*}\left(y_{0}+t y\right)-f^{*}\left(y_{0}\right)}{t}\right] \leq x_{0} y\right\} \\
& =\left\{y \in X^{*}:\left(f^{*}\right)_{\infty}(y) \leq x_{0} y\right\} .
\end{aligned}
$$

Thus 7 <=> 3 holds.
$7 \Leftrightarrow 9$. This is a special case of $7 \Leftrightarrow 8$, since $\partial f\left(x_{0}\right)=\left\{y \in X^{*}: f *(y)-x_{0} y \leq-f\left(x_{0}\right)\right\}$ and $\partial f\left(x_{0}\right) \neq \varnothing \Rightarrow$ $x_{0} \in \operatorname{domf}$.

$$
9 \Rightarrow 10 . \text { Let } M=\text { affdomf-x } x_{0} \text {, the subspace parallel }
$$ to affaomf. By Theorem 8.1, $\partial f\left(x_{0}\right)=\left\{y \in X^{*}: f *(y)-x_{0} y \leq-f\left(x_{0}\right)\right\}$ is $w\left(X^{*}, M\right)-l o c a l l y$ compact: equivalently $\partial f\left(x_{0}\right) / M^{\perp}$ is $w\left(X^{*} / M^{\perp}, M\right)$ locally-compact. But we have shown in $7 \Leftrightarrow 8$ and $5 \Leftrightarrow 7$ that

$$
\partial f\left(x_{0}\right)_{\infty}=\left\{y \quad X^{*}:(E *)_{\infty}(y)-x_{0} y \leq 0\right\}=\left[d o m f-x_{0}\right\}^{-}
$$

But then 9 implies $\partial f\left(x_{0}\right)_{\infty}=\left[\text { amp- } x_{0}\right]^{\perp}=M^{\perp}$, so $\left(\partial f\left(x_{0}\right) / M^{\perp}\right)_{\infty}=\partial f\left(x_{0}\right)_{\infty} / N^{\perp}=\{[0]\}$; hence by Lemma 1.5 $\partial f\left(X_{0}\right) / M^{\perp}$ is actually $v\left(X^{*} / M^{\perp}, M\right)$-compact and hence 10 follows.

$$
10 \Rightarrow 9 . \quad \text { Immediate. }
$$

III. Duality Approach to Optimization

1. Introduction

Abstract

The idea of duality theory for solving optimization problems is to transform the original problen into a "dual" problem which is easier to solve and which has the same value as the original probler. ${ }^{+}$Constructing the dual solution corresponds to solving a "marinum principle" for the problem. This dual approach is especially useful for solving proilems rith eifficult inplicit constraints and costs (e.q. state constraints in optinal control problems), for wich the constraints on the cual probler are much sirpler (only explicit "control" constraints). Noreover the dual solutions have a valuable sensitivity interpretation: the dual solution set is precisely the subgradient of the change in rinimum cost as a function of perturbations in hte "implicit" constraints and costs. Previous results for establishing the valiaity of the duality formalism, at least in the infinite-dimensional case, generally require the existence of a feasible interior point ("Kuhn-Fucker" point) for the implicit constraint set. This requirement is restrictive and

[^4]difficult to verify. Rockafellar [R73] has relaxed this to require only continuity of the optiral value function. In this chapter we investigate the cuality approach in detail and develop weaker conditions which require that the optimal value of the minimization problem varies continuously with respect to perturbations in the irplicit constraints only along feasible directions (that is, ve reçuire relative continuity o三 the ovtiral value function); this is sufficient to imply existence for the dual problem anci no ciualitv cas. Soreover ve pose the conditions in terms of certair local compactness reauirenents on the dual feasibility set, based on the results of chapter II characterizins the duality hetween relative continuity points anci local compactness.

To incicate the scops of our results let us consider the Lagrangian formulation of nonlinear procramminc problens with generalized constraints. Let $i, i x$ be norned spaces and consider the problen

$$
P_{0}=\inf \{f(u): u \in C, G(u) \leq 0\}
$$

where C is a convex subset of $u, f: C \rightarrow R$ is convex, and $r: C \rightarrow X$ is convex in the sense thet

$$
g\left(t u_{1}+(1-t) u_{2}\right) \leq t g\left(u_{1}\right)+\left(1-t i g\left(u_{2}\right), \quad u_{1}, n_{2} \in c, t \in[0,1] .\right.
$$

Ve are assumins that X has been given the partial orderinc induced by a nonempty closed convex cone of "positive vectors"; ve write $x_{1} \geq x_{2}$ to rean $x_{1}-x_{2} \in C$. The dual problen correspondinc to P_{0} is vell-known to be

$$
D_{0}=\sup _{y \in C^{+}} \inf _{u \in C}[f(u)+\langle q(u), y\rangle] ;
$$

this follows fron equation (2.4) below by tatinc $i \equiv 0$, $x_{0}=0$, and

$$
F(u, x)= \begin{cases}f(u) & \text { if } u \leq C, G(u) \leq x \tag{1}\\ +\infty & \text { other ise } .\end{cases}
$$

where we have defined the Lagrancian function by

$$
\begin{aligned}
& 2(u, y)=\left\{\begin{array}{l}
+\infty \quad i \neq u \neq C \\
f(u)-\left\langle\Gamma(u), y>\quad \text { if } u \leq C, v \in 0^{-}\right. \\
-\infty \quad \text { if } u \in C, y \notin 0^{-} .
\end{array}\right. \\
& \text {In analyzinc tho probler } \quad \text { ve in-hed it in the }
\end{aligned}
$$

family of perturbed problers

$$
P(x)=\operatorname{in}\{\{f(u): u \in C, \Xi(u) \leq x\}
$$

It then follows that the cull prohlen is precisely the second conjugate of F_{0} evaluated at $0: D_{0}=*\left(P^{*}\right)(0)$. Moreover if there is no duality cap ($p_{0}=D_{0}$) then the dual solution set is the suagradient $\partial p(0)$ of $p(\cdot)$ at 0 . The following theorem summarizes the duality results for this probe:.
1.1 Theorem Assure p_{0} is Einite, the following are equivalent:

1) $P_{0}=D_{0}$ and D_{0} has solutions
2) $\quad 3 P(0) \neq 7$
3) $\exists \hat{i} \in C^{+}$st $p_{0}=\operatorname{in}_{u \in C}\{=(u)+\langle g(u), \hat{y}\rangle]$
4) $\exists \varepsilon>0, r>0$ st $f(L) \geq P_{0}-v|x|$ whenever $u \in C,|x| \leq \varepsilon, G(u) \leq x$.

If i) is true then \hat{u} is a solution for p_{0} ifs $\hat{u} \in C$, $g(u) \leq 0$, and tinere is a $\hat{i} \in n^{+}$satisfying

$$
f(u)+\langle G(u), \hat{i}\rangle \geq \equiv(\hat{u}) \quad \forall u \in C,
$$

in which case complementary slackness holds, ie.
$\langle G(\hat{u}), \hat{v}\rangle=0$, and \hat{y} solves D_{0}.

Proof. This follows directly Erom Theorem 24 with F dełined by (1). Δ

We remark here that criterion 4) is necessary and sufficient for the duality result l) to hold, and it is critical in determining how strong a norm to use on the perturbation space X (equivalently, how large a cual space X^{*} is required in formulating a well-posed dual problem).

The rost familiar assumption which is race to insure that the duality results of Theorer l.l hold is the existence of a Kuhn Tucker noint:

$$
\exists \bar{u} \in C \text { st }-g(\bar{u}) \in \text { int } ?
$$

(see Corollary 3.2). This is a very strong requirement, and again is often critical in determining what topology to use on the perturbation space X. More qenerally, we need only recuire that $P(\cdot)$ is continuous at 0 (Theorer 3.1). Rochafellar has presented the following result [R73]: if U is the norred dual of a Banach space V, if X is a Banach space, if \underline{a} is lower sericontinuous in the sense that

$$
\operatorname{epig} \stackrel{A}{=}\{(u, x): G(u) \leq x\}
$$

is closed in $U \times X$ (ecg. if G is continuous), then the duality results of Theorer: 1.1 hold whenever $0 \in \operatorname{core}[g(C)+Q]$.

In fact, it then follows that $P(\cdot)$ is continuous at 0 . The following theorem relaxes this result to relative continuity and also provices a dual characterization in terms of local compactness recuirerents which are generally easier to verify.

1. 2 Theorem. Assume $P_{0}<+\infty$; U is the normed dual V* of a normed space \because; \because is a panach space; pig is closed in $U \times x$. Then the Eoliowinc are equivalent:
1) $a E f[g(C)+0]$ is $c l o s e c ; ~ a n d ~ 0 \in \operatorname{cor}[G(C)+0]$,
or equivalently
$\forall u \in C, \forall x \geq g(u) \quad \exists \equiv>0$ and
$u_{1} \in C$ st $g\left(u_{1}\right) \div \varepsilon x \leq 0$.
2) $Q^{+} \cap g(C)^{+}$is a subspace M; and there is an $\varepsilon>0$, an $x_{1} \in X$, an $r_{1} \in P$ such
 nonempty and $u\left(X^{*}, X\right) /: \therefore-l o c a l l y$ bounded.

If either of the above solis, then $P(\cdot)$ is relatively
continuous at 0 and hence theorem l.l.1) holds. Moreover the dual solutions have the sensitivity interpretation

$$
P^{\prime}(0 ; x)=\max \left\{\left\langle x, y^{>}: y \text { solves } D_{0}\right\}\right.
$$

Where the maximum is attained and $P^{\prime}(0 ; \cdot)$ denotes the directional derivative of the ontimal value function $P(\cdot)$ evaluated at 0 .

Proof. This follows directly fron Theorem 3.6 where dom $P=G(C)+0$ and $\left(F^{*}\right)_{\infty}(v, y)=\delta_{\leq 0}(y)+\sup _{u \in C}[u v+G(x) y]$ $\left\{Y \quad X^{*}:\left(E^{*}\right)_{\infty}(0, Y) \leq 0\right\}=Q^{-} G(C)^{-} . \Delta$
2. Problen formulation

In this section we sumarize the duality formulation of optimization problems. Let U be a HLCS of controls; X a HLCS of states; $u \mapsto \mathrm{Lu}+\mathrm{x}_{0}$ an affine map representing the system equations, where $X_{0} \in X$, and $r \cdot U \rightarrow X$ is linear and continuous; $F: U \times X \rightarrow \bar{R}$ a cost function. We consider the ninimization problen

$$
\begin{equation*}
P_{0}=\inf _{u \in U} E\left(u, L u+x_{0}\right), \tag{I}
\end{equation*}
$$

For wich feasibility constraints are represented by the requiremert that $\left(u, j u+x_{0}\right) \in$ Corf. Of course, there are many ways of fomulatinn a given optinization problem in the form (1) by choosing different spaces U, X and maps L,F; in general the iciea is to put explicit, easily characterized costs and constraints into the "cc.strol" costs on U and to put di三ficult implicit constraints and costs into the "state" part of the cost where a Lagrange multiplier representation can be very useful in transforming implicit constraints to explicit constraints. The dual variables, or multipliers vili be in $X *$, and the dual problen is an optimization in X^{*}.

In order to fomulate the dual prohlem ve consider a family of perturhed prohlems

$$
\begin{equation*}
P(x)=\inf _{u \in U} F(u, L u+x) \tag{2}
\end{equation*}
$$

where $x \in X$. Note that if $F: U \times X \rightarrow \bar{P}$ is convex then $P: X \rightarrow \bar{R}$ is convex; however F lsc does not imply that p is lsc. of course $p_{0}=P\left(x_{0}\right)$. We calculate the conjugate function $C E P$:

$$
\begin{align*}
P^{*}(y) & =\sup _{x}[\langle x, y\rangle-P(x)]=\sup _{u, x}[\langle x, y\rangle-F(u, \operatorname{Lu}+x)] \\
& =F^{*}\left(-I^{*} y^{\prime}, y\right) \tag{3}
\end{align*}
$$

The dual problen of $p_{0}=P\left(x_{0}\right)$ is given by the second conjugate os $?$ evaluatec at x_{o}, i.e.

$$
\begin{equation*}
D_{0}=*\left(P^{*}\right)\left(x_{0}\right)=\sup _{Y \in X^{*}}\left[\left\langle x_{0}, \dot{Y}\right\rangle-F^{*}(-\bar{L} * y, y)\right] \tag{4}
\end{equation*}
$$

The feasibility set for the dual problem is just domp* $=\left\{y \in X^{*}:\left(-L^{*} y, y\right) \in \operatorname{dom} F^{*}\right\}$. We immediately have

$$
\begin{equation*}
P_{0} \equiv P\left(x_{0}\right) \geq D_{0} \equiv *\left(P^{*}\right)\left(x_{0}\right) \tag{5}
\end{equation*}
$$

Moraver, since the prinal problem F_{0} is an infirun, and the dual probier D_{0} is a supremun, and $D_{0} \geq D_{0}$, we see that if $\hat{u} \in U, \hat{Y} \in X^{*}$ satisfy

$$
\begin{equation*}
F\left(\hat{u}, L \hat{u}+x_{0}\right)=\left\langle x_{0}, \hat{y}\right\rangle-F^{*}(-L * \hat{Y}, \hat{Y}) \tag{6}
\end{equation*}
$$

then $\vec{b}_{0}=D_{0}=E\left(\hat{A}, L \hat{u}+x_{0}\right)$ and (assuming $\left.P_{0} \in ?\right) \quad \hat{u}$ is
optimal for $\mathrm{P}, \hat{\mathrm{y}}$ is optimal for D . Thus, the existence of a $\hat{Y} \in X^{*}$ satisfying (6) is a sufficient condition for optimality of a control $\hat{u} \in U$; we shall be interested in conditions under which (6) is also necessary. It is also clear that any "dual control" $y \in X *$ provides a lower bound for the original problen: $P_{0} \geq\left\langle x_{0}, Y\right\rangle-F *(-T * y, y)$ for every $Y \in X^{*}$.

The duality approach to optirization problems P_{0} is essentially to vary the constraints slichtly as in the perturbed problem $P(x)$ and see how the rinirur cost varies accordingly. In the case that F is conver, $P_{0}=D_{0}$ or no "duality gap" means that the perturbed rinimum cost Eunction $P(\cdot)$ is lsc at x_{0}. The stroncer requirement that the change in minimur cost does not drop OEf too sharply with respect to perturbations in the constraints, i.e. that the directional derivative $P^{\prime}\left(x_{0} ; \cdot\right)$ is bounded below on a neighborhood of x_{0}, corresponds to the situation that $P_{0}=D_{0}$ and the dual pronlem D_{0} has solutions, so that (6) becomes a necessary and sufficient condition for optirality of a control \hat{u}. It turns out that the solutions $O \equiv D_{0}$ when $F_{0}=D_{0}$ are preaisely the elements of $\hat{j p}\left(x_{0}\right)$, so that the dual solutions have a sensitivity interpretation as the subgradients of the chance in minimum cost with respect
to the chance in constraints.
Before stating the ahove remarks in a precise way, we define the Hamiltonian and Lagrangian functions associated with the problen F_{0}. We denote bv $F_{u}(\cdot)$ the functional $F(u, \cdot): x \rightarrow F(u, x): X \rightarrow \bar{R}$, for $u \in \mathbb{U}$. The Faniltonian Eunction II: $\mathrm{U} \times \mathrm{X}^{*} \rightarrow \overline{\mathrm{R}}$ is defined by

$$
\begin{equation*}
\underset{\sim}{n}(u, v)=\sup _{x \in X}[\langle x, v\rangle-F(u, x)]=F_{u}^{*}(v) . \tag{7}
\end{equation*}
$$

2.1 Proposition The Lamiltonian \because satisfies:

1) $\left(\approx_{\mathrm{Z}}^{\mathrm{u}}\right)(\mathrm{x})=*\left(E_{\mathrm{u}}^{*}\right)(\mathrm{x})$
2) $\left.\left({ }_{\sim}^{*}\right)_{u}\right)^{*}(y)=H_{u}(\underline{y})=E_{u} *(y)$
3) $F^{*}(v, y)=\sup _{u}[\langle u, v\rangle+F(u, y)]=(-i!(\cdot, y)) *(v)$.

Horeover II(u, $)$ is convex and $v^{*}-1$ sc $x^{*} \rightarrow \bar{P} ; H^{*}(v)$ is concave $U \rightarrow \bar{R}$ if E is convex; if $F(u, \cdot)$ is convex, proper, and lsc then $H(\cdot, y)$ is concave for every y iff F is convex.

Proof. The equalities are straightforvard calculations. H(u, $)$ is convex and $I s c$ since $\left(*_{u}\right) *=I_{u}$. It is straightforrard to shor: that $-H(\cdot y)$ is convex if E(.) is convex. On the other hanc $i \equiv *\left(F_{v}^{*}\right)=F_{u}$ and H(.,y) is concave for every $y \in X^{*}$, then
$F(u, x)={ }^{*}\left(F_{u}{ }^{*}\right)(x)={ }^{*} H_{u}(x)=\sup [x y-Y(u, y)]$ is the Y supremum of the convex functional $(u, x) \rightarrow\langle x, y\rangle-H(u, y)$ and hence F is convex.

The Lagrangian function $\ell: U \times X^{*} \rightarrow \bar{R}$ is defined by

$$
\begin{align*}
\ell(u, y) & =\underset{x}{\operatorname{in}}=\left[F\left(u, L u+x_{0}+x\right)-\langle x, y\rangle j\right. \\
& =\left\langle L u+x_{0}, y\right\rangle-F_{u}^{*}(v) \tag{8}\\
& =\left\langle I u+x_{0}, y\right\rangle-Y(u, y) .
\end{align*}
$$

2.2 Proposition The Lagrangian i satisfies

1) $\underset{u}{\inf } i(u, y)=\left\langle x_{0}, y\right\rangle-F^{*}\left(-i^{*} y, y\right)$
2) $D_{C} \equiv *\left(F^{*}\right)\left(x_{0}\right)=\sup _{y} \inf \hat{u}(x, y)$
3) $*\left(-u_{u}\right)(x)=*\left(F_{u}^{*}\right)\left(L u+x_{0}+x\right)$
4) $\quad P_{0} \equiv P\left(X_{0}\right)=\inf _{u} \sup _{y} P(u, y) \quad i \equiv F_{u}=*\left(F_{u}{ }^{*}\right)$
for every $u \in U$.

Moreover $\ell(u, \cdot)$ is convex and $w^{*}-\hat{\imath}$ sc $X^{*} \rightarrow \overline{\mathrm{R}}$ for every $u \in U ; \quad(\cdot)$ is convex $U \times X^{*} \rightarrow \bar{R}$ if F is convex; if $F_{u}={ }^{*}\left(F_{u}^{*}\right)$ for every $u \in U$ then z is convex: inf Γ is convex.

Proof. The Eirst equality 1) is direct calculation; 2) then follons from 1) anc (4). Equaltiy 3) is inanaiate from (8); 4) then follows from 3) assuming that $*\left(F_{u}{ }^{*}\right)=F_{u}$. The final remarks Follo: fron Proposition 2.1 and the Eact that $\ell(u, y)=\left\langle I u+x_{o}, Y\right\rangle-E(u, y)$.

Thus from Proŋosition 2.2 we see that tie ciuality theory basec on conjugate functions includes the Ianranaian formilation of dualitv for inf-sup proklems. For, civen a Lagrangian function $\hat{\lambda}: U \times X^{*} \rightarrow \bar{R}$, we can deEine $F: U \times X \rightarrow \bar{R} \quad b y(u, x)=*(-\hat{i} u)(x)=\sup _{V}[\langle x, V\rangle+z(u, x)]$, so that

$$
\begin{aligned}
& p_{0}=\underset{u}{i n} \sup i(u, y)=i n \equiv F(u, 0) \\
& D_{0}=\sup \inf i(u, y)=\sup -F *(0, y),
\end{aligned}
$$

Which Eits into the conjugate duality Eramerork.
For the folloiving we assume as before tiat U, Y are ULCS's; $L: U \rightarrow X$ is linear and continuous; $Y_{0} \in K$;
$E: U \times X \rightarrow \bar{P} . \quad$ Te cefine the farily of optirization problems $P(x)=\inf _{u} F(u, L u+x), E_{O}=P\left(x_{0}\right), D_{O}=\sup _{V}\left[\langle z, V\rangle-F^{*}\left(-L^{*} y, y\right)\right]$ $=*(2 *)\left(x_{0}\right)$. Fe stali he especially interestect in the case that $E(\cdot)$ is coniex, anc bence $P(\cdot)$ is convex.
2.3 Proposition (no dunlity rap). It is airavs true thet

$$
\begin{align*}
P_{0} & \equiv P\left(x_{0}\right) \geq \inf _{u} \sup _{y} i(u, y) \geq D_{0} \\
& \equiv \inf \sup _{u} \quad i(u, y) \equiv *(P *)\left(x_{0}\right) \tag{9}
\end{align*}
$$

If $P(\cdot)$ is conver and D_{0} is feasible, then the folloring are ecuivalent:

1) $\quad P_{0}=\Gamma_{0}$
2) $p(\cdot)$ is sic at x_{0}, i.e. $\lim _{x \rightarrow y_{0}} \operatorname{in} f(x) \geq p\left(x_{0}\right)$

$$
x \in I x_{1}+x_{0} \div^{\circ} E
$$

군
Fhese impiy, and are ecuivalent to $i \equiv F_{u}=$ * $\left(F_{u}{ }^{*}\right)$ for every uधG,
4) $\quad \ell$ nas a sadile value, i.e.

$$
\inf _{u} \sup _{\underline{y}} \hat{l}(u, y)=\sup _{y} \inf _{u} \hat{i}(u, y) .
$$

Proof. The pronf is immediate since $P_{0}=P\left(x_{0}\right)$ and $\left.D_{0}=*(1)^{*}\right)\left(x_{0}\right)$. Statement 4 follo:rs fror: Ernosition 2.2 and (9).
2.- Thenver (no anazter an and dual solutions).

1) $P_{0}=D_{0}$ and D_{0} has solutions
2) $\quad \partial F\left(x_{0}\right) \neq g$
3) $\exists \hat{y} \in \underline{v} s t \underline{P}_{0}=\left\langle x_{0}, \hat{Y}\right\rangle-F^{*}(-\Sigma * \hat{Y}, \hat{y})$
4) $\exists \hat{\underline{v}} \in \underline{y}$ st $P_{0}=\inf y, u_{1} \hat{A}$. u
$I \equiv \quad \mathrm{~F}(\cdot)$ is convex, then each of the above is eruajvalent to

5) $\underset{x \rightarrow 0}{\operatorname{lin}} \inf ^{\prime}\left(x_{0} ; x\right)>-\infty$
6) $\lim _{x \rightarrow 0} \frac{p\left(x_{0}+t x\right)-p_{0}}{t} \equiv$ $t \rightarrow 0^{+}$

IE $P(\cdot)$ is convex and X is a normed space, then the above are equivalent to:
8) $\exists \varepsilon>0, \therefore>0$ st $F\left(\exists, L u+x_{0} \div x\right)-P_{0} \geq-:|x| \quad \forall u \in U,|x| \leq \varepsilon$.
9) $\exists \varepsilon>0, \because>0$ st $\forall u \in U, \quad x: \leq \varepsilon, \quad>0$ U' $\in U$ st

$$
F\left(u, T, u+n_{0}+x\right)-F\left(u^{\prime}, I^{\prime}+x_{0}\right) \geq-\because \mid x-E .
$$

recover, if l) is true then \hat{Z} silvas $D_{0} \quad i \equiv E \hat{\forall} \in i p\left(x_{0}\right)$,
and \hat{u} is a solution for n_{0} iffy there is a $\hat{\underline{y}}$ satisfying any of the conditions I')-3') below. mise following statements are equivalent:

1') \hat{u} solves P_{0}, \hat{Y} solves D_{0}, and $\eta_{0}=D_{0}$
2') $F\left(\hat{u}, L \hat{u}+x_{0}\right)=\left\langle x_{0}, \hat{V}\right\rangle-F *(-L * \hat{y}, \hat{y})$
3') $(-\Sigma * \hat{y}, \hat{y}) \in E E\left(\hat{\dot{U}},-\hat{i}+x_{0}\right)$.
These imply, and are equivalent to if $\bar{F}(u, \cdot)$ is proper convex: \quad sc $~ X \rightarrow \bar{R}$ for ever: $u \in U$, the following equivalent statements:

4') $0 \in \partial \ell(\cdot \hat{y})(\hat{y}) \quad$ and $\quad j \in \exists(-i(\hat{u}, \cdot))(\hat{Y})$, ie. (\hat{u}, \hat{y})
is a sacilepoint $o \equiv i$, that is $\hat{i}(\hat{u}, y) \leq 2(\hat{u}, \hat{Y}) \leq \hat{i}(u, \hat{y})$ for every $u \in U, Y \in X^{*}$.

5') $\quad L \hat{u}+x_{0} \in \operatorname{jit}(\hat{u}, \cdot)(\hat{y})$ and $L * \hat{y} \in \hat{a}(-m(\cdot, \hat{y}))(\hat{u})$, ie.
\hat{y} solves $\underset{y}{\operatorname{in}} \underset{f}{[H}(\hat{u}, y)-\left\langle I \hat{u}+x_{0}, v>\right]$ and \hat{u} solves in $E[E(u, \hat{i})+\langle u, I \dot{x} \hat{\hat{V}}\rangle]$.
:
D: ユOE. Dj $\Rightarrow 2$). Let \hat{y} be a solution of $D_{0}=*\left(p^{*}\right)\left(x_{0}\right)$.
Then $p_{0}=\left\langle x_{0}, \hat{y}\right\rangle-p^{*}(\hat{\underline{y}})$. Fence $F^{*}(\hat{y})=\left\langle x_{0}, \hat{v}\right\rangle-P\left(x_{0}\right)$ and from Proposition II. $3.1, \dot{\prime}) \Rightarrow$ I) we have $y \in 3 p\left(x_{0}\right)$.

$$
2) \Rightarrow \text { 3). Imecciate } \partial \theta \text { definition of Po. }
$$

3) \Rightarrow 4) \Rightarrow 1). Imediate from (9).

If $p(\cdot)$ is conver and $p\left(x_{0}\right) \in R_{\text {, }}$ then 1) and 4)-9) are all equivalent by theorem II.3.2. The equivalence of 1')-5') Eollows froz the definitions and Proposition 2.3.

Remari. In the case that X is a normed space, condition 8) of Theoren 2. 2 provides a necessary and sufficient characterization for rienen dual soiutions exist (rith no duality qap) that shows ex:licitly how their existence depencis on what topology is used for the space of perturbations. In general the inea is to take a nom as weak as possible While still satisfying condition 8), so that the dual problem is formulated in as nice a space as possible. For example, in optimal control problems it is well knom that when there are no state constraints, perturbations can be taken in e.g. an I_{2} norm to get dual solutions y (and costate $-L^{*} y$) in L_{2}, whereas the presence of state constraints requires perturbations in a uni末orm rorm, witn dual solutions only existing in a space of measures.

It is often useful to consider perturbations on the dual problem; the cuality results for ontimization can
then be applied to the dual family of perturned problers. No: the dual probler D_{0} is

$$
-D_{0}=\inf _{y \in X^{*}}\left[F^{*}\left(-I^{*} y, y\right)-\left\langle x_{0}, y>\right] .\right.
$$

In analogy with (2) we define perturbations on the dual problen by

$$
\begin{equation*}
D(v)=\inf _{y \in X^{*}}\left[E^{*}\left(v-\Sigma^{*} y, y\right)-\left\langle x_{0}, y^{>}\right], \quad v \in U^{*} .\right. \tag{10}
\end{equation*}
$$

Thus $D(\cdot)$ is a convex rap $U^{*} \rightarrow \bar{R}$, and $-D_{O}=D(0)$. It is straioht末orvard to calculate

$$
\begin{aligned}
(* D)(u) & =\sup _{v}[\langle u, v\rangle-D(v)] \\
& =*\left(E^{*}\right)\left(u, L u+x_{0}\right) .
\end{aligned}
$$

Thus the "dual of the dual" is

$$
\begin{equation*}
-(* D) *(0)=\inf _{u \in U}^{*}\left(\Gamma^{*}\right)\left(u, L u+x_{0}\right) \tag{11}
\end{equation*}
$$

In particular, if $F=*\left(F^{*}\right)$ then the "dual of the dual" is again the priral, i.e. dom*D is the feasibility set for p_{0} and $-(* D) *(0)=n_{0}$ More generally, we have

$$
\begin{equation*}
P_{0} \equiv P\left(x_{0}\right) \geq-(* D)^{*}(0) \geq D_{0} \equiv-D(0) \equiv *\left(P^{*}\right)(0) \tag{12}
\end{equation*}
$$

3. Duality theorems for optinization problers

Throughout this section it is assuned that U, x are HLCS's; $L: U \rightarrow X$ is linear and continuous; $x_{0} \in X ;$ and $F: U \times X \rightarrow \overline{\text { I }} . \quad$ Again, $P(x)=\inf _{U} F\left(u, L u+x_{O}+x\right), P_{O}=P\left(X_{0}\right)$,
 interested ir concitions under mich $\partial p\left(x_{0}\right) \neq \varnothing$; for then there is no duality gap and there are solutions for D_{0}. These conditions will be conditions which insure that P(.) is relatively continuous at ${ }^{\circ} \mathrm{o}$ vith respect to affion p, that is p : affiom p is continucus at x_{0} for the induced topclogy on afidom p. Tre then have

$$
\begin{align*}
& \partial P\left(x_{0}\right) \neq y \\
& p_{0}=D_{0} \tag{1}
\end{align*}
$$

the solution set for D_{0} is precisely $\partial p\left(x_{0}\right)$
$p^{\prime}\left(x_{0} ; x\right)=\max _{y \in \hat{A}\left(x_{0}\right)}^{\langle x, y>}$.
This last result provices a very important sensitivity interpretation for the dual solutions, in terms of the rate of chance in mirimum cost mith respect to perturbations ir the "state" constraints anci costs. Vorecver if (1)
holas then Fheoren 2.4, l' $\left.^{\prime}-5^{\prime}\right)$, gives necessary and suミficient concitions for $\hat{u} \in \mathbb{Z}$ to sclve ?
3.1 Theoren. Assume $P(\cdot)$ is convex (e.c. F is convex). If $P(\cdot)$ is bounded above on a subset C of X, where $x_{0} \in r i C$ and $a f f C$ is closed with finite codinension in an affine subspace M containing affaom P, then (1) holds.

Proof. From theoran II. $8.1,1 \mathrm{D}) \Rightarrow 2 \mathrm{~b}$, we know that $\mathrm{P}(\cdot)$ is relatively continuous at x_{0}.
3.2 Corollary (Kun-Fucker point). Assune $P(\cdot)$ is convex (e.g. \bar{F} is convex). If there exists a $\bar{u} \in \mathbb{U}$ such that $F(\bar{u}, \cdot)$ is bouncoec above on a sunset C of x, where $L \bar{u}+x_{0} \in r i C$ anc $a f f C$ is closed with finite codimension in an affine subspace M containinc afform F, then (I) holcs. In particular, if there is a $\bar{u} \in U$ such that $E(\bar{u}, \cdot)$ is bounded above on a neichborbood of $L \bar{u}+x_{0}$, then (I) holas.

Proof. Clearly $D(x)=\inf F(u, L u+x) \leq F(\bar{u}, L \bar{u}+x)$, so Theoren II.8.l applies.

The Kuhn-Fucker condition of Corollayy 3.2 is the most widely used assumption for duaiity [ENT5]. The difficulty in applying the more ceneral Gheorer 3.1 is that, in cases where $P(\cdot)$ is not actually continuous but only relatively continuous, it is usually cifinicult to determine affcom p. OE course, dom $p=\bigcup_{u \in U}[d o m s(u, \cdot)-r u]$,
but this may not be easy to calculate. re shall use Theorem II.8.1 to provide dual compactness concitions which insure that $P(\cdot)$ is relatively continuous at x_{0}.

Let K be a convex balanced $V\left(U, U^{*}\right)$-compact subset of U; equivalently, we could tate $K=o_{\text {If }}$ where I is a convex balanced $m\left(U^{*}, U\right)-0-n e i c i b o r h o o d$ in U^{*}. Define the Eunction $g: X^{*} \rightarrow \bar{P}$ by

$$
\begin{equation*}
G(Y)=\inf _{V \in K^{\circ}} F^{*}\left(V-L^{\star} V, V\right) \tag{2}
\end{equation*}
$$

Note that g is a lind of "smoothing" of $p *(y)=$ $F^{*}\left(-L^{*} y, y\right)$ which is everrmhere rajorized $z y p^{*}$. The reason why $\because e$ neec such $a g$ is that $g(\cdot)$ is not necessarily isc, :hich property is i-portart for applving connactness conditions on the level sets of p^{*}; however ${ }^{*} g$ is automatically $\bar{u} s c$ anci ${ }^{*} \underline{g}$ dominates D, while at the same tine *g approximates D.
3.3 Lemma. Define $g(\cdot)$ as in (2). Then

then $P(x) \leq\left({ }^{*} \subseteq\right)(x)$ for every $x \in$ con p. ioreover

sup sup $\left[\langle x, y\rangle-F^{*}\left(V-L^{*} Y, y\right) ;\right.$: Oov Eor every $u \in U$ and
$Y \in Y, F^{*}\left(V-L^{*} Y, Y\right) \geq\left\langle U, V-L^{*} V\right\rangle+\left\langle L u+x, V_{V}\right\rangle-F(u, L u+\infty)=$ $\langle u, v\rangle+\langle x, y\rangle-F(u, L u+x)$ by definition of F*. ifence for every $u \in \mathbb{U}$,

$$
\begin{aligned}
(* g)(x) & \leq \sup _{v \in K}[F(u, I u+x\rangle-\langle u, v\rangle] \\
& =F(u, L u+x)+\sup _{v \in-\lambda}\langle u, v\rangle \\
& =F(u, L u+x)+\sup _{v \in K}\langle u, v\rangle
\end{aligned}
$$

where the last equality foliors since F° is balancea. Thus we have proved the first irecuality of the lema. Now sunpose $F=*\left(F^{\dot{x}}\right)$ anc $x \in$ don P. since x^{0} is a $m\left(U^{*}, U\right)-0-n e i g h b o r h o o d$ we have

$$
\begin{aligned}
& (* g)(x)=\sup _{V \in V_{0}} \sup _{Y}\left[\left\langle x, y^{\rangle}\right\rangle-F^{*}(v-L * y, Y)\right] \\
& \geq \lim _{V \rightarrow 0} \sup _{Y} \sup _{y}\left[\langle x, y\rangle-F^{*}\left(V-I^{*} y, \underline{y}\right)\right] \\
& =-\operatorname{limin} \underset{V \rightarrow 0}{ } \inf _{Y}\left[F^{*}\left(v-L^{*} y, y\right)-\langle x, y\rangle\right] \text {, }
\end{aligned}
$$

Where the lim inf is tasen in the m(U*,U)-topolory. $\mathrm{V} \rightarrow \mathrm{O}$
Define $h(v)=\underset{Y}{\inf }\left[F^{*}(V-L * y, y)-\langle x, y\rangle\right]$, so that
 $\operatorname{suv}_{V} \sup _{Y}\left[\langle u, V\rangle-F^{*}\left(V-L^{*} Y, y\right)+\langle X, V\rangle\right]=*\left(F^{*}\right)(u, \dot{\sim} u+z)=$ $E\left(u, \Psi^{\text {I }} u+x\right)$ Fence $P(x)<+\infty$ reans that
inf $F(u, L u+x)<+\infty$, i.e. ${ }^{\prime} h \not \equiv+\infty$, so that we can replace u
the lin inf by the second conjugate:

$$
\begin{aligned}
(* g)(x) & \geq-\underset{v \rightarrow 0}{\operatorname{lin}} \inf h(v)=-(* h) *(0) \\
& =\inf _{u} E(u, L u+x)=P(x)
\end{aligned}
$$

The last statement in the lena follows from the first inequality in the lemma. For

 this implies that $x \in \operatorname{com}{ }^{*}$ g. Hence don ${ }^{*} g \quad \partial$
$\bigcup_{K}[$ dom $F(u, \cdot)-I u]$. Note that cion P is Given by
$\bigcup_{u \in U}[\operatorname{dom} F(u, \cdot)-L u]$.
3.4 Theorem. Assure $F=*\left(E^{*}\right), p_{0}<+\infty$, and there is a $W\left(U, U^{*}\right)$-compact convex subset \ddot{Z} of U such that
span $E \supset \bigcup_{x \in Y}$ Com $F(\cdot, x)$. Suppose

1) $\left\{y \in X^{*}:\left(F^{*}\right)_{\infty}\left(-I^{*} y, y\right)-\left\langle X_{0}, Y^{\prime} \leq 0\right\}\right.$ is a subspace \because;
2) $\exists \mathrm{m}\left(\mathrm{U}^{*}, \mathrm{U}\right)-0$-neirfborhood \because in U^{*}, an $\mathrm{x}_{1} \in \mathrm{x}$, an $r_{1} \in ?$ such that

Ther affdon P is closec, $P(\cdot)$ affdor P is continuous at x_{0} for the induced topology on affdomP, and (I) holds. Proof. Ve ray assume that z is balanceci anci contains

 dom *e by iema 3.3. Sut also by ierta 3.3 we have
 so don $P \supset$ cion *c and herce com $P=$ con ${ }^{*}$ ¢.
 Cl ciom * $(\underline{p})=c l$ com p by fema II.l. 1 (note $p^{*} \not \equiv+\infty$ since p^{*} has a noner:pty level set jy hypothesis 2)). Hence by the definition (II.2.1) of recession functions we have $\left(P^{*}\right)_{\infty}=G_{\infty}=\left(\left({ }^{*} G\right)^{*}\right)_{\infty}$. A straichtforvarc calculation usinc Proposition II. 2.3 and the fact that $P^{*}(y)=$ $E^{*}\left(-I^{*} y, Y\right)$ yielcs

$$
\Xi_{\infty}(y)=\left(P^{*}\right)_{\infty}(Y)=\left(B^{*}\right)_{=0}\left(-L^{*}, y\right) .
$$

suispace, hence $\because=\left[\text { don } q-x_{0}\right]^{\perp}$ and $x_{0}+{ }^{\perp}$: is a closed affine set containing dom g. But hypothesis 2) then implies that riepi* $\mathcal{F} \neq \mathbb{f}$ and affom G is closed with finite codimension in $x_{0}+1_{1!}$ by Theorem II.8.I. Moreover by Theoren II.9.1, ${ }^{*} g(\cdot)$ is actually reiatively
 claffdon ${ }^{*} g-x_{0}$; since affan ${ }^{*} G$ is a closed subset of $x_{0}+1_{2 H}=$ claffion ${ }^{*}$ g, we must have affior ${ }^{*} G=$ Cl affan ${ }^{*} G$. Finally, since dom $P=$ don ${ }^{*} G$ and $P \leq * a$, $P(\cdot)$ is bounded above on a relative neichborhood $0 \equiv x_{0}$ anc hence is relatirely continuous at x_{0}.

Ve shall be interested in two very useful special cases. One is when u is the dual of a norred space V, anc we put the $v^{*}=u(U, V)$ topology as the oricinai topology on U ; for then $\mathrm{U}^{*} \cong \mathrm{~V}$ and the entire space U is the span of $a \quad \eta(U, V)$-compact convex set (namely the unit ball in U). Hence, if $U=V *$ where V is a normed space, and $i \equiv E(\cdot)$ is convex and $w\left(L \times Y, V \times X^{*}\right)-\ell s c$, then conditions 1) and 2) of mineorem 2.4 are automatically sufficient for (I) to hold.

The other case is when X is a barrelled space, so that interior conditions reduce to core conditions for closed sets (equivalently, compactness conditions reduce
to boundedness conditions in X^{*}). For simplicity we consider only Frechet spaces for which it is irmediate that all closed subspaces are barrelled.
3.5 Theorer. Assume $F=*\left(F^{*}\right) ; P_{C}<+\infty ; X$ is a Frechet space or Banach space; and there is a w(U,U*)-compact convex set K in U such that $\operatorname{span} F \supset \underset{x \in X}{\cup}$ dor $F(\cdot, x)$. Then the following are equivalent:

> 1) affam P is closed; and $x_{0} \in$ rcor don P or equivalently $F\left(u_{0}, \tau u_{0}+x_{0}+x\right)<+\infty \Rightarrow \exists \varepsilon>0$ anci $u_{1} \in U$ st $E\left(u_{1}, I u_{1}+x_{0}-\varepsilon x\right)<+\infty$.
2) $\left\{\because \in X^{*}:\left(F^{*}\right)_{\infty}\left(-L^{*} Y, Y\right)-\left\langle X_{0}, Y\right\rangle \leq 0\right\}$ is a subspace N; and there exists a $n\left(U^{*}, U\right)-0-$ neighbornood $: 1$ in U^{*}, an $x_{1} \in X$, an $E_{1} \in R$ such that $\left\{y \in X^{*}: \inf _{V \in \mathbb{E}} F^{*}(V-L * y, y)-\left\langle X_{0}, y><r_{1}\right\}\right.$ is nonempty and $w\left(X^{*}, X\right) / M-l o c a l l y$ bounced.

If either of the above holds, then $P(\cdot) P$ affdom p is continuous at y_{0} for the induced metric topology on affcon p and (1) holds.

Proof. We first note that since span ii $\supset \bigcup_{x \in:}$ ion $F(\cdot, x)$ we have as in Theorem 2.4 that dom $P=$ don * σ and $G_{\infty}(Y)=\left(P^{*}\right)_{\infty}(\underline{Y})=\left(F^{*}\right)_{\infty}\left(-I^{*} Y, Y\right)$.

1) \Rightarrow 2). He show that $g(\cdot)$ is relatively continuous at x_{0}, and then 2) will follow. Now dom $P=$ don ${ }^{*} g$, so $x_{0} \in$ rcordom P. Let $V=\operatorname{affdom} P-x_{0}$ be the closed subspace parallel to dor P, and define $h: W \rightarrow \bar{R}: W \rightarrow{ }^{*} g\left(x_{O}+w\right)$. Since ${ }^{*} g$ is $\ell s c$ on X, h is isc on the barrelled space H. But $0 \in \operatorname{core}$ don h (in w), hence h is actually continuous at 0 (since y is barrelled), or equivalently ${ }^{*} G$ is relatively continuous at x_{0}. Applying theoren II. 9.1 ve now see that 11 is the subspace G^{+}; the remander of 2) then follows from

2) $=>$ 1:. Yote that $1 \because$ is a Erechet space in the incuced topology, so $w\left(X^{*}, X\right) /:$-local boundedness is equivalent to $w\left(X^{*}, X\right) /: 1-l o c a l$ corpactness. But now we nay siply apply meoren 3.4 to get $p(\cdot)$ relatively continusus at x_{0} and afedon \geq closed; of course, 1) follows.
3.6 Corollary. Assume $P_{0}<+\infty ; U=Y *$ where V is a normed space; K is a Frechet space or Banach space; $F(\cdot)$ is conve: and $\because\left(U \times X, V \times X^{*}\right)-\hat{i} s c$. Then the following are equivalent:
3) affaor P is closed; ant $y_{0} \in$ rcordor r, or

> equivalently $F\left(u_{0}, L u_{0}+x_{0}+x\right)<+\infty \Rightarrow \exists \varepsilon>0$ and $u_{1} \in U \operatorname{st} F\left(u_{1}, L u_{1}+x_{0}-\varepsilon x\right)<+\infty$.
2) $\left\{y \in X^{*} ;\left(\Gamma^{*}\right)_{\infty}\left(-L^{*} \neq Y, Y\right)-\left\langle x_{0}, y^{\prime} \leq 0\right\}\right.$ is a subspace M; and there is an $\varepsilon>0$, an $X_{1} \in X$, an $I_{1} \in R$ such that $\left\{y \in X^{*}: \operatorname{in}_{|v| \leq E} F^{*}\left(v-L^{*} y, y\right)-\left\langle x_{0}, y><r_{1}\right\}\right.$ is nonempty and $\because\left(X^{*}, X\right) / H-l o c a l l y$ bounced.

If either of the hove hollis, then $p(\cdot)$ affcom p is continuous at x_{0} for the induced metric topology on affirm P and (I)'iolas.

Proof. Tale K to he the closed unit ball in $U=V *$; then Y is $\because(U, V)$-compact ane span $I=$ li The corollary then follows from theorem 3.5 .

In the case that affdom P is the entire space X, we have the following useful corollary. :ate that condition l) considerably generalizes the Kuhn Tucker condition of Corollary 3.2.
3.7 Corollary. Assume $?_{0}<+\infty ; U=V *$ there V is a normed space; X is a Freshet space or Banach space;
 are equivalent:

1) $x_{0} \in \operatorname{cor}$ a or $r \equiv \operatorname{cor} \bigcup_{u \in U}[\operatorname{com} r(u, \cdot)-T, u]$
2) $\left\{\underline{\mathrm{V}} \in \mathrm{X}^{*}:\left(\mathrm{F}^{*}\right)_{\infty}(-\underset{\sim}{*}, \mathrm{~V})-\left\langle\mathrm{X}_{0}, \mathrm{Y}^{\rangle} \leq 0\right\}=\{0\}\right.$; and there is an $\varepsilon>0$, an $x_{1} \in X$, an $r_{1} \in$ 只
 is nonempty and $w\left(X^{*}, X\right)$-locally boundec.
3) there is an $\varepsilon>0$, an $r_{0} \in R$ such that
 nonempty and $W\left(X^{*}, Y\right)$-bounded.

If any of the above holis, then $P(\cdot)$ is continuous at x_{0} and (l) holds.
Proof. Immeciate from Corollary 3.6 with affamp $=\mathrm{X}$.
Ve can also apply these theorens to perturnations on the dual problem to gat existence of solittions to the original problen P_{0} and no duality gap $P_{0}=D_{0}$. As an example, we qive the dual version of Corollary 3.6.
3.8 Corollary. Assume $P_{0}>-\infty ; U=V *$ where V is a Frechet space or Banach space; X is a normed space; $F(\cdot)$ is convex and w(UXX, V×Y*)-isc. Suppose $\left\{u \in U: F_{\infty}\left(u, I u+x_{0}\right) \leq 0\right\}$ is a subspace M, and there is an $\varepsilon>0$, an $x_{1} \in x$, an $r_{1} \in R$ such that

locally compact. Then $\eta_{0}=n_{0}$ and Γ_{0} has solutions. proof. Apply Corollary 3.6 to the dual prohler (2.10).

IV. Minimum Norm and Spline Problems and a Separation Theorem

Abstract. Results in duality theory for optimization prcblems are applied to minimum norm and spline problems and improve previous existence results, as well as expressing them in a duality framework. Related results include conditions for the sum of two closed convex sets to be closed leading to an extended separation principle for closed convex sets.

1. Minimum norm extrenals and the spline problen

We apply our results on the relationship between continuity points of convex functionals and locally equicontinuous level sets of conjugate functionals to derive a duality principle for minimun norm problems. It is well known, for example, that in a normed space x the minimum distance from a point x_{0} to a nonempty convex set C is equal to the maximus of the distances from the point to the closed hyperplanes separating the point and the convex set C. In other vords,

$$
\inf _{x \in C}\left|x-x_{0}\right|=\max _{y \in E} \inf _{x \in C}\left(x-x_{0}\right) y,
$$

Where B denotes the closec linit ball in x^{*} and the maximum on the PHS is attained by sone $\hat{y} \in \mathrm{~B}$. This also characterizes the minimum-nom solution: $\hat{x} \in C$ attains the infimum on the LHS iff $\hat{x}-x_{0}$ is alianed with some $\hat{y} \in$ S, i.e. $\left|\hat{x}-x_{0}\right|=\left(\hat{x}-x_{0}\right) \hat{y}$; and it is easy to see that such solutions exist whenever C is closed and X is either reflexive or the dual 0° a separable normed space. re generalize these results to incluce the spline problem and also develop sufficient conditions for a solution to the ninimum norm problem to exist.

Fe consider the following generalized smine
problem. Let U, X is normed linear spaces, $Z a$
nonempty convex subset of U, T a rounded linear map from U into X; then for $x \in X, F(x)$ is the rinirum norm probler

$$
P(x)=\inf _{u \in C} \mid-u+x
$$

Ve consider perturbations in x, i.e. calculate the conjugate of $P(\cdot)$, and develop a dual problem * $\left(P^{*}\right)(x)$. Te then take perturbations on the cual probler to devive existence conditions for the original proklme $P(x)$. To calculate the dual probler, define $f(u)=i_{c}(u)$
 is just the sipport Eunction ${ }^{*} c^{*} 0$ 气 C and c^{*} is just the inciator $i_{i z}$ of the ball $E=\left\{y \in X^{*}:|y| \leq 1\right\}$;
 $=\delta_{B}(y)-\operatorname{in}_{u \in C}(T u) y$. Shus, the dual problem is $*\left(p^{*}\right)(x)=\sup _{y}\left[x y-p^{*}(y)\right]=\sup _{y \in D} \quad \inf (T u+x) y . \quad$ Clearly $P(x) \geq *(p *)(x)$, vith equality iff $p(\cdot)$ is lsc at x. The now ciefine perturbations on the dual pronlem. For each $x \in \because, l \in t D_{x}(\cdot)$ be the Eunctional on $U *$ given by

$$
D_{x}(v)=\inf _{y} f\left[E_{y}^{*}\left(v-E^{*} \because\right)+S^{*}(y)-x y\right]=\operatorname{in}_{y \in S} \equiv\left[x y+\sup _{u \in C} u\left(v+x^{*} y\right)\right] .
$$

Of course, for $v=0 \quad D_{x}(v)$ is just the dual problem (with a change in sign to make $D_{x}(\cdot)$ convex): $D_{x}(0)=-*\left(P^{*}\right)(x)$. To calculate the conjugate of perturbations on the dual problen, we have
$\left(* D_{X}\right)(u)=*\left(I^{*}\right)(u)+*\left(g^{*}\right)(T u+x)=\delta_{C I C}(u)+|T u+x|$
where the nom $g(\cdot)=|\cdot|$ is weakly Isc so $\quad \uparrow=*\left(\sigma^{*}\right)$. Hence, the ciual o the dual is

$$
\left({ }^{*} D_{x}\right) *(0)=-\inf _{u \in C i C}|T u+x|
$$

which is again (minus) the primal problen $P(x)$ if C is closed. In ceneral we have

$$
P(x) \geq-\left(* D_{x}\right) *(0) \geq-D_{x}(0) \equiv *\left(P^{*}\right)(x) .
$$

We are now ready to state the main results. We cenote the null space of I by $N \equiv T^{-1}(\{0\})$, and for $r>0$ we write $M_{i} \equiv\{u \in U: d(u, R)<r\} \equiv N+r \cdot B$ where $\stackrel{\dot{E}}{ }$ is the open unit ball in \dot{U}.

Theorem 1. Let E, X be norred linear spaces, C a nonempty convex subset of X, T a bounced linear map Erom U into K. For $x \in X$, let $P(x)$ we the minimum norm problem

$$
P(x)=\inf _{u \in C}|\operatorname{Tu} u x|
$$

and consider the dual problen

$$
\dot{*}\left(P^{*}\right)(x)=\max _{y \in B} \inf _{u \in C}(\Psi u+x) y .
$$

Then we always have $P(x)=*(p *)(x)$, where the maximization in $*\left(P^{*}\right)$ is attained by some $\hat{y} \in B$. Moreover $\hat{u} \in C$ solves $P(x)$ iff there is some $\hat{y} \in B$ for which $|r \hat{u}+x|=(n \hat{u}+x) \hat{y}$, in which case \hat{y} solves *($p *)(x)$. Sufficient conditions for $P(\cdot)$ to have mininizing solutions $\hat{u} \in C$ are:

1) U is reslexive, C is closed, $T U$ is closed.
2) $C_{\infty} \cap i$ is a subspace M
3) $C \cap M^{Y} / \mathrm{M}$ is nonerpty and veakly locally bounded in U/M, for sore $r>0$.

Eefore provinc the theoren, we nake a few remarks about the existence theorems. First, sone authors do not assune that U is reflexive, but that X is reflexive and in is finite dimensional. However this actually inplies that U is reflexive, since U / Ni is topologically isororphic to Cl , a closed subspace of X . In fact, when $T U$ is closed we have U reflexive iff :: and U/el are reflexive ifz ?! and TU are reflexive, and the latter is certainly true if $?$ and X are reflexive.

Secondy, we examine the condition 3). By $C \cap N^{r} / M$ we of course mean $\left\{u+M \in U /\left\{: u \in C \cap N^{r}\right\}\right.$. It is straightromard to show that $i \equiv C \cap N^{r} / M$ is locally bounded for some $r>0$ sufficiently large so that $C \cap N^{r}$ is nonempty, then it is actually true that $C \cap N^{r} / M$ is locally bounded for every $r>0$ (argue along the lines of Eroposition II.l.4). Thus 3) is really equivalent to

3') $C \cap \mathrm{H}^{\text {r }} / \mathrm{M}$ is wakiv locally bounded in U / I for every r >0. By weatly locally bounded in $U / ?$ we mean locally bounced in the topolocy $w\left(\mathbb{C} / \mathrm{M}, \mathrm{M}^{+}\right)$, Where $4 / M$ is a normed space and \because is norm-congruent to $(U / I)^{*}$ (note that $M=C_{\infty} \cap$ il is closed since C_{∞} and N are closed). Since the weak topology $w\left(U / M, M^{\perp}\right)$ on the quotient normed space U / M is the same as the quotient $W(U, U *) / M$ of the weak topology $w\left(U, U^{*}\right)$ on U, we see that $C \cap M^{r} / M$ is weakiy locally bounded in U / M iff $C \cap N^{2}$ is weakly locally \because-equicontinuous in U, that is iff there is a finite subset $\overline{\mathrm{E}}$ of ri* and a $c_{o} \in C \cap N^{r}$ such that $\sup _{u \in C n i!n\left(c_{0} O^{\circ} F\right)}$ $i(u, A)<+\infty$,
 every point if it is at a sinale poine c_{0}, as in Proposition II.I.4). Thus 3) is equivalent to

3') ヨ finite $E \subset X^{*}, r>0, c_{0} \in C \cap M^{r}$ st

$$
\sup _{u \in \operatorname{CnN}^{r} \cap\left(c_{0}+{ }^{o} F\right)} d(u, M)<+\infty
$$

and implies the existence of such an \equiv for every $r>0, c_{0} \in C \cap N^{r}$. Finally, it can also be shown that $3^{\prime \prime}$) is also equivalent to

3''') there is a finite subset E OE U^{*} and a $c_{0} \in C$ such that every norm-convergent sequence $u_{i}+\eta_{i}$, for $u_{i} \in C \cap\left(c_{0}+^{\circ} F\right)$ and $\eta_{i} \in H$, has $d\left(n_{i}, n\right)$ bowie.

These are certainly true if $C \cap N^{r}$ is itself weakly locally bounded or it is finite dimensional. And they are certainly true if $C n^{r}$ is actually n^{2}-equicontinuous
 or C is bounded or C is x^{+}-equicontinuous (i.e. $\left.\sup _{u \in C} d(u, M)<+\infty\right)$. As in ''''), we note that $^{\prime \prime}$ $C n^{r}$ is M-equicontinuous if every norm-convergent sequence $x_{i}+\eta_{i}$, for $x_{i} \in C$ and $\eta_{i} \in N$ has $d\left(r_{i}, r\right)$ bounded.

Proof of the theorem. We first note that $P(\cdot)$ is a finite, convex, and norm-continuous Functional on x. For, it is clearly convex since C is convex, F is

Inear, and the norm is convex; and if c_{0} is any element of C then

$$
P(x) \leq\left|S c_{0}\right|+|x|
$$

and $P(\cdot)$ is bounded above by a continuous function. Thus we irnediately have $D(x)=*\left(P^{*}\right)(x) \equiv-D_{x}(0)$, and the subgradient $\hat{E P}(x)$ is nonempty and $w\left(X^{*}, X\right)$-compact. But the elements of $\partial P(x)$ are just those $\hat{y} \in X^{*}$ which attain the suprenum in sup[xy-p*(y)]=*(p*)(x), so that $*\left(P^{*}\right)(x) \equiv-D_{x}(0)$ has solutions $\hat{y} \in D$. This proves the first part of the theorem.

To ohtain existence of solutions for $p(x)$, we must show that $\partial D_{X}(0) \neq \nexists$. For $\partial D_{X}(0)$ is precisely the solution set of P. We shall actually show that under the conditions 1) to 3) $D_{X}(\cdot)$ is norm continuous at 0 on affdomp(-) $\equiv M^{\perp}$ in U^{*}. Fe first note that $D_{X}(\cdot)$ is convex and $\mathrm{V}\left(\mathrm{U}^{*}, \mathrm{U}\right)-1 \mathrm{sc}$ at 0 for every $\mathrm{x} \in \mathrm{X}$; for, both $D_{x}(0)$ and $\left(* D_{x}\right) *(0)$ are pinched hetween the values $-p(x)$ and $-*\left(p^{*}\right)(x)$, so by the equality of the latter We must have $D_{X}(0)=\left(* D_{X}\right) *(0)$. (In Eact, nore is true. If :e define a new primal problem $\left.p_{v}(x)=\inf _{u \in C}|T u+x|-u v\right)$ we cet a dual problem * $\left(p_{v} *\right)(x)=-n_{x}(v)$, and the same argument yields $D_{X}(v)=\left({ }^{*} D_{X}\right) *(v)$ for every $\left.v \in!*, x \in X.\right)$

Thus to show that $\partial D_{x}(0)$ is nonemptv, we must show that $\left(* D_{x}\right) *(-)$ is relatively continuous at 0 in the norm topology (which is the $m\left(U^{*}, U\right)$ topology on U^{*} when U is reflexive), or equivalently (by Theoren II.3.2) that the level sets of (E_{x})(•) have weakly locally bounded (equicontinuous \equiv weakly bounded in a reflexive Banach space) image in the quotient space U / M, where $M=\left\{u:\left(* D_{x}\right)_{\infty}(u) \leq 0\right\}$ is recuired to be a subspace. No:v $\left(* D_{X}\right)(u)=|T u+x|+\delta_{C}(u)$, and since $\left(* D_{x}\right)(\cdot)$ is convex and veakly lsc we have the easy calculation

$$
\left({ }^{*} D_{x}\right)_{\infty}(u)=\sup _{t>0} \frac{{ }_{x} D_{x}\left(c_{0}+t x\right)-* D\left(c_{0}\right)}{t}=|T u|+\delta^{\delta} c_{\infty}(u)
$$

Thus ve recuire $M=n \cap C_{\infty}$ to be a subspace as in 3). The level sets of (*D ${ }_{x}$)(\cdot) are precisely
$\left\{u:\left({ }^{*} D_{x}\right)(u) \leq r\right\}=C \cap T^{-1}(-X+r B)$ (i.e. those $u \in C$ for which Tu is within r of $-x$), for $r>0$. To insure that we take r sufficiently large so that the level set is nonempty, we take $r>\left|T c_{0}+x\right|$ for any $c_{0} \in C$ and for convenience $x>|x|$. Then the level set is contained in $C \cap T^{-1}(2 r B)$. Sov T has closed range, so there is an ε sufficiently small so that

$$
\varepsilon d(u, n) \leq \mid n u \leq \varepsilon^{-1} d(u, N)
$$

(this merely states that U / IV is topolooically isomorphic
to GU under the mapping T as taken on $U /:$). But this neans that the set $\mathrm{F}^{-1}(2 \mathrm{rB})$ is certainly contained in the set $N+\frac{3 r}{\varepsilon} \cdot B_{B} \equiv N^{3 r / E}$. Thus, it is sufficient to require that $C \cap:^{3 r / \varepsilon}$ have weakly locally beunced image in U/M. loting that $C \cap \mathbb{N}^{5} / 1$ is weakly locally bounded for every $r>0$ i三fit is locally bounded for some $r>\inf \left\{t: C \cap y^{t} \neq \nexists\right.$: we have the condition 3) or $3^{\prime \prime}$.

Remarks. If U is not reflexive, it is still true that $P(x)$ has a solution $i f$ the other concitions hold and ($C \cap:^{r}$) \because is nonemtpy anci weakly locally conpact in U/A for sone $r>0$. Of course, veat compactness in a nonreflexive space ray be cie三icult to characterize.

It is also possible to prove similar existence results when U, X are the cuals of separable normed spaces, T is $w\left(U, \tilde{U}^{*}\right)-\pi(X, * Y)$ secuentially continuous, and C is $\because * W(C, *$ C $)$-sequentially closed. Since the spline existence concitions for $P(x)$ do not depenc on the point x, ve see that we have actually developed a sufficient concition For CC to be closed
 closed in U. The stancard angunach to such spline problems is to apnly Dieudonne's theoren [1065] for the closerness of the sur of tie cinsec conver sots, namely
that C be locally compact or Einite dinensional (that is, locally compact) and that $C_{\infty} \cap \mathrm{n}=\{0\}$. Our conditions are much weaker, namely tiat $C_{\infty} \cap$ if be a subspace n, and that $C \cap N^{2} / N$ be weakly locally compact in U/M (local compactness in a FLCS always implies weak local compactness, as noted in the remarks following Corollary II.I.10). In particular, the null space if of T need not be Einite-rimensional, and $C_{\infty} \cap:$ need not reduce to $\{0\}$.

Example, it infinite cimensional. Let $u=\frac{\square}{i}=i u(\cdot): u(\cdot)$ is abs cont on $[0,1]$ and $\dot{u}(\cdot) \in I_{p}[0,1] ;$ where $1<?<x$. !ee shall tal:e the cost to depent on the derivative i only over the intervals $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$, vith no derivative cost on $\left[\frac{1}{3}, \frac{2}{3}\right]$. Hence take the Iinear operator to be $T: H_{p}^{I} \rightarrow I_{p}: u \rightarrow T u$ where $(I u)(t)=\left\{\begin{array}{ll}\dot{u}(t) & t \in\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, I\right] \\ 0 & t \in\left(\frac{1}{3}, \frac{2}{3}\right)\end{array}\right.$. The constraint set
is $c=\left\{u \in H_{n}^{\}}: u(0)=1, u\left(\frac{1}{3}\right)=0, u\left(\frac{2}{3}\right)=1, u(i)=0\right.$, anc $|\dot{u}(t)| \leq 1$ for $\left.t \in\left\{\frac{1}{3}, \frac{2}{3}\right]\right\}$; note that there are constraints o: the ciarivative jor $t \in\left[\frac{1}{3}, \frac{2}{3}\right]$, so that the null space of $?$ is truel \bar{y} infinite dirensional.

Clearly $U=H_{p}^{1}$ is reflexive, C is closec convex, T has closed range on H_{p}^{1} (NU is concruent to $\left.L_{p}\left[0, \frac{1}{3}\right] \times L_{p}\left[\frac{2}{3}, 1\right]\right), U=\left\{u \in H_{p}^{1}: u\right.$ is constant on $\left[0, \frac{1}{3}\right]$ and constant on $\left.\left[\frac{2}{3}, I\right]\right\}, C_{\infty}=\left\{u \in I_{p}^{1}: u(0)=u(I)=0, u(t) \equiv 0\right.$ for $\left.t \in\left\{\frac{1}{3}, \frac{2}{3}\right]\right\}$. Thus $\operatorname{iin} C_{\infty}=\{0\}$ is a subspace. And $C \cap U^{I}=\left\{u \in H_{p}^{I}: u \in C\right.$ and $\left.\alpha(u, T)<r\right\} \subset$ \{u: u(0) = $1, u\left(\frac{1}{3}\right)=0, u\left(\frac{2}{3}\right)=1, u(1)=0,|\dot{u}(t)| \leq 1$ on $t \in\left[\frac{1}{3}, \frac{2}{3}\right]$, and $\mid u(t) \leq$ sonc constant function on $\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, I\right] ;$ which is bouncies because of the derivative and endpoint constraints. Thus, the eristence conditions of Theorem 1 are satisfied and the minirum norm problem $P(x)=\inf _{u \in C}|P u+x|$ has solutions.

Example, $C_{\infty} \cap i i$ not necessarily \{0\}.
Let U, Y be reflexive Banach spaces, $?: U \rightarrow X$ bounded linear with closed range, anc C a closed affine subse $=$ of U. Then C_{∞} is the subspace $C-C$ parallel to C, hence condition 2) is always satisfiec. If $C_{\infty} \cap$ n! is finite dimensional (e.g. \because or C is finite cimensional) then the minimum norm probler: $p(x)=\underset{u \in C}{ } \underset{\sim}{\text { inf }} \mid$ tutx \mid has solutions. F.lternatively, i三 C is a Einite-codimensional closed flat $C=\bigcap_{k=1}^{n} v_{k}^{-1}\left(r_{n}\right)$ Eor $v_{k} \in u^{*}, r_{k} \in ?$, then $C \cap W / C_{m} \cap:$ is a finite-dinensional afine set in
$U / C_{\infty} \cap N$ and hence $C \cap:^{r} / C_{\infty} \cap:$ is weatiy locally bounded, so again spline solutions exist.
2. On the separation of closed convex sets

The spline existence conditions developed in Theorem 1 essentially constitute a sufficient condition for the sum of two closed convex sets to be closed, namely the sum of the constraint set C and the null space N. We can use the same techniques to develop a general crtierion for the sum of two closed convex sets to be closed in a reflexive Banach space; this extends Dieudonne's theorem [D66] in this context and leads to a separation principle. In what follows we define $B^{\varepsilon}=\{x \in X: \inf |x-b|<\varepsilon\}=$ $b \in B$
$B+\varepsilon \cdot($ open unit ball), for $\varepsilon>0$ and $B \subset x$.

Theorem 2 Let X be a reflexive Banach space with A, B closed convex subsets of X satisfying:

1) $A_{\infty} \cap B_{\infty}$ is a subspace M
2) $A \cap B^{\varepsilon}$ is nonempty and $w\left(X, X^{*}\right) / M-$ locally bounded, for some $\varepsilon>0$.

Then $A-B$ is closed. In particular, if A and B are disjoint then they can be strongly separated, i.e. there exists $y \in X^{*}$ such that $\underset{a \in A}{\inf } a y>\sup _{b \in B} b y$.

Proof. We may assume that A, B are nonempty. Suppose
$z \in A-B$; we show that $z \notin \mathcal{C}(A-B)$, or equivalently that inf inf $|a-b-z|>0$. By translation we may assume that $a \in A \quad b \in B$
$z=0$. Define the convex lsc function $f: X \rightarrow \bar{R}$ by

$$
f(x)=\delta_{A}(x)+\inf _{b \in B}|x-b|
$$

Then f* is given by

$$
f *(y)=\sup _{a \in A} \sup _{b \in B}[a y-|a-b|]
$$

We show that conditions 1) and 2) are sufficient to prove that $\mathrm{f}^{*}(\cdot)$ is relatively continuous at 0 . By Theorems II.9.I, 7) \Rightarrow 1), and $I I .8 .1,7) \Rightarrow 2)$, it suffices to show that a level set of f is locally bounded in the topology is required to be a subspoce $w\left(X, X^{*}\right) / M$, where $M=\left\{X: f_{\infty}(X) \leq 0\right\}=A_{\infty} \cap B_{\infty} \wedge$. But the Ievel sets of f are precisely $\{x: f(x) \leq \varepsilon\}=A \cap B^{\varepsilon}$ for $\varepsilon>0$, so that 1) and 2) are the required conditions.

Thus $f *(\cdot)$ is relatively continuous at 0 , and con
sequently $\partial f^{*}(0) \neq \varnothing$. This means that there is an $x_{0} \in \partial f *(0)$, or equivalently that $0 \in \partial f\left(x_{0}\right)$, i.e. x_{o} solves $\inf _{x} f(x)=\inf _{x \in A} \inf _{b \in B}|x-b|$. Hence $\inf _{x \in A} \inf _{b \in B}\left|x_{0}-b\right|=$ $\inf _{b \in B}\left|x_{0}-b\right|>0$, where the last inequality follows since $x_{0} \notin B$ (recall $A \cap B=\varnothing$ since $O \notin A-B$) and B is closed. Note that since $0 \in \mathcal{C}(A-b), A$ and B can be strictly separated.

$$
\text { If } A_{\infty} \cap B_{\infty} \text { is a subspace and } \bar{A} \text { is locally bounded, }
$$ then conditions 1) and 2) follow immediately. In Dieudonne's theorem [D66] $A_{\infty} \cap B_{\infty}$ is required to be $\{0\}$, with A locally bounded.

Chapter V
 (pages 135 to 164)

 was removed from thesis.
VII. Optimal Quantum Detection

Abstract. Duality techniques are applied to the problem of specifying the optimal quantum detector for multiple hypothesis testing. Existence of the optimal detector is established and recessary and sufficient conditions for optimality are derived.

1. Introduction

The mathematical characterization of optimal detection in the Bayesian approach to statistical inference is a well-known result in the classical theory of hypothesis testing. In this paper we consider detection theory for quantum systems.

In the classical formulation of Bayesian hypothesis testing it is desired to decide which of n possible hypotheses H_{1}, \ldots, H_{n} is true, based on observation of a random variable whose probability distribution depends on the several hypotheses. The decision entails certain costs that deflend on which hypothesis is selected and which hypothesis corresponds to the true state of the system. A decision procedure or strategy prescribes which hypothesis is tc be chosen for each possible outcome of the observed data; in general it may be necessary to use a randomized strategy which specifies the probabilities with which each hypothesis should be chosen as a furction of the observed data. The detection problem is to determine an optimal decision strategy.

In the quantum formulation of the detection problem, each hypothesis H_{j} corresponds to a possible state ρ_{j} of the quantum system under consideration. Unlike the classical situation, however, it is not possible to

$$
\sum_{i=1}^{n} m_{i}=I
$$

The measurement outcome is an integer $i \in S$: the conditional probability that the hypothesis H_{i} is chosen when the state of the system is ρ_{j} is given by

$$
\begin{equation*}
\operatorname{Pr}\{i \mid j\}=\operatorname{tr}\left(\rho_{j} m_{i}\right) \quad i, j=1, \ldots, m \tag{2}
\end{equation*}
$$

We remark that it is crucial here to formulate the problem in terms of general probability operator measures rather than resolutions of the identity. For example, an instrument which simply chooses an arbitrary hypothesis with probability $1 / n$ without even interacting with the system corresponds to a measurement process with the POM given by

$$
m_{j}=I / n ;
$$

these are certainly not projections.

We uenote by $C_{i j}$ the cost associated with choosing hypothesis H_{i} when H_{j} is true. For a specified decision. procedure effected by the POll $\left\{m_{1}, \ldots, m_{n}\right\}$, the risk function is the conditional expected cost given that the system is in the state P_{j}, i.e.

$$
R_{m}(j)=\operatorname{tr}\left[\rho_{j} \sum_{i=1}^{n} C_{i j} m_{i}\right]
$$

If now μ_{j} specifies a prior probability for hypothesis H_{j}, the Bayes cost is the posterior expected cost

$$
\begin{equation*}
R_{m}=\sum_{i=1}^{n} R_{m}(j) \mu_{j}=\operatorname{tr} \sum_{i=1}^{n} f_{i} m_{i} \tag{3}
\end{equation*}
$$

where E_{i} is the selfadjoint trace-class operator

$$
\begin{equation*}
E_{i}=\sum_{j=1}^{n} c_{i j} \mu_{j}^{\rho_{j}} \quad i=1, \ldots, n \tag{4}
\end{equation*}
$$

The quantum detection problem is to find m_{1}, \ldots, m_{n} so as to minimize (3) subject to the constraint (1) and subject to the condition that the operators m_{j} be selfadjoint and nonnegative definite, $r_{j} \geq 0$.

The minimization problem as formulated above is an abstract linear programing problem, where the positive cone is the se't of all selfadjoint nonnegative definite bounded linear operators $\left(m_{1}, \ldots, m_{n}\right) \in\left(\mathcal{L}_{s}(H)_{+}\right)^{n}$. We shall pose this problem in a duality framevork, construct a dual problem, and give necessary and sufficient conditions which the solution nust satisfy. Moreover we shall show that solutions exist, although they need not be uniaue.

2. The finite dimensional case

It is interesting to explicitly construct the form of the problem in the finite dimensional case. This will not not only exhibit the primary features of the problem, but also show why the usual linear programming techniques do not apply because of the nature of the positive cone. Moreover the finite dimensional case is of interest hecause it includes the situation where the quantum states $0_{1} \ldots . o_{n}$ are pure states.

Hence, for this section only, we shall take H to be C^{q} where q is a positive integer. The compact, traceclass, and boinded selfadjoint operators are all complex q×q self-adjoint matrices, which we may identify with the real linear space $\mathrm{R}^{q^{2}}$. For example, in the case $H=\mathbb{c}^{2}$ we may identify every self-adjoint operator $E \in \mathscr{L}_{s}\left(\mathbb{C}^{2}\right)$ with an element of R^{4} by

$$
E=\left[\begin{array}{cc}
f^{1} & f^{2}+i f^{3} \tag{5}\\
f^{2}-i f^{3} & f^{4}
\end{array}\right] \Leftrightarrow E=\left(f^{1}, f^{2}, f^{3}, f^{4}\right) \in p^{4}
$$

To save notation, we shall write out the prohlem explicitly only for $H=C^{2}$; the general finite dimensional case is an easy extension.

The quantum detection problem for n hypotheses is,
from (3),

$$
P=\inf \left\{\sum_{j=1}^{n} \operatorname{tr}_{r}\left(m_{j} f_{j}\right): m_{1}, \ldots, m_{n} \in \mathscr{L}_{s}\left(\mathbb{C}^{2}\right)_{+}, \sum_{j=1}^{n} m_{j}=I\right\}
$$

where I is the identity operator on $H=\mathbb{C}$ and each m_{j} or $f_{j} \in \mathcal{L}_{s}\left(\mathbb{C}^{2}\right)$ is identified with an element m_{j} or $f_{j}=\left(f_{j}{ }^{l}, f_{j}{ }^{2}, f_{j}{ }^{3}, f_{j}{ }^{4}\right) \in R^{4}$ as in (5). The positive cone $\mathcal{L}_{s}\left(\mathbb{C}^{2}\right)_{+}$consists of the nonnecative definite matrices; $f \in \mathcal{L}_{S}(H)+$ means that $f^{l} \geq 0$, $f^{4} \geq 0$, and $f^{1} f^{4} \geq\left(f^{2}\right)^{2}+\left(f^{3}\right)^{2}$. Hence, if we define the positive cone $K=\mathcal{L}_{S}(C)+C R^{4}$ by

$$
\begin{equation*}
K=\left\{m \in R^{4}: m^{1} \geq 0, m^{4} \geq 0, m^{1} m^{4} \geq\left(m^{2}\right)^{2}+\left(m^{3}\right)^{2}\right\} \tag{6}
\end{equation*}
$$

then the problem becomes

$$
p=\inf \left\{\sum_{j=1}^{n} \sum_{i=1}^{4} m_{j}^{i} f_{j}^{i}:\left(m_{1}, \ldots, m_{n}\right) \in k^{n}\right. \text { and }
$$

$$
\begin{equation*}
\left.\sum_{j=1}^{n} m_{j}^{1}=1=\sum_{j=1}^{n} m_{j}^{4}, \sum_{j=1}^{n} m_{j}^{2}=0=\sum_{j=1}^{n} m_{j}^{3}\right\} . \tag{7}
\end{equation*}
$$

Note here that the duality between $\mathcal{Z}_{S}(\mathrm{H})$ and $\tau_{\mathrm{s}}(\mathrm{H})$ given by $\langle\mathrm{f}, \mathrm{m}\rangle=\operatorname{tr}(\mathrm{fm})$ has simply reduced to the usual inner product $\sum_{i=1}^{4} f^{i} \cdot m^{i}$ for $£ \in \tau_{s}\left(c^{2}\right) \cong R^{4}$ and $m \in \mathscr{L}{ }_{s}\left(\mathbb{C}^{2}\right) \cong R^{4}$. The problem is in the form of a finite dimensional linear programming problem except that the closed convex cone k of "positive" vectors is no longer polyhedral, that is an intersection of a finite number of
closed halfspaces. In the next section we shall define the dual problem by taking perturbations with respect to the constraint $\sum_{j=1}^{n} m_{j}=I \in R^{4}$; the dual problem here is thus a minimization problem over R^{4}. In general, for a linear programming problem of the form $\inf \{\langle f, m\rangle: m \in O, A m=g\}$ where Q is a closed convex m
cone and A is a continuous linear map, the dual problem is given by $\sup \left\{\left\langle g, y>: f-A^{*} y \in 2^{+}\right\}\right.$. He do not derive this here but simply state that the dual problem for (7) is

$$
D=\sup \left\{y^{1}+y^{4}: y \in R^{4}, E_{j}-y \in K^{+} \quad \forall j=1, \ldots, n\right\}
$$

where the dual positive cone K^{+}is (by straightforward but tedious calculation)

$$
\begin{align*}
& K^{+} \equiv\left\{y \in R^{4}: \inf _{m \in K}^{i=1} \sum_{i=1}^{i} m^{i} y^{i} \geq 0\right\}= \\
& \quad\left\{y \in R^{4}: y^{1} \geq 0, y^{4} \geq 0,4 y^{1} y^{4} \geq\left(y^{2}\right)^{2}+\left(y^{3}\right)^{2}\right\} \tag{8}
\end{align*}
$$

Hence, the explicit form of the constraints for the dual probiem is
$y^{1} \leq f_{j}{ }^{1} ; y^{4} \leq f_{j}{ }^{4} ; 4\left(f_{j}^{1}-y^{1}\right)\left(f_{j}{ }^{4}-y^{4}\right) \geq\left(y^{2}-f_{j}\right)^{2}+\left(y^{3}-f_{j}\right)^{3}$
for every $j=1, \ldots, n$. Clearly, the usual duality theory for finite dimensional linear programming is not applicable.

Because of the explicit nature of the linear constraint $\sum_{j=1}^{n} r_{j}=I$ in the original problem, we shall see that duality theory does work for this prohlen. In general, however, it is possible to have a finite duality gap for linear programming problems with positive cone of type K . We construct such an example now.
3. A linear programing problem with non-polyhedral cone which has a duality gap

We consider a linear prosramming problem of the form (7) with $n=2$ (that is, a prohlen in R^{8}), except that we change the linear equality constraint. Define the closed convex cone K in R^{4} by (6); K^{+}is given by (8). Let $u=\left(m_{1}{ }^{1}, m_{1}^{2}, m_{1}^{3}, m_{1}^{4}, m_{2}^{1}, m_{2}^{2}, m_{2}^{3}, m_{2}^{4}\right)$ represent a vector in R^{8} and define the problem P_{1} by

$$
P_{1}=\inf \left\{u^{(2)}: u \quad K \times K, A u=(0,-1,0,0)\right\}
$$

where A is the linear map

$$
A u=\left(u^{1}-u^{6}, u^{2}-u^{8},-u^{5}, u^{3}+u^{7}\right)
$$

If $y \in R^{4}$ is a dual variable, then $A^{*} y$ is qiven by

$$
A^{*} y=\left(y^{1}, y^{2}, y^{4}, 0,-y^{3},-y^{1}, y^{4},-y^{2}\right)
$$

The dual problem is

$$
D_{1}=\sup \left\{-y^{2}:(0,1,0,0,0,0,0,0)-A * y \in K^{+} \times K^{+}\right\}
$$

First, let's solve the primal problem. From the constraint $A u=(0,-1,0,0)$ we have $u^{5}=0$; but $\left(u^{5}, u^{6}, u^{7}, u^{8}\right) \in K$ so $u^{5}=u^{6}=u^{7}=0$. Again from $A u=(0,-1,0,0)$ we now have $u^{1}=u^{6}=0$, which since
$\left(u^{1}, u^{2}, u^{3}, u^{4}\right) \in K$ implies $u^{2}=0$. Thus $u^{2}=0$ for every feasible u; in fact every feasible u looks like $u=\left(0,0,0, u^{4}, 0,0,0,1\right)$ with $u^{4} \geq 0$, and $p_{1}=0$.

Now consider the dual problem. The constraints are $\left(-y^{1}, 1-y^{2},-y^{4}, 0\right) \in K^{+}$and $\left(y^{3}, y^{1},-y^{4},+y^{2}\right) \in K^{+}$. The first constraint immediately implies $y^{2}=1$; in fact every feasible y is of the form $y=\left(y^{1}, 1, y^{3}, 0\right)$ where $y_{1} \leq 0$ and $y_{3} \geq\left(y^{1}\right)^{2} / 4$. Hence $D_{1}=-1$ and there is a finite duality gap $P_{1}-D_{1}=1$.

Where does the difficulty arise? If $P=\inf \{c u: u \in \Omega, A u=b\}$ is an abstract linear program, where Q is a ćlosed convex cone in a Banach space U and A is a bounded linear map from U into a Banach space 7 , then P has solutions (assuming P is feasible) and $P=D$ where $D=\sup \left\{y D: Y \in Z^{*}, c-A^{*} y \in O^{+}\right\}$whenever $\left[\begin{array}{l}c \\ A\end{array}\right](\Omega)$ is closed in $R \times Z$, or equivalently (in the case that A has closcd range) whenever $Q+\mathcal{N}\left[\begin{array}{l}c \\ A\end{array}\right]$ is closed ${ }^{+}$. But consider the cone K; if we fix m^{2} and m^{3} in (6) with m^{2} and m^{3} not both zero, then the cross section of K in $m^{1}-m^{4}$ space looks like
$\mp \mathcal{N}$ denotes null space.

This is precisely the infamous example of a closed convex set whose sum with a closed subspace (e.g. the m^{4} axis) need not be closed or equivalently whose image under a closed-range bounded linear map (e.g. the projection onto the m^{1} axis) need not be closed.
4. The quantum detection problem and its dual

We formulate the quantur detection problem in a daultiy framework and calculate the associated dual problem. First we sumarize some well-known duality relationships between various spaces of operators (cf. [Sch60]).

Let H be a complex Hilbert space. The real linear space of compact self-adjoint operators $\mathcal{K}_{s}(H)$ with the operator norm is a Banach space whose dual is isometrically isomorphic to the real Banach space $\tau_{s}(H)$ of self-adjoint trace-class operators with the trace norm, i.e. $K_{S}(H) *=\tau_{S}(H)$ under the duality

$$
\langle A, B\rangle=\operatorname{tr}(A B) \leq|A|_{\operatorname{tr}}|B| \quad A \in \tau_{S}(H), B \in K_{S}(H) .
$$

Here $|B|=\sup \{|B \phi|: \phi \in H,|\phi| \leq 1\}=$ $\sup \left\{\operatorname{tr} A B: A \in \tau_{S}(H),|A|_{t r} \leq 1\right\}$ and $|A|_{t r}$ is the trace norm $\sum_{i}\left|\lambda_{i}\right|<+\infty$ where $A \in \tau_{S}(H)$ and $\left\{\lambda_{i}\right\}$ are the eigenvalues of A repeated according to multiplicity. The dual of $\tau_{S}(H)$ with the trace norm is isometrically isomorphic to the space of all linear bounded self-adjoint operators, i.e. $\tau_{S}(H)^{*}=\mathscr{L}_{S}(H)$ under the duality

$$
\langle A, B\rangle=\operatorname{tr}(A B) \quad A \in \tau_{S}(H), B \in \mathscr{L}_{S}(H) .
$$

Moreover the orderinas are compatible in the following
sense. If $\mathcal{K}_{S}{ }^{(H)}{ }_{+}{ }^{\prime} \tau_{S}{ }^{(H)}{ }_{+}$, and $\mathscr{L}_{S}{ }^{(H)}+$ denote the closed convex cones of nennegative definite operators in $\mathcal{K}_{S}(H), \tau_{S}(H)$, and $\mathscr{L}_{S}(H)$ respectively, then

$$
\left[\mathcal{K}_{S}(\mathrm{H})_{+}\right]^{+}=\tau_{S}(\mathrm{H})_{+} \text {and }\left[\tau_{S}^{(H)}\right]^{+}=\mathscr{L}_{S}(\mathrm{H})_{+}
$$

where the associated dual spaces are to be understood in the sense defined above.

Let f_{j} be given elements of $\tau_{s}(H)$ (as defined in (4)), j = l,....n. Define the functionals $F_{j}: \mathscr{L}_{S}(H) \rightarrow \bar{R}$ by

$$
\begin{equation*}
F_{j}(A)=\delta_{\geq 0}(A)+\operatorname{tr}\left(f_{j} A\right) \quad A \in \mathscr{L}_{s}(H), j=1, \ldots, n, \tag{8}
\end{equation*}
$$

where ${ }^{\delta} \geq_{0}(\cdot)$ denotes the indicator function for the set $\mathcal{L}_{S}(H)+$ of nonnegative definite operators, i.e. $\delta_{\geq 0}(A)$ is 0 if $A \geq 0$ and $+\infty$ otherwise. Each F_{j} is proper convex and w^{*}-lowersemicontinuous on $\mathscr{L}_{s}(H)$, since $\mathcal{L}_{S}(H)+$ is a w^{*}-closed convex cone and $A H \operatorname{tr}\left(f_{j} A\right)$ is a continuous (in fact w^{*}-continuous) linear functional on $\mathscr{L}_{S}(H)$. Define the function $G: \mathscr{L}_{S}(H) \rightarrow \bar{R}$ by

$$
\begin{equation*}
G(A)=\delta_{\{0\}}(A), A \in \mathscr{L}_{S}(H), \tag{9}
\end{equation*}
$$

that is $G(A)$ is 0 if $A=0$ and $G(A)$ is $+\infty$ if $A \neq 0$; G is trivially convex and lower semicontinuous. Let $m=\left(m_{1}, \ldots, m_{n}\right)$ denote an element of $\mathcal{L}_{5}(H)^{n}$, the

Cartesian product of n copies of $\mathscr{L}_{S}(H)$. Then the quantum detection problem (3) may be written
$P=\inf \left\{\sum_{j=1}^{n} F_{j}\left(m_{j}\right)+G(I-L m): m=\left(m_{1}, \ldots, m_{n}\right) \in \mathscr{L}_{s}(H)^{n}\right\}$
where $L: \mathscr{L}_{S}(H)^{n} \rightarrow \mathscr{L}_{S}(H)$ is the continuous linear operator

$$
\begin{equation*}
L(m)=\sum_{j=1}^{n} m_{j}, m \in \mathscr{L}_{s}(H)^{n} \tag{11}
\end{equation*}
$$

We consider a family of perturhec problems defined by

$$
P(A)=\inf \left\{\sum_{j=1}^{n} F_{j}\left(m_{j}\right)+G_{G}(A-L m): m \in \mathscr{L}_{s}(H)^{n}\right\}
$$

$$
\begin{equation*}
A \in \mathscr{L}_{S}(H) \tag{12}
\end{equation*}
$$

$P(\cdot)$ is a convex function $\mathscr{L}_{S}(H) \rightarrow \bar{R}$ and $P=P(I)$. Note that we are taking perturbations in the equality constraint, i.e. the problem $P(A)$ requires that ever: feasible m satisfy $\mathrm{Lm}=\mathrm{A}$. We remark that $\mathrm{G}(\cdot)$ is nuwhere continuous, so that there is certainly no Kuhn-Tucker point \bar{m} such that $G(\cdot)$ is continuous at $I \bar{m}$ as required by the duality theorem in [ET76,III 4.1].

In order to construct the dual problem corresponding to the family of perturbed problems (12) we must calculate the conjugate functions of F_{j} and G. We would like to pose the dual problem in the space $\tau_{S}(H)$, so we consider
$\mathcal{L}_{s}(\mathrm{H})=\tau_{\mathrm{S}}(\mathrm{H}) *$ and compute the pre-conjugates of $\mathrm{F}_{\mathrm{j}}, \mathrm{G}$. Clearly ${ }^{G} \equiv 0$. By a straightforward calculation we have, for $y \in \tau_{s}{ }^{(H)}$,

$$
\begin{aligned}
\left({ }^{*} F_{j}\right)(y) & =\sup \left\{\operatorname{tryx}-F_{j}(x): x \in \mathcal{L}_{s}(\mathrm{H})\right\} \\
& =\sup \left\{\operatorname{tr}\left(y-\mathrm{E}_{j}\right) x: x \in \mathscr{L}_{s}(H)_{+}\right\} \\
& =\left\{\begin{aligned}
0 & \text { if } f_{j}-y \in \tau_{s}(H)_{+} \\
+\infty & \text { otherwise }
\end{aligned}\right. \\
& =\delta_{\leq f_{j}}(y) .
\end{aligned}
$$

Now L: $\mathscr{L}_{S}(H)^{n} \rightarrow \mathscr{L}_{S}(H) \quad$ is continuous for the $w^{*}=w\left(\mathscr{L}_{s}(H), \tau_{s}(\mathrm{II})\right)$ topology on $\mathscr{L}_{s}(\mathrm{H})$, so we can calculate the pre-adjoint (where we identify $\left.\left.\mathcal{L}_{s}(H)^{n}=!\tau_{s}(H)^{n}\right)^{*}\right)$ as

$$
{ }^{{ }_{L}}: \quad \tau_{s}(H) \rightarrow \tau_{s}(H)^{n}: y \mapsto(y, y, \ldots, y) .
$$

Hence $\left({ }^{*} \mathrm{P}\right)(\mathrm{Y})=\sum_{\mathrm{j}=1}^{\mathrm{n}}\left({ }^{*} \mathrm{~F}_{\mathrm{j}}\right)\left(\left(\mathrm{L}^{*} \mathrm{y}\right){ }_{\mathrm{j}}\right)+\left({ }^{*} \mathrm{G}\right)(\mathrm{y})=\sum_{\mathrm{j}=1}^{\mathrm{n}} \delta_{\leq \mathrm{F}_{j}}(\mathrm{y})$.
Thus the dual problem is $\left({ }^{*} p\right) *(I)=\sup _{y}[t r y I-* p(y)]$ is given by
$(* P)^{*}(I)=\sup \left\{\operatorname{tr}(y): y \in \tau_{S}(H), f_{j}-y \geq 0 j=1, \ldots, n\right\}$.

We have immediately $P(I) \geq(* P) *(I)$ with equality if $P(\cdot)$
is $w^{*}-l \operatorname{sc}$ at I.
We now define perturbations on the daul problem. Let $D(\cdot)$ be the functional on $\tau_{S}(H)^{n}$ defined by

$$
\begin{equation*}
D(v)=\inf \left\{-\operatorname{try}: y \in \tau_{s}(H), y \leq v_{j} j=1, \ldots, n\right\} \tag{13}
\end{equation*}
$$

where $v=\left(v_{1}, \ldots, v_{n}\right) \in \tau_{s}(H)^{n}$. Of course, $D(f)$ is just the dual problem (with a change in sign to make $D(\cdot)$ convex)
 of the dusl problem is again the primal, since F_{j} and G are $\mathrm{w}^{*}-2 \mathrm{sc}$:

$$
\begin{aligned}
\left(D^{}\right)(f) & =\sup \left\{<f, m>-D *(m): m \in \mathcal{L}_{s}(H)^{n}\right\} \\
& =\sup \left\{\sum_{j=1}^{n} \operatorname{tr}\left(f_{j} m_{j}\right)-\sum_{j=1}^{n}\left(* F_{j}\right) *\left(m_{j}\right)-(* G) *(-I m-I): m \in \mathcal{L}_{S}(H)^{n}\right\} \\
& =\sup \left\{\sum_{j=1}^{n} \operatorname{tr}\left(f_{j} m_{j}\right):-m_{j} \in \mathcal{L}_{s}(H)_{+} \forall j=1, \ldots, n,-L m=I\right\} \\
& =-\inf \left\{\sum_{j=1}^{n} \operatorname{tr}\left(f_{j} m_{j}\right): m_{j} \in \mathcal{L}_{s}(H)_{+}, j=1, \ldots, n \text { and } L m=I\right\} \\
& =-P(I) .
\end{aligned}
$$

In general we have $P(I) \equiv-*\left(D^{*}\right)(f) \geq-D(f) \equiv *(P *)(I)$. We shall show that $D(\cdot)$ is continuous for the norm topology on $\tau_{S}(H)^{n}$, and hence that $D(f)=*\left(D^{*}\right)(f)$ and $P(I)=*\left(D^{*}\right)(f)$ has solutions. Equavalently, we could show that the level sets

$$
\begin{aligned}
& \left\{m \in \mathcal{L}_{s}(H)^{n}: D^{*}(m)-\langle f, m\rangle \leq r\right\}= \\
& \left\{m \in \mathscr{L}_{s}(H)_{+}^{n}: \sum_{j=1}^{n} m_{j}=I \text { and } \sum_{j=1}^{n} \operatorname{trf}_{j} m_{j} \leq r\right\}, r \in R
\end{aligned}
$$

are bounded and hence $w^{*}=w\left(\mathfrak{a}_{s}(H)^{n}, \tau_{s}(H)^{n}\right)$ compact, and then apply Theorem III.ll. 5 to show that $D(\cdot)$ is continuous at f. In fact, in this case the feasibility set for the primal problem,

$$
\operatorname{domD}^{*}=\left\{m \in \mathcal{L}_{s}(H)_{+}^{n}: \sum_{j=1}^{n} m_{j}=I\right\},
$$

is itself w^{*} compact and hence it is easy to see that P has solutions;

Proposition 1. $D(\cdot)$ is continuous on $\tau_{s}(H)^{n}$. Hence $D(f)={ }^{*}\left(D^{*}\right)(f)$ and ${ }^{*}\left(D^{*}\right)(f)=P$ has solutions in $S^{(H)^{n}}$.
Proof. By Theorem III. 11.5 applied to the dual problem we need only show that domD $=\tau_{s}(H)^{n}$. Given $v=\left(v_{1}, \ldots, v_{n}\right) \in \tau_{s}(H)^{n}, \operatorname{set} y=-\sum_{j=1}^{n}\left(v_{j}{ }^{*} v_{j}\right)^{1 / 2}$ where $\left(v_{j}{ }^{*} v_{i}\right)^{1 / 2}$ is the unique positive square root of the positive operator $v_{j}{ }^{*} v_{j} \geq 0$. Since $\left(v_{j}{ }^{*} v_{j}\right)^{1 / 2}-v_{j} \geq 0$ for every j, then $y \leq v_{j} \forall_{j}$ and hence y is feasible for D, i.e. $D(v) \leq-t r y<+\infty$. Hence domD $=\tau_{S}(H)^{n}$.

Proposition 1 shows that there is an optimal solution for the quantur detection problem ard that there is no
duality gap. The difficult part is to show that the dual problem (*P)*(I) has solutions. It turns out that the level sets of the dual cost function are bounded in $\tau_{s}(H)$ but not weakly compact; equivalently, $P(\cdot)$ is norm-continuous at I but not $\mathrm{m}\left(\mathcal{L}_{\mathrm{s}}(\mathrm{H}), \tau_{\mathrm{s}}(\mathrm{H})\right)$-continuous. This suggests that we imbed $\tau_{S}(H)$ in its bidual $\tau_{S}(H) * *=\mathcal{L}_{S}(H) *$ and extend the dual problem to the larger space; it will then turn out that there are solutions in $\tau_{s}(H)$. This approach works because $\tau_{s}(H)$ has a natural topological complement as a subset of $\mathscr{L}_{S}(\mathrm{Hi}) *$.

Proposition 2. $\quad \mathcal{L}_{S}(\mathrm{H}) *=\tau_{\mathrm{S}}(\mathrm{H}) \oplus_{1}\left(\mathrm{~J} \mathcal{K}_{S}(\mathrm{~B})\right)^{\perp}$ where J is the canonital imbedding of $\mathcal{K}_{S}(\mathrm{H})$ in $\mathscr{Z}_{5}(\mathrm{H})$. In other words, every bounded linear functional y on \mathcal{X}_{s} (II) may be uniquely represented in the form $Y=Y_{a c}{ }^{\oplus} Y_{s g}$ where $Y_{a c}{ }^{\epsilon} \tau_{S}(H)$ and $Y_{S g} \in K_{S}{ }^{(H)^{\perp}}$, and

$$
\begin{aligned}
& Y(A)=\operatorname{tr}\left(y_{a c} A\right)+y_{s g}(A), A \in \mathscr{L}_{S}(I I) \\
& |y|=\left|y_{a c}\right|_{t r}+\left|y_{s g}\right| .
\end{aligned}
$$

Proof. From [Sch50,IV.3.5] we have the identification $\mathcal{L}(H) *=\tau(H) \oplus_{1} K(H)^{\perp}$; it is only necessary to show that the same result holds for the real linear space $\mathscr{L}_{s}(\mathrm{H})$. But every (real-linear) $y \in \mathscr{L}_{s}(\mathrm{H}) *$ corresponds to a unique (complex-linear) $\Lambda \in \mathscr{L}(H)^{*}$ satisfying $\Lambda\left(A^{*}\right)=\pi(A)$, and conversely; this correspondence is given
by

$$
\begin{aligned}
& Y(A)=\frac{1}{2}[\Lambda(A)+\overline{\Lambda(A)}], \quad \Lambda \in \mathscr{L}_{S}(H) ; \\
& \Lambda(A)=Y\left(\frac{A+\Lambda^{*}}{2}\right)+i Y\left(\frac{A-\Lambda^{*}}{2 i}\right), \quad A \in \mathscr{L}(H) .
\end{aligned}
$$

Hence, the theorem follows.
Before calculating the dual problem, it is necessary to determine what the positive linear functions look like in terms of the decomposition provided by Proposition 2.

Proposition 3. Let $Y \in \mathscr{L}_{S}(H) *$. Then $Y \in\left[\mathcal{L}_{S}(H)_{+}\right]^{+}$ iffy $Y_{a c} \in \tau_{s}(H)+$ and $Y_{s G} \in\left[\mathcal{L}_{s}(H)_{+}\right]^{+}$.

Proof. It is immediate that $y \in\left[\mathscr{L}_{S}{ }^{(H)}\right]_{+}^{+}$if $Y_{a c} \in \tau_{s}(H)+$ and $y_{s g} \in\left[\mathcal{L}_{s}(H)_{+}\right]^{+}$. Conversely, suppose $Y \in\left[\mathscr{L}_{s}(H)_{+}\right]^{+}$. Then clearly for every compact operator $\mathrm{C} \in \mathcal{K}_{\mathrm{S}}{ }^{(\mathrm{HI})}+\mathcal{C}_{\mathrm{S}}(\mathrm{H})+$ we have

$$
0 \leq Y(C)=\operatorname{tr}_{a c} c
$$

Hence $Y_{a c} \in\left[\mathcal{K}_{S}(H)_{+}\right]^{+}=\tau_{S}{ }^{(H)}{ }_{+}$. Now let $A \in \mathcal{L}_{S}{ }^{(H)}+$ be an arbitrary positive operator. Take $\left\{P_{i}\right\}$ to be a norm-bounded net of projections with finite rank such that $P_{i} \uparrow I$ in the sense that $P_{i} \geq P_{i}$, for $i \geq i$ and $P_{i} \rightarrow I$ in the strong operator topology. Then $A^{1 / 2} P_{i} A^{1 / 2}$ has finite rank and $A^{1 / 2} P_{i} A^{1 / 2}+A$ in the
strong operator topology. Hence
$\left.0 \leq Y^{(A-A} A^{1 / 2} P_{i} A^{1 / 2}\right)=Y_{S G}(A)+\operatorname{tr}\left[Y_{a c}\left(A-A^{1 / 2} P_{i} A^{1 / 2}\right)\right] \rightarrow Y_{S G}(A)$
where the limit in the last step is valid since $A-A^{1 / 2} P_{i} A^{1 / 2} \rightarrow 0$ in the $w^{*}=w\left(\mathscr{L}_{S}(H), \tau_{S}(H)\right)$ topology on $\mathscr{L}_{S}(H)$ (this is weaker than the strong operator topology). Thus $Y_{s g} \in\left[\mathcal{L}_{S}(\mathrm{H})_{+}\right]^{+}$.

With the aid of this last proposition it is now possible to calculate the extended dual problem in $\mathcal{L}_{\mathrm{S}}(\mathrm{H})^{*}$. The conjugate function of G is $G^{\star} \equiv 0$. The conjugate of F_{j} is

$$
\begin{aligned}
F_{j}^{*}(y) & =\sup \left\{\operatorname{tr}\left[\left(Y_{a c}-f\right) x\right]+Y_{s g}(x): x \in \mathcal{L}_{s}(H)_{+}\right\} \\
& = \begin{cases}0 & \text { if } \quad f_{j}-Y_{a c} \in \tau_{s}(H)+\text { and }-Y_{S g} \in\left[\mathcal{L}_{s}(H)_{+} 1^{+}\right. \\
+\infty & \text { otherwise }\end{cases} \\
& =\delta_{\leq f_{j}}\left(Y_{a c}\right)+\delta_{\leq 0}\left(Y_{S g}\right)
\end{aligned}
$$

where by $Y_{S g} \leq 0$ we mean $-Y_{S g} \in\left[\mathscr{L}_{S}(H){ }_{+}\right]^{+}$. The adjoint of $L: \mathscr{L}_{S}(H)^{n} \rightarrow \mathscr{L}_{S}(H): m \rightarrow \sum_{j=1}^{n} m_{j}$ is

$$
\begin{aligned}
& L^{*}: \mathscr{L}_{S}(H)^{*} \rightarrow \mathcal{L}_{S}(H) \star n: y \rightarrow(y, \ldots, y) \text {. Hence } \\
& P^{*}(\underline{y})=\sum_{j=1}^{n} F_{j}^{*}\left(-\left(L^{\star} \underline{y}\right)_{j}\right)+G^{*}(y)=\sum_{j=1}^{n} \delta_{\leq f_{j}}\left(Y_{a C}\right)+\delta_{\leq 0}\left(Y_{S G}\right)
\end{aligned}
$$

186

Thus the dual problem $*(P *)(I)=\sup [y(I)-P *(Y)]$ is given by

$$
\left(p^{}\right)(I)=\sup \left\{\operatorname{tr}\left(y_{a c}\right)+y_{s g}(I): Y \in \mathcal{L}_{s}(H)^{*}, Y_{s G} \leq 0, Y_{a c} \leq f_{j}\right.
$$

$$
j=1, \ldots, n\}
$$

Note that this is consistent with the more restricted dual problem $(* P) *(I)$ given by (12). Ve prove that $P(\cdot)$ is norm-continuous at I, and hence $P(I)=*(P *)(I), *(P *)(I)$ has solutions.

Lemma 4. If $A \in \mathscr{L}_{S}(H)$ and $|A| \leq I$, then $I+A \geq 0$. In particular, $I \in$ int $\mathscr{L}_{S}(H)+$ and $Y(I)>0$ for every nonzero $y \in\left[\mathscr{L}_{S}(H)_{+}\right]^{+}$.

Proof. Suppose $|A| \leq 1$. For every $\phi \in H$,
$\langle(I+A) \phi \mid \phi\rangle=|\phi|^{2}+\langle A \phi \mid \phi\rangle \geq|\phi|^{2}-|A| \cdot|\phi|^{2}=(1-|A|)|\phi|^{2} \geq 0$.

Hence $I+A \geq 0$ and $I \in \operatorname{int} \mathscr{Z}_{S}(H)+$. Now suppose $y \in\left[\mathscr{L}_{S}(H)_{+}\right]^{+} y \neq 0$. Then there is an $A \in \mathscr{L}_{S}(H)$ such that $|A| \leq 1$ and $Y(A)<0$. Hence $Y(I)>y(I+A) \geq 0$.
proposition 5. $P(\cdot)$ is continuous at I, and hence $\partial P(I) \neq \varnothing$. In particular, $*\left(P^{*}\right)(I)=P(I)$ and the dual problem * $\left(P^{*}\right)(I)$ has solutions.

Proof. By Theorem III. 11.5 it suffices to show that $I \in$ int domp. But if $A \in \mathscr{Z}_{S}(H)$ and $|A| \leq 1$, then by

Lemma $4 \quad I+A \geq 0$ and $m=(I+A, 0,0, \ldots, 0) \in \mathcal{L}_{s}(H)^{n}$ is feasible for $P(I+A)$, i.e. $I+A \in \operatorname{domP}$. Henc.
$I \in$ int $d o m P$ and $\partial P(I) \neq \varnothing$.

It is now an easy matter to show that the dual problem actually has solutions in $\tau_{s}(H)$, that is solutions in $\mathcal{L}_{S}(H) *$ with 0 singular part.
proposition 6. Every solution $y \in \mathcal{L}_{S}(H)^{*}$ of the extended dual problem * $(\mathrm{P} *)(\mathrm{I})$ satisfies $y_{s g}=0$, i.e. y belongs to the canonical image of $\tau_{S}(H)$ in $\tau_{s}(H) * *$.

Proof. Suppose $y \in \mathcal{L}_{S}(H)^{*}$ is feasible for the dual problem, i.e. $y_{a c} \leq f_{j}$ for $j=1, \ldots, n$ and $y_{s q} \leq 0$. If $y_{s g} \neq 0$, then $\operatorname{tr}\left(y_{a c}\right)+y_{s g}(I)<\operatorname{tr}\left(y_{a c}\right)$ by Lemma 4 . Hence the value of the objective function is improved by setting $y_{s g}=0$, while the constraints are not violated. Thus if y is optimal, then $y_{s q}=0$.

To summarize the results, we have shown that if we define

$$
\begin{align*}
P= & \inf \left\{\sum_{j=1}^{n} \operatorname{tr}\left(f_{j} m_{j}\right):\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in \mathcal{L}_{s}(H)^{n} ;\right. \\
& \left.m_{j} \geq 0 \text { for } j=1,2, \ldots, n ; \sum_{j=1}^{n} m_{j}=I\right\} \tag{14}\\
-D= & \sup \left\{\operatorname{tr}(y): y \in \tau_{s}, y \leq f_{j} \text { for } j=1,2, \ldots, n\right\} \tag{15}
\end{align*}
$$

then $P=-D$ and both P and $-D$ have optimal solutions. Since P is an infimum and $-D$ is a supremum we immediately get an extremality condition: m solves P and y solves D if and only if m is feasible for P, Y is feasible for $-D$, and

$$
\sum_{j=1}^{n} \operatorname{tr}\left(E_{j} m_{j}\right)=\operatorname{tr} y
$$

This leads to the following characterization of the solution to the quantur detection problem.

Theorem 7. Let H be a complex Hilbert space and suppose $\left(f_{1}, \ldots, f_{n}\right) \in \tau_{S}(H)^{n}$. Then the quantum detection problem p defined by (1.?) has solutions. Moreover, the following statements are equivalent for $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathscr{L}_{s}(H)^{n}$:

1) m solves P
2) $\sum_{j=1}^{n} m_{j}=I ; m_{i} \geq 0$ for $i=1, \ldots, n$;

$$
\sum_{j=1}^{n} E_{j} m_{j} \leq E_{i} \text { for } i=1, \ldots, n
$$

3) $\sum_{j=1}^{n} m_{j}=I ; m_{i} \geq 0$ for $i=1, \ldots, n$;

$$
\sum_{j=1}^{n} m_{j} £_{j} \leq E_{i} \text { for } i=1, \ldots, n
$$

Under any of the abore conditions it follows that
$y=\sum_{j=1}^{n} f_{j} m_{j}=\sum_{j=1}^{n} m_{j} f_{j}$ is self-adjoint and is the unique solution of the dual problem -D given by (15); moreover

$$
P=-D=\operatorname{tr}(y)
$$

Proof We must show that the conditions 2) and 3) are necessary and sufficien; for $m \in \mathscr{L}_{s}(H)^{n}$ 亡o solve P. Note that the first part of each condition 2), 3) is simply a feasibility requirement.

Suppose u solves P. Then there is a $y \in \tau_{s}(H)$ which solves $-D$ such that $y \leq f_{i}$ for $i=1, \ldots, n$ and

$$
\sum_{j=1}^{n} t_{i}^{\prime}\left(f_{j} m_{j}\right)=\operatorname{tr}(y)
$$

Equivalently, $0=\sum_{j=1}^{n} \operatorname{tr}\left(f_{j} m_{j}\right)-\operatorname{tr}(y I)=\sum_{j=1}^{n} \operatorname{tr}\left(f_{j}-y\right) m_{j}$ since $\sum_{j=1}^{n} m_{j}=I$. Since $f_{j}-Y \geq 0$ and $m_{j} \geq 0$ we conclude from Lemma 8 which follows, that $\left(f_{j}-y\right) m_{j}=0$ for $j=1, \ldots, n$. But then $0=\sum_{j=1}^{n}\left(f_{j}-Y\right) m_{j}=\sum_{j=1}^{n} f_{j} m_{j}-Y$ and
2) follows. This also shows that y is unique. Conversely, suppose 2), i.e. m is feasible for p and $\sum_{j=1}^{n} f_{j} m_{j} \leq f_{i}, i=1, \ldots, n$. Then $y=\sum_{j=1}^{n} f_{j} m_{j}$ is feasible for $-D$, and $\sum_{j=1}^{n} \operatorname{tr}\left(f_{j} m_{j}\right)=\operatorname{tr}(y)$. Hence m solves P and y solves -D.

Thus 1) \& 2) is proved. Since $\operatorname{tr}\left(\mathrm{f}_{j} \mathrm{~m}_{j}\right)=\operatorname{tr}\left(\mathrm{m}_{j} \mathrm{f}_{\mathrm{j}}\right)$ the proof for I) \Leftrightarrow 3) is identical, and $y=\sum_{j=1}^{n} f_{j} m_{j}=$ $\sum_{j=1}^{n} m_{j} f_{j}$ is the solution of $-D$.

We have made use of the following easy lemma.
Lemma 8. Let $A \leq \tau_{S}\left(H^{\prime}{ }_{+}, B \in \mathscr{L}_{S}(H){ }_{+}\right.$. Then $A B \geq 0$, and $\operatorname{trAB}=0$ iff $A B=0$.

Proof. If $\phi \in H$, then $\langle A B \phi \mid \phi\rangle=\left\langle A^{l / 2} B^{1 / 2} B^{l / 2} A^{l / 2} \phi \mid \phi\right\rangle=$ $\left\langle B^{1 / 2} A^{1 / 2} \phi \mid B^{1 / 2} A^{1 / 2} \phi\right\rangle=\left|B^{1 / 2} A^{1 / 2} \phi\right|^{2} \geq 0$. Since $A B \geq 0$, $\operatorname{tr} A B=\sum_{i}\left\langle A B \phi_{i} \mid \phi_{i}\right\rangle$ is 0 iff $A B=0$, where $\left\{\phi_{i}\right\}$ is a complete orthonormal set.

Remarks on the literature. [YKL75] claims the necessary and sufficient conditions 2) with the additional constraint that $\sum_{j=1}^{n} f_{j} m_{j}=\sum_{j=1}^{n} m_{j} f_{j}$, but the proof of these conditions is not correct. [H73] states that the conditions 2) are sufficient, but of course this is the easy part. It is interesting to note that in the commuting case where $\left[\rho_{i}-\rho_{j}, \rho_{k}-\rho_{\ell}\right]=0$ for $i, j, k, \ell\{1, \ldots, n\}$, the problem reduces to the classical case, i.e. the optimal quantum detector $m=\left(m_{1}, \ldots, m_{n}\right)$ corresponds to a finite resolution of the identity and the decision is made in the usual way
by maximizing the posterior probability.
Added Remark. Professor Mitter has brought to my attention
Holevo's paper [H76] in which the detection results given here are proved using a somewhat different argument. However he does not appear to have extended these results to the more general estimation problem considered in Chapter IX.

VIII. Operator-Valued Measures

Abstract. Let S be a locally compact Hausdorff space and X, Z Banach spaceps. A theory is developed whcih represents all bounded linear operators $L: C_{O}(S, X) \rightarrow Z^{*}$ (without requiring L to be weakly compact) by Borel measures m which have values in $L\left(X, Z^{*}\right)$ and are countably additive in a certain operator topology. Moreover this approach affords a natural characterization of various subspaces of $L\left(X, Z^{*}\right)$ in terms of boundedness conditions on the corresponding representing measures. The uaual results for representing bounded linear maps can then be obtained by considering $L\left(C_{0}(S, X), Y\right)$ as a subspace of $L\left(C_{0}(S, X), Y^{* *}\right)$, for Y a Eanacin space. These results have applicaticns in the theory of quantum estimation.

It is clear that the formulation of quantum estimation problems requires some techniques in the theory of operatorvalued measures. While proving the necessary properties of such measures I noticed that the approach I had taken, while natural for $L_{S}(H)$-valued measures, was somewhat different from the general theory of operator-valued measures developed in the literature, as we shall see. Let S be a locally compact Hausdorff space with Borel sets B. Let X, Y be Banach spaces with normed duals $X *, Y^{*} . C_{O}(S, X)$ denotes the Banach space of continuous X-valued Eunctions $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{X}$ which vanish at infinity (for every $\varepsilon>0$, there is a compact set $K C S$ such that $|f(s)|<\varepsilon$ for all $S \in S \backslash K)$, with the supremum norm $|f|_{\infty}=\sup _{s \in S}|f(s)|$. It is possible to identify every bounded linear map $L: C_{O}(S, X) \rightarrow Y$ with a representing measure m such that

$$
\begin{equation*}
L f=\frac{f m}{s}(d s) f(s) \tag{1}
\end{equation*}
$$

for every $f \in C_{0}(S, X)$. Here m is a finitely additive map $\mathrm{m}: ~ B \rightarrow L(X, Y * *)$ with finite semivariation which satisfies:

1. for every $z \in Y^{*}, m_{z}: B \rightarrow X^{*}$ is a regular X^{*}-valued Borel measure: where m_{z} is defined by

$$
\begin{equation*}
m_{z}(E) x=\langle z, m(E) x\rangle \quad E \in \Phi, x \in X ; \tag{2}
\end{equation*}
$$

2. the map $z \mapsto m_{z}$ is continuous for the w^{*} topologies on $z \in Y^{*}$ and $m_{z} \in C_{0}(S, X)^{*}$.

The latter condition assures that the integral (I) has values in Y even though the measure has values in $L(X, Y * *)$ rather than $L(X, Y)$ (we identify Y as a subspace of $Y * *$). Under the above representation of maps $L \in L\left(C_{O}(S, X), Y\right)$, the maps for which $L_{X}: C_{o}(S) \rightarrow Y: g(\cdot) \mapsto L(g(\cdot) x)$ is weakly compact for every $x \in X$ are precisely the maps whose representing measures have values in $L(X, Y)$, not just in $L(X, Y * *)$. In particular, if Y is reflexive or if Y is weakly complete or more generally if Y has no subspace isomorphic to C_{0}^{\prime}, then every map in $L\left(C_{0}(S, X), Y\right)$ is weakly compact and hence every $L \in L\left(C_{O}(S, X), Y\right)$ has a representing measure with values in $L(X, Y)$.

In the contes of quantum mechanical measures with values in $L_{S}(H)$, however, I identified every continuous Iinear map $L: C_{0}(S) \rightarrow L_{S}(H)$ (here $X=R, Y=L_{S}(H)$) with a representing measure with values in $L_{S}(H)$ rather than in $L_{S}(H) * *$, using fairly elementary arguments. Since $Y=L_{S}(H)$ is neither reflexive nor devoid of subspaces isomorphic to c_{0} (think of a subspace of compact operators on H having a fixed countable set of eigenvectors), I thought at first I had made an error. Fortunately for my sanity, however, I soon detected the crucial difference: whereas in the usual
approach it is assumed that the real-valued set function $2 m(\cdot) x$ is countably additive for $x \in X$ and every $z \in Y *, I$ require that it be countably additive only for $x \in X$ and $z \in Z=T_{S}(H)$, where $Z=T_{S}(H)$ is a predual of $Y=L_{S}(H)$, and hence can represent all linear bounded maps $L: C_{O}(S, X) \rightarrow Y$ by measures with values in $L(X, Y)$. In otin- words, by assuming that the measures $m: B \rightarrow L_{s}(H)$ are countably additive in the weak* topology rather than the weak topology (these are equivalent only when m has bounded variation), it is possible to represent every bounded linear map $L: C_{0}(S) \rightarrow L_{S}(H)$ and not just the weakly compact maps. This approach is generally applicable whenever Y is a dual space, and in fact yields the usual results by imbedding Y in $Y^{* *}$; moreover it clearly shows the relationships between various boundedne..s conditions on the representing measures and the corresponding spaces of linear maps. But first we must define what is meant by integration with respect to operator-valued measures. We shall always take the underlying field of scalars to be the reals, although the results extend immediately to the complex case. Throughout this section we assume that \mathcal{B} is the o-algebra of Borel sets of a locally compact Hausdorff space S, and X, Y are Banach spaces. Let $M: B \rightarrow L(X, Y)$ be an additive set function, i.e. $m\left(E_{1} \cup E_{2}\right)=m\left(E_{1}\right)+m\left(E_{2}\right)$
whenever E_{1}, E_{2} are disjoint sets in B. The semivariation of m is the map $\bar{m}: B \rightarrow \overline{\mathrm{R}}_{+}$defined by

$$
\bar{m}(E)=\sup \left|\sum_{i=1}^{n} m\left(E_{1}\right) x_{i}\right|,
$$

where the supremum is taken over all finite collections of disjoint sets E_{1}, \ldots, E_{n} belonging to $B \cap E$ and x_{1}, \ldots, x_{n} belonging to x_{1}. By $B \cap E$ we mean the sub- σ-algebra $\left\{E^{\prime} \in B: E E^{\prime} C E\right\}=\left\{E^{\prime} \cap E: E \in B\right\}$ and by X_{1} we denote the closed unit ball in X. The variation of m is the map $|m|: B \rightarrow \bar{R}_{+}$defined by

$$
|m|(E)=\sup _{i=1}^{n}\left|m\left(E_{i}\right)\right|
$$

where again the supremum is taken over all finita collections of disjoint sets in $B \cap E$. The scalar semivariation of m is the map $\overline{\overline{\mathrm{m}}}: B \rightarrow \overline{\mathrm{R}}_{+}$defined by

$$
\overline{\bar{m}}(E)=\sup \left|\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)\right|
$$

where the supremum is taken over all finite collections of disjoint sets E_{1}, \ldots, E_{n} belonging to $B \cap E$ and $a_{1}, \ldots, a_{n} \in R$ with $\left|a_{i}\right| \leq i$. It should be noted that the notion of semivariation depends on the spaces X and Y; in fact, if $m: B \rightarrow L(X, Y)$ is taken to have values in $L(R, L(X, Y)), L(X, Y), L(X, Y) * *=L(L(X, Y), R)$ respectively
then
$\overline{\bar{m}}=\bar{m}_{L(R, L(X, U))} \leq \bar{m}=\bar{m}_{L}(X, Y) \leq m=\bar{m}_{L}(L(X, U) *, R)$.

When necessary, we shall subscript the semivariation accordingly. By fa(B, W) we denote the space of all finitely additive maps $m: B \rightarrow W$ where \because is a vector space.

Proposition 1. If $m \in f a\left(B, X^{*}\right)$ then $\bar{m}=\mid m$. More generally, if $m \in f a(B, L(X, Y))$ then for every $z \in Y *$ the finitely additive map $2 m: B \rightarrow X *$ satisfies $\overline{z m}=|z m|$.

Proof. It is sufficient to consider the case $Y=R$, i.e. $m \in f a\left(B, X^{*}\right) . C l e a r l y \bar{m} \leq|m|$. Let $E \in B$ and let $E_{I} \ldots . . E_{n}$ be disjoint sets in $B \cap E . \quad$ Then $\sum_{i}\left|m\left(E_{i}\right)\right|=\sup _{x_{i} \in X_{1}} \sum m\left(E_{i}\right) x_{i}=$
$\sup _{x_{i} \in X_{1}}\left|\Sigma m\left(E_{i}\right) x_{i}\right| \leq m(E)$. Taking the supremum over all $x_{i} \in X_{1}$
disjoint $E_{i} \in B \cap E$ yields $|m|(E) \leq \bar{m}(E)$.
We shall need some basj.c facts about variation and semivariation. Let X, Y be normed spaces. A subset Z of Y^{*} is a norming subset of $Y *$ if supizy: $z \in Z, z \leq 1 \leq=|y|$ for every $y \in Y$.

Proposition 2. Let X, Y be normed spaces, $n \in f a(\mathbb{A}, L(X, Y))$.
If Z is a norming subset of Y^{*}, then
)

$$
\begin{aligned}
\sup _{\left|\sup _{i}\right| \leq 1}\left|\sum_{i=1}^{n} a_{i} m\left(E_{i}\right)\right|= & \sup _{\left|a_{i}\right| \leq 1} \sup _{x \in X_{1}} \sup _{z \in Z_{1}}\left\langle z, \sum_{i=1}^{n} a_{i} m\left(E_{i}\right) x>\right. \\
= & \sup \sum_{i \in X_{1}}^{n}\left|z m\left(E_{i}\right) x\right| \\
& z \in Z_{1}
\end{aligned}
$$

and taking the supremum over finite disjoint collections $\left\{E_{i}\right\} \subset ふ \cap E$ yields $\overline{\bar{m}}(E)=\sup _{|x| \leq 1} \sup _{|z| \leq 1}|z(\cdot) x|(E)$.

It is straightforward to check the final statement of the theorem.

Proposition 3. Let $m \in f a(\mathscr{O}, \mathrm{~L}(X, Y))$. Then $\overline{\bar{m}}, \bar{m}$, and $|m|$ are monotone and finitely subadaitive; $|\mathrm{m}|$ is finitely additive.

Proof. It is immediate that $\overline{\mathrm{m}}, \overline{\overline{\mathrm{m}}, ~!\mathrm{m}}$ are monotone. Suppose $E_{1}, E_{2} \in \mathscr{B}$ and $E_{1} \cap E_{2}=\varnothing$, and let F_{1}, \ldots, E_{n} be a finite collection $\cap f$ disjoint sets in $\mathbb{B} \cap\left(E_{1} \cup E_{2}\right)$. Then if $\left|x_{i}\right| \leq 1, i=1, \ldots, n$, we have

$$
\begin{aligned}
\sum_{i=1}^{n} m\left(F_{i}\right) x_{i} \mid & =\left|\sum_{i=1}^{n}\left(m\left(F_{i} \cap E_{1}\right)+m\left(F_{i} \cap E_{2}\right)\right) x_{i}\right| \\
& \leq \frac{\sum \sum m\left(F_{i} \cap E_{1}\right) x_{i}|+| \sum_{i}\left(F_{i} \cap E_{2}\right) x_{i}}{} \\
& \leq \overline{\operatorname{n}}\left(E_{1}\right)+\bar{m}\left(E_{2}\right) .
\end{aligned}
$$

Taking the supremum over all disjoint $F_{1}, \ldots, F_{n} \in \mathbb{D} \cap\left(E_{1} \cup E_{2}\right)$ yields $\bar{m}\left(E_{1} \cup E_{2}\right) \leq \bar{m}\left(E_{1}\right)+\overline{7}_{2}\left(E_{2}\right)$. Using (3) we immediately have $\overline{\mathrm{m}},|\mathrm{m}|$ finitely subadditive. Since $\mid \mathrm{m}$ is always superadditive by its definition, $|m|$ is finitely additive.

We now define integration with respect to additive set
functions $m: \mathcal{S} \rightarrow \mathrm{L}(\mathrm{X}, \mathrm{Y})$. Let $\mathscr{B} \otimes \mathrm{X}$ denote the vector space of all X-valued measurable simple functions on S, that is all functions of the form $f(s)=\sum_{i=1}^{n} 1_{E_{i}}(s) x_{i}$ where $\left\{E_{1}, \ldots, E_{n}\right\}$ is a finite disjoint measurable partition of S, i.e. $E_{i} \in \infty \quad \forall i, E_{i} \cap E_{j}=\varnothing$ for $i \neq j$,
and $\underset{i=1}{\bigcup} E_{i}=S$. Then the integral $\underset{S}{f(d s) f(s) \text { is defined }}$ unambiquously (by finite additivity) as

$$
\begin{equation*}
f_{S}(d s) f(s)=\sum_{i=1}^{n} m\left(E_{i}\right) x_{i} \tag{4}
\end{equation*}
$$

We make $\dot{B} \otimes X$ into a normed space under the uniform norm, defined for bounded maps $f: S \rightarrow X$ by

$$
|f|_{\infty}=\sup _{s \in S}|f(s)| .
$$

Suppose now that m has finite semivariation, i.e. $\overline{\mathrm{m}}(\mathrm{s})<+\infty$. From the definitions it is clear that

$$
\begin{equation*}
\left|\int_{s}(d s) f(s)\right| \leq \bar{m}(S) \cdot|f|_{\infty}, \tag{5}
\end{equation*}
$$

so that $f \mapsto f(d s) f(s)$ is a bounded linear functional on s
$\left(\mathfrak{\infty},|\cdot|_{\infty}\right) ;$ in fact, $\bar{m}(S)=\sup \left\{\left|\rho m(d s) f(s):|f|_{\infty} \leq 1, f \in D \otimes X\right\}\right.$ is the bound. Thus, if $\overline{\mathrm{m}}(S)<+\infty$ it is possible to extend the definition of the integral to the completion $M(S, X)$ of $\mathfrak{D} \otimes \mathrm{X}$ in the $|\cdot|_{\infty}$ norm. $M(S, X)$ is called the space of totaily ©-measurable X-valued functions on S; every such function is the uniform limit of \mathcal{D}-measurable simple functions. For $f \in M(S, X)$ define

$$
\begin{equation*}
\operatorname{lm}_{s}(d s) \hat{f}(s)=\lim _{n \rightarrow \infty} f_{s}(d s) f_{n}(s) \tag{6}
\end{equation*}
$$

where $f_{n} \in \mathscr{B} \otimes$ is an arbitrary sequence of simple functions which converge uniformly to f. The integral is well-defined since if $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is a Cauchy sequence in $\theta \otimes \mathrm{X}$ then $\left\{\int_{S}(d s) f_{n}(s)\right\}$ is Cauchy in Y by (5) and hence converges. Moreover if two sequences $\left\{f_{n}\right\},\left\{g_{n}\right\}$ in $\mathscr{B X}$ satisfy $\left|g_{n}-f\right|_{\infty} \rightarrow 0$ and $\left|f_{n}-f\right|_{\infty} \rightarrow 0$ then $\left|f m(d s) f_{n}(s)-f(d s) g_{n}(s)\right| \leq$ $\bar{m}(s)\left|\tilde{I}_{n}-g_{n}\right|_{\infty} \rightarrow 0$ so $\lim _{n \rightarrow \infty} f m(d s) f_{n}(s)=\lim _{n \rightarrow \infty} f m(d s) g_{n}(s)$.

Similarly, it is clear that (5) remains true for every $f \in M(S, X)$. More generally it is straightforward to verify that

$$
\begin{equation*}
\bar{m}(E)=\underset{\mathcal{J}}{\sup \left\{\int m(\dot{c}) f(S): f \in \mathbb{M}(S, X),|f|_{\infty} \leq 1, \operatorname{suppf} \subset E\right\} . . . ~} \tag{7}
\end{equation*}
$$

Proposition 4. $C_{o}(S, X) \subset M(S, X)$.
Proof. Every $g(\cdot) \in C_{o}(S)$ is the uniform limit of simple real-valued Borel-measurable functions, hence every function of the form $f(s)=\sum_{i=1}^{n} g_{i}(s) x_{i}=\sum_{i=1}^{n} g_{i} \otimes x_{i}$ belongs to $M(S, X)$, for $g_{i} \in C_{o}(S)$ and $x_{i} \in X$. These functions may be identified with $C_{0}(S) \otimes X$, which is dense in $C_{o}(S, X)$ for the supremum norm[T67p448]. Hence $C_{0}(S, X)=C l C_{0}(S) \theta X C M(S, X)$. To summarize, if $m \in f a(\mathcal{B}, I(X, Y))$ has finite semivariation $\bar{m}(S)<+\infty$ then $\int_{S}(d s) f(s)$ is well-defined for
$f \in M(S, X) \supset C_{O}(S, X)$, and in fact $f \mapsto f_{S}(d s) f(s)$ is a bounded linear $m=$ from $C_{0}(S, X)$ or $M(S, X)$ into Y.

Now let Z be a Banach space and L a bounded linear map from Y to Z. If $m: ~ \mathscr{O} \rightarrow L(X, \underline{y})$ is finitely additive and has finite semivariation then $\operatorname{Im}: \mathcal{D} \rightarrow \mathrm{L}(\mathrm{X}, \mathrm{Z})$ is also finitely additive and has finice semivariation $\overline{\mathrm{Lm}}(S) \leq|L| \cdot \bar{m}(S)$. For every simple function $f \in \mathbb{X} \otimes X$ it is easy to check that $\underset{\mathrm{L}}{\mathrm{L} / \mathrm{m}(\mathrm{d}) \mathrm{f}(\mathrm{s})=} \underset{\mathrm{s}}{\operatorname{Im}(\mathrm{ds}) \mathrm{f}(\mathrm{s})}$. By taking limits of uniformly convergent simple functions we have proved

Proposition 5. Let $m \in f a(\infty, L(X, Y))$ and $\bar{m}(S)<+\infty$. Then $\operatorname{Lm} \in \mathrm{fa}(\infty, \mathrm{I}(\mathrm{X}, \mathrm{Z}))$ for every bounded linear $\mathrm{L}: \mathrm{Y} \rightarrow \mathrm{Z}$, with $\overline{\operatorname{Lm}}(S)<+\infty$ and

$$
\begin{equation*}
\underset{s}{\operatorname{L} m}(\mathrm{ds}) \mathrm{f}(\mathrm{~s})=\int_{\mathrm{s}}^{\mathrm{Lm}(\mathrm{ds} ; \mathrm{f}(\mathrm{~s}) .} \tag{8}
\end{equation*}
$$

Since we will be considering measure representations of bounded linear operators on $C_{0}(S, X)$, we shall require some notions of countable additivity and regularity. Recall that a set function m : \rightarrow W with values in a locally convex Hausdorff space W is countably additive iff $m\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} m\left(E_{n}\right)$ for every countable disjoint sequence $\left\{E_{i}\right\}$ in $\mathcal{D} . B y$ the Pettis Theorem (DSiv.10.1) countable
additivity is equivalent to weak countable additivity, i.e. $m: \mathfrak{X} \rightarrow \boldsymbol{W}$ is countable additive iff it is countably additive for the weak topology on W, that is iff $w^{*} m: ~ \widehat{Q} \rightarrow R$ is countably additive for every $w^{*} \in W^{*}$. If W is a Banach space, we denote by ca($\mathcal{A}, W)$ the space of all countably additive maps $m: \mathscr{B} \rightarrow W ;$ fabv $(\mathscr{D}, \mathcal{W})$ and $\operatorname{cabv}(\mathscr{O}, W)$ denote the spaces of finitely additive and countably additive maps $m: \nrightarrow W$ which have bounded variation $|m|(S)<+\infty$.

If W is a Banach space, a measure $m \in f a(\oint, W)$ is regular iff for every $\varepsilon>0$ and every Borel set E there is a compact set $K \subset E$ and an open set $G \supset E$ such that $|m(F)|<\varepsilon$ whenever $F \in \mathbb{B} \cap(G \backslash K)$. The following theorem shows among other things that regularity actually implies countable additivity when m has bounded variation $|m|(S)<+\infty \quad$ (this latter condition is crucial). By rabv($\mathcal{D}, W)$ we denote the space of all countably additive regular Borel measures $m: \dot{\mathcal{D}} \rightarrow \mathrm{W}$ which have bounded variation.

Let X, Z be Banach spaces. We shall be mainly concerned with a special class of $L\left(X, Z^{\star}\right)$-valued measures which we now define. Let $\eta\left(\mathbb{O}, I\left(X, Z^{\star}\right)\right)$ be the space of all $m \in f a\left(\mathfrak{X}, L\left(X, Z^{*}\right)\right)$ such that $\langle z, m(\cdot) x\rangle \in \operatorname{rcabv}(\infty)$ for every $x \in X, z \in Z$. Note that such measures $m \in M\left(\infty, L\left(X, Z^{*}\right)\right)$ need not be countably additive for the weak operator
(equivalently, the strong operator) topology on $L\left(X, Z^{*}\right)$, since $z^{* *}(\cdot) x$ need not belong to $c a(\infty)$ for every $\mathrm{X} \in \mathrm{X}, \mathrm{Z}^{\star *} \in \mathrm{Z}^{* *}$.

The following theorem is very important in relating various countable additivity and regularity conditions.

Theorem 1. Let S be a locally compact Hausdorff space with Borel sets, \mathfrak{O}. Let X, Y be normed spaces, Z_{1} a norming subset of $Y^{*}, \mathrm{~m} \in \mathrm{fa}(\mathbb{Q}, \mathrm{L}(\mathrm{X}, \mathrm{Y}))$. If $2 \mathrm{~m}(\cdot) \mathrm{x}: \mathcal{B} \rightarrow \mathrm{R}$ is countably additive for every $z \in Z_{1}, x \in X$ then $|\mathrm{m}|(\cdot)$ is countably additive $\mathscr{B} \rightarrow \overline{\mathrm{R}}_{+}$. If $2 \mathrm{~m}(\cdot) \mathrm{x}: \mathcal{D} \rightarrow \mathrm{R}$ is regular for every $z \in Z_{1}, x \in X$, and if $\mid(S)<+\infty$, then $|m|(\cdot)$ réabv $\left(\infty, R_{+}\right)$. If $|m|(S)<+\infty$, then $m(\cdot)$ is countably additive iff $|m|$ is and $m(\cdot)$ is regular iff $|m|$ is.

Proó . Suppose $z m(\cdot) x \in c a(ふ), R)$ for every $z \in Z_{1}, x \in X$. Let $\left\{A_{i}\right\}$ be a disjoint sequence in \mathfrak{W}. Let $\left\{B_{1}, \ldots, B_{n}\right\}$ be a finite collection of disjoint Borel subsets of ∞ $\bigcup_{i=1}^{\infty} A_{i}$. Then $\sum_{j=1}^{n}\left|m\left(B_{j}\right)\right|=\sum_{j=1}^{n}\left|m\left(\bigcup_{i=1}^{\infty} A_{i} \cap B_{j}\right)\right|=\sum_{\substack{n=1 \\ \sum_{j} \in X_{1} \\ z_{j}}}^{\sup _{j} m\left(\mathrm{Z}_{j=1}^{\infty} A_{i} \cap B_{j}\right) x_{j} \mid \cdot}$

Since each $z_{j} m(\cdot) x_{j}$ is countably additive, we may continue with

$$
\begin{aligned}
& =\sum_{j=1}^{n} \sup _{j \in X_{1}} \sum_{i=1}^{\infty} a_{j} m\left(A_{i} \cap B_{j}\right) x_{j}\left|\leq \sum_{j=1}^{\sum} \sup _{j} \in X_{1} \sum_{i=1}^{\infty}\right| z_{j} m\left(A_{i} \cap B_{j}\right) x_{j} \\
& z_{j} \in Z_{1} \quad z_{j} \in Z_{1} \\
& \leq \sum_{j=1}^{n} \sum_{i=1}^{\infty}\left|m\left(A_{i} \cap B_{j}\right)\right|=\sum_{i=1}^{\infty} \sum_{j=1}^{n}\left|m\left(A_{i} \cap B_{j}\right)\right| \leq \sum_{i=1}^{\infty}|m|\left(A_{i}\right) .
\end{aligned}
$$

Hence, taking the supremum over all disjoint $\left\{B_{j}\right\} \subset \bigcup_{i=1}^{\infty} A_{i}$, we have $|m|\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty}|m|\left(A_{i}\right)$. Since $|m|$ is always countably superadditive, $|m|$ is countably additive. Now assume $z m(\cdot) x$ is regular for every $z \in Z_{1}, x \in X$, and $|\mathrm{m}|(S)<+\infty$. Obviously each $\mathrm{zm}(\cdot) \mathrm{x}$ has bounded varitation since $\mid m(S)<+\infty$, hence $z m(\cdot) x \in c a(\mathcal{O})$ by [DS III.5.13] and $\mathrm{zm}(\cdot) \mathrm{x} \in \operatorname{rcabv}(\mathcal{O})$. We wish to show that $|m|$ is regular; we already know $|m| \in c a b v(\infty)$. Let $E \in \mathcal{E}, \varepsilon>0$. By definition of $|m|(E)$ there is a finite disjoint Borel partition $\left\{E_{1}, \ldots, E_{n}\right\}$ of E such that $|m|(E)<\sum_{i=1}^{n}\left|m\left(E_{i}\right)\right|+\varepsilon / 2$. Hence there are $z_{1}, \ldots, z_{n} \in z_{1}$ and $x_{1}, \ldots, x_{n} \in X,\left|x_{i}\right| \leq 1$, such that

$$
|m|(E)<\sum_{i=1}^{n} z_{i} m\left(E_{i}\right) x_{i}+\varepsilon / 2 .
$$

Now each $z_{i} m(\cdot) x_{i}$ is regular, so there are compact $K_{i} \subset E_{i}$

206

for which $\left|z_{i} n\left(D_{i} \backslash F_{i}\right) x_{i}\right|<\varepsilon / 2 n, i=1, \ldots . n$. Hence

$$
\begin{aligned}
|m|(E \backslash K) & =|m|(E)-|n|(K) \\
& <\sum_{i=1}^{n} z_{i} m\left(E_{i}\right) x_{i}+\frac{\varepsilon}{2}-\sum_{i=1}^{n} z_{i}^{m\left(E_{i} \cap k_{i}\right) x_{i}} \\
& =\sum_{i=1}^{n} z_{i} m\left(E_{i} \backslash K_{i}\right) x_{i}+\varepsilon / 2 \\
& <\varepsilon
\end{aligned}
$$

and we have shown that $|\mathrm{m}|$ is inner regular. since $|m|(s)<+\infty$, it is straightforward to show that $|m|$ is outer regular. For if $\Gamma \in \mathbb{B}, \varepsilon>0$ then there is a compact $K C S \backslash E$ for which $|m|(S \backslash E)<|m|(K)+\varepsilon$ and so for the open set $G=S \backslash K \supset E$ we have

$$
|m|(G \backslash E)=|m|(S \backslash E)-|m|(K)<\varepsilon .
$$

Finally, let us prove the last statement of the theorem. We assume $m \in f a(\mathcal{D}, L(X, Y))$ and $|m|(S)<+\infty$. First suppose $\mathrm{m}(\cdot)$ is countably additive. Then for every disjoint sequence $\left\{A_{i}\right\}$ in \mathcal{O},

$$
\begin{aligned}
& \left|m\left(\bigcup_{i=1}^{\infty} A_{i}\right)-\sum_{i=1}^{n} m\left(A_{i}\right)\right| \rightarrow 0 \text {, so certainly } \\
& y^{*} m\left(\bigcup_{i=1}^{\infty} A_{i}\right) x-\sum_{i=1}^{n} y^{\star} m\left(A_{i}\right) x_{i} \rightarrow 0 \text { for every } y^{*} \in y^{*}, x \in x
\end{aligned}
$$

and by what we just proved $|m|$ is countably additive. Conversely, if $|\mathrm{m}|$ is countably additive then for everv disjoint sequence $\left\{A_{i}\right\}$ we have $\left|m\left(\bigcup_{i=1}^{\infty} A_{i}\right)-\sum_{i=1}^{n} m\left(A_{i}\right)\right|=$ $\left|m\left(\bigcup_{i=1}^{\infty} A_{i}\right)\right| \leq|m|\left(\bigcup_{i=1}^{\infty} A_{i}\right)=|m|\left(\bigcup_{i=1}^{\infty} A_{i}\right)-\sum_{i=1}^{n}|m|\left(A_{i}\right) \rightarrow 0$. Similarly, if m is requiar then every $\mathrm{y}^{*} \mathrm{~m}(\cdot) \mathrm{x}$ is reqular and by what we proved already $|m|$ is reqular. Conversely, if $|m|$ is regular it is easy to show that m is reqular. \square

Theorem 2. Let S be a locally compact Hausdorff space with Borel sets \mathcal{O}. Let x, z be Banach spaces. There is an isometric isomorphism $\mathrm{L} \leftrightarrow \mathrm{m}$ between the bounded linear maps $\therefore: C_{0}(S) \rightarrow I\left(X, Z^{*}\right)$ and the finitely additive

for every $x \in X, z \in Z$. The correspondence $L \leftrightarrow m$ is given by

$$
\begin{equation*}
L a=\int_{S} g(s) m(d s), \quad g \in C_{0}(s) \tag{10}
\end{equation*}
$$

where $|L|=\overline{\bar{m}}(S)$; moreover, $z L(\underline{\sigma}) x=\int_{S} G(s) z m(d s) x$ and $|z L(\cdot) x|=|z m(\cdot) x|(S)$ for $x \in X, z \in Z$.

Remarks. The measure $m \in f a\left(\mathcal{O}, I\left(x, Z^{*}\right)\right)$ need have neither finite semivariation $\bar{m}(s)$ nor bounded variation $|m|(s)$. It is also clear that $L(g) x=\int_{S} g(s) m(d s) x$ and $z L(g)=\int_{S} g(s) z m(d s)$, by Proposition 5 .

Proof. Suppose $L \in L\left(C_{0}(S), L\left(X, Z^{*}\right)\right)$ is qiven. Then for every $x \in X, z \in Z$ the map $g \mapsto z L(g) x$ is a bounded linear functional on $C_{o}(S)$, so there is a unique realvalued reqular Borel measure $r_{x, z}: \oiint \rightarrow R$ such that

$$
\begin{equation*}
z L(g) x=\int_{S} f(s) m_{x, z}(d s) \tag{11}
\end{equation*}
$$

For each Borel set $E \in \mathfrak{B}$, define the map $M(E): x \rightarrow z *$ by $\langle z, m(E) x\rangle=m_{x z}(E)$. It is easy to see that $m(E): X \rightarrow 2^{*}$ is linear from (11); moreover it is continuous since

$$
\begin{aligned}
|m(E)| \leq \overline{\bar{m}}(S)= & \sup |z m(\cdot) \times|(S)= \\
& |x| \leq 1 \\
& |z| \leq 1 \\
& |x| \leq 1 \\
& |z| \leq 1 \\
& \left|x \sup _{\times 2}\right|(S)= \\
& |z| \leq 1 \\
& |z| \leq 1
\end{aligned}
$$

Thus $m(E) \in L\left(X, Z^{*}\right)$ for $F \in \mathscr{D}$ and $m \in f a\left(\infty, L\left(X, Z^{*}\right)\right)$ has finite scalar semivariation $\overline{\bar{m}}(S)=|L|$. Since $\overline{\bar{m}}=\bar{m}_{L\left(R, I\left(X, Z^{*}\right)\right)}$ is finite the integral in (10) is well-defined for $q \in C_{C}(S) \subset M(S, R)$ and is a continuous linear map $g \mapsto \rho_{\mathrm{m}}(\mathrm{ds}) \mathrm{g}(\mathrm{s})$. Now (11) and Proposition 5 imply that

$$
z L(g) x=\int_{S} z m(d s) x g(s)=\left\langle z, \int_{S}(d s) g(s) \cdot x\right\rangle
$$

for every $x \in X, z \in Z$. Thus (10) follows.
Conversely suppose $m \in f a\left(X, I\left(X, Z^{*}\right)\right)$ satisfies
$z m(\cdot) x \in \operatorname{rcabv}(\infty)$ for every $x \in X, z \in \mathbb{Z}$. First we must show that m has finite scalar semivariation $\overline{\bar{m}}(S)<+\infty$. Now $\sup _{E \in D}|\mathrm{zm}(E) \mathrm{x}| \leq|\mathrm{zm}(\cdot) \mathrm{x}|(\mathrm{S})<+\infty$ for every $\mathrm{x} \in \mathrm{X}, \mathrm{z} \in \mathrm{z}$. Hence successive applications of the uniform boundedness theorem yields $\sup _{E \in \mathcal{D}}|m(E) x|<+\infty$ for every $x \in X$ and $\sup |m(E)|<+\infty$, i.e. m is bounded. Rut then by E $\in \AA$
Proposition 2

$$
\begin{aligned}
& \begin{aligned}
\overline{\bar{m}}(S)= & \sup _{|x| \leq 1}|z r(\cdot) x|(\Omega)= \\
& \sup _{|x| \leq 1} \sup _{i} \sum_{\text {disjoint }} \sum_{i=1}^{n}\left|z m\left(E_{i}\right) x\right| \\
& |z| \leq 1
\end{aligned} \\
& =\sup _{|x| \leq 1 E_{i}} \sup _{\text {disc }} \Sigma^{+} z m\left(E_{i}\right) x-\Sigma^{-} z m\left(E_{i}\right) x \\
& |z| \leq 1 \\
& =\sup _{|x| \leq 1} \sup _{E_{i} \operatorname{disj}} \operatorname{zm}\left(U^{+} E_{i}\right) x-z m\left(U^{-} E_{i}\right) x \\
& |z| \leq 1 \\
& \leq \sup _{|x| \leq 1} 2 \sup _{E \in B}|\operatorname{zm}(E) x|=2 \sup _{E \in B}|m(E)|<+\infty, \\
& |z| \leq 1 \\
& \text { where } \Sigma^{+} \text {and } U^{+}\left(\Sigma^{-} \text {and } U^{-}\right) \text {are taken over those i } \\
& \text { for which } \mathrm{zm}\left(\mathrm{E}_{\mathrm{i}}\right) \mathrm{x} \geq 0\left(\mathrm{zm}\left(\mathrm{E}_{\mathrm{i}}\right) \mathrm{x}<0\right) \text {. Thus } \overline{\mathrm{I}}(\mathrm{~s}) \text { is } \\
& \text { finite so (10) defines a bouncier linear map } \\
& L: C_{0}(S) \rightarrow I\left(X, 2^{*}\right) .
\end{aligned}
$$

We now investigate a more restrictive class of bounded linear maps. For $L \in L\left(C_{0}(G), L\left(X, Z^{*}\right)\right)$ define the (not necessarily finite) norm

$$
\|L\|=\sup \left|\sum_{i=1}^{n} L\left(g_{i}\right) x_{i}\right|
$$

where the supremum is over all finite collections $g_{1}, \ldots, g_{n} \in C_{0}(S)_{1}$ and $x_{1}, \ldots, x_{n} \in x_{1}$ such that the a_{i} have disjoint support.

Theorem 3. Let S be a locally compact Hausdorff space With Borel sets d. Let X, Z be Banach spaces. There is an isonetric isomorphism $L_{1} \leftrightarrow \mathrm{~m}_{1} \leftrightarrow \mathrm{~L}_{2}$ between the linear maps $L_{1}: C_{O}(S) \rightarrow I\left(X, Z^{*}\right)$ with $\left\|L_{1}\right\|<+\infty$; the measures $m \in f a\left(\mathscr{A}, I\left(X, Z^{*}\right)\right)$ with finite semivariation $m(S)<+\infty$ for which $2 m(\cdot) x \in \operatorname{rcabv}(\mathcal{B})$ for every $z \in Z, x \in X$; and the bounded linear maps $L_{2}: C_{0}(S, X) \rightarrow z^{*}$. The correspondence $L_{1} \leftrightarrow m \leftrightarrow L_{2}$ is given by

$$
\begin{align*}
& L_{1} g=\int_{S} m(d s) g(s), g \in C_{0}(s) \tag{12}\\
& L_{2} f=\int_{S}: 1(d s) f(s), f \in C_{0}(s, x) \tag{13}\\
& L_{2}(g(\cdot) x)=\left(L_{1} g\right) x, g \in C_{0}(s), x \in X . \tag{14}
\end{align*}
$$

Moreover under this correspondence $\left\|L_{1}\right\|=\bar{m}(S)=\left|L_{2}\right|$;
and $\quad z L_{2} \in C_{0}(S, X) *$ is given by $2 L_{2} f=\int_{S} z m(d s) f(s)$ where $z m \in \operatorname{rcabv}\left(\mathcal{O}, \mathrm{X}^{*}\right)$ for every $\mathrm{z} \in \mathrm{z}$.

Proof. From Theorem 2 we already have an isomorphism $L_{1} \leftrightarrow \mathrm{~m}$; we must show that $\left\|L_{1}\right\|=\bar{m}(S)$ under this correspondence. We first shew that $\left\|L_{1}\right\| \leq \bar{m}(S)$. Suppose $g_{I}, \ldots, g_{n} \in C_{C}(s)$ have disjoint support with $\left|g_{i}\right|_{\infty} \leq 1 ; x_{1} \ldots, x_{n} \in X$ with $\left|x_{i}\right| \leq 1 ;$ and $z \in Z$ with $|z| \leq 1$. Then

$$
\begin{aligned}
\left\langle z, \sum_{i=1}^{n} L_{1}\left(g_{i}\right) x_{i}\right\rangle & =\sum_{i=1}^{n} \rho \mathrm{sm}(d s) x_{i} \cdot g_{i}(s) \\
& \leq \sum_{i=1}^{n}\left|z m(\cdot) x_{i}\right|\left(\operatorname{suppg}_{i}\right) \\
& \leq \sum_{i=1}^{n}|z m|\left(\operatorname{suppg}_{i}\right)
\end{aligned}
$$

where the last step follows from Proposition 2 and $\left|x_{i}\right| \leq 1$. Since $|z m|$ is subadditive by Proposition 3, we have

$$
\left\langle z, \sum_{i=1}^{n} L_{1}\left(g_{i}\right) x_{i}>\leq\right| z m\left|\left(\bigcup_{i=1}^{n} \operatorname{suppg}_{i}\right) \leq|z m|(s) .\right.
$$

Taking the supremum over $|z| \leq 1$, we have, again by Proposition 2,

$$
\left|\sum_{i=1}^{n} L_{1}\left(g_{i}\right) x_{i}\right| \leq \sup _{|z| \leq 1}|z m|(s)=\bar{m}(s)
$$

Since this is true for all such collections $\left\{g_{i}\right\}$ and $\left\{x_{i}\right\},\|L\| \leq \bar{m}(S)$. We now show $\bar{m}(S) \leq\|L\|$. Let $\varepsilon>0$ be arbitrary, and suppose $E_{1}, \ldots, E_{n} \in \mathcal{D}$ are disjoint, $|z| \leq 1,\left|x_{i}\right| \leq 1, i=1, \ldots, n$. By regularity of $\operatorname{zrn}(\cdot) x_{i}$, there is a compact $K_{i} \subset \Sigma_{i}$ such that $\left|\operatorname{zm}(\cdot) x_{i}\right|\left(E_{i}\right)<\frac{\varepsilon}{n}+\left|\operatorname{zm}(\cdot) x_{i}\right|\left(k_{i}\right), i=1, \ldots, n$. since the K_{i} are disjoint, there are disjoint open sets $G_{i} \supset K_{i}$. By Urysohn's Lemma there are continuous functions g_{i} with compact support such that $1_{K_{i}} \leq g_{i} \leq l_{G_{i}}$. Then $\sum_{i=1}^{n} 2 m\left(E_{i}\right) x_{i}=\sum_{i=1}^{n} z L\left(g_{i}\right) x_{i}+\sum_{i=1}^{n} f\left(l_{E_{i}}-g_{i}\right)(s) z m(d s) x_{i}$

$$
\begin{aligned}
& \leq \sum_{i=1}^{n} z L\left(\sigma_{i}\right) x_{i}+\sum_{i=1}^{n} f\left(I_{E_{i}}-I_{K_{i}}\right)(s) z m(d s) x_{i} \\
& \leq \sum_{i=1}^{n} 2 L\left(g_{i}\right) x_{i}+\sum_{i=1}^{n}|z m(\cdot) x|\left(E_{i} \backslash K_{i}\right) \leq \sum_{i=1}^{n} 2 L\left(\sigma_{i}\right) x_{i}+\varepsilon
\end{aligned}
$$

$$
\leq\left|\sum_{i=1}^{n} L\left(g_{i}\right) x_{i}\right|+\varepsilon
$$

Taking the supremum over $|z| \leq 1$, finite disjoint collections $\left\{E_{i}\right\},\left|x_{i}\right| \leq 1$ we get $\bar{m}(S) \leq||L||+\varepsilon$. since $\varepsilon>0$
was arbitrary $\bar{m}(S) \leq\|L\|$ and so $\bar{m}(S)=\|I\|$. It remains to show how the mans $I_{2} \in I\left(C_{0}(S, X), R^{*}\right)$ are related to L_{1} and $m_{\text {. }}$. n given L_{1} or equivalently m, it is immediate from the definition of the integral (6) that (I3) defines an $L_{2} \in L\left(C_{0}(S, X), Z^{*}\right)$ with $\left|L_{2}\right|=\bar{m}(S)<+\infty$. Conversely, suppose $\left.L_{2} \in I\left(C_{0}!S, X\right), Z^{*}\right)$ is given. Then (14) defines a bounced linear map $I_{1}: C_{0}(S) \rightarrow L\left(X, Z^{*}\right)$, with $I_{1}\left|\leq\left|I_{2}\right|\right.$; moreover it is easy to see that $\left\|I_{1}\right\| \leq \dot{I}_{2}$. $n \equiv$ course, L_{1} uniquely determines a measure m $m\left(0, \Sigma\left(X, \mathbb{R}^{*}\right)\right)$ with $\bar{n}(S)=\| I_{1}| | \leq\left|L_{2}\right|$ such tint (12) holds. Now suppose $f(\cdot)=\sum_{i=1}^{n} g_{i}(\cdot) x_{i} \in C_{0}(S) \otimes x_{i}$ then

$$
\operatorname{m}(d s) f(s)=\sum_{i=1}^{n} I_{1}\left(g_{i}\right) x_{i}=\sum_{i=1}^{n} I_{2}\left(g_{i}(\cdot) x_{i}\right)=L_{2}(f)
$$

Hence (14) holds for $f(\cdot) \in C_{0}(S) 3 x$, and since $C_{0}(S)$ OX, is dense in $C_{0}(S, X)$ we have

$$
\begin{aligned}
& \left|\Sigma_{2}\right|=\sup _{£ \in C_{0}(s) \operatorname{sx}}\left|\Sigma_{2} f\right|=\sup _{E \in C_{0}(S) \sin }|\operatorname{sm}(\mathrm{ds}) f(s)| \\
& |f|_{\infty} \leq 1 \quad \leq=\sum_{\infty} \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& |E|_{0 \leq 1}
\end{aligned}
$$

Thus $\bar{r}(S)=1 T_{2}$.

214

Finally, it is imediate fron proposition 5 that $z_{2} f=\int_{S} z(d s) f(s)$ for $f \in C_{O}(S, X), z \in Z$. We show that zre $\operatorname{rcabv}\left(\mathcal{A}, X^{*}\right)$ for $z \in \mathbb{Z}$. Since $|z m|(S) \leq|z| \cdot \bar{m}(S)$ by Proposition 2, $2 n$ has bounded variation. Since for each $x \in X, \quad z m(\cdot) x \in \operatorname{rcabv}(\infty)$ ve may apply mheorem 1
 The following interesting coroliary is immediate from $\| I_{1}| |=\left|I_{2}\right|$ in Theorer. 3.

Corollary. Let $L_{2}: C_{0}(S, X) \rightarrow Y$ be Iinear and bounded, where X, V are Banact spaces and S is a locally compact Finusdorff space. Then

$$
\left|I_{2}\right|=\sup _{p} \mid L_{2}\left(\sum_{i=1}^{n} G_{i}(\cdot) x_{i}\right) ;
$$

where the supremun is over 211 finite collections
$\left\{g_{1}, \ldots, g_{n}\right\} \subset C_{0}(s)$ and all $\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{Z}$ such that
\{suppg $\left.{ }_{i}\right\}$ are disjoint and $\left|g_{i}\right|=\leq 1,\left|x_{i}\right| \leq 1$.
Proof. Take $Z=y *$ and imbė \quad in $Z_{i}^{*}=y * *$. Then
$L_{2} \in L\left(C_{0}(S, X), Z^{*}\right)$ and the result folions from
$\left\|L_{1}\right\|=\left|L_{2}\right|$ in Theorem 3. \square
rie now consider a subspade oi innear operators

-

namely those which correspond to bounded in near functionats $0: C_{0}\left(5, x \theta_{\pi}^{2}\right) ;$ equivalently, we shall see that these raps correspond to representing measures $n=M\left(\mathcal{H}, \mathrm{I}\left(\mathrm{X}, \mathrm{Z}^{*}\right)\right.$) whin have finite total variation $|n|(s)<+\infty$, so that ni $\operatorname{Irajv}\left(D, L\left(X, Z^{*}\right)\right)$. For $L_{2} \in L\left(C_{0}(S, X), Y\right)$ we define the (not necessarily finite) norm

$$
\left\|L_{2}\right\|=\sup _{\left\{\tilde{E}_{i}\right\}} \sum_{i=1}^{n}\left|I_{2}\left(E_{i}\right)\right|
$$

Where the supremum is over ail finite collections
 support and $\left|f_{i}\right|_{\infty} \leq I$. In applying the definition to $L_{I} \in I\left(C_{0}(S), I\left(X, Z^{*}\right)\right)=L\left(C_{0}(S, R), Y\right)$ with $Y=L\left(\Omega, 2^{*}\right)$ we get

$$
\left\|\Sigma_{i}\right\|=\sup _{\left\{g_{i}\right\}} \sum_{i=1}^{n}\left|L_{1}\left(\sigma_{i}\right)\right|
$$

There the supremo is over all finite collections $\left\{g_{1}, \ldots, g_{n}\right\}$ of functions in $c_{0}(c)$ having disjoint support and $\left|g_{i}\right|_{\infty} \leq 1$.

Before proceeding, we should mate a fee remarks about tensor prozac spaces. fy $X=Z$ ie denote a tensor product space of X and x, midi $z=$ the vector space of all finite linear combinations $\ddot{a} a_{i}$ in in $_{i} i_{i}$ where

216

-

$a_{i} \in P, x_{i} \in X, z_{i} \in Z$ (of nuse, a_{i}, x_{i}, z_{i} are not unicuely determined). There is a natural duality betreen $x \geqslant z$ and $L\left(x, z^{*}\right)$ given by

$$
\left\langle\sum_{i=1}^{n} a_{i} x_{i} \otimes z_{i}, I\right\rangle=\sum_{i=1}^{n} a_{i}\left\langle z_{i}, L x_{i}>\right.
$$

Moreover the norm of $L \in L\left(X, z^{*}\right)$ as a linear functional on $x \notin z$ is precisely its usual operator norm $\begin{aligned} &|L|= \begin{array}{l}\text { sup }\langle z, L x\rangle \text { then } x \geqslant z \quad \text { is made into a normed } \\ |x| \leq 1\end{array} \\ &|x| \leq 1\end{aligned}$ space X (π^{2} uncier the tensor prociuct romm - defined by

$$
T(u)=\inf \sum_{i=1}^{n}\left|x_{i}\right| \cdot\left|z_{i}\right|: u=\sum_{i=1}^{n} x_{i} \otimes z_{i} j_{r} u \in X \Leftrightarrow z_{0}
$$

It is easy to see that $\pi(x, z)=|x| z \mid$ for $x \in X, z \in Z$ (the canonical injection $x \times z \rightarrow X \geqslant z$ is continuous) and in fact π is the stroncest norm on \therefore \& Z vith this property. Fy $X \hat{A} \pi_{i} Z$ 亿e dこnote tios completion of
 a unicue bounted linear Eunctional on $\because \hat{F}_{i}$, Z vith the same norm. $K \hat{\theta}$, Z nay be inentifiect more comaretely am

identify $\left(X \hat{\mathscr{\theta}}_{\pi} \mathrm{Z}\right) *$ with $I\left(\mathrm{X}, \mathrm{Z}^{*}\right)$ by

$$
\left\langle\sum_{i=1}^{\infty} a_{i} x_{i} \otimes z_{i}, \sum\right\rangle=\sum_{i=1}^{\infty} a_{i}\left\langle z_{i}, L x_{i}\right\rangle .
$$

The following theorem provides an integral representation of $C_{0}\left(S_{1} X \hat{\theta}_{\pi} Z\right) *$.

Theoren 4. Let S be a Hauscorfe lncally compact space with Borel sets $\$$. Let x, z be ianach spaces. There is an isometric isomorphism $L_{1} \leftrightarrow m \leftrightarrow I_{2} \leftrightarrow L_{3}$ between the Iinear maps $I_{1}: C_{0}(S) \rightarrow I\left(X, Z^{*}\right) \quad \forall i t h\left\|I_{1}\right\|<+\infty$; the finitely additive measures $m: \AA \rightarrow L\left(X, z_{*}^{*}\right)$ with
 for every $z \in Z, x \leq X$; the linear mans $I_{2}: C_{0}(S, X) \rightarrow Z^{*}$ with $\left\|\mid I_{2}\right\|<+\infty$; and the bouncieci linear functionals $L_{3}: C_{0}\left(S, X \hat{\theta}_{T} Z\right) \rightarrow R$. The coryespondence $L_{1} \leftrightarrow T \leftrightarrow I_{2} \leftrightarrow L_{3}$ is given hy

$$
\begin{align*}
& \mathrm{I}_{1} g=\int_{S} \mathrm{~m}\left(\operatorname{dsg}(s) \quad, \quad G \in c_{0}(s)\right. \tag{15}\\
& L_{2} f=\int_{S} m(d s) f(s), E \in G_{C}(S, X) \tag{16}\\
& L_{3} u=\int_{S}\langle u(s), m(d s)\rangle, u \in C_{0}\left(s, \therefore \hat{\gamma}_{-} Z\right) \tag{17}\\
& \left\langle z,\left(I_{2}(I) x\right\rangle=\left\langle z, L_{2}(g(\cdot) x)\right\rangle=i_{3}(\pi(\cdot) \times O z),\right.
\end{align*}
$$

218

Under this correspondence $\left\|I_{1}\right\|=|m|(s)=\left\|I_{2}\right\| \mid=$ $\left|L_{3}\right|$, and $m \in \operatorname{rabv}\left(\mathbb{O}, L\left(x, 2^{*}\right)\right)$.

Proof. From Theorem 3 we already have an isomorphism $L_{1} \leftrightarrow n \leftrightarrow L_{2}$; we must show that the norms are carried over under this correspondence. As in Theorem 2 , we assume that $I_{1} \leftrightarrow m \leftrightarrow I_{2}$ with $\| I_{1}| |=\bar{m}(s)=\left|I_{2}\right|<+\infty$. We first show $\left\|L_{1}\right\| \mid \leq\left\|I_{2}\right\| \|$. Now if $\left\{g_{1}, \ldots, g_{n}\right\} \subset C_{0}(G)_{1}$ have disjoint support and $\left|x_{i}\right| \leq 1$, then $G_{i}(\cdot) x_{i} \in C_{o}(S, X)$ have disjoint support with $\left|g_{i}(\cdot) x_{i}\right|_{\infty} \leq 1$, so

$$
\sum_{i=1}^{n}\left|L_{1}\left(g_{i}\right) x_{i}\right|=\sum_{i=1}^{n}\left|L_{2}\left(r_{i}(\cdot) x_{i}\right)!\leq\left\|\left|\left|L_{2}\right| \| .\right.\right.\right.
$$

Taking tie supremur over $\left|x_{i}\right| \leq 1$ yields $\sum_{i=1}^{n}\left|I_{1}\left(g_{i}\right)\right| \leq\left\|L_{2}\right\|$, and hence $\left\|\dot{i}_{1}\right\| \leq\left\|L_{2}\right\| \|$. Vert we show $\left\|\mid I_{2}\right\| \leq \|(s)$. Let $f_{1}, \ldots, f_{n} \in C_{0}(S, X)$ have disjoint support ana $z_{1}, \ldots, z_{n} \in 7$ with $\left|z_{i}\right| \leq 1 . \quad$ Thorn

$$
\sum_{i=1}^{n} z_{i} I_{2}\left(\bar{r}_{i}\right)=\sum_{i=1}^{n} \sum_{i} m\left(a, j z_{i}(s) \leq \sum_{i=1}^{n}\left|z_{i} r\right|\left(s u p p f_{i}\right)\right.
$$

wore tho last :-actuality follows Exon (7) orobizod to

$$
\text { zmefa(} \left.\text { Ad, }^{*}\right) \text {. Dy propositions } 2 \text { and } 3 \text { :on no hare }
$$

219

Taking the suprerim over $\left|z_{i}\right| \leq 1$ yields $\sum_{i=1}^{n}\left|I_{2} f_{i}\right| \leq|r|(S)$. and over $\left\{\tilde{i}_{i}\right\}$ yields $\left\|\left\|_{2}\right\| \leq\right\|_{i} \mid(S)$.

No: we show $|\mathrm{m}|(\mathrm{S}) \leq\| \| \mathrm{L}_{1}\| \| \cdot$ Let $\leq>0$ be arbitrary, and suppose $E_{1}, \ldots, E_{r} \in \mathcal{O}$ are disjoint and $\left|x_{i}\right| \leq 1,\left|z_{i}\right| \leq 1, i=1, \ldots, \ldots$. Dy regularity of $z_{i} m(\cdot) x_{i}$, there is a compact $\ddot{i}_{i} \subset \underline{i}_{i}$ such that $\left|z_{i} n(\cdot) x_{i}\right|\left(E_{i}\right)<\frac{\varepsilon}{n}+\mid z_{i} n(\cdot) \because_{i}!\left(Z_{i}\right), \dot{\prime}=2, \ldots, n$, since the K_{i} are disjoint, there are disjoint open sets $G_{i} \partial E_{i}$. Uivoohn's Irma then GUarantees the existence
 that $I_{K_{i}} \leq \sigma_{i} \leq I_{\sigma_{i}}$. VE have

$$
\begin{aligned}
& \sum_{i=1}^{n} z_{i} r\left(E_{i}\right) x_{i}=\sum_{i=1}^{n} z_{i} L_{1}\left(g_{i}\right) x_{i}+\sum_{i=1}^{n}\left\{\left(I_{i} \sum_{i}-q_{i}\right)(s) z_{i} r(\sigma \cdot) x_{i}\right. \\
& \leq \sum_{i=1}^{n} z_{i} I_{1}\left(\sigma_{i}\right) z_{i}+\underset{i=1}{n} \sum_{i}^{n}\left(I_{Z_{i}}-I_{r_{i}}\right)(s) z_{i} m\left(a_{i}\right) z_{i} \\
& \leq \sum_{i=1}^{n} z_{i} i_{1}\left(n_{i}\right) x_{i}+\sum_{i=1}^{n} z_{i} m_{i} \cdot n_{i}\left(m_{i} \backslash \ddot{n}_{i}\right) \\
& <\sum_{j=1}^{n}\left|r_{1} I_{i}\right|+E \leq: V_{1} \mid:+E
\end{aligned}
$$

$\sum_{i=1}^{n}\left|m\left(E_{i}\right)\right| \leq\| \| T_{1} \|+\varepsilon$, and the suprorum over all
disjoint $\left\{E_{1}, \ldots, E_{n}\right\}$ yields $\|m\|(S) \leq\| \| I_{1}\| \|=\varepsilon$. Since ε was arbitrary, $|r|(S) \leq\left\|I_{\|}\right\|$. we also note that if $|m|(S)<+\infty$, then $r \in \operatorname{rcab} \cdot\left(\mathcal{B}, L\left(X, r^{*}\right)\right)$
by Theorem 1.
It remains to show how the mans $I_{3} \in C_{C}\left(S, y \theta_{\pi} Z_{1}\right)$ * ara related to $\mathrm{I}_{1}, \mathrm{M}$, and I_{2}. suppose $\mathrm{I}_{3} \in \mathrm{C}_{0}\left(\leqslant, \forall \theta_{\pi} \mathrm{Z}_{3}\right)^{*}$ is given. Define $I_{1}: C_{0}(S) \rightarrow I_{(}\left(X, Z^{*}\right)$ by
$\left\langle z, I_{1}(g) x\right\rangle=I_{3}\left(c(\cdot) x\right.$ a $z=\because \in C_{0}(S), x \in X, z \leq \Omega$, If
 and if $\left|x_{i}\right| \leq 1,\left|z_{i}\right| \leq 1$ =ion $\left|\sum_{i=1}^{n} C_{i}(\cdot) x_{i} \gamma z_{i}\right|_{\infty} \leq 1$ anti so

$$
\sum_{i=1}^{n} z_{i} I_{1}\left(c_{i}\right) x_{i}=L_{3}\left(\sum_{i=1}^{n} c_{i}(\cdot) x_{i} \theta z_{i}\right) \leq\left|I_{3}\right| .
$$

 correspond to $I_{1} ;$ since $|m|(S)=\| I_{1}!| | \leq\left|H_{3}\right|<+m$

Let us define $\because=X \hat{\theta}_{T} Z$. \because theorem 2 tine is an

$L_{3} u=\int_{s}\langle u(s), m(d s)\rangle$ and $\left|L_{3}!=|m|(s)\right.$ ．Thus（17）holds and the theorem is proved．

Thus，to summarize，we have shom that there is a continuous canonical injection

$$
C_{0}\left(S, x \otimes_{\pi} z\right)^{*} \rightarrow \operatorname{Li}_{(}\left(C_{0}(S, x), 2^{*}\right) \rightarrow I_{(}\left(C_{0}(S), I\left(x, z^{*}\right)\right) ;
$$

each of these spaces corresponds to operator－valued measures $m \in M_{2}\left(\mathbb{B}, L\left(X, Z^{*}\right)\right)$ which have finite $\because a r i a t i o n ~|m|(s)$,
部（s），respectively．By posing the theozy in ternis of measures with values in an $L\left(X, 2^{*}\right)$ seace rather than an $L(X, Y)$ space，we have developed a natural and complete representation of linear operators on $C_{0}(S, X)$ spaces． Moreover in the case that Y is a dus space（without necessarily being reflexive），it is possible to represent all bounded linear operators $I \in I\left(C_{0}(S, X), Y\right)$ by operator－ valued measures $m \in M(\mathscr{B}, ~[(X, Y))$ with values in $L(X, Y)$ rather than in $I(X, Y * *)$ ；this is imporeant for the quantum applications we have in mind，here we would like to represent $\left.I^{(} C_{0}(S), I_{S}(H)\right)$ opesatcrs by $I_{S}(H)$－valued ooerator measures rather than $\Sigma_{s}(F)^{* *-v a i u e c i ~ m e a s u r e s . ~}$ ro now give two examples to shor row the usuai representation theorms follor as corollaries by consiratoy i as a subspace of $Y * *$ ．

Corollary［D67，III．19．5］．Let S be a locally compact Havisdorff space and X, Y Banam spaces．There is an isomatric isomorphism betwoen boundea linear maps L： $C_{0}(S, X) \rightarrow Y$ and finitely additive maps $m: \mathscr{D} \rightarrow L(X, Y * *)$ with finite semivar ition $\bar{m}(s)<+\infty$ for which

1） $\mathrm{Y}^{*} \mathrm{~m}(\cdot) \in \operatorname{rcabv}\left(\oiint, \mathrm{X}^{*}\right)$ 三or every $\mathrm{Y}^{*} \in \mathrm{Y}^{*}$
2）$y^{*} \leftrightarrow y^{*} m$ is continuous for the weak＊topologies on Y^{*} ，raabv $\left(B, X^{*}\right) \cong C_{0}\left(S, X^{*}\right.$ ．This correspondence $L \leftrightarrow m$ is given by $L f=5 m(d s)$（s）for $f \in C_{0}(S, X)$ ， and $|L|=\bar{m}(S)$ ．

Proof．Set $Z=Y^{*}$ and consisier Y as a norm－ciosed subspace of Z^{*} ．An element $\ddot{Z}^{* *}$ of $\mathrm{Y}^{* *}$ belongs to Y iff the linear funcional $y^{*}-y^{* *}\left(y^{*}\right)$ is continuous for the w＊topology on Y^{*} ．Hence the maps $L \in L\left(C_{0}(S, X), Y * *\right)$ which correspond to maps $L \in I\left(C_{0}(S, X), Y\right)$ are precisely the maps for which $z r>z, I f\rangle$ are continuous in the w^{*}－topology on $Z=Y^{*}$ for e：eze $E \in C_{O}(S, X)$ ，or equivalently those maps L for wich $z+L * z$ is con－ tinuous for the w^{*} topologies on $Z=w^{*}$ and $C_{0}(S, X)^{*}$ ． The results then follow directly from Theorem 3 ，where we note thu：wion $L \leftrightarrow m$ ，

$$
\left.\left\langle\mathrm{f}, \mathrm{I}^{*} z\right\rangle=\langle z, \mathrm{LE}\rangle=\frac{\mathrm{S}}{\mathrm{~S}}, \mathrm{~A}, \mathrm{~S}\right\}(\mathrm{S}) .
$$

$\mathrm{L}: \mathrm{C}_{\mathrm{O}}(\mathrm{S}, \mathrm{X}) \rightarrow \mathrm{Y}$ can be uniquely represented as

$$
L f=\int_{S} m(d s) f(s), \quad \hat{E} \in E_{0}(S, X)
$$

wh：ne $m \in f a(\nsupseteq, L(X, Y))$ has Einite semivariation $\bar{m}(s)<+\infty$ and satisfies $y^{*}{ }^{*}(\cdot) x \in E c a b v(\oint)$ for every $x \in X, y^{*} \in Y$ ，if and only if for every $x \in X$ the bounded linear operator $I_{X}: C_{0}(S) \rightarrow Y: g(\cdot) \mapsto I(G() X)$ is weakly comact．In that case $\mid L!=\bar{m}(s)$ aṅ $L^{*} y^{*}$ is given
 every $y^{*} \in Y^{*}$ ．

Remark．Suppose $Y=Z^{*}$ is a－ual søaーe．Then by Theorem 2 every $L \in \mathcal{L}\left(C_{0}(S, X), \because\right)$ has a representing measure $m \in M(A, I(X, Y))$ ．Oh三 m Covoliary 2 says is that the representing measure m actaaly satisfies $y * m(\cdot) x \in \operatorname{rcabv}(X)$ for every $y^{*} \in Y^{*}$（and not just for every y^{*} belonging to the cancnical image of Z in
 for every $x \in x ; i . e$ in this こas fo nave（in our notation） $m \in M(0, I(X, Y * *))$ where Y is injectea into its bidual $Y^{* *}$ ．

Proof．Again，let $Z=Y^{*}$ and depine $J: Y$ ir $Y^{* *}$ to be the canonical injection of \because Ento $\because * *=Z^{*}$ ．The boundeả

$\mathrm{I}_{\mathrm{x}}^{* *}: \quad(5)^{* *} \rightarrow \mathrm{Y}^{* *}$ has image $\mathrm{I}_{\mathrm{x}}^{* *} \mathrm{C}_{0}(\mathrm{X}){ }^{* *}$ which is a subset Of JY [DS, VI.4.2]. First, suppose I_{X} is weakly compact. so that $I_{x}^{* *}: C_{0}(S) * * \rightarrow J Y$ for $\Theta v e r y ~ x$. Now the map $\lambda \forall \lambda(E)$ is an element of $C_{0}(S) * *$ finery we have identified $\left.\lambda \in \operatorname{rcabv}(\dot{B}) \cong C_{0}(S) *\right)$ for $E \in a$, and

$$
L_{x}^{* *}(\lambda \mapsto \lambda(E))=(z \mapsto\langle z, r(E) X\rangle) \in Y^{* *}
$$

where $m \in M\left(\mathscr{M}, L\left(X, Z^{*}\right)\right)$ is the representing measure of $\mathrm{JL}: \mathrm{C}_{\mathrm{O}}(\mathrm{S}, \mathrm{X}) \rightarrow \mathrm{Y}^{\dot{*} *}$. Since I_{X} is weakly compo \because, $z \mapsto\langle z, m\langle\mathbb{Z} \mid x\rangle$ must actually belong to JYCY**, $t: \therefore$ is
 has values in $L(X, J V)$ rather then just $L(X, Y * *)$. Conversely if $m \in M(\mathbb{M}, \Sigma(X, J Y))$ represents an operator $I \in I\left(C_{0}(S, X), Y\right)$ by

$$
J L f=f_{m}(d s) f(s),
$$

then the map $\left.L_{X}^{*}: Y^{*} \rightarrow C_{0}(S)^{*} \cong \operatorname{rcsjv}(D): z t\right\rangle\langle z, m(\cdot) X\rangle$ is continuous for the weak topology on $Z=Y *$ and the weak * topology on $C_{0}(S)^{*} \cong \operatorname{raj}(\hat{D})$ since $m(E) x \in J Y$ for every $E \in \mathcal{B}, \mathrm{x} \in \mathrm{X}$. Hence $\mathrm{E}: \mathrm{D}$ [$\mathrm{S}, \mathrm{VI} .6 .7]$, L_{y} is weakly compact.

```
225
*
```


IX. Optimal Quantum Estimation

Anstract. Duality techniques are applied to the problem of spacifying the optimal estimator for guantum estimation. Existence of the optimal estimator is establisied and necessary and sufficiont concitions for optimality are derived.

1. Introduction

The mathematiral characterization of optimal estimation in the Bayesian approach to statistical inferance is a well-known result in classical estimation theory. In this paper we consiaer estimation theory for guantum systems.

In the classical formulation of Bäasian estimation theory it is desired to estimate the unknom value of a random parameter $s \in S$ based on observation of a randon variable whose probability ciistribution depends on the value s. The prodedure for determining an estimated parameter value $s, ~ a s ~ a ~ f u n c t i o n ~ o f ~ t h e ~ e x p e r i m e n t a l ~$ observation, represents a decision strategy; the problem is to find the optimal decision strategy.

In the quantum formulation of the estimation problem, each parameter $s \in S$ corresponds to a state $p(s)$ of the quantum system. The aim is to estimate the value of s by performing a measurement on the quantia system. However, the quantum situation precludes exhaustive measurements of the system. This contrasts with the classical situation, where it is possible in principle to measure all relevant variables determining the state 0 the sistem and to specify meaningful probability density functions for the resulting values. For the guantum estimation problam it is necessary
to specify not only the best procedure for processing experimental $\overline{\text { Guta }}$ ，but also inaミ to reasire in the first place．Hence the quantum decミsion orobien is to determire an optiral measurcment pr：サこここここ，or，in matnenatical terms， to deteruine the optimal probability oŋneator measure corresponding to a measurament ミレoこeciure．

We now formulata the quan土um estination problem．
Let H be a separable complex $\exists \mathrm{Bi}$ bert space corresponding to the physiaal variables of tre sys＝en under consideration．
 Each $s \in S$ specifies a state $=(s) 0$ the quantum svstem， i．e．every $p(s)$ is a nonneฐこえミve－deEinite selfadjoint trace－class operator on H $\because i \forall \therefore$ trace i．A general decision strategy is determinéa ou a moasurement process
 measure（POM）on the measurajle sこace（S，X）－－ $m(E) \in \mathbb{R}_{S}(H)+$ is a positive se？E＝ajoint bounded linear operator on H for every $E=\{$ ，$m(S)=I$ ，and $m(\cdot)$ is countably additive for the weak oper tor topologi on $\hat{a}_{\mathrm{S}}(\mathrm{E})$ ． The measurcment process yizlej an estimide of the unknome sarameter；for a given wire $=$ ó tre paramoter and a
 estimated value \hat{s} lies in $\ddot{-s}$ ci－ion by

228

Finally, we assume that there is a cost function $c(s, \hat{s})$ which specifies the relative cost of an estimate \hat{s} when the true value of the parameter is s.

For a specified decision procedure corresponding to the POMm(.), the risk function is the conditional expected cost given the parameter value s, i.e.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{m}}(\mathrm{~s})=\operatorname{tr}[0(s) f \mathrm{c}(\mathrm{~s}, \mathrm{t}) \mathrm{m}(\mathrm{~d}, \mathrm{l}]] . \tag{2}
\end{equation*}
$$

If now μ is a nobability measure on (5 , B) which specifies a pricr distribution for the garameter value s, the Sayes cost is the posteric expected cost

$$
\begin{equation*}
P_{m}=\frac{i R_{m}}{}(s) \mu(d s) \tag{3}
\end{equation*}
$$

The quantum estimation probler: is $=0$ Eird a POMm(•) for which the Bayes expected cost pre is minimum.

A formal interchange of the order o三 integration yields

$$
\begin{equation*}
R_{m}=\operatorname{tr}_{S} \cong(s) m(d s) \tag{i}
\end{equation*}
$$

Where $f(s)=\int_{S}(t, s)$ o(t)u(dt). Thus, Eormaily at least,
tho problem is to minimize the linear Eanctional (4)
over all Porl's m(•) on ($\mathrm{S}, \overline{\mathrm{j}}$). Fe shall apoly duality
theory for optimization problans to prove euistence of a solution and to detsmine nesessing and susziobset conditions
for a decision strategy to be oŋぇimal, much as in the cetection problem with a finite number of hypotheses (a special case of the ejtimation groblem where S is a finite set). OI course we must First rigorously define What is meant by an integral of the fomm (4); note t: both the integrand and the measure are operator-valuad. We must then shoiv the equivalence of (3) and (4); this entails proving a Fubini-type theoren for onerator-valued measures. Finally, we must identify an appropriate dual space for pon's consistent with the linear Eunctional (4), so that a dual problom can be Eornulated.

Before proceeding, we summarize the results in an informal way to be made precise later. Essentially, we shall see that there is alrays an oŋtimal solution, and that necessary anc sufficient coneitions for a POM m to be optimal are

$$
f_{S} f(s) m(d s) \leq f(t) \text { for } e \because s=y \quad t \leqslant S \text {. }
$$

It then turns out that $f_{S}(s) m\left(\right.$ ds) be?ongs to $\tau_{S}(H)$
(that is, selfadjoint) and tho minimum Sayes posterior expected cost is

$$
R_{m}=\underset{S}{t r i f}(s) m(d s)
$$

230

2．Integration of real－valuad functions with respect to operator－valusa measures

In quantum mechanical measurement theory，it is nearly always the case that physical quantities have values in a locally compact fausdor三f space 5 ，e．g．a subset of R^{n} ． The integration theory may be extended to more general neasurable spaces；but since for duality purposas we wish to interpret operator－valued reasures on S as continuous linear majs，we shall always assime that the parameter space S is a locally compact space with tha induced o－algebra Of Borel sets，and that the opミこきtor－valued meこaure is reguiar．In particular，if s is second countable ther S is countabic at infinity tine one－noint compactification S U\｛s\} has a countable neighborhood basis at ∞ ）and every complex Sorel measure on S is regular；also S is a complete separable metric spece，so that the Daire sets and Borel sets coincide．

$m(\cdot)$ is a (norm-) countably adaitive H-valued measure for every $\phi \in H$; hence whenever $\left\{E_{n}\right\}$ is a countabie collection of disjoint subsets in \mathcal{O} then

$$
m\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} m\left(E_{n}\right),
$$

where the sum is convergent in the sirong operator topology. We danote by $M\left(\mathscr{B}, \mathscr{L}_{s}(H)\right)$ the real linear space of all operator-valued regular borel measures on S. We define

$$
\begin{equation*}
\bar{m}(S)=\operatorname{sug}_{|\phi| \leq 1}^{|\dot{m}(\cdot) \phi| \geqslant>}(s) \tag{5}
\end{equation*}
$$

where $\mid\langle m(\cdot)\langle!\rangle\rangle$ denotes the $=0$ tal variation measure of the real-valuea Borel measure $E \rightarrow\langle m(E)$ cit>. The scalar semivariation is alwys É三nite, as proved in Theorom VIII. 2 by the uniform boindeuness theorem (see "Operator-Valued Measures" for alternative definitions of $\overline{\bar{m}}(s)$; note that when $m(\cdot)$ is sol三-acjoint valuod the

A positive operator-valued regular surel measure is a measure $m \in \hat{r i}_{i}\left(\hat{Y}, \mathscr{L}_{s}(I)\right)$ which satisfies

$$
m(E)>0 \quad \forall E \in c
$$

，
where by $m(E) \geq 0$ we mean $m(\Xi)$ belongs to the positive cone ${\underset{\alpha}{s}}^{(H)}+$ of all ronnezative－dezinite operators．A Orobability operator measire（三．o．！）is a positive operator－valued measure me $\mathscr{H}_{6}\left(\mathscr{B}_{5}(\underset{\sim}{*})\right.$ wich satisfies

$$
m(S)=I
$$

If m is a pori then every $\langle m(\cdot) \therefore \because \quad$ is a probability measure on S and $\bar{m}(S)=1$ ．In saṙicular，a resolution

 then true that $m(\cdot)$ is projocニion－rivuad and satisfies
$m(E \cap E)=m(E) m(E), \quad \equiv, E \in \mathcal{O}^{+}$

We now consider integratian 0 ニニミミ－valued functions With respect to operator－valuta measテres．Sasically，va identify the regular sorel oミミニミたロこーいaluea neasures

[^5]$m \in m\left(\mathscr{B}, \mathcal{L}_{s}(H)\right)$ with the bounded linear cperators I: $C_{o}(S) \rightarrow \mathcal{L}_{s}(H)$, using tie integration theory of

Chapter VIII to get a generalization o三 the Riesz Representation Theorem.

1. Theorem. Let S be a lccaily compaこt Hausdorfí space with Borel sets \mathcal{A}. Let H be à Hiloert space. There is an isometric iscmornism $m \leftrightarrow I$ between the operatorvalued regular Borel measurej $m \in m_{i}\left(\because, Z_{s}(H)\right)$ and the bounded linear maps $L \in L\left(C_{0}(S), \tilde{Z}_{s}(E)\right)$. The correspondnece $m \leftrightarrow \mathrm{I}$ is given by

$$
\begin{equation*}
L(g)=\int_{S} g(s) m(d s), \quad g \in C_{0}(s) \tag{6}
\end{equation*}
$$

where the integral is well-defined for $5(\cdot) \in M(S)$ (bounded and totally measurable maps $G: S \rightarrow$? and is convergent for the supremum norm on $M(S)$. IE $m \leftrightarrow I$, then $\bar{m}(S)=|\Sigma|$
 Moreor: $: L$ is positive (maps $\left.C_{0}(S)+i n t o \dot{x}_{S}^{(I I)}\right)_{+}$) iff m is a positive measure; L is positive and $L(1)=I$ iff m is a Pon; and L is an algebia nomomozenism with L(1) = I iff m is a resolution of the identity, in which case L is actually an isometric algebra honownsism of $C_{0}(S)$ onto

Propf. The correspondence $L \leftrightarrow M$ is immediate from Theoren VIP2. If m is a positive measur: then $\langle m(E) \phi \mid \phi\rangle \geq 0$ for every $E \in \hat{j}$ and $\hat{y} \leqslant H$, so $\left.\langle L(g) \phi \mid \phi\rangle=\int g(s)\langle m(\cdot) \phi \mid\rangle\right\rangle(d s) \geq 0$ whenever $g \geq 0, \dot{S} \in \mathrm{H}$ and I is positive. Conersely, if L is positive then <m(-) $\|$ |o> is a positive real-valued measure Eor every $\oint \in \mathrm{H}$, so $\mathrm{m} \cdot \cdot$) is positive. Similarly, I is positive and $L(?)=I$ iff m is a pos. It only remains to verify the final statement of the theorem.

Suppose $m(\cdot)$ is a resolution of the identity. If $g_{1}(s)=\sum_{j=1}^{n} a_{j}{ }_{j} E_{j}(s)$ and $g_{2}(s)=\sum_{j=1}^{m} b_{j} I_{E_{j}}(s)$ are simple functions, where $\left\{E_{1}, \ldots, E_{n}\right\}$ anc $\left\{E_{1}, \ldots, F_{n}\right\}$ are each finite disjoint subcollections $0 \equiv$, then

$$
\begin{aligned}
\int g_{1}(s) m(d s) \cdot f g_{2}(s) m(d s) & =\sum_{j=1}^{n} \sum_{k=1}^{m} a_{j} b_{k} m\left(E_{j}\right) m\left(E_{k}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{m} a_{j} b_{k} m\left(E_{1} \cap F_{k}\right) \\
& =g_{1}(s) c_{2}(s) m(d s) .
\end{aligned}
$$

Hence $g \mapsto f g(s) m(d s)$ is an algebra horomorohism from the algebra of simple functions on s into $\overbrace{\mathrm{s}}(\mathrm{i})$. Morcover we show tha the how.r-ughism is isomatric on

$$
|f g(s) m(d s)| \leq \overline{\bar{m}}(s)|g|_{\infty}=g!_{\infty} .
$$

Conversely, for $g=\sum_{j=1}^{n} a_{j} I_{E_{j}}$ we nay choose j_{j} to be in the range of the projection $n\left(\sum_{j}\right)$, with $\left|i_{j}\right|=1$, to get

$$
\begin{aligned}
& \left.\left|\int g(s) m(d s)\right| \geq \max _{j=1, \ldots, n}<\delta g(s) m(A s) \cdot j_{j} 0_{j}\right\rangle \\
& \left.=\max _{j=1, \ldots, n}\left|a_{j}\right|<n\left(E_{i}\right) b_{j} j_{j}\right\rangle \\
& =\max _{j=1, \ldots, n}\left|a_{j}\right|=y_{i} .
\end{aligned}
$$

Thus $g H f g(s) m(d s)$ is isometric on single functions. Since simple functions are uniformly dense in M(S), it follow by taking limits of simple functions that $\int g_{1}(s) m(d s) \cdot \int g_{2}(s) m(d s)=\int g_{1}(s) g_{2}(s) \sim(c s)$ and $\left|f g_{1}(s) m(d s)\right|=\left|g_{1}\right|_{\infty}$ for every $g_{1}, g_{2} \leqslant H(S)$. Of course, the same is then true for $g_{1}, g_{2} \in C_{0}(5) C \because(S)$. Since $C_{0}(S)$ is complete, it follows that I is an isometric isomorphism of $C_{0}(S)$ orca a closed subalyebra of $Z_{s}(E)$. Now assume that I is an algebra homomorphism and $\mathrm{L}(\mathrm{I})=\mathrm{I}$. Clearly $\mathrm{m}(\mathrm{S})=\mathrm{L}(\mathrm{D})=\mathrm{I}$. Since $L\left(g^{2}\right)=L(g)^{2} \geqslant 0$ for every $=E c_{0}(S:, ~ E$ and hence m are positive. Let
$M_{1}=\{g \in M(S): f(J) O(d s) \cdot f h(s) m(d s)=f g(s) h(s) m(d s)$

$$
\text { fur evary it } \left.\mathfrak{c}_{0}(3)\right\}
$$

Then M_{1} contains $C_{0}(S)$. Now if $g_{n} \in M(S)$ is a uniformly bou: wa semence which converges pointwise y go then $\int_{g_{n}}(s) m\left(d_{n}\right)$ converges in the wazk operator tonology to $f_{\mathrm{o}}(\mathrm{s}) \mathrm{m}(\mathrm{ds})$ by the dominated convergence theorem appiied to each of the regular Eorel measures
 the norm topology on $\mathscr{L}_{S}(H)$ whenever $\left.\left|g_{n}-g_{0}\right|_{\infty} \rightarrow 0\right)$. Hence H_{1} is closed under pointwise convergence of uniformly bounded sequences, and so equals all of $M(S)$ by regularity. Similarly, let
$M_{2}=\{h \in M(S): f g(s) m(d s) \cdot f h(s) m(d s)=f g(s) h(s) m(d s)$ for every $g \leqslant M(S)\}$.

Then M_{2} contains $C_{0}(S)$ and must therefore equal all of $M(S)$. It is now immediate that whenover E, F are disjoint sets in d then

$$
m(E) m(E)=\int I_{E} \operatorname{dm} \cdot \int I_{E} d n=\int I_{\operatorname{En}}(s) m(d s)=0
$$

Thus in is a resolution of the identity. .I
Remark. Since every real-linear map Erom a zeal-linear sunspace of a complan opsce into arother reai-linoar

```
237
subspace of a complex space corresponds to a unique "iormitian" complex-linear mas on the complex linear spaces, we conl: just as easily i¿entisy the (self-adjoint) operator-valued regular measures \(\operatorname{VH}\left(\operatorname{Da}^{2}, x_{s}(H)\right)\) with the complex-linear maps \(L: C_{0}(S, C) \rightarrow \vec{\alpha}(H)\) which satisfy
\[
L(g)=L(\bar{g}) *, \quad g \in C_{0}(S, E)
\]
```

3. Integration of $\tau_{S}(H)$-valued functions

We now consider $\mathscr{L}(H)$ as a subspace of "ie "operations" $\mathcal{L}(\tau(H), \tau(H))$, that is, bounded linear maps $\because=$ om $\tau(H)$ into $\tau(H)$. wis is possible because if $A \in \tau(H)$ and $B \in \mathscr{L}(H)$ then $A B$ and $B A$ belong to $\tau($ (i) and

$$
\begin{align*}
& |A B|_{t r} \leq|A|_{t r}|B| \\
& |B A|_{t r} \leq|A|_{t r}|B| \\
& \operatorname{tr}(A B)=\operatorname{tr}(B A)
\end{align*}
$$

Then every $B \in \mathscr{Z}(F)$ defines a bounded linear function $L_{B}: \tau(H) \rightarrow \tau(B) \quad b y$

$$
L_{B}(\bar{A})=A B, \quad A \in \tau(E)
$$

With $|B|=\left|L_{B}\right| .^{+}$In particular, A \mapsto Eras defines a continuous (complex-) Linear functional on $A \in \tau(H)$, and in fact every linear functional in $\tau(f)$ is of this form for some $B \in \mathscr{X}(H)$ ($C f$ Section VI.4). We note that if A and B are selfadjoint then tres is real From (7), $\left|L_{B}\right| \leq|B|$. Conversely, $i=\therefore, \therefore \in H$ and $|c| \leq 1,|\psi| \leq 1$
 hence $\left|L_{B}\right| \geq|B|$.
(although it is not necessarily true trat $A B$ is selfadjoint unless $A B=B A$) Thus, it is possible to identify the space $\tau_{3}(H) *$ of real-linear continuous functionals on $\tau_{s}(H)$ with $\vec{\alpha}_{s}(H)$, again under the pairing $\langle A, B\rangle=$ trab, $A \in \tau_{S}(i), B \in \mathcal{Z}_{S}(H)$. For our purposes we siall be especially interesteć in this latter duality between the spaces $\tau_{S}(H)$ and $\mathcal{Z}_{S}(H)$, which we shall use to formulate a dunz problem for the quantum estimation situation. Howaver, we will aiso need to consider $\mathcal{Z}_{\mathrm{s}}(\mathrm{H})$ as a subspace oE $\mathcal{L}^{2}(\tau(H), \tau(\underset{H}{ })$) so that we may integrate $\tau_{s}(H)$-valued Eunctions on s with respect to $\mathcal{Z}_{s}(H)$-valued operator measures to get an element of $\tau(H)$.

Suppose $m \in \mathscr{H}\left(\mathcal{B}, \mathcal{Z}_{5}(H)\right)$ is an oŋe~ator-vaiued
regular Borel measure, and $f: S \rightarrow \tau_{S}(i)$ is a simple function with Einite range of the form

$$
E(s)=\sum_{j=1}^{n} I_{E_{j}}(s) \rho_{j}
$$

where $O_{j} \in \tau_{S}(H)$ ard F_{j} are disjoint sets in \mathcal{O}, that
 additivity of m define the intes:al

$$
\int_{S} E(s) m(d s)=\sum_{j=1}^{n} m\left(\Sigma_{j}\right) i_{j}
$$

240

The question, of course, is to witat class of functions can we properly extend the definition of the integral? Now in m has finite total variation m (s), then the $\operatorname{map} f r f f(s) m(d s)$ is contin:ous for the supremum norm S $|f|_{\infty}=\sup _{s}|f(s)|_{t r}$ on $3 \hat{\sigma} \tau_{s}(H)$, so that by continuity the intcral map extends to a continuous linear map from the closure $M\left(S, \tau_{S}(H)\right)$ of $\mathcal{O} \tau_{s}(H)$ with the 1. 1_{ω} norm into $\tau(H)$. In particular, tine integral fís (s)m(ds) is well-defined (as the limit of the integrals S of unizormly convergent simple Eunctions) for every bounded and continuous Eunction $f: S \rightarrow \tau_{S}(i)$. Unfortunately, it is not the case that an arbiたrary povim has finite total variation. Since re wish $=0$ consider general quantum measurement p=ocesses as represented big pon's m (in particular, resolutions of the identity), we can only assume that m has finite scalar senigariation $\overline{\bar{m}}(S)<+\infty$. Henc: we must put stronger restrictions on the class of functions which we integrate.

$$
\text { We may consider every } m \in Y_{i}\left(\hat{y}, \tilde{n}_{s}(\dot{r})\right) \text { as an element }
$$

$$
E \in \mathscr{S}, p E \tau(1) \text { we put }
$$

$$
m(D)(0)=\operatorname{sm}(D)
$$

```
Morncwir, tho smalar scumumrinzug oz m as an elomont
```

of $M\left(\mathbb{P}, \mathcal{Z}_{S}(H)\right)$ is the same as the scalar semivariation of m as an element of $M(\hat{H}, \mathcal{L}(\tau(H), \tau(H)))$, since the norm of $B \in \mathcal{E}_{S}(H)$ is the san: as the norm of B as the map $\rho \mapsto \rho B$ in $\mathcal{L}(\tau(H), \tau(H))$. By the representation Theorem VIII. 2 we may uniquely identify $m \in M_{i}\left(\mathscr{B}, \mathscr{L}_{S}(H)\right) \subset X_{(}(\mathcal{N}, \mathcal{L}(\tau(H), \tau(H)))$ with a linear operator $L \in \mathcal{L}\left(C_{O}(S), \mathcal{L}_{S}(H): \subset \mathcal{L}\left(C_{O}(S), \mathcal{L}(\tau(H), \tau(H))\right)\right.$. Now it is well-known that for Banach spaces X, Y, Z we may identify [T67,III.43.12]

$$
\mathcal{L}\left(X \hat{\theta}_{T} Y, Z\right) \cong \beta(X, Y \cdot, Z) \cong \mathcal{L}(X, Z(Y, Z))
$$

where $X \hat{\theta}_{\pi} Y$ denotes the connection of the tensor prociuct space X © Y for the projective tensor product norm

$$
\left.|\vec{E}|_{\pi}=\inf \sum_{j=1}^{n} x_{j} \mid \cdot y_{j}: E=\sum_{j=1}^{n} x_{j} \otimes y_{j}\right\}, \sum \in X \otimes y ;
$$

$\beta(X, Y: Z)$ denotes the space of continuous bilinear forms B: $X \times Y \rightarrow 2$ with norm

$$
|B|_{\beta(X, Y ; Z)}=\sup _{|x| \leq 1} \sup _{x \mid \leq 1}|B(x, y)| ;
$$

and $\mathcal{R}(X, \mathcal{R}(Y, 2))$ of course denotes the space of continuous linear maps $\mathrm{L}_{2}: X \rightarrow f_{x}(X, 2)$ with norm

$$
\left|I_{2}\right|\left(X, X(X, Z)=\sup _{X: X}^{X} \quad I_{2} X: X, Z\right)
$$

re identification $L_{1} \leftrightarrow B \leftrightarrow L_{2}$ is given by

$$
I_{1}(x \otimes y)=B(x, y)=L_{2}(x) y
$$

In our case we take $X=M(S), Y=Z=\tau(H)$ to identify

$$
\begin{equation*}
\mathcal{Z}\left(M(S) \hat{\theta}_{\pi} \tau(H), \tau(H)\right) \cong \hat{\sim}(M(S), \mathcal{z}(\tau(\mathrm{H}), \tau(\mathrm{H}))) \tag{8}
\end{equation*}
$$

Since the nap g :- fg(s)m(ds) is continuous from M(S)
 we see that we may identify m with a continuous linear $\operatorname{map} f \mapsto f$ fam for $f \in M(S) \hat{O}_{\bar{i}}$ T(H). Clearly if $\mathrm{E} \in \mathrm{M}(\mathrm{S}) \quad 0$ て(H), that is if

$$
f(s)=\sum_{j=1}^{n} g_{j}(s) o_{j}
$$

for $g_{j} \in M(S)$ and $o_{j} \in \tau(\mathbb{I})$, then

$$
f_{S} f(s) m(d s)=\sum_{j=1}^{n} \rho_{j} f g_{j}(s)-(i s)
$$

Moreover the map fr fif(s)m(cis) is continuous and linear For the $1 \cdot 1_{n}$-norm on $M(S) \theta \tau(E)$, so we y extend the definition of the integral to elements of the completion MSS) $\hat{0}_{-} \tau(H)$ by setting

243

where $f_{n} \in M(S) \otimes \tau(H)$ and $F_{n} \rightarrow f$ in the $1 \cdot l_{\pi}$-norm. In the section which follows we prove that the completions $M(S) \hat{\theta}_{\bar{i}} \tau(H)$ and $C_{0}(S) \hat{\theta}_{\pi} \tau(y)$ may be identified with subspaces of $M(S, \tau(H))$ and $C_{C}(S, \tau(H))$ respectively, i.e. we can treat elements f of $M(S) \hat{\theta}_{\pi} \tau(H)$ as totally measurable functions $f: S \rightarrow \tau(H)$. Fie shall show that under suitable conditions the maps $f: S \rightarrow T(H)$ we are interested in for quantum estimation problems do belong to $C_{0}(S) \hat{\theta}_{T} \tau_{S}(H)$, and hence are integrable against arbitrary operator-valued meas:ur $=s \quad m \in \gamma_{i}\left(\mathcal{B}, \tau_{s}(H)\right)$.
2. Theoren. Let S be a localiy compact Hausdorfí space with Borel sets di. Lee if be a Hilbert space. There is an isometric isomorphism $\quad I_{1} \leftrightarrow m \leftrightarrow I_{2}$ batwaen the bounded Inear maps $L_{1}: C_{C}(S) \hat{\theta}_{T} \tau(H) \quad$ - $\tau(H)$, the
 and the bounded linear maps $I_{2}: \overbrace{0}(S) \rightarrow \hat{\alpha}(\tilde{i}(H), \tau(\mathrm{H}))$. The correspondence $I_{1} \leftrightarrow m \leftrightarrow \mathrm{I}_{2}$ is given by the relations

$$
\begin{aligned}
& L_{I}(f)=\int_{S} f(s) m(d s), \quad f \in C_{0}(B) \hat{B}-\tau(H) \\
& L_{2}(g) 0=L_{1}(g(\cdot) 0)=\operatorname{cig}\left(s i m(\alpha s), g C_{0}(S), 0 \in \tau(\mathrm{I})\right.
\end{aligned}
$$

and under this corrospondence $y_{z}=(s)=I_{2} \cdot$ Nre-
 $\equiv \in \cdots \hat{\vdots}$ 气
and linear from $M(S) \hat{\theta}_{\pi} \tau(H)$ into $\tau(H)$.

Proof. From theorem 4 of the section win follows we may identify $M(S) \hat{\theta}_{\pi} \tau(H)$, and hence $C_{0}(S) \hat{\theta}_{\pi} \tau(H)$, as a subspace of the totally measurable (that is, uniform limits 0 E simple functions) functions $E=S \rightarrow \tau(H)$. The results then follow from Theorem void. 2 and the isometric isomorphism

$$
\mathscr{L}\left(C_{0}(S) \hat{\otimes}_{\bar{\pi}} \tau(H), \quad \tau(H)\right) \cong \mathcal{L}\left(C_{0}(S), \mathcal{L}(\tau(H), \tau(H))\right)
$$

as in (8). We note that by a $\hat{A}(\tau(H), \tau(i))$-valued regular Bore measure we mean a maj m: $\mathcal{A} \rightarrow \mathcal{L}(\tau(H), \tau(\overline{\mathrm{H}})$) for which tram(•)e is a complex regular Botel measure for vary $p \in \tau(H), C \in \mathcal{K}(H)$, where in the application of Theorem Vim? we have taken $x=\tau(H), Z=\mathcal{K}(H)$, $Z^{*}=\tau(H)$. In particular this is satisfied for every $m \in M\left(\infty, \mathscr{L}_{S}(\mathrm{H})\right)$.
3. Corollary. If $m \in M_{M}\left(\hat{\alpha}, \ddot{\alpha}_{s}\right.$ (ii)) then the integral $f_{S}(s) m(d s)$ is well-defincd for every $\equiv \in M(S) \hat{Q}_{T} \tau(H)$. S

Remarks. It should be emphasizes that the \cdot norm is
strictly stronger than the supermom nom

245

4. $M(S) \hat{\theta}_{\pi} \tau(\mathrm{H})$ is a subspace of $:(S, \tau(\mathrm{I}))$

The purpose of this section is to show that we may identify the tensor product space $\because(S) \hat{\theta}_{\bar{i}} \tau_{S}(H)$ with a subspace of the totally measurable Eunctions $f: S \rightarrow \tau_{S}(H)$ in a well-defined way. The roason why this is important is that the Eunctions $f \in \mathbb{N}(S) \hat{\otimes}_{\bar{i}} \tau_{S}(H)$ are those for which we may leji上imately define an integral fin(s)m(ds) for arbitcary operaton-valued measures S
 Innear map from $M(S) \hat{\theta}_{\pi} \tau(E)$ into $\tau(H)$. In particular, it is obvious that $C_{o}(S) \& \tau_{S}(\mathbb{H})$ may be identified with a subspace of continuous functions E: $S \rightarrow \tau_{s}(H)$ in a :iell-defined may, just as it is obvious hon to define the
integral $f f(s) m(d s)$ for finite linear combinations S
$f(s)=\sum_{j=1}^{n} g_{j}(s) \rho_{j} \in C_{0}(S) \ominus \tau_{s}(H)$. そnat is not obvious is that the comnletion $o \equiv C_{0}(S) \hat{e} \tau_{S}(\hat{O})$ in the tensor product norm π may be identified vith a subspace of continuous functions f: S - $\tau_{\text {s }}(\mathrm{it})$. Before procecing, wo revien som: basic facts about

```
tensor product spaces. Let X,Z D` nomer suaces. By
```


276

n
$\sum_{j=1}^{\sum} a_{j} x_{j} \otimes z_{j} \quad w^{\prime}$: $=e \quad a_{j} \in R, x_{j} \in X, z_{j} \in Z$ (of course, a_{j}, x_{j}, z_{j} are not uniquely determined). There is a natural duality between $x \otimes z$ and $\mathscr{L}\left(X, Z^{*}\right)$ given by

$$
\left\langle\sum_{j=1}^{n_{i}} a_{j} x_{j} \otimes z_{j}, L\right\rangle=\sum_{j=1}^{n} a_{j}\left\langle z_{j}, L x_{j}\right\rangle
$$

Noreover the norm of $L \in \mathscr{L}\left(X, Z^{*}\right)$ as \mathfrak{L} linear functional on $X \otimes Z$ is precisely its usual operator norm $|I|=\sup _{|z| \leq 1|x| \leq 1} \sup _{x}\langle z, L x\rangle$ when $X \otimes z$ is macio into a normed space $X \otimes_{\pi} Z$ under the tensoz product norm $|\cdot|_{\pi}$ defined by

$$
|f|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left|x_{j}\right| \cdot\left|z_{j}\right|: f=\sum_{j=1}^{n} x_{j} \otimes z_{j}\right\}, f \in X \theta z
$$

It is easy to see that $\left|x \otimes z_{-}=|x| z\right|$ for $x \in X, z \in Z$ (the canonical injeraion $X \times Z \rightarrow X \otimes Z$ is continuous with norm 1) and in fact !. is the strongest norm on $x \otimes z$ with this property. $\overline{\mathrm{F}} \mathrm{F} \quad \mathrm{x} \hat{\theta}_{-} \mathrm{Z}$ wo denote the completion of $x \theta_{\pi} Z$ for the \cdot norm. Fivery L $\in \mathscr{A}\left(X, Z^{*}\right)$ extends to a uniaue bomaj=d linear functional on $X \hat{\theta}_{T} Z$ with the same norm as its onerator :orm, so that we identify $\left(X \hat{\sigma}_{F} Z\right) * \cong \hat{n}\left(X, z^{*} ;\right.$. The space $X \hat{G}_{\bar{H}} Z$ may be identified more concretely as zil ineinite sums
$\sum_{j=1}^{\infty} a_{j} x_{j} \otimes z_{j}$ where $x_{j} \rightarrow 0$ in $x, z_{j} \rightarrow 0$ in z, and $\sum_{j=1}^{\infty}\left|a_{j}\right|<+\infty$ [S71, III.6.4], and the pairing between $X \hat{\theta}_{\pi} Z$ and $\hat{\alpha}\left(X, Z^{*}\right)$ by

$$
\left\langle\sum_{j=1}^{\infty} a_{j} x_{j} \otimes z_{j}, L\right\rangle=\sum_{i=1}^{\infty} a_{j}\left\langle z_{i}, L x_{i}>\right.
$$

A second important topology on $\dot{x}\} \mathrm{Z}$ is the ε-topology, with norm

$$
\left|\sum_{i=1}^{n} a_{i} x_{i} \leqslant z_{i}\right|_{i}=\max _{\left|x^{*}\right| \leq 1}^{\max } z_{i=1}^{n} \sum_{i=1}^{n} a_{i}<x_{i}, x^{*}><z_{i}, z^{*}>\mid
$$

It is easy to see that $\|_{\varepsilon} l_{\varepsilon}$ is a cross-nomm, ie.

is finer than the e-tonology. We denote by x o z the tensor product space $x \otimes Z$ with the ε-norm, and by $X \hat{\theta} \leqslant Z$ the completion of $X \otimes Z$ in the e-norm. sow the canonical injection of $X \theta_{T} Z$ into $X \hat{X}_{E} Z$ is continuous (with norm 1 and dense image); this induces j canonical continuous $\operatorname{map} X \hat{\theta}_{\pi} Z \rightarrow X \hat{O}_{E} Z$. It is not \therefore sown, in general, whether thin:: map is one-to-one. In the case that x, z are filbert spaces we may identify $X \hat{\theta}_{T}$? \because th the nuclear or traceclass maps $\tau\left(X^{*}, Z\right)$ and $X \hat{O}=2$ vita the compact operators

$X \hat{E}_{\pi} Z \rightarrow X \hat{\theta}_{\varepsilon} Z$ is one－to－one［cf T67，III．38．4］．Ne are interested in the case that $X=C_{0}(S)$ and $Z=\tau_{S}(H)$ ； we may then identify $C_{o}(S) \hat{\theta} \equiv \tau_{S}(H)$ with $C_{O}\left(S, \tau_{S}(H)\right)$ （Jinze the $|\cdot|_{\varepsilon}$ is orecisaly the $\|_{\infty}$ norm when $c_{0}(S) \otimes \tau_{S}(H)$ is identified with a subspace of $C_{0}\left(S, \tau_{S}(I)\right)$ ，and $C_{0}(S) \otimes \tau_{S}(H)$ is dense in $c_{0}\left(S, \tau_{s}(\mathrm{I})\right)$ ）and we would like to be able to consider $C_{0}(S) \hat{\theta}_{T} \tau_{S}(H)$ as a subspace of $C_{C}\left(S, \tau_{S}(H)\right)$ ．similarly we want to consider $M(S) \hat{\theta}_{-} \tau(i)$ as a subspace of $M(S, \tau(E))$ ．

4．Theorem．Let X be a Banaci space and H a Hilbert space．Then the canonical mopoing of $X_{\bar{\theta}} \tau(H)$ into $X \hat{\theta}_{e} \tau(\mathrm{H})$ is one－to－one．

Proof．It sufzices to show that the adjoint of the mapoing in question has weak＊dense inace in $\left(\mathrm{X} \hat{\theta}_{\pi} \tau(\mathrm{I})\right)^{*} \cong \mathcal{Z}(\mathrm{X}, \overrightarrow{2}(\mathrm{H}))$ ，where we have identi戶ied $\tau(\mathrm{H})^{*}$ with $\overrightarrow{2}(\mathrm{H})$ ．Note that the adjoint is one－to－one， since the imace of the canonjaEl mapyinc is clearly dense． What we must show is that the i－beciang of（ $\left.\mathrm{X} \hat{\sigma}_{\varepsilon} \tau(\mathrm{H})\right)^{*}$ ， the so－called integral mapnings $x \rightarrow \mathbb{Z}(H) \cong \tau(H) *$ ，into $\mathscr{L}(\mathrm{X}, \mathcal{L}(\mathrm{H}))$ has weat＊dense imege．Of course，the set of linear continuous maps ico $X \rightarrow Z(n ;$ with finito dimensional image batong：to tra intogat matotnge
($\left.: \hat{\theta}_{\varepsilon} \tau(H)\right)^{*}$; we shall actually show that these finite-rank operators are weak* dense in $\mathcal{L}(X, \vec{a}(H))$. We therefore need to prove that for every $\equiv \in\left(X \hat{\theta}_{\pi} \tau(H)\right), I \in \mathcal{L}(X, \mathcal{L}(F))$, $\varepsilon>0$ there is an L_{0} in $\mathcal{Z}(X, \mathcal{Z}(H))$ with finite rank such that $\left|<f, L-L_{0}>\right|<\varepsilon$. Now f has the representation

$$
\begin{equation*}
f=\sum_{j=1}^{\infty} a_{j} x_{j} \otimes z_{j} \tag{10}
\end{equation*}
$$

wi£h $\sum_{j=1}^{\infty}\left|a_{j}\right|<+\approx, x_{j} \rightarrow 0$ in x, and $z_{j} \rightarrow 0$ in $て(i)$
[S7], III.6.4], and

$$
\begin{equation*}
\left\langle f, I-I_{o}\right\rangle=\sum_{j=I}^{\infty} a_{j}\left\langle Z_{i},\left(I-I_{0}\right) x_{j}\right\rangle \tag{11}
\end{equation*}
$$

The lemma which follows proves the folloning fact: to every compact subset K of x and every 0 -neighborhood V of $\vec{R}(i)$, there is a continus linear map $L_{0}: X \rightarrow \mathcal{L}(H)$ with finite rank such that $\left(L-I_{0}\right)(X) \subset v . \quad U s i n g$ the renresencation (10), we take $k=\left\{x_{j}\right\}_{j=1}^{\infty}$ U\{0\} and
 as desired. $]$

The lema required for the above proo三, whin we give belou, basically amounts to sacring that $z^{*}=$ (a)

Banach s :ce X the finite rank operators are dense in $\mathcal{L}\left(X, Z^{*}\right)$ for the topology of uniforn conve:nence on compact subsets of x. It is not known whether every locally zonvex space satisfies the apozoximation property; this question (as in the present situation) is closely related to when the canonical mapoing $X \hat{\theta}_{-} Z \rightarrow X \hat{\theta}_{\varepsilon} Z$ is one-to-one.
5. Lemma. Leit X be a Banach saace, H a Hilbe=t space. For every $I \in \mathscr{h}(X, \hat{\chi}(i f))$, every compact subset K of X, and every 0 -neighborhood V in $\mathcal{Z}(\mathrm{F})$ there is a continuous linear map $L_{0}: X \rightarrow \alpha^{2}(H)$ with finite rank such that

$$
\left(L-L_{0}\right)(K) \subset V
$$

Proof. Let P_{n} be projections in E with $P_{n}+I$ whero I is the identity operator on \ddot{O} (e.g. take any complete orthonormal basis $\left\{\hat{q}_{j}, j \in J\right\}=0=M$; let \bar{i} be the family of all finite subsecs of J, dinected by sot inclusion; anifor $n \in \mathbb{N}$ define P_{n} to be the projection operator
 Then $P_{n} L \in \mathscr{L}(X, f(H))$ has finite Fank and convenges pointwise to L, since $\left(P_{n} I(X)=P_{n}(I \because)\right.$ - IK. Moreover

251

Arzela-Ascoli theorgn the convergence $\underline{D}_{n} L \rightarrow L$ is unif m on chanct sets. This means that for erary 0-neighiborhood V is: \mathcal{L} (II) and every conpact subset K of X, it is true thei for n sufficiently large

$$
\left(I-P_{n} L\right)(K) \subset V .
$$

6. Corailary Let S be a localiy compact Hausdorff space, H a Hilbert space. The canonical mapping $C_{0}(S) \hat{\theta}_{\pi} \tau(H) \rightarrow C_{0}(S, \tau(H))$ is one-to-one, and the canonical mapping $M(S) \hat{\theta}_{\pi} \tau(X) \rightarrow M(S, \tau(H))$ is one-to-one. Proof. This follows from the peevious theorem and the fact that $C_{0}(S) \hat{\theta}_{i} z$ may be icenti三ied with $C_{0}(S, z)$ with the supremum norm, for Z a banach space. Similarly $M(S) \hat{\theta}_{\varepsilon} Z=M(s, z)$ with the suprenum norm. \square Remark. In Theorem VIII. 4 we explicitly identified $\left(C_{0}(S) \hat{\theta}_{\pi} \tau(H)\right)^{*}=\mathcal{L}\left(C_{0}(S), \mathcal{L}(X)\right)$ and $\left(C_{0}(S) \hat{\theta}_{\varepsilon} \tau(H)\right)^{*}=$ $c_{0}(S, \tau(I I))^{*}$ with the measures $m \in M(\infty, \mathcal{L}(i))$ having finite semivariation and finit= total variation, respectively.
7. A Fubini theorem for the Bayes posterior expected cost

In the quantum estimation probken, a decision strategy corresponds to a probability operator measure $m \in M_{(}\left(\mathcal{O}_{\mathrm{S}}, \mathcal{Z}_{\mathrm{L}}(\mathrm{H})\right)$ with posterior expectsi cost

$$
R_{m}=\int_{S} \operatorname{tr}[p(s) \underset{S}{f}(t, s) m(d t): u(d t)
$$

Where for each s o(s) specifies a state of the quantum system, $C(t, s)$ is a cost function, and u is a prior probability measure on S. We would like to show that the order of integration can be interchansed to yield

$$
R_{m}=t r i f(s) m(d s)
$$

where
is a map $f: S \rightarrow \tau_{S}(H)$ that delongs to the space
$M(S) \hat{\theta} \quad \tau(\hat{\theta}) \quad$ Of Eunctions integrable against operatorvalued measures.
 Y a Banach space A function $F: S \rightarrow X$ is measurable ifí there is a sequence \{fn\} of sinplemeasurable funcions converging pointwise to f, i.e. Ens E(s) for avery $s \leqslant S$. A usefill critorion for montuabiaizu is tra
following [DS III.6.9]: f is measurabie ifī it is separably-valued and for every ozen subset V of x, $f^{-1}(V) \in \mathcal{B}$. In particular, \in very $E \in C_{0}(S, X)$ is measurable, when s is a locally conpact Hausdorff space with Borel sets \mathscr{D}^{D}. A function $f: S \rightarrow X$ is integrable iff it $: s$ measurable and $f: f(s) \cdot(d s)<+\infty$, in which case
 S
integral: wa donote by $L_{1}(S, f i, i, i)$ the space of all integrabie functions $f: S \rightarrow X, \exists$ normed space under the L_{1} norm $|f|_{I}=f|f(s)| \mu(d s)$. Fho uniEorm norm $\|\left._{S}\right|_{\infty}$ on
 denotes the Banach space of all uniform limits of simple
 closure of the simple X-valust zunctions with the uniforn norm. We abbreviate $M(S, R)$ to $\because(S)$.
7. Proposition. Let S be ㄹocaly comoact Bausdorfe space with Borel sets $D, y=$ probability measure on S, and H a filbert space. Suppose $a=S \rightarrow \tau_{s}(i)$ beiongs to $M\left(S, \tau_{s}(H)\right)$, and $C: S * S \rightarrow R \quad i \equiv$ rear-rainedmen satisfying

$$
t \rightarrow C(t, \cdot) \in I_{1}(S, D, \cdots, \because)
$$

$$
\begin{equation*}
f(s)=\int_{s}(t, s) \rho(t) \mu(d t) ; \tag{12}
\end{equation*}
$$

moreover $f \in M(S) \hat{\theta}_{\pi} \tau_{S}(H)$ and for every operator-valued r.asure $m \in M_{i}\left(B, \mathscr{z}_{S}(H)\right)$, we have

$$
\begin{equation*}
\int_{S} f(s) m(d s)=\int_{S} p(t)\left[C_{S}(t, s) m(d s)\right] H(d t) \tag{13}
\end{equation*}
$$

Moreover if $t \rightarrow C(t, \cdot)$ in fact belongs to $L_{1}\left(S, X, \mu ; C_{0}(S)\right)$ then $f \in C_{0}(S) \hat{\theta}_{\pi} \tau_{S}{ }^{(\mathrm{II})}$.

Proof. Since $t \rightarrow C(t, \cdot) \in L_{1}(S, B, M(S))$, for each n there is a simple function $C_{n} \in I_{1}(S, \mathcal{O}, \cdots, i(S))$ such that

$$
\begin{equation*}
f\left|C(t, \cdot)-C_{n}(t, \cdot)\right|_{\infty}{ }^{i}(d t)<\frac{1}{n^{2 n}} . \tag{14}
\end{equation*}
$$

Each simple function C_{n} is 0 the form

$$
C_{n}(t, s)=\sum_{k=1}^{k_{n}} g_{n k}(s) l_{E_{n k}}(t)
$$

Where $E_{n, 1}, \ldots, E_{n k}$ are disjoint suiaets of D and $g_{n l}, \ldots, g_{n k}$ belong to $M(S)$ (in the case that $t \mapsto C(t, \cdot) \quad I_{1}\left(S, \mathfrak{B}, \forall C_{0}(S)\right) \quad$ e take $g_{n 1}, \ldots, g_{n k}$ in $\left.C_{0}(S)\right)$. Since $o \in M\left(S, \tau_{S}(H)\right)$, for each n there is a simple measurable function $\gamma_{n}: s \rightarrow \tilde{\tau}_{s}(n)$ such that

$$
\begin{equation*}
\operatorname{sip}_{t}\left|0(t)-p_{n}(t)\right|<\frac{1}{n^{2 n}} . \tag{15}
\end{equation*}
$$

We may assume, by replacing each set $E_{n k}$ with a disjoint subpartition corresponding to the finice number of values taken on by ρ_{n}, that each ρ_{n} is in fact of the form

$$
\rho_{n}(t)=\sum_{k=1}^{k_{n}} \rho_{n k} l_{E_{n k}}(t)
$$

Define $\mathrm{F}_{\mathrm{n}}: \mathrm{S} \rightarrow \boldsymbol{\tau}_{\mathrm{S}}(\mathrm{H}) \quad \mathrm{b}_{\mathrm{Y}}$

$$
\begin{aligned}
f_{n}(s) & =\int_{S} c_{n}(t, s) \rho_{n}(t) \mu(d,) \\
& =\sum_{k=1}^{k} g_{n k}(s) \rho_{n k}!\left(E_{n k}\right)
\end{aligned}
$$

Of course, each f_{n} belongs to $M(3) ~ o \tau_{s}(H)$. We shall show that $\left\{f_{n}\right\}$ is a Cauchy sezuence for the $\|_{\pi}$ norm on $M(S) \otimes \tau_{s}(H)$, and that $f_{n}(s)-f(s)$ 三or every $s \in S$; since the $|\cdot|_{\pi}$-limit of the seguence \tilde{F}_{n} is a unique function by Theorem 4 , we sea that \equiv is the $\left.|\cdot|\right|_{\pi}$-1init of $\left\{f_{n}\right\}$ and hence f belongs to the completion M(S) $\hat{\theta}_{\pi} \tau_{S}(H)$.

We calculate an upper bound for fnt fre now
$f_{n+1}(s)-f_{n}(s)=$
$k_{n+1} k_{n}$

and hence
$\left|f_{n+1}-f_{n}\right|_{\pi} \leq$
$\underset{j=1}{k_{n+1}} \sum_{k=1}^{k_{n}}\left\{\left|g_{n+1, j}\right|-\mid \rho_{n+1, j}-\rho_{n, k}!乞 r^{+\left|g_{n+1, j}-g_{n, k}\right|_{\infty} \cdot\left|\rho_{n k}\right| t r}\right\}_{j}\left(E_{n+1, j} n E_{n, k}\right)$

Suppose $E_{n+1, j} \cap E_{n, k} \neq \notin$, i.e. there exists a $t_{o} \in E_{n+1, j} \cap E_{n, k}$. Then from (15) we have

$$
\begin{aligned}
\left|\rho_{n+1, j}-\rho_{n, k}\right|_{t r} & \leq\left|\rho_{n+1}, j^{-p\left(t_{0}\right)}\right|_{t r} \div\left|o_{n, k}-p\left(t_{0}\right)\right|_{t r} \\
& <\frac{1}{(n+1) 2^{n+1}}+\frac{1}{n^{2 n}}<\frac{1}{n 2^{n+1}} .
\end{aligned}
$$

Thus, the first half of the sumazion in (16) is bounded abore by
$\frac{1}{n 2^{n-1}} \sum_{j=1}^{k_{n+1}} \sum_{k=1}^{k}\left|g_{n+1, j}\right|_{\infty} \mu\left(E_{n+1, j} \cap E_{n, k}\right)=\frac{1}{n 2^{n-1}} \int\left|C_{n+1}(t, \cdot)\right|_{\infty^{\mu}}(d t)$

$$
\begin{aligned}
& \left.=\frac{1}{n 2^{n-1}}| | c_{n+1} \right\rvert\, \|_{1} \\
& \leq \frac{1}{n 2^{n-1}}\left(1+\| c| |_{1}\right)
\end{aligned}
$$

 element of $L_{1}(S$, , in iM(S)), ard the last inequality fo lows from (14). Similarly the soconthale o the sumation is rounded above be

$$
\begin{aligned}
& \left(|\rho|_{\infty}+1\right) \cdot \sum_{j=1}^{k+1} \sum_{k=1}^{k}\left|g_{n+1}, j^{-g_{n, k}}\right|_{\approx} \cdot \mu\left(E_{n+1, j} \cap E_{n, k}\right) \\
& \quad=\left(|0|_{\infty}+1\right) \cdot| | c_{n+1}-c_{n}| |_{1} \\
& \quad<\left(|0|_{\infty}+1\right) \cdot \frac{1}{n 2^{n-1}}
\end{aligned}
$$

whure again the last inequality Eollows since $\| C_{n}-\left.C\right|_{1}<\frac{1}{n 2^{n}}$ by (14). Let a be a constant larger than $1+\|C\|_{1}$ and $1+\|\rho\|_{\infty}$: adding the last two inequalities from (16) we have

$$
\left|f_{n+1}-f_{n}\right|_{\pi}<\frac{a}{n 2^{n-2}}
$$

Hence for every $m>n \geq 1$ it Eollows that
$\left|f_{m}-f_{n}\right|_{T} \leq \sum_{j=n}^{m-1}\left|f_{j+1}-f_{j}\right|_{\pi}<\sum_{j=n}^{\infty}-\frac{a}{n} 2^{n-2}<\frac{1}{n} \sum_{j=1}^{\infty} \frac{a}{2^{n-2}}=\frac{3 a}{n}$.

Thus $\left\{f_{n}\right\}$ is a Cauchy sequence for the $|\cdot|_{-}$nom on $M(S) \otimes \tau_{S}(H)$, and hence has $a \operatorname{imit} E_{0} \in M(S) \theta_{\pi} \tau_{S}(H)$. Since it certainly follows that $\tilde{F}_{\mathrm{n}} \rightarrow \mathrm{f}_{\mathrm{O}}$ pointwise (in fact in the uniform nom since $\left.\cdot\right|_{\infty} \leq|\cdot|, \|_{\text {, }}$, and since it is straightforward to show that $f_{n}(s) \rightarrow f(s)$ for every $s \in S, f_{o}=f$. Moreovis in the case tha: $t \mapsto C(t, \cdot) \in I_{1}\left(S, \mathscr{E},: C_{0}(S)\right)$, we naro $\bar{F}_{n} \in C_{0}(S) \& \tau_{S}(H)$
and hence $f=\left.1 \cdot\right|_{\pi}-1$ in f_{n} helones to $c_{0}(C) \sigma_{\pi} \tau_{s}(I)$. It only revains to shoy that (13) holas. rissentially this follous from the appro:irations we have already rado with sirple functions. Nov clearly

$$
\begin{align*}
j f_{n}(s) m(a s)= & \sum_{k=1}^{k_{n}} n_{n} \mu\left(r_{n k}\right) \int_{n}(s) m(d s) \\
& \int_{n} p_{n}(t)\left[r_{n}(t, s) m(d s)\right] u(d t),
\end{align*}
$$

so that (13) is satissia? for the si-ple apnzorintions. Tr have already shom that $\hat{E}_{n} \rightarrow$ fr in $n(s) \hat{\omega}_{\pi} \tau_{S}(m)$,

 show that the pes of (iu) conerzees to the moc of (13). inequality Fut agelying the triarotento (26) rieles.

$\leq(0, n+1) \cdot(s) \cdot \frac{1}{n 2}+\frac{1}{n 2^{n}} \because(\Omega) \cdot 0$,

259

wiere tho last inequality folloirs from (14) and (15) and again $\|C\|_{I}=\int|C(t, \cdot)|_{S} \mu(i t)$ denotes the nom of C as an elerent of $L_{1}(S, \mathcal{B}, \ldots ;(S))$.
6. The quantum estimation sroblen and its fual

Hie are now prepared to Eomulate the quantun cietection problem in a duality framewor: and calculate the associated dual probler. Let s be a locally compact fauscorff space with Brexel sets \mathcal{O}. Let H be a fillbert space associated witn the physical variables of the suster under consiceration. For each parameter value $s \in s$ let $O(s)$ be a state or density operator for the quantion suster, i.e. every o(s) is a nonnegative-definite seifadjoint Erace-class operator
 that there is a cost function $c: s \times s \rightarrow$?, mere $C(s, t)$ specifies the relativo cost $o \equiv$ an estirate t when the true paraneter value is s. If ths oporatoー-valued meacuro $m \in M\left(\mathscr{H}^{\prime}, \mathscr{L}_{s}(\mathrm{H})\right)$ corresponcs to a civon measurnnent and decision strategy, then the gonterior expectar cost is

Whece μ is a prior probabiaity mensure on (S, D) Er
Prozosition 7 this is vell-desinac: wnoorne the mou
 we naw interchance tho oriex oj intoruntion to ret

$$
\begin{equation*}
r_{n}=\operatorname{tr} f(s) m(x s) \tag{17}
\end{equation*}
$$

$$
\hat{f}(s)=f_{S}(t) C(亡, s):(c s) .
$$

The quantum estiration probire: is to riainize (17) over
 Fon's, i.e. the constraints nre that $m(x) \geq 0$ for every $E \in \mathcal{D}$ ard $m(S)=I$.

Fie formulate the estimation probler in a cuality franework. As in the guanturi catection prohien, we tale Ferturbations on the ecunit*g constraint $m(s)=T$.

$$
F(r)=\varepsilon_{\geq 0}(m)+\operatorname{trf}_{5}(s)=(\sin), \quad m \leq m\left(\infty, \mathscr{L}_{s}(H)\right),
$$

Where 0 , denotes the indicntor Eunction for the positive operator-valuen reasures, i.e. $\hat{y}_{0}(m)$ is η if $m(\Re) \subset \mathcal{L}_{s}(i)+a n ?+m$ otherise. nofine the conver function $r: \vec{\alpha}_{s}$ (E) $-\bar{B}$

$$
G(x)=y_{0}(x), \quad x \in \mathcal{L}_{5}(!)
$$

i.e. $G(x)$ is 0 if $x=0$ and $C(x)=+\cdots$ it $x \neq$ rhen the quantur detoction jroblen may no written

$$
I(r)=M(S)
$$

Ce consider a family of perturbed problems desired br

Thus wa are taring perturbations in the equality constraint， ie．the problem $P(x)$ requires that every feasible m he nonnegative and satisfy $-(S)=x ;$ of course， $\bar{F}_{0}=P(I)$ ．since I and C are convex，$P(\cdot)$ is CCRVOK $\mathcal{L}_{s}(\mathrm{H}) \rightarrow \vec{\Gamma}$ ．

In cedar to construct tie dual？nociler corresponcines to the family of perturbed puoilern $n(x)$ ，le must calculate the conjugate functions of E and G Fe shall wort in the norm topology ne the constraint space \mathcal{L}_{s}（it），so that
 the adjoint of the orator t is riven ：

$$
L^{\star}: \mathcal{L}_{S}(I)^{*} \rightarrow \operatorname{mn}\left(D, \mathcal{\alpha}_{G}(I)\right)^{*}: Y H(m H \because m(S))
$$

To calculate $F^{*}\left(L^{*} y\right)$ ，we have the following leman．
 satisfy

$$
\begin{equation*}
y \cdot m(S) \leq \operatorname{trj}_{S} f(S) m(: S) \tag{18}
\end{equation*}
$$

for every positive operator－valuor measure r erin（x，$\left.e_{s}(1)_{4}\right)$ ．

$y_{a c} \in \tau_{s}(\mathrm{H})$ and $y_{s q} \in \mathcal{K}_{s}(\mathrm{E})^{\perp}$.
prof. Fix any $s_{0} \in S$. Let x be an arbitrary element $0=\mathscr{L}_{S}(H)_{+}$, and define the positive operator-valued measure $m \in M\left(D, \hat{\alpha}_{5}(\mathrm{H})_{+}\right)$my

$$
\pi(D)=\left\{\begin{array}{lll}
x & i \pm s_{0} \in E \\
0 & i \pm & s_{0} \ddagger E
\end{array}, \quad E \in \hat{X} .\right.
$$

Then y yo $(S)=y(x)=\operatorname{tr}\left(y a c^{x}\right)+\because s g(x)$, and try $(s) m(0 s)=$
 $x \in \mathcal{Z}_{S}(\mathrm{E})+$ Was arbitrary, it =onions From Proposition ITI. 3 that $y_{a c} \leq f\left(s_{0}\right)$ (ie. $\left.f\left(s_{0}\right)-v_{a c} \in \tau_{s}(i)_{+}\right)$and $y_{s G} \leq 0$ (ie. $\left.\forall_{s c} \in\left[\hat{x}_{s}(i)\right]^{+} \cap \mathcal{K}_{s}(i)^{\perp}\right)$.

With the aid of this lemma it is now easy to verify that

$$
\begin{aligned}
& =0_{\leq f}\left(y_{a \sim}\right)+\dot{B}_{\leq 0}\left(\because_{s a}\right) .
\end{aligned}
$$

It non follows that $p^{*}(\because)=F^{*}\left(\right.$ IN $\left._{y}\right)+C^{*}(y)$ is 0 if $Y_{S G} \leq 0$ and $y_{a c} \leq f(s)$ sow every $s \in r$, an: $n *(r)=+\infty$ otherwise. rue dual problem $D_{0}=-(0)(T)=$ sur $[y(T)-2 *(y)]$ is thus cigar bu

264

$$
\begin{aligned}
D_{0} & \left.=*, P^{*}\right)(I) \\
& =\sup \left\{\operatorname{try}_{a c}+y_{s g}(I): y \in \mathcal{L}_{s}(H)^{*}, y_{s q} \leq 0, y_{a c} \leq\left\{(s): \frac{1}{\Delta s} \in S\right\}\right.
\end{aligned}
$$

We show that $P(\cdot)$ is norm continuous at I, and hence there is no duality sap $\left(P_{0}=D_{0}\right)$ and D_{0} has solutions. Moreover we expect, as in the detection case, that the optimal solutions for D_{0} rill always have 0 singular part, ie. Will be in $\tau_{s}(\mathrm{E})$.
9. Proposition. The perturbation function p(-) is continuous at I, and hence j (I) $\frac{1}{\boldsymbol{F}} \boldsymbol{\beta}$. In particular, $P_{0}=D_{0}$ and the dual problem D_{0} has optimal solutions. moreover suer solution $\hat{y} \in \hat{\chi}_{5}(\mathrm{H}) *$ of the dual proble: Do has u singular part, ie. $\hat{y}_{s g}=0$ and $\hat{v}=\hat{y}_{a c}$ belongs to the canonical image $0 \equiv \tau_{s}(10)$ in $\tau_{s}(I) * *$.

Proof. We show that $\Gamma(\cdot)$ is Downed above on a unit ball centered at I. Suppose $x \notin_{\mathcal{L}_{s}}(\mathrm{H})$ and $|x| \leq 1$. By Leman VII.4, $I+X \geq 0$. Let s_{o} be an arbitrary element of S and define the positive ozerator-valusd measure $m \in M_{(}\left(B, \mathfrak{z}_{S}^{\left.(H)_{+}\right)}\right.$by

$$
m(E)=\left\{\begin{array}{lll}
I+x & i= & J_{0} \in E \\
0 & i & y_{0} \neq Z
\end{array}, \quad \because \in S .\right.
$$

Then r is feasible for for ant bes cost

$$
\operatorname{trj} f(s) \text { micis })=\operatorname{trF}\left(s_{0} ;(I+x) \leq 2\left|E\left(s_{0}\right)\right|_{t r}\right.
$$

Thus $p(I+x) \leq 2\left|E\left(s_{0}\right)\right|_{\text {tr }}$ whenever $|x| \leq 1$, so $p(\cdot)$ is bourded above on a neighbornood oE I and so by convexity is continuous at I. By Theorem I.ll.l it follows that $\partial P\left(x_{0}\right) \neq \nexists$, hence $\underline{D}_{0}=D_{0}$ and D_{0} has solutions. Suppose now that $\hat{\underline{v}} \in \mathcal{Z}_{S}(H) *$ is an optimal solution for D_{0}. IE $\hat{y}_{s g} \neq 0$, then since $\hat{y}_{s c} \leq 0$ and $I \leq \operatorname{int} \mathscr{\alpha}_{S}{ }^{(H)}+$ it follons from Lemma VII. 4 that $\operatorname{tr}\left(\hat{y}_{a c}\right)+\hat{y}_{s c}(I)<\operatorname{tr}\left(\hat{y}_{a c}\right)$. Nence the value of the cual oljective function is strictiv impzoved by settinc $\hat{y}_{s f}=0$, while the constraints remain satisfiea, so that ir \hat{y} is optinal it must be true that $\hat{y}_{\text {sg }}=0$.

In order to sho: that the probls: Po has solutions, ve could define a fanily of dial nerturbed problens $D(v)$ for $v \in r$, j) $\hat{\theta}_{T} \tau_{s}(H)$ and sinow that $D(\cdot)$ is continuous. Or we could tale the alternatine pethod of showing that the set 0 Efeasible POA's m is veat: compact and the cost
 is inontisted as the nozmad awn of the space $C_{0}(S) \hat{\theta}_{\pi} \tau_{s}$ (n) urde: the parina

$$
\langle E ; m\rangle=\operatorname{trf} f(n) m(0 n) .
$$

 proposition 7 it suffices to assume that $t \mapsto C(t, \cdot)$ belongs to $I_{1}\left(S, D, \mu ; C_{0}(S)\right)$.
10. Proposition. The set of Pom's is compact for the weak* $\equiv w\left(M\left(\hat{X}, \hat{\mathcal{L}}_{S}(H)\right), C_{0}(S) \hat{\beta}_{T} \tau_{S}(H)\right)$ topology. If $t \mapsto C(t, \cdot) \in I_{1}\left(S, \mathcal{B}, \forall ; C_{0}(S)\right)$ the. D_{0} has optimal solutions \hat{m}.

Proof. Since $M\left(\mathbb{O}, \mathscr{Z}_{s}(H)\right)$ is the normed dual of $C_{0}(S) \hat{\theta}_{T} \tau_{S}(H)$ it suffices to show that the set of porn's is bounded; in fact, re show that $\overrightarrow{\vec{n}}(s)=1$ for
 is a regular morel probability \ddagger y reassure on S wherever m is a Poll, so that the total \cdots eriation of $\langle\boldsymbol{j}(\cdot) \mid 0\rangle$ is precisely 1. Hence

$$
\begin{aligned}
\overline{\mathrm{m}}(S)= & \sup _{\phi \in \mathrm{II}}|\langle\operatorname{pon}(\cdot) \mid \phi\rangle|(S)= \\
& \sup _{\phi \in \mathrm{EI}} \mid\langle\sin (\cdot)|\langle \rangle \mid(S)=1 . \\
& |0|=1
\end{aligned}
$$

Thus the set of pow's is a :rent*-closec sunset of the unit ball in $M\left(0, \mathcal{Z}_{s}(i)\right)$, hence wean*-compace. If row:

 is a rieat*-concinunu liner function an? hence attains

$2 ; 7$

,
The following theorem summarizes the results we have obtained so far, as well as providing a necessary and surizcient characterization of the optimal solution.
11. Theorem. Let F be a Filbert space, S a locally compact Hausdorff space with Morel sets \mathcal{W}. Let $\rho \in \mathbb{M}\left(S, \tau_{S}(H)\right), C: S \times S \rightarrow R$ a map satisfying $t \mapsto C(t, \bullet) \in I_{I}\left(S, D, H ; C_{0}(S)\right)$, and μ a probability measure on (S, B). Then for every $n \in M_{i}\left(B, f_{s}(H)\right)$,

$$
t=\int_{S} 0(t)\left[\int_{S}(t, s) \ln (\lambda s)\right] u(\Delta t)=\operatorname{tr} \int_{S} \equiv(s) m(\lambda s)
$$

where $f \in C_{0}(s) \hat{\theta}_{T} \tau_{S}(H)$ is defined by

$$
f(s)=f_{s} 0(t) C(t, s):(\text { cs }) .
$$

Define the optimization problems

$D_{0}=\sup \left\{t r y: y \in \tau{ }_{s}(F), y \leq f(s)\right.$ for every $\left.s \in s\right\}$.
men $P_{0}=D_{o}$ and both D_{0} and D_{o} nave onimal solutions. Moreかur the folvoring statements are couivoiont for
 every $E \in \mathcal{R}:$

1) m solve: p_{0}
2) $\quad \int \equiv(s) m($ ss $) \leq f(t)$ for every $t \in S$
3) $\int_{s}(\mathrm{ds}) f(s) \leq f(t)$ for every $t \in s$.

Under any of the above conditions it Follows that $Y=\int_{S} f(s) m(d s)=\int_{S}(d s) f(s)$ is salfadjoint and is the unique solution of D_{0}, with

$$
\Sigma_{0}=D_{0}=\operatorname{try}
$$

Proof. We nett only verify tin equivalence of l)-3); the rest follows from propositions 9 and 10 . Suppose m . solves F_{0}. When there is a $y \leqslant \tau_{s}(B)$ which solves D_{r} so that $y \leq f(t)$ for every t and

$$
\operatorname{trff}_{S}(s) \operatorname{m}(d s)=\operatorname{try}
$$

Since $f(s)-y \geq 0$ for every $s \in S$ and $\quad \therefore \geq 0$ it follows that $0=\int_{S}(f(s)-y) m(d s)=f(s)$ (cis)- and hence 2) holds. This last equality also show tint \because is unique.
 is feasible for D_{0}, and moreover ta: $=(s)$ (acis) = tiv.
 salas \quad a, mattel hat ion

えロ́

B
This 2) \ll 2) is preved. The proof of 1) \Leftrightarrow is identical, assuming that trif(s)m(ds) = trfr(ds)f(s) for every $f \in C_{o}(S) \hat{\gamma}_{T} \tau_{S}(i)$. But the latter is true since trAB $=$ trBA for evew: $A \in \tau_{S}(I I), B \in \mathcal{Q}_{S}(H)$ and hence it is true for every $f \in C_{o}(S) \& \tau_{S}(H) \cdot \square$

X．Refercices

（Da 76；E．B．Davies，Quartu－Fheory o三 Open Systers， Acaderic Press，1976．
（D 66）
（D 67）
N．Dinculeanu，Vecto \because Yassures，Fergamon Press， 1s．
（Do 70）I．Dob＿akov，＂On intesration in banark spaces，I＂， Czech．：：\％it．J． 20 （ララ）1970，p．511．
（DO 71）I．Dobrakov，＂On repこesシnさation oミ linear operators

 Interscience PublisisEニミ，IG6も．
（ET 76）I．EKeland and R．Te－am，Con：
 Ccreary，ly75．
 for convox control paごミー．s＂，siou j．Ont．Control，

 （19？\because－

		27i
	（i）75）	R．S．Holmes，Goomet＝ic Furational Analvsis and its
－		Age？ica⿰氵ons，Springjx－\％erlaj，1975．
	（IL 72）	A．Inffa and V．Levir，＂Subdifferentials of convex function：＂，Trans．\because ：
1	$\left(\begin{array}{ll}\square & \therefore\end{array}\right)$	K．З．KiEtラchmer，＂EとOここコローes in paired spaces＂， Canač．J．Uath． 13 （1951），p． 22.
	（ 1 65）	N．Levinson，＂A class ó continuous linear progzaming problems＂，SIAN J．A⿹勹巳．Aath． 13 （1965），p．6s4．
－	（L 68）	D．Luenberger，Optimization by Vector Space Aethous， Jobe wiley anc Sons，さnc．， 1963.
－	$(\therefore 6 \div)$	J．J．\because Orear，＂Sur la Ennction goiaire ciune fonction t． 256 （1954），p．II2S．
	（以77）	to civami＝routing in cata communication netvorks＂，
\％		Ph．D．thesis，Depart－neṅ o三 Electrical Engineering， $\because . I .=., 1977$.
．	（R 56）	јucaたe convex functions＂，aner．$\because=$ th．Soc．Trans． 123 （1955），P． 46.
	（R 63）	R．Pockafeilar，＂Integrals ヲhich are convex function－
－	（R71き）	R．Rockafeliar，＂Irtešals wich are convex function－ als，II＂，Pac．さ．：
－	（P 71）	P．Rockafellar，＂Existence anc diality theorems for conver：probl．j of シolzE＂，Trans．Mrav．Zath．Soc．， ソo1． 159 （1971），P．？．
	（1）72）	
\％	（273）	

		-78
	(2 66)	W. Rudin, Real and
*	$(\therefore 73)$	
	(S 7i)	H. !. Schaefer, Topoiozical Yactor sqaces, SpringerYe:? ? ; 1971.
B	(En 60)	R. Silatien, Norm I Sasis oj Comaiotely Continu Operatozs, Springer, las.
	(1 67)	
3	(TVi 73)	
		Acadenic Press, 1973.
23	$\left(\begin{array}{ll}\text { (} 65\end{array}\right)$	W. Tyndall, "A Zuality tioooren Eor a class of continuous lineas proguarming vrobiens", SIn J. Apil. Itath. 13 (1905), ․ 644.
2	(Y®L)	H. Vuon, R. Kennedy ani \because. Lax, "Optimun testing oE mulたiple kypotheses in guantion detection theory", Trans. IEEE IT-21, 1975, D. 125.

[^0]: $\dagger_{\text {If }} A=\emptyset$, then ${ }^{\circ}\left(A^{\circ}\right)={ }^{+}\left(A^{+}\right)=\perp_{\left(A^{\perp}\right)}=\{0\}$.

[^1]: More precisely, we mean that $\left(X^{*}, \tau^{*}\right)^{*}=J X$, where J is the natural imbedaing $x \rightarrow\langle x, \cdot\rangle$ of x into the algebraic dual (X^{*})' of all linear functionals on X^{*}.

[^2]: +The supremum over a null set is taken to be sup $\equiv-\infty$. Thus $\varnothing=X^{*},{ }^{\circ}\left(\not \varnothing^{\circ}\right)=\{0\}$.

[^3]: ${ }^{\dagger}$ This is the basic tool here, namely that if a set D in a HLCS has compact closed convex null then ext(clcoD) cclD.

[^4]: 'Basic references are [073], [ET76]. A more elementary reference is [L68, Chapters 7-S].

[^5]: Proof．First，m（•）is projec土ion valued since by finite auditivity
 $m(E)=m(E) m(S)=m(E)\left[m(E)+\infty: S V \mid=-(E)^{2}+m(D) m(S \backslash E)\right.$,
 have by finite adaitivity

 disjoint sets．

