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ABSTRACI'

The duali+-%- a-,)zD-roach to solving convex optimization'Iem7 is s+-ud-'--d in deta4" using tools in convex analysisproo - - - t-

ar-d -'C.--he theo-_r -y c --' cc.)njugate _`�.;nctions. Conditions for thet Idualit-v fo=ai.;sm to hold are d:-_1.7-__Io33ed which require that
the oz)-Limal v-='ue o" the original problem vary continuously
w i respec"-. -to perturbations in th-e constraints only along
I:easibie d-i--relct-ions; th-is is sufficient to imnoly existence
for rate dual -:Drobiem and no duality aap. These conditions are
also -oos&,:,' as ce--a�n local co-I -ements on the
dual ieasibil-ii-ty set, based on a characterization of locally
co.-.i-�,act convex sets in locally- convex spaces in ter-ms of no�_
emn-v relative int-er-Jors of- t-rh.e corresponding -olar se-S.

These results alre applied to minimum norm and spline
,"',ro'ble-ins an2 i=-- -ove p--e,,,,-,-'DUS existence results, as well as
express-ing them in a duality frame-..7ork. Related results in-
C 1 u d e c o nd i -:-- ions for the sun of two closed convex sets to be
closedleasing: t-o an extenUded separation principle for closed
convex se-t-s.

The cont-inuous linear program-ming problems is also studied.
.,-%n ex-;Cen_-'ed -'-',flat problems is 'Formulated, and a condition suffi-
cient for dual solutions to exist qi-lh no duality gap is given
wh--:L---'.-. is na;%--_,_1ra' in the context o-11: se-veral exa-mPles. Moreover
the dual solutions can be taken to be extreme Points, which
suggests 'Che possibili-ty of a sim-plex-like algorit':-L--.i

Finall�.-,7, the -- roblem of characterizing optimal quantum
det-ection and estimation is studied usina duality techniques.
The duality t_-Ineory -for the quan-t-u_-i estiriation Qroblem en-ails
s t u ng oe--rator-valued measu-res, developinq a qeneralli7 e_ d
IZ' -resen---at�on Theorem, and looking at the ap3D-oxlmation
pronert'v -for -;--'.-.e s7cace Of-F, linear operators on a Ifilber-II.: space.

-11-lesis Supe-r-71sor: San4o-v 'K. '-Iitter
T -i t i e Pre-f'elssor oi-E electrical -Engineering



Acknowle'd-germents

I wish to thank Professor Sanjoy K. Mitter -"-For his

contributions to and supervision of this research, and

for his guidance and encouragement throughout my period

of craduate study; Professor Gilbert Strang T-or his con-

is
%-issued interest and sucoor-;�.:; Prot'ressor David Schaeffer

-for actina as reader; Mis. Ph�,llis Ruby for her skill,

s=eed, and Patience in typing the thesis; finallymy

oarents for their imolic-it support and understanding;

a--nd my wife ;-heiine, who o--ovided love and care and

jc�, Ln living.

I grate-.EuIIv ackno-.,.-ledge the financial support of

',--he ?,',-systematics L-Deoa.rtment, and of the �Tational

Science Foundation under g_�--ant NNSF ENG76-02860.



CONTENTS

page

Overview oil Thesis G

Analvsis !0

1. Notation and basic definitions it

V 2. secession cones, lineality subspaces, ji

recession functionals
Zs3. Directional derivatives, subgradients

4. Relative interiors of- convex sets and

local eauiconti.iuity of polar sets

5. Continuitv off convex functions and 53

equlcontinuitv oJE conjugate Aunct-ions

6. IC"losed subs�Daces with 'L Lnri-t-e codimiension

7. Weak dual topologies

8. Relative continuity points of convex 7-'4t

functions

9. Determining continuity points

!II. Duality Ppproach to )-otimizat-ion

introduction
Cfl2. Problem formulatiDn 11

3. Dualitv theorems for o-timization Q-o'-Iems 108

7 'T,7. %linimum Norm. and Spline Problems and 19

a Separat-4--n T'heorem

'I norm extremals and the saline

problem

2. On 'Che separation of closed convex sets 13 2-

ontinuous-Time L 4near .7-rograrz-ning (Note: Chapter V
has been removed

rntrodu-tion from thesis) 10

2. "Formulation of the z.-obleM i33

The perturbed problem and :_-'�--s con4ugate J'qz_j



4 Dualitv theorem t47

S. Sufficient conditions for dual-it-7 to hold

6 Communications network Qroblem

7. Linear dynamic economic model

8. Looking for extreme point soiuticns, and

a simpie example

VII. Optimal, Quantum, Detection

106
1. Introduction

2 .The finite dimensional case i7:D

3. A linear prcgramming problem -with 74

non-polyhedra't cone which has a C.uality gap

4 The quantum detection problem and its dual 17-17

VIII. Operator-Valued 02

IX. OpIC-imal Quan'Lum Estimation

L .Int-oduction

2. integraticn of real-valued functions with -Z J�

respect to operator-valued measures

Integraticn of 7 (H) valued functions
S

4. M (S) is a sutspace of M (S, I(H))

5 -A Eubini th-eorem for the Baves ooster-Jor

exr-)ected cost-

6 .The quantan., estimation problem -7-nd it---_ dual

2 -7 r,X. References 1



w

6.

I

I I. Overview of Thesis

1�

b

31

lb

lb

a

49



7.

Overview of thesis

The idea of duality theory for solving convex opti-

mization problems is to transf-Form the original problem

into a "dual" problem which is easier tc, solve and which

has the same value as the original 'problem; constructing

the d,,:al solution correspond's to tornmulating extremali-lCy

conditions which characterize optimality in the original

orohlem. This thesis investigates and extends the

"ual-ity approach to opti-mt-ization and applies this approach

to several probes of interest_.

Chapter IT defines basic concepts and develops basic

tec'-n-niques -in convex analysis and the theory of conjugate

functions wh 4ch are relevant to studying the duali-t-v

4formalism. includdes an -Lnvestigation of the relation-

ships between none.-:-,pty relative interiors-of convex sets

and local compactness o--:r ithe polar sets, which culminates

in a characterization o_-F relative continuity points of

con,.,-ex functions in terms o-F local compactness properties

0 fl: conjugate functions.

Chapter III presents a detailed study of the duality

approach to optimization using the techniques developed

in Chapter II. Conditions for duality to ho-LI. are derived

which require that -t-he optimal value of the original Problem



vary "relatively continuously" with respect to perturbations

in the constraints only along feasible directions this is

sufficient to imply existence for the dual problems and no

duality gap. These conditions are also posed as certain

local compactness requirements on the dual feasibility

set, based on the work in Chanter II.

Chante-- IV applies the duality approach of Chapter -II

to minimum norm and spline problems, thereby yielding im-

oroved existence results as well as expressing them in a

duality framework. Relatted results include conditions for

the sum of two closed convex sets in a Banach snace to be

closed, extending Dieudonne's results and leading to an

extended separation principle for disjoint closed convex

(possibly unbounded) sets.

Chanter V studies the continuous-time 'Linear programming

problem. Previous results in the literature have formulated

the dual linear programm-n-ing problems. in too restrictive a

space, so that conditions Guaranteeing dual solutions are

no-"-- satisfied in interesting cases. By imbedding the dual

problem in a larger space, -it is possible to get dual solu-_

t-J.-ons wi"��It no, duality gas under assumantions which are

natural in the context of a communi-cations network -roblez-a

and a dynamic economic model. Moreove-r, the dual solutions

mav be taken to be extreme pcints of the (possibly unbounded,

but locally cornpact� feas-ib-4-lit-y set; a sinniple example is



presented which shows how this might lead to a "primal-dual"

type of algorithm (in analogy to the finite dimensional

sim-plex algorithm) for solving the linear problem. How-

ever, much work remains in investigating this approach

and in understanding the extre.7,ie point structure of the

feasibility set.

The remaining chapt-ers consider the oroble--ti of

characterizing opi.:_imai quantum detection and esl�-_imation.

The auant-um. na-;L-ure of, these statistical proble7ms requires

the use of onerator-valued --easures; a chapter is devoted

to developing general integration theory for operator-valued

measure and nrovlinq an ext-ended Riesz Representation Theorem

-,or duality pur-poses. The estimation problem also entails

looking at certain Somewhat esoteric properties of t-ensor

product snaces, needed to properly formulate the problem;

however, the actual duality results then follow without

too much difficulty.



II. Convex Analysis

Abstract. Techniques in convex analysis and the theory

of conjugate --Functions are studied. characterization

of locally co--.,iDac4-- convex sets in locally convex spaces

is given in ter-ms of nonempty relative interiors o-J'--- the

corresponding polar sets. This result is extended in a

detailed Investigation of- the relationships bet,,-�.reen

relative continuity points of convex functions and local

compactness properties of t.-.e level sets of corresponding

conjugate functions.



1. Notation and basic def initions

This section assixmes a knowledge of topological

vector spaces and only serves to recall some concepts in

functional analysis which are relevant for optimization

theory. The extended real line [--,+-] is denoted bv 1�.

O-Qerations in T have the usual meaning -vith the additional

convention that

+CO.

Le-IC X he a set, f: X a mass from X into +cr)]

The of is

eplf (x, r) E X x R: r > f

The effective dontain'of f is the set

do-r-if (x f W <

The function f is pro�:)er iff f and 'L(x) > for

ever-,,.r x EX. The indicator -function of a set ACX is

-'--,he man X - i� de-Fined bv
A

if X � A

A 0 if E A

Let I.-Je a vector space. A maD f is con',,re:<

'I i fiff: epi-I is a conve.-: subset of XxR, o-- equivalentLIV



f(ex +(l-E:)X ) <
1 2 2

for every x,,x 2 E X and C C- (0,11 The convex hu-11- of f

is the largest convex function which is everviqhere less

than or equal to f; it is given by

(cof) (x) = supif' (x) : f" is convex vC, f" < f}

f# <'K RI �L= S UZD L `� I (x) : f' is linear

Equivalently, the epia--r-aph of cof is given by

epi (cof) E XxR: (xS) (- coepi-.-':: -for every s > r),

where coepi:;E: denotes t-he con-uex hull of epi'L.

Let X he a topological space. A nan f: X is

lo,,,;er se,-micontinuous (',.s--) iff ep_ir- is a closed subset

o-f -,.xR, or ecruivalen-Cly iff" -Fx c- X: f (.x) < r) is a closed

subset of X -'::or every --r-* R. The map f:X is Isc at x

i 4=-= given any r rz (--, ff (x0)) there is a neiah-borhood U of

X0 such that r < W for every x k 1"i. The lower semi-

continuous hull of f _is largest lower semicontinuous

-functional on X Inch eve:,_-.--.-;here minorizes f, i.e.

1Scf ) (X) = Sur) x f is ISC X - PI f < fl

= li_--, inf f(-",�)

XI ,_,V:

Eauivalent-",,, (Is----4:) c! (epif) in XxR.



A duality <XX*> is a pair of vec-t-or sDaces XX*

Keith a bilinear form <,,.> on XxX* that is separating,

i.e. <xy> = 0 Vy (: X* => 0 and <x,-tr> = 0 Vy. e X => x = 0.

Every duality is equivalent to a Hausdorff locally convex

space X paired wiA,.---h its topological dual space X* under

the natural bilinear forn <x,,,> v(x) for xt X, v EX*.

We Shall also -.-;rite xy H <xy> v(x) when no con-fusion

arises.

Let X be a (real) Hausdorff locally, convex space

(fITCS) -:hich we shall al�-avs assiLme to be real.

denotes the topological dual space of X. The polar of

a se4- A C X and the (pre-) polar of a set B c- X* are

defined bv +

A0 i-Y �- X*: Sur) <X'v> <
XC-A

0
B {X EX: Sur) <N'V> <

YEB

The conjugatc of a functional f: X Z and the (pre-)conjugat

ot a functional a: X* - 1� are defined bv

X* R: Y suo [<x-'V>-f (X) 1
XEX

9*: X R: X suOr<X'V>-q(�-)j-
Y

'I-',e use 4L,-.he convention sup in---:: Hence X*.



If '"' is a HLCS there are several topologies on X

which are important. By Z we denote the original

topology on X; bv the definition of ecruicontinuity,

,Z is precisely that topology which has a basis of

0-neighborhoods consisting o-E polars of equicontin-aous.

subsets of X*. The weak. tonolocry w(XX*) is the weakest

topology compatible with the dualitl-_-y <XX*>, i.e. it is

the weakest tl-opolcav on X for which tire linear functionals

x - <xy>, y k X* are continuous. Eaui-�,ralently, w (XX*)

4 s the locally convex -",--or)o', cqv on X qenerated bv the

s er. i no rT-. s x<Y�, 1,7> 1 for yit has a basis off

0-neighborhoods given, by polars of finite subsets of X*.

The Mac'.Key tonolog- m(XX*) on X is the stronces-11.: topoloav

or, X co-rzatible with the duality <.,",X*>T; it has a

0-neighborhood basis consist-ing of polars of all w(X*,-,,)-

co---z)act convexly", subsets of X*. r.rhe strong toncloav

s(:-'.,X*) is the strongest locally convex topology on

that s4L---ill has a basis consisting of �,,(XX*)-closed sets;

A topology on the vector space X is cornat-ible with '%---he

duality <XX*> iff (X,'r X*, i.e. the space o:ff all con-
0

tenuous linear functionals on X with the Z -topoloav may be

identified �--rith X*.

4-.
---i e ..i o r d " c o n v e. x " h e r e r, a, t n o t I-, e o 7- i t 'L-eC, unless X is a

'Darrelled snace. In aeneral there r-La-,,r 11-e vi(:�'*,-1,)-co-_pa_-t suh-

se-11-s of X* whose closed convez hulls, are not cornact for the



it haz: as 0-neighbOrhood basis all w(XX*)-closed convex

absorbi.nq subsets of X, or equivalently all molars of

(X*, X) -bounded subsets of X*. P'Te shall offten write

WT-U, S for �-I (X, X*) ,,,,s (X, X*) , and also for X)

The st--o-na topology need not he comDatible T.,,-ith the

duality <X, X*>. Tn general we have 'w (X, C r. C
-e-- set hol�,iever, it folloi-7s froz,

s(XX*). For a conzn7 rn

ITahn Banach separation ,.eoreri Unat A is closed iff

_k is w(XX*)-closed iff A is r-,(XX.I_*)-closed. I'lore aenerall-vol

-1 .1W-c' CIA. = m-C!, D S-C PL

S4_i-when A is convex. -larly, if a convex function

IS m (.'Y_,::*) - Isc then it is Isc and e�,,,-en

I-'- s also -t-rue 't-hat the bounded sets are the same -for everv

co7patible topology on X.

Let X be a HLCS and fr: X T-he conjugate function

f is convex and w('Z-"*,X) -Isc since. it. is IC-he

supremur of the w(X*,X)-continuous affine functions

Y ,- <xY>-f(x) over all xc- donf. Sir-ilarly, for g:

it follows that the preconjuciate *g: X - R is convex and

Isc. T-he conjugate functions f*, *g never tahe on values,

unless thev are identical1v -- or ectuivalently f or

p, C) 0 rn

co. 'F in a 1 1f1ron, t.n-e 11ahn-I-Ranach se- a ati n the re,.

it fcoll o'�-,s that



1ScCO_-F

whenever f has an aff-ine minorant, or equivalently �-;hen-

ever f* H +-; othen-7ise Isccof takes on values and

f* +W (-F*)

The following lemma s very useful.

1.1 Lemma Let be a HLCS, f: X Then
I - I -F -F

co (domf) = door. (cof) then clco-4omf c1dom* (-f

Proo-JE. 'No-7 cof < f so dom (cof) domf and hence (since

dom cof is convex) dom(cof) =) codom.f. Conversely, cof +

s a convex Function ever,%rt.;h-ere dominated by f,codomf

hence bv cof, and so codor-.-f:)dor,1(cof). Thus do-m(co-f)

co (domf) .

Similariv, * (f *) < f so dom* (f domf and hence

cldom* (f *) D clcodomf (since, dom* (f *) is convex) . Conversely,

is a convex 1sc: function evervv7here dominatedclcoldlomf

by f, and since *('L*) is the largest convex 1sc function

dominated bv f (in the case that f hy (1) we haveI

*(f*) + 6 and c1codonf"D don.* (f ThusJ-c1codont <

cl--'-om*('L*) = clcodomf and t1he ler,7-.a is proved.

A barrelled space is a H-LCS X for which every closed

convex absorbency set is a 0-neighborhood; eauivalen"-1Y,

t ',;, i e w (-bounded sets in X11* are conditionally

w (X.*, X) -cor- -Iac, It is then clear that the r-,(Xx*) topolo-�-,-,.,
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is the original t0pology, and the equicontinuous sets in

X* are the conditionally w*-compact sets. Every Banach

space or Frechet space is barrelled, by the Banach-

Steinhaus theorem.

We use the following notation. If AC X = HLCS,

then intA, corA, r-JA, rcorA, clA, span A, affA, coA

denote the interior of A, the algebraic interior or

core of A, the --elative Interior of A, the relative core

or algebraic interior of A, the closure of A, the span

of A, the aff ine hull o-ILE A, and the convex hull of A.

Bv relative interior o--417 A we mear. the interior of A in

the relative topolocy of X on affA; thatt is xc-rj.A iff

there is a 0-neighLborhood. N', such that (x+N) () af fA c A.

Simi larlv, x E rcorA if f x EA and A-x absorbs af f-A-x, or

equivalently iff x+ [0,-)-ADA and XE-A. BV aff-ine hull

of A we mean the smalles (not necessarily closed) affine

subspace containing A; af-fA = A +span(A-A) = x0 + span(A-x 0)

where x0 J-s any element of A.

Tet A be a subset. of the HLCS X and B a subset of X*.

;,,7e have already defined A0PI OB. In addition, we nake the

following useful definitions:

+
A jy X* <xv> > 0 V x 6 Al

+
A A ty rc X*: <xv> < 0 1z) x E Al

+
A A C) A {v E X* .- <x, v> = 0 V x 6 AJ�.



Similarly, for BC X* the sets +B, -B, -1 B are defined in X

in the same way. Using the Hahn-Banach separation theorem

it can be shown that for A c X, 0(AO) is the smallest closed

convex set containing A U101; +(A+) = -(A-) is the smallest

closed convex cone containing A; and IUVL) is the smallest

closed subsoace containing A. Thus, if A is nonempty t then

0(AO) = c1co (21% U {011)

+(A+) = c-1 'I;. 0coA

(.A-L) = cls:)anA

A+-L((-A--A)-'-) = claff'A.

t 0
If A then (A') + (-A+) '(A')



2. Recession cones, lineality subspaces, recession -Eunctionals

Let A be a noner.,pty subset of the IILCS X. The

recession cone of A is defined to be the set A. of all

half-lines contained in clcoA; that is, a vector x is in

A,.. iff for any fixed point a eA the half-line a+[O,-)-x

starting at a and passing through x is er..Cirely

containe'd in c1coA. Al. is a closed convex cone with

vertex at 0; in fact A = -(A 0 ror consistency weco I

define 9,, = {01. T-I.-,;,e following proposition (modelled after

[R661) provides a det-ailed. characterization of Aco.

2.1 -Proposition. Lel: --,"I be a nonempty subset of the

HLCS Then the following are equivalent:

x ii� A,,

2 A + [ 0, -x C ClcoA

3) x e n _n t-(cicoA-a)
t>o afA

4 aE A St a + [0,-)-x cclcoA

5) 3 aE A St x En t-(clcoA-a)
t>O

6) 3 nets of scalars t > 0 and vectors

x coA St t 0, t x

7 x E n Lcl(Oc) -coAj
E>O

8 x E (do-,.3A

9 x (A')



10) A + X C ClCOA.

Proof. 1) <=> 2) is the definition of A,.. 2) <=>

2) => 4), 4) <=> 5) are trivial.

4) => 6). Let Z be a basis of 0-neighborhoods in X

and consider the directed set Z x(O,-) %with the ordering

I For every BE > 0(BOIE) > (BIJ161) iff BCB'f E < C

ta'-"-Ie t E: and xB,,=E coAc)(a+E:- ix+B), where the
B

intersection is nonemp'Z-v since a+e xS clcoA hv

hypothesis 4). Then t 0 and t -X 6 x+ea+EB,
B , F- B, F- B , E:

so t X5,z -)I- X.

6) => 7). Bv hypothesis 3 t 0+, x.E coA, t X. X.

Given anv e > 0, thle ti eventually belong to (Oe), so

,I-tXi z (O , C) - coA. But then x = 1 imxiE C1 (O, E) - col�.

7) => 6). Again, Consider the directed set '� X(O,-).

For every 0-neighborhood BE b , e > 0 take t BIE E (0110

and x BE: E coA such that tBe.xBc Ex+B; this is possible

since xE cl (0, E) - coA- hy hypothesis 7) . r7hen

- 0 and t,,,
B, E: E:

6) => 8) Su;3pose v E dorn, 6,,, i.e. 11 = sup<ay> is
4D ac-A

f inite. Y> < !-'11 since x coA, so <xv>

Jim <tix v > < 1 i--.i t 0. Thus <xv> < 0 whenever

v ( dor, 6*
A



8) <=> 9). Bv de-'4--.-'tion dom 0A [0,-)-Ao; hence

(dom 6
A

9) => 10). Suppose A+x 9-' clcoA; then 3 at A st

a+tx 4 c1coA. By the Hlahn-Banach separation theorert

there is a separating linear functional yE X* for which

sup <xv> < <a+xy>, i.e. 6A (Y) < <a+xy>. Clearly
xEclcoA

y e d. or-, 6A' Also <av> < <a+xy>, so <xy> > 0 and

x dor-,16
A

10) => 1) Take anv a E A. By hyT)othes _Js 10)

a+x EclcoA. But t-hen, by repeated application of 10),

a+x+xE clcoA, etc.,so a+-,ixE c1coA for n = 112'...,

and by convexity 1) follows. ER

.Remarks Fro.-, 5) it is clear that A = (clcoA),00 since

ACO t- (clcoA-a) for any f i,-.-ed a IE A. Sin, ilarly,
t>O

3) implies that A,,. = (O(A�)),,.,, since ('(A'))' = Ao and

A Thus A, c1coA, O(Ao) = clco(A'J{01) all haveco

the same recession cone. Applying 10) to c1coA also yields

c1coA + ACO = c1co-7k.

The lineality space of A CX is defined to be the set

A
oil- all lines contained in c1coA, i.e. linA = ACO (N (-A.)

n t- (clcon--a) There a is anv fixed elerent of A. Lin A
tE:R



is a closed subspace; in fact it is the annihilator

(spanAO) of the snallest- subspace containing AO.

2.2 Corollarv. Let A be a nonemotv subset of the IILCS X.

The following are equivalent:

1) x e linA

2) V a C- A, a+(--,+-) - x C c lco,-mN

.-I
3) ::i aE A st-- a+(--,+-) -x C clcoA

4) x E I. (Ao) ---': -�-(dor,5*) :-:- -L(sr)an A�)
A

7�5 JN (A+x) U (P1,--x) C. c1co".

Proof. Simply apply Proposition 2.1 to x and -x. Ei

The recession function. o f a f un c '--- i o n f : X

is defined to he

f.(x) SUD <XY>.

This is defined in analogy to the concept of recession

cones- .(-) is that function whose epigraph is the

recession cone of epif,

epi (f,.) = (epiff),,.. (2)

Since foo(-) is the suDremum of continuous linear functionals

on X, it is conve.-,.:, posi-t--i-vel, T, homogeneous

(tx) = tf . (x) f or t: > 0) , and' 1sc. --he Eollo-,-7ina



alternate characterizations ofproposition provi"'s 00

when f is convex and Isc. In general since

f*

2.3 Proposition. Let f: X be a convex, 1sc

proper function on the HLCS X. Then f.(X) is given by

each of the following:

min�r(- R: (xr)

2) sup sup [.Jc- (a+tx)-f(a)1/t
a6dom f t>o

3) sup [f(a+tx)-,F(a)"/- for any fixed aE domf
t>o

4) . s up (f(a+x)-f(a1j1
aedomf

5) Sur-) <xv>.
Y c- do n

In 1 e r.- never it is not

inimum is always attained (�uher

since (ep4,-f). Is a closed set .

-C -Hces to show that for anv r E R, the

Proot It suf-

-afollowing are equivalent'-:

lo) (xr)

21) a E domf , V 4C > 4L (a+t:-:) -f (a) I /t < r

3') 3 a I;. domf st �c; t > 0 (a+tx) -f (a) /t <

4 '6� a E domf:, if (a-�-x) -f (a) < r

51) su�D <x-, Y> < r.
v 6 dom



Usina the fact 'hat epil contains all points above the

graph o-f f, it is easy to see that 19 through 5')

are respectively equivalent to

(xr)

2") V (a, s) E epif V t > 0, (a+txs+tr) E- epif
(a) ) E epi f st V t > 0, (a+tx, -F (a) +tr) E enif

(a. L - - m-

4 V (as) e epif, (a+xs+r) E: e-Pif

5") sun <xy> < r.
vii d Om fL

The equivalence o' 1") throucTh 4") now fol-lo-,.-;s directly

.C-L.rol-, Pronosition 2.1. if 5") holds, then V a C- don-F,

s > f (a) ,

f (a+x) (f *) (a+x) s U10 < a+x, v>-'L (y)

E Co rf *

11y> + SUP <ay>-f
v E- dom f

< r+*(f*)(a) = r+'L(a),

and hence V) holds. Converselv, if V) holds then

f SUP [<av>---F (a) I < sun [<ay>+r---F (a+x)
a (z do-,-,! -I-E a E dor.-,f

< r + suD[<ay>---F(a+x)] r + su-p <a-x.,y>-f (a) I
aEx a

r - <xv> + f*O-0.

Hence <,,..,,,v> < r whenever (Y) < and 5)") holds.



3. Direction derivatives, subgradients

.i. 'K. i ": f (x ) is

Let X be a ELCS, 4" a function X 0

--l"inite, then the directional derivative fl(x 0 of f

at x is defined to be
0

A
fI(X 0;X) = lim.+ [.F(x0+tx)-f(x O)I/t,

t-0
L- -he case

whenever the limi' exists r-av he +-). in 4L.

that f (-) is convert-.., t - (--F Ox0+tx) -f (x0)I/t -is an increasing

.Lunc-'Cion for t > 0, so that fl(x0 exists vhenevel-

.L (X0) E R and is given by

f I %, X ; x) = i-nf [ f (x +tx) (X /t.
0 t>0 0 0

Convexitv of f also implies that f'(x ;-) is pos-i--ivelv0

homogeneous and convex (equivalently, sublinear), and

f(-) is linearly m--inorized by its directional derivative

in the sense that f(x 0+tX) > f(x 0)+tf,(X 0;x) for every

x -6 X, t > 0.

The subgradient set of f: X at x E is defined0

to be

3f (X E X*: f (x) > f (X +<X-x )IV> 61 x0 0 �.

'Note that 3f(x0 ) is always the empty set ,-,,henever

T-7f(x0 (assuning f ..hen f (x0) is fini te.,



y eaf(x 0 iff the functional x f(x 0)+<,%-xoy> is a

continuous affine minorant of f(-) exact at the point x 0

Since *(f*) is the suprenun of all continuous a-,Efine

ndnorants of I!, it is clear that 3.-E(x 0 implies that

(X0 *(f*)(x a-nd D f (x 0) = 3*(f*)(Xo the latter

follows since IL and *(f*) have the sar�-- affine rinorants

which are exact at x The subaradient set is al-wavs0

convex and closed.

3.1 Proposition. Let -1E: X K be a function on the

HLCS X. The following are equivalent--:

1) y (X0

2 f(x) > f(x 0)+<x-x 0 y> V -,-C 6 X.

3) x0 solves inf- [ f W-xyl, i.e. f(x 0 OY>
X

(X)
X

4) f*(Y) <x0Y>-f(x 0)
M and (x (X

5) x0 E 3�L 0 0

If f (-) is convex and f (x R, then each of the above

is equivalent to

O' )f'(x0 ;X) > <XY> VX Ex.

Proof. 1) <=> 2). This is the definition of 3f(x 0).

2) => 3) => 4). Trivial.

4) => 5). Since *(f*) < f, 4) implies



AT

f * (Y) < Y > 7 * (f *) Ox.0But the definition of

(X vields f M > <x Y> - * (f *)(x so that
0 0 0

f*(V) = <X IY> - *(f*)(X Comparison with 4) now0 0

yields f(x0 *(f*)(Xo ). Also f*(y) = <x OIY> - *(f*)(X0

<X0Y> - supf<x ,Y'>-f*(Y')] so that f*(v) < <xoy> -
Vs

< Y' > + f f or eve r-,,, v' and x E 9 f
0 0

5) => 2) Since x 0 E O"L* (Y) the implication

1)' => 4) applied to yields (f (x <X V> - F* M
0 0

and hence that f(x <Xoy> f*(v) by 5). But then bv
0

definition of f* (X0) < < -,z 0Y> - <xy> + f W V x and

2) follows.

6) <=> 2). Assuning f(-) convex and finite at x 0

thle directional derivative is given by f'(x0;x) =

inf- U (x -, tx) -51! (X )I /t. Clearly 2) iTm. lies that for
4- 0 0
L.>O

eve ry t >0, ['L(x0+tx)-f(x0)]/t > <x0+tx-x0 Y>/t

<xy> and hence 6) holds. Conversely, if 6) holds then

[-F(X +t%.)-f(X )I/t > <-.<,y> for every t > 0, and setting
0 0

t = 1 yields 2) .

Rerar'jl,-. Since i-t-- is al,,,Yays true that f*(v) > <x0Y>-f(X0

we could replace 4) by 4') f * (y) < <x Y> - f (X
0 0

From condition 4) it folioi-,-s that if Zf(x0) �' 0 for

a convex function f: X then the directional derivative



f'(X0 ;-) is bounded below on some 0-neighborhood in XF

i.e. the value of f at x does not drop off too sharply

as x moves away f rorm the point x 0 The f ol lowing

theorem shows that this property is actually equivalent

to the subdifferentiabilitv of f at Y. 0 when IL is convex,

46 and also provides other insights into what 3f Ox ) ---' JO means.
0 7-

3.2 Theoren.. Let LI: X be a convex function on

the HLCS X,'with f(x 0 )fin-ite. Then the following a--e
40

equivalent:

I 'df(x
0

2) fl(x�;-) is bounded below on a 0-neiahborhood0

in X, i.e. -t-here is a 0-neighborhood N such that

in-E f1(X0 ;X) >

x N

f(X0+tx)-f(x 0
3 0-nbhd N1, 5 > 0 st inf t >

xeN
O<t<6

4) lin inf fl(x 0;X) >

f(X0+ t x0

5) lim inf >
t

X-*O+
t-o

6) Y (E X* st 4f (x +X) -f (x > < X, Y>
0

If 'A' is a normed space, then each of the above is

�eauivaient to:



7) 3 n- > 0 St f (,%o +X) -f (XO ) > -1-11 XI Wx (: X

8) -1--! > 0, E: > 0 St whenever I XI < E, f (X +x)-f (X >0

-MIX1

0 0) > - Co.9 line inf
I X 11 -0 I 7- I

PrOoj'. 1) => 121) . This f ollows directly f rorm Proposit i,3n 3. 1

=>

2) => 1) Let 11 1 be a convex 0-neichborhood in X

such that in--F f'(x, ;x) > -c, where c is a sufficiently
Xe

large positive constant. Let N 11, /c and define tY � set E

in XxR bv

A
= f (x,-t) E XxR: t>C, X/t

Since N is conrex it follow-s that E is convex; for if

X = '. and x2 = t2n2 and F- E[0,11, where ni n2

and t. I t2 > 0 then F- Y-11 + ('-E.) x2

E: t (1-F-) t2
[F-t + (!-E:) t I - I - I E [ F- t + (1-E) �C N1 2 E: t1+ (1-- t2--1 E:t1+ U -E:) t2 2 1 2

SC) 1+ (1-E:) X2 '-F-t 1-('-'-,-)t2 E E. S J nce 117. is a U-neich-

borhood, E has nonempty interior; in fact, E contCains

1"'Loreover, E n epi f ' (xO ;-) is em;otv; for otherwise

it would contain a T.-)oin4-- (x,-t) satisf'vinq

t t
-t > f I (X ;x) 'L' (X ;cx) > - (-c) = -t, a contradiction.0 C 0 t c



hence it is possible to separate E and epif'(x ;-) by a0 1

closed hyperplane, i.e. there is a nonzero (yr)t X*xR

such that

inf <xv>+t-r > SU'O <XY>+(-t)-r.
(Xt)iepif1(x 0;-) (x, - Q �E- E

Since epif.I(x ;-) is a convex cone (fl(x ;-) is convex0 0

and positively hor..oqeneous), the infinunt on the LHS can

remain bounded below only if the infimum is 0 and (yr)

is non-Dosi-�,.-.ive on epi-E.I(x ;-); in Darticular <xy> +0
;.) . '1111oreover it

f1(X 0;x)-r > 0 for everry xE dom'L'(x 0 1

must be true 4-.--hat r 0; for if r = 0 then in particular

0 > <xy> for every x i 11 (taking t sufficiently large in

th e RITIS so that X E Y and (x,-t) C E) , irplying the
t

contradiction LI-hat v is also 0 (since N is a 0-neicThbor-

V> + -C Ihood). Thus <xPr L (x0 ;x) > G for every

x e domf' (x0;x) , which by Proposition 3.1 6) => 1) yields

YEaf(x 0

2) <=> 3) . If f(-) is convex and f(x 0 C- P, P then

f(x +tx)-f(x )
t 0 0 is increasing in 4.,--- > 0. Hencef

t

for anv 6 > 0,

f(x 0+ t X) - -iff0 f(x0+tx)-f(x 0 f(x0 +tX)-f(X 0
inf -inf
t>o t O<t<6 t-*O+ t



It is now irzmediate that 2) <=> 3).

2) <=> 4). This follovis directlv fro,-,i the definition

of lim inf, since

lim inf f I (x ;X) sup inf f (x ;X)
X-1,110 0 N=O-nbhd xf"N 0

is bounded belong if f there is a 0-nbhd 11 such that 2) holds.

3) <=> 5) . This is innediate as in 2) <=> 4) , since

+4-x) _-F (x
f (x0 0 f (x0 +tx) -f (x 0

lim in-f SUD in IF
X-*O t N=O-�bhd x*N t

t-*O+ 6 >0 t (O , 5)

1) <=> 6) This is just the definition of sub-

, n).aradient as in Proposition 3.1 11;.

6) = > 7) > 8) <= > 9) . Ir-.imedi ate.

81, => 2). Set 6 = 1. Then for t < 1, 1XI < E, it

foliows -from, the hypothesis 8) that

f(x 0+tx)-'I-(x 0 f(x 0 +tX)-f(X 0
xi

Z It I

> x >

T L

.ience 2) ho" ds. 0

Pemark's. Scme carts of T!7-eorem 3.2 are inplicit in

Ct Rock-afellar's fo=ula



3�z

f(X 0;.) ;f (xo)

where f X - R is convex and f (x 0)E R [R73, Theorem 111.

In the finite dimensional case X R7, it is actually true

that af(xo) iff fl(xo;�%) for some xE X, assuming

f: X -'R convex and f(x 0)E R. There is also a closely-

related formula 3f(x �V(x ;-)(0) aiven by [TL721.0 0

Condition 8) is a kind of 'local lo-..-7er Lipschitzness'

recruirement which is easv to verify in optinization

problems in which "state constraints are absent, as we

shall see. The standard example for v7hich the sub-

gradient set is emntv is f W X > O fo r x
X < 0

where f'(O;x) whenever x > 0, and the

supporting hyperplane t-o epi-f at (Of(O)) is vertical.

R In the finite dimensional case, every convex

function has a derivative a'-&.most everywhere

X on its donain. There is also an interesting

resul-'L- in [---, '131 which statzes that if X is a Banach space,

then the set of points where a convex Isc funcL'--;-on

X is su!'-Idif'ferent-iable -s dense in donf.

The following theorem provides 1--he simplest and

r,-.o s twidely used cond-it--'Lon w1hich quarantees tiiat the

subaradient set is none-r-D'-v.



3.3 Theorem. Let f: X , be a convex function on

the IMCS X. If f(-) is bounded above on a neighborhood

or-
L x E X, then f(-) is continuous at x 3 f (XO) 34 jj

and (assuming f(x 0) > - -) 30 If Ox0) is W(X*,X)-co--m-pact.

Proof. This is a corollar-i of the more ceneral TLheoren 5.3

which we prove later, -..There 3--F(x is the level set

{y X*: --gF*(v) - <X"y'> <

- - L (X0

Remark. Convex -firunct-ions t-hich have values are ven-j,

special and are generally excluded fror consideration in

r.ean..,.nq-Eu1L situations. In particular, Isc Convex

unctions. wi-IC-11 -- values can have no finite values.

it is also a stan,1-4-ard result that under the conditions

of-F Theorem 3.3, thlere is -,a sensitivity interpretation- of

the subaradient set aiven bv

fl(x ;x) -,tax
0

0



4. Relative interiors of convex sets and local equicontinuity

of polar sets.

The relationship between neighborhoods of 0 in a

locally convex space and equicontinuous sets in the dual

space is well known: a subset which is a neighborhood of 0

has an equicontinuous Polar, and an equicont-inuous set in

the dual space has a polar which is a neighborhood of 0.

Hence, a closed convex set which contains 0 is a 0-.-neighbor-

hood iff its polar is equicontinuous. We wish to extend

this result to show the equivalence between convex sets

with nonempty relative interior with respect to a closed

affine hull of finite codi-m-ension, and local equicontinuity

O.-Ir the corresponding polar sets in an appropriate topology.

This will also lead to a characterization of locally compact

sets in locally convex spaces.

Throughout this section we shall assume that (XT) is

a real Hausdorf-f locally convex topological linear space

(HLCS) with topology -z- and (continuous) dual space X*-

For X E X, y E X* we write <xy> or simply i�y to denote y(x)

By a T*-topology on X* we mean a Hausdor'Lf locally convex

tOO010gy T* on X* which is compatible with the duality

<XX*>, i.e. (X*,-,*)* is again X,' and which is sufficiently

weak so that every equicon-IC-inuous set in X* has T*-compact

More precisely, vie mean that (X*,-rl-*)* = JX, where J is the

natural imbedding x - <x,-> of X into the algebraic dual (X*)'

of all linear functionals on X*.



closure. For example, given any topology -c on X we may

always take T* to be the w(X*,X) topology on X*, since by

the Banach-Alaoglu Theorem, every T-equicont-inuous set is

w(X*,X11-relatively compact---. Conversely, a given compatible)

topology T* on X* is a "-.-*-toooloqy if -r is any compatible

locally ccnvex topology on X which contains the A.-ens

topology a(XX*) given by un-i-form convergence on T*-compact

convex sets of X* (with a basis of O-neighborhoods being

the polars of T*-compac-IC convex sets in X*). This generality

allows us to specialize to various interesting cases later.

The nolar OIL a set A in X is defined to be

0A IV X*: sup xy <
XEA

Simidlarly, the polar of a set B in X* is

0B ={xE X: sup xy <
YEB

The fo !lowing properties of polar sets are well kno,.,,-n,

where A C X and B c- X*:

i). AO and oB are closed, convex, and contain 0.

0
ii). (AO) cl co (A U0 11) , (OB) 0 C! co (B U fO 1

i'The supremum over a null set is taker to be suo,0

0 0)
Thus X*, J9 L
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0
iii). 0 EintA => A is equicon inuous (and hence

compact).

iv) . B is equicontinuous <=> 0 E i nt0B.

Thus, we see that the closed convex O-neighborhoods in X

are precisely the polars of closed convex equicont-inuous

sets containing 0 in X*, and vice versus.

It is also knwon that sets with nonem-p-tty interior in X

have polars which, though not necessarily equicontinuous

or even bounded, are nevertheless w(X*,X)-locally compact

in X* (cf. (Fan 651). Recall that a set B in X* is locally

co-r-nnact (resp. locally equicontinuous) at a point y0E.B

if-E there is a neighborhood W of y-0 in X* such that BriW

is compact (resp. equicontinuous). We shall characterize

local compactness and local equicontinuity in X* by showing

its relation to nonempty relative interiors of polar sets

in X. To provide some preliminary results (of interest

in their own riaht), and to get a feel for what is going

on, we first consider the case of locally equicontinuous

convex cones.

4.1 Theorem. Let X be a HLCS, X* its dual with a T*-top-

ology, and C a convex cone in X* wi-L--h C n(-C) = {Oli. Then

the following are equivalent:



37.

i). C has an equicontinuous base.

0
ii). int C in X.

iii). C is locally equicontinuous.

iv). 0 has an equicont-inuous neighborhood in C.

Proof. We assume C � {01, since otherwise the theorem

is trivial.

i) => ii). Recall that- B is a base for C iff:' there

is a closed affine set H such that B = C nH and [U^,-)-B::)C;

it is then t.--rue that every nonzero Y 15- C has a unicrue

reoresentation t-y0 where t > 0 and v 0 6 B. Let B be an
eauicont-inuous base for C; then there exists an x E X

i 0

witIn B = Cn fy: x0y = !I and [0,-)-B:)C, and moreover

0 Eint0B. Now for any t > 0, y EB, and x E 0B we have

(-X 0+x) (ty) = t (- 1+xy) < t (--'IL+ 1) < 0; hence

(-X +0 B)c -([O,-) B)C__C. Thus 0C H -C contains a
0

neighborhood o'L -X r i.e. -x E int 0C. We remark that
0 0

X is strictly positive on clC 0 0}.
0

ii) => iii). Suppose -x E int 0 C; then o Eint(x +0 C),
0 0

so (X + 0C)o is equiconitinuous. Given y E C, we wish to
0 0

show that y has a T* -neiahborhood W such that C sell is
0

equi.continuous. Let W = 'Y: x y < l+X VI is clearly0 - OYO

a ne ghborhood of y Bull-- C nW {y: y EC, x V < 1'x y
0 0� - 0 0

0 0
C: 1, V: (X +x) y < 1+x v 'or a! 1 x E C' r - (x + C), so

I_ 0 - 0.0 0

C n -,-; is e-uicontinuous.



iii) => iv). This trivial.

iv) => i). This is the difficult part of the proof,

but the idea is well-known in the literature. Let W be a

0-neighborhood in X* such that CrW is equicontinuous. In

particular, clco(Cn is equicontinuous and hence

T*-com-pact. Let D = C note 0 � clD. We claim

that 0 � clcoD. Fo-- suppose 0 E clcoD; then 0 E-extD

since OE extC and DC C, and hence 0 6 clD by the

Krein-Milman Theorem on extreme points of compact sets,

which is a contradiction. Since 0 � c1coD there is a

closed aff-ine set H which strongly separates 0 from

clcoD. But -Itthen B = C-n H is a base for C (since

'0,-)-D:)C, so [0,-)-HD C) and Bc:Cn W, so B is

equicontinuous.

Note that in Theorem 1.1 we assu.-Lied that C contained

no lines, so that span 0C _C - _C was all of X and 0C

had nonempty interior. If however we allow L = C n(-C)

to be a (finite dimensional subspace, local equicont-inuity

of C would no longer i-..nply int0C but it would still

be true that ri 0C with respect to span OC =�L L, a

This is the basic tool here, nas-nely that if a set D in a

HLCS has co:=act closed convex null then ext(clcoD)r-- c1D.



closed subspace Of finite codimension. In fact, these

results remain ttue for the case of an arbitrary convex

set in X*. The basic idea is as follows: if C is a

nonempty convex locally equicont-inuous set in X*, then

the (finite dimensional) subspace L = Coon(-C.) of all

lines contained in c1C is precisely the annihilator of

sparn oc L in X; and those eleraents of X which are strictly

negative on all the remaining half-lines contained in c1C

(that is, on C n M"-,{Ol. where M is any closed con-olement

of L in X*) are --relative interior points of0C (if there

are no such hairlines, i.e. C is itself: a subspace and

Coo n M = 1011, then 0 E ri C)

Before proceeding, we require some lem.-mas concerning

decomoosition of' finite dimensional subs-oaces.

4.2 Lemma. Let X be a HLCS. If L is a finite dimensional

subspace of X, then there is a closed subspace M of X such

LI-hat X = L+M and L nM = fOlj.

Proo-E. This is a standard application of the Hahn-Banach

Theorem. Le-L- fX-,,'...,X I be a basis for L and definen

the continuous linear functionals yl,...Iyn on L by

< i, < n. By the Hahn-Banach Theorem
'�Xj_'Yj��' =: 6ij,

we may extend the flunctionals yj so ti-hat they are elements

of X*. Let 'M f -1 I ... ry 1. Clearly M is a closed
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subsDace of X. Moreover, L nM = (O"; for if x EL, then

x = Ea.x. for some a-6 R, and if x is also in M then
i I -3 3

0 = <xyj> = a. for every j. Finally, any x EX can
D

be (uniquely) expressed as

X = (z<X'n>xj) + (X - E<Xyyj>x i) E L+M.

4.3 Le-r'na- Le'�'_- X be a HLCS with X = L+M, where L is a

finite dimensional subsnace, M is a closed subsoace, and

Ln-N! = {01. Then X'T = I" L+M"-, where E;Ln !-', A. = {01 and

Mj' is finite dimensional.

Proof. Let fx I'...'fX-1 be a base for L. Note that

the projection of X onto Ij is continuous since it has

finite dimensional -range ar.".' its null space M is closed.

Hnece, for _J we Can define the continuous linear

functionals Yi b <n.+Za-x-,y-> a. whenever m EM and
3 3

a-E R, I < i < n. Clearly M C (y1f....ry- 1; moreover

L vi ?y I to! so Hence
n n

and M 'L= span 1...Fy }. Also
Yl"-"'Vn n

T A.. f O� Ln spanfy,,---,Y S so L n M-L = {01. Finally,
n

X* I.�+M-- since -for any v 6 X* we have

y (y - E<xjy>yj) + (Z<Xi'y>yi)E L L+M

Tie remark that f-�o--r- a convex subset C of X*, local

equicontinuit-y at a single point o-IP_ C is sufficient to



imply local equicontinuity o-LI:' the entire set, in fact of

the closure of the se-LL-; later we shall see that it also

implies local equicontinuity (and hence local compactness)

0 0of ( C)

4.4 Proposi-tion. Let X be a HLCS, X* its dual with a

T*-topoloqy. Suppose C is a convex subset of X* and C

is locally equicontinuous at a point y 0 rE C. Then C is

locally equicontinuous and clC is locally equicontinuous

(hence locally compact).

Proo.-E. We may assure withoult: loss o-f Generality that

yo = 0 (otherwise simply replace C by C-y 0). Let W be

an open T.* O-nei-hhorh-ood such that CnIV is equicontinuous.

N.Tow C/tC C for any t > -1 by convexity, hence

C n tT.-I c t. (C f) W) is equicontinuous. Given any YE C,

we simply take t suf-E-J.-ciently large so that y/t. EW; then

C n tW is an equicont-i-nuous relative neighborhood of y in C,

so C is locally equicont-inuous at every point in C.

"lo shot that clC is locally eauicontinuous, we need

only show (by w1hat we have Just provea, since clC is

convex) that 0 has an eauicontinuous relative neighborhood

in clC. But we claim -that clCr')Il is a subset of-

Con'4nUOUS , n w is; hence
(C e-\ Tol) wh i c th i s eq u -J since 'C

clc(lw is an equicontinuous relative neighborhood of 0 in



c1C and we are done. 7o show that clCn Wc cl(C nw), let

yeclCnW; then ye'N and there is a net {yJ,,I in C

such that yi - y. But- W is open so eventually the yi are

contained in W, i.e. eventually the yi belong to C nW.
But then y = limyi E c' CC rN W) .

.L ,n,.

We now oroceed to the main results- First, a lemma

adapted from Dieudonne [D661 to short when a locally

equicontinuous set is equicont-inuous.

4.5 Lemma. Let X be a HLCS, X* its dual with a T*-topology.

A nonemp-"Zy convex locally equiconE-inuous subset C of X* is

equicontinuous i'EtIc Coo = f0l.

Proof. if C is equicont-inuous, then it is certainly

bounded, so C= = fOll. Suppose C is not equicontijous.

We show that there is a nonzero x E C Without loss
0 00

of generality we may suppose that OE C. Let W be a

0-neighborhood with Cri'.1 equicontinuous. Now for -

t > I C n tW C t (C n W) by convexity of C and hence C n tW

is equicontinuous; but C itself is not equicontinuous, so

we must have C \tW jO for all t > I. For t > 1, define

the sets Dt 0 (C I'll tT;.,) ) n C r\N"I, int(W/2) ; note that

C nw -, int (W/2) intersects any lialf -line which intersects C,

C \ tlTso that D t is nonempty since .. is nonempty. The

D are equicontinuous, (D C C hence relatively compact,
t t



and decrease as -t- increases; thus their closure must have

nonempty in-Cersection, i.e. there is an x E c1Do t't>l

Clearly x � 0, since x E W \ int (W/2) All that0 0

remains is to show x 0E C., i.e. r-x 0 E clC for every

r > 0. Take any r > 0. Now x 0 E !I [0,-) (C \tW) for

t > 1 and x C W; hence rx C c 1 [0, (C tW) n tW0 0

whenever t > r, i.e. rx 06 cl[0,11-C C clC. Thus x 0

is in C

4.6 91"heorem. Let X be a HLCS, X* 1-ts dual with a

-L*-topology, C a convex set in X*. Then the following

are equivalent:

i)- C is locally equicontinuous.

ii). ri 0C r' 0, where span0C is closed and has finite
codimension in X.

Moreover if eith,'er of the above is

true then span0C OC r-� f -C and 0 E ri0C iff CCo

is a subspace, in which case span Oc If is

closed, it is also complete and locally compact.

ProofF. i) => ii). Since c'L,-- is locally equicontinuous

iffr C is by Proposition 1.4, and since (clC),,, = C,, we

mav assur7te C is closed. Let L = Coo n (-Cc,) ; L is a subspace,

and since a translate of L -ties _�n C, L is locally equi-

continuous, hence locally totally bounded and f inite



dimensional. By Lerrurnas 1.2 and 1.3 applied to L in X*,

there is a closed complement M of L in X* with X* = L+M,

Lr-IM = f0l, XL+'M, 'Lrl"'M = (0}, and M finite dimensional.

If C is a subspace, i.e. CC L, then we are done; hence we

assume C is not a subspace and CrM ;401. Noxw C,,nM is a

convex cone which contains no lines, and since a translate

of it- lies in C it is locally equicontinuous. Applying

Theorem.. 1.1, we see that if C'�,n M � 101, there is an

xo E X such that x0is strictly negative on C,,nM\{OI.;

if Ccon M = 'LOI, i.e. in the case that C is a subspace and

L O., we sirnolv take xo = 0. We may assume that x0E L

by it.:aking -i-"---s Projection onto L.

Conside--r the sets B ={yE CnM: x'Y > rl, for r E- R.r 0 -

Each Br is a subset of C, hence locally equicontinuous.

Now (B ). = C n M n{x I+is {01 since x is strictlyr co 0 0

neuative on Ccon M0}; thus the Brare actually equi-

continuous bv Le-imma 1.-S and hence compact. Clearly

n B is empty, and since the sets B are compact and
r r

r>O

4monotone in r ther -L-s a finite r0> 0 for which

41 Br so that sup X 0y < r0
0 YECnM

Take B to be any of the sets B which are none.-napty;r

B is equicont-inuous so0B is a 0-ne-ighborhood. We shall

show that (x +0 B) n " L c rOC, 1. e. that x is in the0 0 0



0interior of C relative to the subspace 'LL; since -LL

clearly contains0C (a translate of L lies in C), we

then see thatLL = span 0C and x tri 0C. Moreover,
0

codi-inj'L = dii-Li XI' L = d im L i s f inite. So, all that

remains is to show (.x +0 B) n'LC r .0 C.o 0

Take x E 0B and y E C with x +X E.L L. Now
0

Y = J + m where I rz L and m f- M; note m is also in C

s ince -L-i = v-A E C-L C C (recall L C C,,,) , i.e. m E C n M.

But then (x0+X)Y = (x 0+X)U+M) = (X 0+x)m < (r o- 1)+xm <

r +1-1 = r Hence we have shown x +x, E r 0C -412o r0 0

every such x, so (x +OBN ni_ L COr-o l --

Concerning the remarks at.. the end of the theorem,

we have alrea-dy shown it--hat span OC L and 0 = x E ri 0C
0

is a subsDace. To complete the remarks, we need

only sl,-,Iow that 0 E ri0C implies that C is a subspace.co

But if 0 Eri 0C then 0C absorbs span OC L and hence

C (OC)- = j1'sPanOC)_ = ('L)- = L.

ii) => _J). In the next theorem we prove that for

A OC, ii) implies that AO (OC) 0 is complete and

0, 0locally equicontinuous. But C is a subset of so

C is locally equicontinuous, also complete and locally

coTmoa(-t if it is closed. A

We remark that in Theorem 4. 6 we have C = L + (C n M)



where L = Coon (-Cw) is finite dimensional and M is a

closed complemen4l.: of L. Moreover CnM is equicontinuous

iff its asymptotic cone is fOj,, i.e. iff C,,, is a subspace

or equivalently OE ri 0C.

4.7 Theor_-m. Let X be a HLCS, X* its dual with a

-C*-topology. Suppose A C X has riA where af f A is

closed with Z"Hinite codimension in X. Then A0is comolete

and locally equicontinuous (also convex, closed, and hence

locally compact). Moreover, (A 0 A-, kAo),,� n (-AO) A-L,

0 0
a.nd 0 E ri fA if (A,)", is a subsDace.

Proof. Let x 0E riA, or equivalently 0 Eri(A-x 0 Define

M = span (A-x0) = aj'-fA-xOr a closed subspace of finite

codimension. Let- N be any (algebraic) complement of M

in X; N is finite dimensional (hence closed) since it is

isomorohic to X/M and dim X/M = codim M is finite. Let

fxlf ... Px Y be a basis �=or N,- Note M (affA-xn 0

(A-x
0

We frist prove thaz. A0-is comole-t-e. Let fyiIjEI

be a Cauchy net in A ,an---I de-Fine the linear functional f

on X to be the pointwise 1-init f(x) = I im xy We will

sho-vi that -E is continuous (i.e. can be -1--aken as an elei-tient.

0 ff X) , and hence 1 1 es 4-1 n0since A0is closed. No-W the

y, are bounded above by I on A, and (xoy is Cauchy in R



-47.

so Xoyi is bounded by some r > 0; hence the yi are bounded

above by 1+r on A-x0, so f is bounded above by 1+r on A-x O'

But A-x0is a 0-neighborhood in M, so f is continuous on M.

Since f is certainly continuous on the finite dimensional

subsDace Nt and since the projections from X onto M and N

are continuous, f is continuous on M-N = X.

We now show that A 0 is locally equicontinuous, i.e.

0that given any y EA the--e is a T* neighborhood W of y
0

for which Aon W is ecuicontinuous. By Proposition 1.4

we may simply take yo = 0. The basic idea is to choose W

so as to eliminate all half-lines in (A 0 Hence, we

set W = {y: -x, y < 1 and max lxiy! <0 - I -
1<i<n

L -xo I mx, I - - ' r-;..X 'to Clearlv W is a0-neighborhood in X*.
n

Now we ciairm that U = (A-x + TIL a xi: !ail < 11 is a
0

0-neighborhood in X, and we will show lChat An Wc r-Uo

for r sufficiently large, so that A 0n W i-s equicontinuous;

this finishes the proof that A 0 is locally equicontinuous.

To show that U is a 0-neighborhood in X, we note

that (A-x ) is a 0-neianoorhood in M and (E ajxi: Jail < 11
0

is a 0-neighborhood in N. But the Projections of X onto M

and N are continuous, and U -is simply the intersection of

the inverse images of the -two sets under the corresponding

projections.



0 0
We now show that A n Wc 2(1+n)-U Take any yE A'n w;

then sup xy < 1, -x 0y < 1, and max IxiYI .< 1, so in
xf-A 1<i<n

particular sup (x-x )y < 1+1 = 2 and max IXyj < I < 2.
xSA 0 I<j<n

0 IX
Hence y/2 E(A-x 0) n('Xlj-...'_I n C: (1+n) - Uo.

All that remains is to verifv the concluding remarks

in the theo--em. To show (AO A-, we have

Y E ( A 0)co <=> tv C Ao Vt > 0 <=> x (ty) < 1 Vt > 0,

xE A <=> xy < 0 YxE A <=> Finally, the fact that

(AO).. is a subspace iff 0 Eri 0(AO) follows from

0
Theorem 1.6 i) => ii) applied tIo C = A

He now su:,.=iarize our results for the w(X*,X) topology

on X*, in which eauicont-inuous sets are always relatively

compact.

4.8 Corollary. Let MT) be a HLCS with dual space X*,

and suppose A CX, B CX*.

I-f A has nonemp-ICY relative interior, and if affA

is closed and has -finite codlimension in X, then A 0 is

comolete and locally equicontinuous (also closed, convex

and hence locally compact) in the w(X*,X) topology on X*.

Moreover (A') c, = A-, (AO) (-AO) A-L, and

0 Eri 0(AO) rcor0 (AO) i.-Efk_ (A') A- is a subs-ace.



Conversely, if B is convex and locally T-equicontinuous

in the w(X*,X) topology on X* then 03 has nonempty relative

interior, st)an0B (B. r) (-B.) is closed with finite

codimension, and Oe ri 0B iff B is a subspace. More-W

over clB and 0 B)o are complete and locally compact

inth-e w(X*,XNI topology.

Rrcof. This is just a direct consequence of Theorer,134.6

and 4.7, where we take T to be t1ric criginal topology on X

a-nd -- * the w'kX*,X) topology on X*. 0

We remark that if X is a barrelled space (i.e. every

closed convex absorbing set�has none-mptv interior, for

exa:a-�)le anv Banach soace or Frechet space), then the given

topology on X is the m(XX*) topology and moreover every

bounded set.- in X* is relatively sompact in the w(X*,X)

topology. In this case locally equicontinuous simply means

w(X*,X)-locally bounded in Corollary 4.8.

In the general case, we can still imbed X* in the

algebraic daul X' to characterize local boundedness in X*.

4.9 Corollary. Let X be a HLCS with dual space X*, and

suzDoose ACX, BCX*.

aZ4: A is closed and has finite codimnension, and

.L.L L.

i-f A has none7motv relative core, '[--hen A0is locally bounded



in the w(X*,X) to-pology on X*. Moreover (Ao)C. = A-

(Ao) rx (-A'),,,. = A', and o c- rcor" (A') iff (A') A-

is a subspace. If X is a barrelled space, then A:0 is

closed, convex, complete, and locally compact in the

w(x*,X) topology on X*.

Conversely, if B is convex and locally bounded in

the w(X*,X) topology on X*, then 0B -has nonermpty relative

0-
core, span B n(-B.)) is closed with -finite codimension,

and OE rcor 0B iff B is a subspace. If X is a barrelledW

space, then ri 0B and 0 (Bol is complete and locally

comoact in the w'X*,X) -Copology.

Proof. Let X' be t.n-e algebraic dual o---= X, put the "convex

core" or st-rongest locally convex topology on X 'i.e. every

convex absorbing set is a 0-neighborhood), and let A� denote

the polar of A with respect to the duality between X and X'.

Of course, X*'-'-X', the w(X*,X) topology is the restriction

0 0of the w(X',X) topology to X*, and A = A n X*. Moreover
lb

we note that X* is w(X',X)-dense in X', since

W( X , X) -Cl (X*)(ZX*)o = {010 = X'. Similarly, we have

the decomposition X' = M + w(X',X)-cl(%N ) with ML finite

dimensional, whenever X M + N and IMI is a closed subspace

of X, N is a finii--e dimensional subspe-ce of X, MnN-



The results then follow by a straightforward application

of Coroilary 4.8 to X and X'. Q

Finally, we characterize local compactness in a

HLCS in terms of the Arens topology a(X*,X) on X* of

uniform convergence on compact convex sets in X (a basis

of 0-neighborhoods for a(X*,X) being the polars of all

com-pact convex sets in X; note this depends on the topology

on X, not Just- on the duality between X and X*). In

Particular, we characterize weak local compactness in

termas of the �Mackey topology m(X*,X) on X*, whicn is the

strongest locally convex topology on X* which still has

dual sDace X.

4.10 Corollary. Let A be a closed convex subset of a

HLCS X. Theft A is locally compact-iff A 0 has nonempty

relative interior in the a(X*,X) topology on X* andI

soan(Ao) is closed with finite codimension, in which case

0
A is also complete. A is weakly locally compact iff A

has nonempty relative interior in the m(X*,X) topology on

X* and span(A0) is closed with finite codimension,

41 in which case A is also weakly complete. In either case,

span(A0 JL

Proof. This is a direct consequence of Theorems 4.6 and 4.7

where 7 is taken to be the a(X*,X) topology (resp. the



m(X*,X) topolog ) on X* and T* is the original topology

(resp. the weak topology) on X.

An interesting consequence of this corollary is that

if A is a closed convex locally compact subset of a

HL-I-S X, -"--.hen it is actually weakly locally compact. For,,

A0 has nonempty relative interior in a(X*,X) by Corollary 1.10,

so A 0 certainly has nonemo-v interior in m'X*,X), hence A

O is locally compact and complete in w(XX*). Note it is

obvious that compac-111-ness always implies weak compactness;

nowever it is not so obvious that local compactness implies

k.-local compactness (for closed convex sets". However

the proofs o_-F the theorems show that the compact relative

neighborhoods of any x in A can be taken to be of the
0

f or-m A (N (x +0fy -1) where, for a complement L0 ortyl-""f±yn

of the finite dimensional subspace A. n(-A,,.), y is

strictly positive on e'lcn L % -rL 0 and fyl""'Ynl forms

a basis for L



5. Continuity of convex functions and equicontinuity of

conjugate functions.

We wish to describe here the relationship between

continuity of a convex function and equicontinuity of level

sets of the conjugate function. Moreau CM641 and

Rockafellar [R661 have shown that continuity of a convex

function at a given point is equivalenIC to equicontinuity

of ce--tain level sets of 1---he conjug-ate function. �Ie shall

com-lete this result and also extend it to show the equi-

valence bet-,.qeen relative con-1:_--inui-11-v ofr a convex function

with respec-L�_- to a closed af-Fine set of finite cod-iinnension

and local equicontinuity of the level sets of the conjugate

function. We then examine relative con-�[-_inuity in a -more

general contE-ext using quotient topologies.

We recall some basic definitions about conjugate

functions. Throughout this section we shall again take

(XT) to be a HLCS with topology T and (continuous) dual

space X* topologized by a T*-tOpO10gY, i.e. T* is compatible

with the duality <XX*> and 7--equicontinuous sets in X*

have T*-comnact closure. Let R if S is a set

and f a function f:S - R, we define -:,----he effective domain.

OIL f to be

dorn. f s E S f (s) < +col,



,5�4-

and the epigraph of f to be

epif = f(sr)E SxR: f(s) <

If f:X and 9:X* the conjugate functions

f*:X* and *9:X are defined bv

f * (Y) = sup (Xy- -f W
XEX

g (X) = sup (XV-U (Y)
YC-X*

'-The conjugate functions are al,,...-ays convex and low-er seri-

continuous (in face--, v-eahly Isc), being the supremum oi-

continuous a.-E-fine functions (e.g. f* is the supremur. of

the functions y )-- xy-r over all (xr)E epif), and they

never take on -- values except in the case they are

identically note that the conjugate of an indicator

+0001 x E A-
function A W = ror ACX is precisely

0 x E A

the support function 6 A*(y) = sup xy of A. Finally, it
X4E A

is well known that

1sc co f

unless 1sc co f takes on -- values (or eauivalent1v

f* E +-), in Torhich case * (f By co'. we mean the

largest convex function dorinated by _f, and bv Iscf- we



rean the largest lower semicontinuous function dominated

by f (i.e. (lscf) (x) = Jim inf f WH , so that
X I

epi (iscc;of) = clco (epif) . And since f i's convex and

isc, we have (*(f*))* again equal to f*.

We recall the following important property of

convex functions: if" f:X is convex, then f is

continuous relative -11--o all-fdomf (that is, the restriction

of f to af.-E-dom-f- with the induced topology is continuous)

at every point of rido-m-f Whenever f is hounded above on

any relative neighborhood in affdormf, or equivalent!v

whenever riepiff is nonerpty. we shall consider the

relationship between points of continuity of f and

equicont-inuity of level sets of f* of the form

y E X*: f * (y) -xy < r I , x E X, r E R.

Note that by definition of *(f*) the level set is non-

ermtv whenever r > -* (-E:*) W and empty whenever

r < -*(If*) W (the latter entails x E don* OE-fl ) . We

remark that the level set is precisely the E-subqradient

3fEW of f a-t x when r z + f(x) and precisely the

subgradient set when r f W , assuming f W E R. .. In the

case that 6A is the indicator function. of a set ACX,

then the level se-t-s of 6 * are precisely r.(A-x)0 V-11-en
A

r > 0; thus We have a czeneralization of the notion of



polarity. Gore generally, the level set for a given

r E R consists of all continuous linear functionals y E X*

for which f(-) dominates the affine functional xl-�x-v-r,

i.e. it is fyE X*: f(x') > (x'-x)y-r �Jx'E XI.

We first prove two lemmas which relate polars of

level sets of a function with level sets of the conjugate

.L.unction.

5.1 Lemma. Let X be a HLCS, IF: X --), R. linhen

fy E X*: "* (v) < s'JL <Z (r+s) - �x E X: f (x) < r1o

Whenever r+s > 0.

Proof. Let A dencte the set fx EX: f(x) < rl. Clearlv

.-E < r+6 , so taking conjugates yields f* > -r+6 Hence
A A

0(y: f * (y) < s (y: -r+ (y) < s (y : sup xy < r+s I C (r+s)A
A xEA

5.2 Ler-ina. Let X be a HLCS with dual X*J1 g convex

X* 1R. Then for any E > 0,

0 J Y E X*: g (V) < E +g (0) I CX: *q (X) < E:+*g (0)

Proot". Let f = *g, B {y E X*: g (y) < F_+q (0) The

trivial cases g(O) or c(O) are easily checked,

so we assume g(O) is finitC-e. In Particular, f(x) > --

;,:or every x. If _�:(O) the result is also trivial,

so assiLme -_F(O) -."-:inite.



tqe shall first sho�--, that g (y) > -f (0) -E+E:60* (v)
B

for evexy y Cr X*. Now if y E (0B)', -i.e. 6 *(y) < 1,
0D

then 0 > -E+E:6 OB * (y) and so q (y) > -f (0) -E:+E: 6 0B*(y),

since f(O) > -gy) for every y. On the other hand if

y � (OB) 0, i.e. 6 0* (y) > 1, then y/r J B Whenever

B

< r < 60 *(y), i.e. cr(y/r)-g(O) > e. 11ow
B

g (y) -q (0) > r - (g (y/r) -g (0) ) s ince r > 1 and

(g(ty)-g(O))/- decreases as t + 0 by convexity, so

we ha-vre g(y) g(O) > E-r. Taking r + 6 0 *(Y), we

B
ge t g (y) -g (0) > e: 60*(Y), so g(Y) > g(() + E:60*(Y) >

B B

-f(O)-E+Ei5 *(V).
0B -

-,Lhus q > -f (0) -C+65 -t--aking conjugates yields

B

f (x) < f (0) + e + '6 (x/E). Hence if x0 B we have
0

B

60 We) = 0 and so f- (x) < f (0) +E:, proving the le n-ma. 0

B

We are now in a pOS4 tion to use the results of

Section 4 on polar sets to shot..; the correspondence between

continuity and equiconti-nuitv of level sets.

5.3 Theorem. Let (X,-t) he a F-LCS, X* its dual with

-r*-topology, and let f:X If a'Lfdor,,f is closed with

finite codimens-ion, and -if f -is bounded above on some

relative neiahborhood of affdommf, then cof is continuous



on ricodorf and the level sets

B = {y E X*: --F* (y) -Y-y < rl, x E X, rE 10",

are complete and locally equicontinuous (also closed

convex and hence locally conpact). moreover if B is

nonempty then B = (domf -x) -, B. n (-B.) = (domf -x)co

B + (B n LL) .,there L is any (finite

dimensional) connlei-ent of span(donf-x) in X, and the

.Lol1w,.,ina are equivalent'-:

i) x E rco-- co dom-LE

ii). cof is 11-inite and continuous at x

iii) . B,,, is a subspace

iv) . Br% L-L -Ls corinpact.

We remark that- B is always empty in the degenerate case

f* =- +w and * (f*) -co . OthenAse --;'* i +- and * (f *) and

co--lc never take on values, and *(f*) E cof except possibly

on relative boundary noints of codomf.

Proof. We assume since otherwise B is always

em�Dty and *(f*) -=

Take x C X, and let B = {v E X*: f * (y) -x Y < rhe
0 0-

nonempty. Define f(x+x0 and A = 'Lx: i(x) < SI

rILX: < sl, ..There s is su-'Eficiently large so

S+r > 0 and A contains a point in ridomf. I-Te then have



riA y6 0, where affA = affdom'j--x is closed with finite0

codiner-sion. By lLemna 5.1 we have

B y: ff * (v) -x0v < r Y: f (Y) < r} C (r+s) - A:O.

But then by Theorem 4.7 we know that B is complete and

locally equicontinuous, since it is a closed subset of

(r+s)-Ao and riA 9. A straightforward calculation

sho,,,rs that B (domf-x0 when B is nonempty, and hence
-;,7 span(domf-x ) is

that B r) (-B), (domf -x No L.
00 0 0

closed suhspace wit_-h JE-inite codinension, since it equals

kaf'r_-Fdomf-x1) + 1_x0) for any x 1E affdomf and

hence is %-Fe surLi of the closed affine subspace affdomf

and the subspace (--,+-)-(x 1_X0) of dimension at most one

(not-e snan(do-rif-x) = affdomf-x precisely in the case0

x0E af f dome'-) Thus by Lenma 4. 3 we have the decomposition

X* = -(domf + L-- where L is any (finite dimensional)

complement of span(domf-x ) and L L is then a closed com-
0

plemea'- of (do-mf-x But then B = (domf-x + (Br\ ih
0 0

since (domf-x C Bc,. It onlv remains to show the
0

eauivalence of i) thirough iv).

'Note that since f is*' bounded above on a relative

neighborhood in aff�dorf, cof is also bounded above on the

same neighborhood (and of course affdonff = affdo,-(cofl),

so that cof is continuous in ricodomf (note

co domf = dom, cof by Lemma 1. 1) and i) is equivalent to ii)



by convexity. Moreover, Br)L-L' is compact ifff_

(BnL'). = B nL"' is fOl by Lex-ima 4.5; but B, Lj- 0}

precisely in the case that B C (domf-x B n (-B.),co 0 co

B. is a subspace, so that iii) and iv) are equivalent.

Now if x06 rcorcodomf, then codomf-x 0 absorbs affdomf-x 0

so that (domf-x (codomf--x is actually (domf-x
0 0 0

thus B,,,, L-x )L
(dom' 0 and i) => 4i). Conversely, suppose

x0E rcorccdomf; since codomf has nonemptv relative

interior in affdonf, there is a separating y k X* such

that either y H 0 on span(domf-x 0) and sup xv < x 0Y
xedomf -

(in the case x G a _" f dor-f or v E 0 on af f doT.-,f -x ando 1 1

(X _X ) y < 0 for some x E domf (in tae case x �affdo-,Tiff-).0 0

But in ','-lot!-,. cases we then have v E (do-mf -x0B., with
.L. = B n (-B. so that B 'IS 110,

(dornf-xo) C. t a subspace

and iii) => i) . O

5.4 Theoren. Let X be a HLCS, X* its dual with a

T*-topology, and sup-pose g is convex X* -)-- Rol *(7

If the level set B iv EX*: g(y)--- y < s I is nonempty
0 0- 0

and locally equicontinuous for some x 0 E X, s0E R, then

af-fdo-m*g is closed -,aith finite codimension and is

f"inite and relatively continuous on rcordom*q 3i !1ore-

over all the level sets 13 g f1v) -.--<y < s x E X, s 6 R

are locally equicontinuous, and if nonemp",--y

B = a'Lfdom*g = x + (B,. n (-B�co j i

x Ez af f do-,,,i*g, and *g is -finite and relative continuous



at x if f BC, is a subspace.

Proof. First, let us note that if B 0 is locally eaui-

continuous then epig is locally equicontinuous (in the

product topologies on XxR and X*xR) and hence all the

level sets E are equicontinuous. For, if y 0E P0 and
is a v -neighborhood with B CAW equicontinuous, then

0 0

g(V )-!,x xV7 is a neighborhood of (q(y )'Y ) whose-0 0 0 0

intersection with epig is contained in (q(y 0)-I's0 )x(B0rXI-7)

which is equicontinuous. Since epig is convex, we have

bv Proposition 4.4 -16--hat all of� epig is locally equicontinuous,

and hence all the le-ire! sets B are lo--allv equicontinuous.

Note also �_hat *g never has -- values, since epig 34

We wish to short that *g has relative continuity points.

Iliow g hv assumption; since all the level sets B are

locally equicontinuous we May assume that x 0 (-don*(7 in the

definition of D 0 Let v E R0 and take sore e > 0 such

that g (y ) -X I'T < S and define B0 0�0 0
Y: g (Y) -x V < E+g (V -X clearly contains and

0- - -0 010 -0

is locally equicontinuous since B C B,0 "'Tow define

g a (Y +v) -N, v; then B g (Y) < F_+cr(O)! and0 � 0-

applvinq Lemma 5.2 vield's

0 < E:+*a Io)E. (13 C X "C' *g < E:+*c (0) E *q (x(
1-yo -C-



But (E is convex and locally equicontinuous, so by
1-yo

Theoren 4.6 0(B has nonerioty rela4C-ive interior with

res ect to L, where L = (B ).(N(-B +Y This meansP 1-yo 1 0

that x �+ *g (x +x) -XY is bounded above on some relative
0 0

neighbor-hood of L, so that *q is bounded above on some

relative neighborhood of x 0 + L. We need only sho�vr that

X + L contains af'dom*a. '-Now since L CM _V -.-e see
0 0

that g(y +ty) < E+g(O) for every t > 0, yE L and so
0

*Cj(x) > sup (X(V +tv)-q(v > xx;, E-q(o) + sup t-xy
0 0 0

Yf:L viL
t>O t>O

is +- unless x E. -L L. Thus dor-,*cr cj'L, i.e. dom*g x +_LL, so
0

we see that is bounded above on some relative neighbor-

hood of x + L affdorr*g anC41 hence is relatively con-

tinuous on rcordom*q.

-Lo, prove the rer,,ar"-:s at the end of the theorem, we

show that t-he level sets B = (Y: g(y)-xy < s) have closures

which contain and are contained in the level sets of (*a)*

and then we simply apply Theorem 2.3 to f Since

(*g)* < g, it is clear that B C"Ly: (*g)*(y)-xy < sl, hence

B (=(dom*q-x)- by Theorern 2.3j. on the other hand, for anyco

c > 0 we have f,.y: (*g) * (y) -xy < s-e I C clB since lscq,

and hence (taking c sufficiently small so that the level

set of (*g)* is nonempty) (do-,*g-x) C Bw by Theorem S.3. Thus B

(dor,.*g-x) and *g is relatively cont--inuous at x iff B is a subspaceCO

We note in particular that for any HI-CS X Theorems 5.3 and

5.4 are true for the w(X*,X) topology on X*, in which



equicon4tzinuous sets are always relatively compact.

If X is a barrelled space, then the equicontinuous sets

are precisely the w(X*,X)-bounded sets in X*, so that

locally equicontinuous simply means locally hounded in

the w(X*,X) topology. If X is not a barrelled space,

we could still characterize w(X*,X)-local1v bounded level

se-11--s of a convex JEunction g: X* in ternts of

rcordom*g y! X and afA'dom*g closed with finite codimension,

by im-beddina X* in X' just as in Corollary 4.9.

We surmiarize, the results for convex functions 'with

locally conpact level sets in a HLCS.

a ITCorollary. Let X be MCS, F : X convey. and lsc

If one of the level, sets Bo = Ix E ZX: f (YO -XV < S
0 - 0

is locally com!oact (resp. weakly locally compact) for some

YO E X*' S0> i-'1-JE(f(x)-XY0-g(y 0), then affdomq is closed
X

with finite codimension and the restriction of g to

affdo-.mg is continuous on rcordong (which is noneripty

unless g in the a(X*,X) topology (resp. the m(X*,X)

topology) on X*. Conversely, if affdomg is closed with

fin-ite codir-ension and g has finite relative continuity

Points in affdomg in the a(lvl.*,X) topology (resp. the

n(X*,X) topology) , then all the level sets

B = {x E Y.: f JfX.) -xy < s I are closed, convex, complete, and

locally =13Dact in X (resp. in the weak topoloq�,- on X)



and if B is nonempty, B. = -(donq-y), affdomcj = V +

(B n(-B if yE affdong, and g is finite and relatively

con tinuous at y if -.ff y E rcordo:,,q if f BC. is a subsoace.

Proof. 'A"his is a direct consequence of Theorems 2.3 and

2.4 where T is taken to be the a(X*,X) topology (rest).

the n(X*,X) topoloc-rv) on X*, T* is the original topology

(resp. the weak topology) on X, and the roles of and X*

have been reversed. 0



6. Closed subspaces with finite codimension.

This section serves only to provide some very basic

results about what it means to be a closed subspace with

finite codimension; the ideas are simple but it is

important to be careful here.

Let X be a HLCS. Let M be an afffine subspace of X;

the subspace parallel to M is M.-,m w1here r-, is any
0 0

fixed element o.-E We have

M = a f fr -"1-11) +11 M-m' +r,-.0

The dimension of is de-Fined to he the dimension of the

subsoace M-M. More generally, if CC X t n the dimension

0-'E� C is de-E-ined to be the dimension c-F affC:

L
di-m C =dim a--f'-f C = diri span(C-C),

where of course

aff C C + sDan(C-C) = c + span(C-c
0 0

n n
t. E. U' t ER, E C, E t.=11.

I i i=l I

If 1-1 is an affine subspace of M, then we say !�! has finite

codimension in m iff the subspace parallel to !'71 has

finite codirension in t-he subspace M-L'111 paral-lel to

i.e. if din is finite.



6.1 Proposition. Let be a HLCS, 1-1- an af-fine subspace

of X, 14 an af f ine subs-pace of LM. Le' !I have the topology

induced bv that o-F X. Then the following are equivalent:

1) N is closed with finite codir,-,ension in m

2) 141-'N is closed with finite codinension in M-M

3) N is closed in 1-1 and M-,M/N-N is finite dimensional

4) N is closed in M., and 11/3111-N is a finite dimensional

affine subsz)ace of- X/N-N

5) 11 is closed in M and 3 a finite dimensional subspace

L such -that N-,+L 11 and (N-N)nL = {01

6) N is closed in and 3 a, fini te dimensional subspace

L such that '-4+LD Z-1

7) I f inite subset F C X* st N = (n 0+ F) n m for some

(and hence every) n 0E NI
n

8) 3 rl.,.. - ,rnEr Yl`-?Yn E X* st N = M n yi fril..

Proo--F. Throughout the proof we shall assume that n 0 is a

fixed element of 11; in Particular N-D., = N-n 0 and M-M = M-n 0

1) <=> 2) . '-,-I is closed in M if f 'N-n0is closed in

M-n0 by translation invar-Jance of vector topologies. ."he

result now follows from Ithe definition of 41--':inite codimension.

2) <=> 3). The codimension of N-N in M-.l-,! is -precisely

3) <=> 4). In 4) �,;-e are using the folio-,�jincj notation:



7.

if CC.X and if L is a subspace of X then C/L is the image

of C under the canonical quotient --ap of X into Now

M/N-N = [n 0 + (M-?4)/'_N-N is an affine subspace of Xpil-'N

which is a translation of the subspace M-M/N-N (here [n 01

denotes the equivalence class of n 0 in X111-N); hence

dim (M/14-IN) = dim /IT-IT)

3) => 5). Let L be an algebraic comnlerent o-c ",'-N

( (11j_1T) = f 0 17in _M-M, i.e. = and L a I- lo,.-i L is

algebraically isomorphic to under tl.',,e quoC-ient

map 0: L uii ; for 0 is linear, one-to-one

since L i'01, and on2l.--o since L+(N1- 'L !!-M. Thus

by hypothesis 3), dirm (L) = dim W-M/N-N) is finite.

Finally, we have

1.1 = n n + L + (NI-11) = L+N.
0

5) <=> 6). Trivially 5) => 6). Suppose 6) holds.

Let- L' be a complement of ("I-N) in (�NI-IM) . Then

LI rN (N-ZO = {O I and L'+N = I'l. But L' C (MI-1-1)+L; since

L' 0 ON-'-NI) = {0}, L' C L. Thus L" is fin-ite dimensional

and 5) holds for L'.

5) => 7). Define the projection nap P: ("'41-M) - L,

T et�,ere P 0 on ('N-N) , P I on L. n be a

basis for L*. 11 is a continuous mao W-111.) -+ L Since P

has finite dimensional range and the null sipace of P



is closed in U-1-M) Hence each P E (11-1-1) By the

Hahn-Banach extension theorem we nav ext'-end each 6.0 P

to an element y of X* so that v o P on (M-M)

Let F = {v Clearly N-N, which is the null-1 n

space of P, is contained in-L F. Converselv, (M-_M)(_LFcN-N;

Jor if x then x = n+� where n I-N) and .2 4E L

and if also x "L F then S = 0 (since n ' F and F spans L*)

Thus (I'll-N) = (11-M) OLF. Eauivalentlv, ("'T.-n (t.T_�rj
0 0

i.e. 11 0 (n0+� F)

7) => 8). Assune 7) holds, i.e. F = {yl, ... ryn ICX*

and N" = 11.1 0 (n +LF). Set r. = v (n Then
0 i 0

n + F = in 0 +X: V i(X)=Ol 1=1,...,nl

n
{X: V i (x-n0 0 Vi = 14, . . . r Y r 1, and 8) follows.

i=l

8) => 9). Clearl'-; 1"J. is closed in M, since each v. is

continuous on '11. 'Now yi(n) rI for eve rv n E 11 and

so (n-n 0 and 11-r,0 0 n
t7l f' . 1)

But- then dim (M-M/N-n 0) < din .. ,rYn

din, ('X/1[v 1'"'YnJI) dim (L(yj#'...jrYn

d-;r-. span fVj,...,'Y, < n. 0



7. Weak dual t-opologies.

Let (XT) be a I-T.LCS, and suppose III is a subspace oflf

X with the induced topology ?.I nr. Bv the Hahn-Banach

theorem we may Identify,, with X*/M.L, where <x,[Yl> _= <XY>
-he equivalence class y+,',',. -L E X*/I of

for x (-. M and M tL VT

v E X*. �-.-e shall be concerned -v,-ith Various topologies

pertt-aining to tire duality between M and X..*/M The

followinq notation �..rill he used: i-f BCX* then B/M denotes

[b b C B {b+n'L : b -'- B a s u!)s e t of

We have already delEined -LL--he w(X*,X) topology..L -

with O-neig.-.borhood basis

x

A net (yj clon-vercres -L-.o 0 in w(',%*,X) iff <xyi> - 0 for

ever,,,, x E A set E C X* is hounded- in w (X*, X) if f for
Conat+ionally

everv x E X, sup <,xV> B is IT(,:-"*,X) compact whenever
vE-B

E is equicon�r._inuous, or eauivalently 0 f- in-t-0B.

A weaker tcoology is topology, t-lrith

0-neichborhood basis

�F(:F fini-t-er- -?II.

A net f�yil converges to 0 in if-f <x.,y> 0 for

everv x E .", or eaui-:a1entiv if: eventual v

r
0+, T--y x E thefor eve- w(IIM) toL"010CTY
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need not be Hausdorff; it is Ilausdor-Ef iff M, iff

M is dense in X. Since the closure of (01 in w(X*,M)

i s mL, the associated HLCS is X*/M -with the w(X*/Mj_ M)

topology; hence y i - 0 in w (X*, M) if If (yi I - .0 in

w('"'*/M !I). Similarly, a subset B of X* is w(X*,M)-bounded

ifIff V X C_ JIIIA' suo <XY> <+co, if f B/-M is vi (X*/M M) -bounded;
YCTI

tovIaLkiiOnally
B is co-Dac- in w(-* whenever 3, -s equicontinuous as

a subset oi` r*, or eauivalently '31/11-1-L is eauicont-inuous40

as a sub-set of Of course, (X*,w(XI*,.�-I"))* mav be

identif ied with. _7111; -for i-E- z ( (X*'T.;(X*,Z,) then the--e is

a 41-"inite subset F� of such that I z (y) I < 1 whenever

y (- Fo , henc ey: z 0 r) < v., y > 0 1 and
XEF

z E s p arn F c -M.

We sav that a subset B of X* is _�I-equicontinuous if f

the restri- -on of the continuous linear functions in B

to the subs-oace 111 is equicontinuous for the induced topology

rl T on ! I.

7.1 Proposition, Let (X,-i) be a HLCSI t"i a subspace of X

with the induced topology Mnr, and Br-X*. Then the followincr

are equivalent:

1) B is M_-equiconti.-,iuous

2) B/!I-L is equicon-1--inuous as a subset of rn* X*/m



3) 0B contains a relative 0-nbhd in M., i.e.

3 0-nbhd U st, OB :) U n M

4) 0-n-.-Jhd U st sun sun <xy> < 1, i.e.
XE UA MI V e B

B C (U 0

5 0-ribhd U in X st DC U'+M.

6 3 0-nbhd U in X st D/M-3- C: UP/m

Proo��. 1) <=> 2). This is simplv the definition of

M-eauicontinuous.

2) <=> 3). 'This is what eauicontinuity reans,

for linear functionals.

3) <=> 4). If U is a closed convex 0-nbhd, then

0B DU r-i N <=> B C (%Uri,'-!)0 since omn�,�-,,Ollj = urim.

4) => 5). This is the only nontrivial part.

0S uppo se B C (LT nll'!) Let V be a closed convex 0-neighbor-

hood such that V C int U. Then cl (U rl M) D V n c1m; f or if

xCV is the limit of a net fIx in M, then the [x

eventual belona to U (since x E int U) and hence

X C cl (U 0 M) . Now 17 0 is w(X1*,X)-corpact, so is a

w X)-closed convex set containing V' V I'll ; thus

0 _�_ 0 +IF = 0V +M - clco (Vo U But ther, 0 (V IJ-) wo U _'n-L)

(vo) n v n c and so

0
B C7 (U r1k .1M.) (Ci (U. n -m) C (V n cl!l-) (VC,+M-L)



Thus 5) holds for the 0-neighborhood V

5� => 4). Immediate, since T-10 + (U r)M) 0-

0 05) <=> 6). I-.tm ed i a te , s in ce B/M' c U /M -L < = > B C U + M 0

It is also natural to consider the quotient topology

of w(X*,X) on X*/M"-, i.e. the strongest topology on

X*/M-L for which the canonical quotient Tmap

Q: (X*,w(x*,X)) - X*/M is continuous; we denote this
.L - L -neighborhoods for

topology by w(X*,X)/M A basis o' 0

,.;(X*,X)/.'4'L is given by all sets of the form

F0/24-L = w1-.ere F is a finite subset of X;

{[yij} - 0 in w%'X*,X)/M JL if_-F eventua-11-y yiE {xllo + M--

4:-, o r e ve r y --.c E X. s h;a 1 1 a I s o u s e w (X X) /.NL! to denote

the topology on X* with 0-neighborhood basis all sets of

the f orm F +_N1-L -Hnite C X (it will be clear from

context whe-C-her the topology is on X* or on X*/M') that

.Lis W(X*'X)/M Q (WIX*'X)/M Of course, fyil 0 in

w(X*,X)/M' iff [yi] 0 in w(X*,X)/M-L iff VX C- X,

,X'toeventually yiE I � +M A subset B of X* is bounded

in w (X*, X) /M-L if f f-or every xEX, sup inf <xv-v'>
Yi B v'e M-L

The w(X*,X)/M L topology is closely re"ated to the

W(X7'M) topology.

7.2 P r o po s ---'L--ion. Let (XT'j be a HLCS, M a subsp�ace of X.

Then w(X*,XUIMI� = w(X*,,�-T' , wl-h-ere RI denotes the closure

of M in X.
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0 0Proo-'. Le-,-- F be a -ini te subset of _F71. Since F

0 J.- -1it is clear that -7 has nonemapty w(X*,X)/M inCerior;

I :> W (X* " -hence w(,-,*,X)/M M). Conversely, let F be an

arbitrary finite subset of X. Since F is finite, it is

sure; ght-forward tc see that-

C lco (F U { O',I) nM c' co( 0

0(7,-oor ec:�uivalentlv (F n MR) Butt then

0 0 0 0+1. C:( (FO) 0 w* -c Ico (F L)(F ri C w*-cl (F

0

where the last steo follows since clearly the w* = w(X*,X)

-L
tOZ)olcgy is stronger ran the w(X*,X)/M L-opology. Hence

the closures o-!::� set.-s in the 0-neighborhood base of

W(X*,X)/-,I, have nonempty w(X*,M)-interior, so

wfx*"M)D W(X*'X)/m

7.3 Corollarv. Let IX' be a HLCS, M a subspace. '-I-hen

w(,X*,-m-) w(X*,Xll/!4 on X* -i-f-f M is closed. Equivalently

WW'XU�.-I on X*I,.-I _iLf M is closed.

Prco:E. From, Pro�Dosit-ion 7.2 �,,;e have w(X*,X)I-%! (X*, M) .

.3 To; (X KI) w X -%I) i _NT, since (X*,W(X*,--%

an C1



8. Relative continuity points of convex functions

The relationship between continuity points of a

functional f: X and local. equicontinuity of the level

sets of the conjugate function f* has been thoroughly in-

vesti rr;=i f- 4=� ri i n SJ n- n-- 5 -f o r tc al -c-- en t ha t a f f d Om f i s c 1 o s e d

W i th. finite codimension. We --,day still ask what happens in

the case that affdomf does not. necessarily have finite

codimension; note that the level sets will contain the

(in-iffinite dimensional) subs-pace (domf-domf)i- and we cannot

hone for local equicon-IL-inuity. However, by characterizing

J-the level sets of f* modulo their behavior on (domf-domf)

i.e. by considering the duality between a-Efdomf (the natural

snace de-'Cermined '-'--,y `E) and X*/(domfl-domf)-L, we ob-tain a

generalization of the previous results.

For simplicity we consider only the original topology

on. X and the weak * dual topologies. We consider the

following propcsitions about a function f: X - R and an

affine subspace M of X which contains domrf. Of course,

M--',Il- is the subspace parallel to M. T.-le shall often

specialize to the case M affdomf, or M domf +

(do--f-domf) c la -Ef domf

la. open set U, yl,. y, E X*, ri.. r E- R st
n

n
u-�Nr� n V. .rr1 and f(-) 's bounded

above on U r� -7-In n Y(r
i



f(-) is bounded above on a subset C oil X,

where riC 7� 0 and affC is closed with finite

codimei -on in M.

2a. ricoepif 34 0 and affidomf is closed with IE'inite

codimens-ion in M.

2b. rcorcodom" I 0, cost rcorcodomf is continuous,

and a-f.'5do7,,_-"- is closed with fini-;C_-e codimension

i n -M.

3a. o-r 3 x0 E 2-1, r0> -f(x 0) St

v E X*: f * (Y) _x y < r is w (-%*,-M-x -locally
0 0

-ecuicontinuous.
0

+-, -or .3 x E M, y E domf r > f*(y -x
3b. f* 11 ) t0 0 0 0 0 0

_'_Lnite F CM-x of 0-nbhd U St

17 E X (Y) -x0y < r 0 0+Fo) C Uo+ (M-X 0

3c. Vx 0 C M 3 -E i rn i t e F C M - x 0St U Y0E X*, Ur 0E R

0ly C X*: f * (Y) -x y < r n (y +F ) is (M-x0 - 0 0 0

equiconti.nuous, 4L - e U 0 + (M-x for some0

0-nbhd U.

4-- .34a. �i. L _j 1%. x St

fy Ex*: 'L*(Y)-x 0y < r 0 is w(x*,M-x 0)-

locally co7moact-.

4b. f* or Ix 0E M, Y 0 E dom'L*, r 0 > f*(y 0)-x OYOJI

finite F C NI-x st "y EX*: (Y) 0y < r 0 O(YO +FO)

is W (x -x0 C Omn' a C t-
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4c. V X0E m 3 f inite F C M-x St V y0 E X*, '0 r E R,

y C- X*: J'- * (Y) -X y < r I n(y +F0) is0 - 0 0

w(x*,M-x0)-compact.

4d. affdom*(f*) is closed with finite codimension

in M, rcordom,*(f*) and *(f*) t rcordomf is

continuous for the topology M+m(M-MX*/(M-M)-L

> (X5a. f* or 3 x 0E X, r0 ) St

{y X*: -JLE* (Y) -X0v < r011 is w(X*,X)-locally

(M-M) ---.!equico,�.ritinuous

5b. f* E: +-, or E x06 X, y0 E domf*, r 0 > f*(y 0)-X oyor

f inite F C X, 0-nbhd U St fy C X*: J`* (y) -x y < r in
ly +F')C U'+(I M-M)

5c. VX C X 2 f ini te F C X St V y0 E X*, r E R,

{v Ex*: f*(Y)-x y < r I n(Y +F') is w(X*,X)-0 - 0 0

locally (M-M)-equicontinuous.

5d. Ox E X, r 'r- R., (Y E X*: f * (Y) -X y < r is0 0 0 -- 0

w(X*,X)-locally (M-M)-equicontinuous.

5e. epif* is w(X*xRXxR)-1ocally (M-M)xR-ecTuicontinuous.

6a. f* or 3x 0E X, r 0 > -f(x St

{y X*: -E* (Y) -x0v < r0';I is w(X*,X)/iTL-locally

com"nact.

6b. or 2 x E X, v E domf *, r > f * (Y ) -X Y
0 0 1 0 0 0

finite F CX St fy'EX*: f*(y)-x 0y < r01 n(yo +Fo) is

w (X X) AM' - c ompa c t.
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6c. V x- E x 3 MF inite F C X St v f X*, r E R,
0 0 0

{v .,E X* (y) -x v < r +F') -i s0- - 0 0

W (X*, X) /21-1_"'�-corpact.

6d. Vx0 C X, r 0(= R, fy X*: f*(v)-x oy < r 0 1 is

w (X*, X) /M"'�-Cozrnpact.

6e. epif* is locally compact for the w,(X*,X)/��_xR

topoloqv.

7a. f * E or 3 x 0 r0 > -f(x 0 St

Y E X JE * (v x v < r I i S w ("CIC X) L-locally- 0- 0

bounded.

7b. f * E +-, or x E v E do,-,-"'*, r > f -x Y0 -0 0 -0 0 0

Jc in _4 te F C X s t �J x 4- X,

sup{ in-.,:: <x Y-Y I>: V +Fo, f * (V) -,% v < r } < +..
I PI 0 0 0

Y EM

7c. JO x 0(= X, 3 f inite F C X St ;J v CE X*, r R , x r-- x. ,

SUP[ inIL <xv-yl>: Y rzy +Fo? f*(Y)-x Y < r I < +-.
I r t4l- 0 0 - 0

Y

8.1 Theorem. Let X be a 1-.-LC,,;, f: X M_ an affine

subset of' X with the induced topology, M Ddor-f. Then we

have the following relations:
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la lb

if f convex

2a 2b

if "=* (f if M has its mackey topology

3a 3b 3c 3d 4a 4b 4c 4d
fill

i f -M closed

5a 5b 5c 5d Se

'M closed closed and has its mackey topology

6a 6b 6c 6d 6e

M closed and barrelled

7a 7b 7c

Remarks. The degenerate case -E* E +- is usually excluded

in applications. Tve have Modorf if Uff, assuming M closed)

M x + -L'-N where x E dom-f and N is a subspace satisfying0 0

N! C:(dic)mf-x )-L {y EX*: y =- const on domfl
0

ty (- X*: (f (IL*) . (y) 1. 'In particular, if it

where 'N C (dorif) then M is closed and MI :Y domf

IT8.2 Corollary. Let X be a retrizable LCS, f-. X

proper convex Isc, M an affine subset Ddon-Iff. If ?I is

closed, then all bu-t- 6 are equivalent. if M is cor-plete,

then all of 1-6 are eciuivalent.



Proof of Corollarv. Since 1.1 is metrizable in the

induced topology, its parallel subspace M-M has the Mackey

topology n (M-n, (M-zm) *I. I f M is complete, t1ien M-M is

also complete, hence barrelled. 13

Proof of Theorem.
n

la => lb. Take C = U r) M ri 0 v Iri1. Then a--cLfC

n

n r) is closed with -finite codimension in !"11 by
i=

Proposition 6.1,8) Noreover U n a"fff C C C, so U n af f C C riC

and r-iC

lb => la. 1-.ote C C dor-if C M. Bv Proposi-11--ion 6.1,8)

there are E X* and-3 rl,,...,rnE R such that

El f t': C = MI 0 -I) Vr moreover riC 3� 10, so :4 open set
j=l

'i such that c u naff"C TJ J9. But f(-) is bounded above on C,

n -1
hence on UnaffC = Unt-In V Ir 1.

lb => 2a. "-'h-4,-s is essentially the sane arqurent as

that used to prove that everry nonerpty finite dimensional

t4convex set has nonempty rela Lve intc---ior. T-'e arcTue by

induction on the (finite) dimension o-f a compler-lentarv

suhspace of affdomf in Let us -f-irst. note that

a`ffJr_do.7,-' is closed %--ith finite codimension in

af--FCr-a--F-jc_do7,.f c�.-',, so that af-�.�domf is the algebraic sur of
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the closed (in M) flat -af'-FC and an at most -"-Finite dimensional

subspace of (M-M), hence closed and finite codiriensional.

Equivalent1v, affepif is closed with finite codirension

in MxR. by hypothesis 1h, ep-if CMxR and epif contains

a set.- B0with nonempty relative interior and -with aff-B 0

closed with finite codimension in MxR; for if f is bounded

above by r 0 on C, set B 0 = Cx[ro,00) and af-fRo = affCxR.

Tf af-Fevif = affB we a-re done, -"or -hen rieni':)r-:eTDiB 19.
e -1 z C !"low TB�,

Other-,iis e Pi f \ a '_ f B0 co('z 1 U B0 is a

subset of coep-41f, and moreover B 1 has nonerptv interior in

Cc ( I- I J r
L-11 le flat a-f-FB a z 0 affe- oi`7. roceedina, if

arLfepi--L;: = a:-_.:ffB we are done; othen-y-ise z2 C epif\affB 1

-Lor which 2 co(flz 2!;U B,) is contained in coepif and

has nonerpty relative Interior in af-f"B Eventuallv we
2'

obtain a linearly independent set 1z IC-ccepif

for whic nI co(izlp ... Iz UB is contained in

coepif and has nonerpty relative interior in

a ff B a f f z J.. z I U B epi f Hence coep i -f �6n n 0

2a => lb i Iff f conve::. anv (x r ) E riepif;
0 0

since (x 0 r 0 )E riepiff:, I open set U, E > 0 such that

(x0 r0 (U n af- f domf ) x (r O- F- , r0+E:) C epif. Sirnplj define

C = Un af-fdomf; then f(-) is bounded above r0 on C,

and aJEfC = affdomf is closed ,.,,ith fin-ite cod inension in M.



2a => 2b. Epico--F:)coepif and af-Eepicof = aflcoepifso

riepicof � J9. It is now a we!_11--knovrn result in the litera-

ture that cof is relatively continuous on rcordom"E, since

cof is of course convex Note that if cof takes on
I- ` -:: -- on ricodor.'

values, then co.L

2b => 2a. Trivial.

2b => 3a, 3a => 2b Cohen f *(f*). Suppose f*

in particular -;;_:-cannoL-- take on values. Take anv,

x t, m., r > -f (x Let- L -= M-x be the subspace parallel
0 0 0

to m, with the induced topolog-y and associate dual space

J. de-f-Fine -"--he function L - K: Z - f (xX*/L On L 0+Z).

� = do-n *([VI) = -�:*07)--x

Then dor. _X , -r V. Clearlv
0 01

af f dori a1fdcmf-x is closed with "inite codir--ension
0

in L = M-x iff a-FFdoT-,f is closed with finite codinension.

in M, and has relative continuity points in L iff f has

in M (using translation invariance of vector topologies.

Applying Corollary 5.5 we see that the level set

I (y] C- X*/L : i* ( [y] ) < -01 = �['vl: 'L*(y)-x0v < r0is

locally (L-) equicontinuous in the w(K*/L L)-topology

if (iff when f *(f*)) f has relative continuity Doints

in L and affdoni is closed finite codirension in L.

But the former condition is equivalent to the local

L-eauicontinuil-W of iv: 0v < r0 1 in the w(X*,L)

topology by Proposit-ion 7.1.
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3a <=> 3b. Condition 3b sinply states that

{YE X*: f*(Y)-x 0y < r01 is w(X*,L)-locally L-equicontinuous

at the point y 0 Since fy EX*: f*(y)-x av < r is convex,

it follows that 3b is equivalent to local L-equicontinuity

at every point y EtyE Y.*-. f*(y)-x 0 y < r01; simply apply

Pronosition 4.4 to the set X*/L : f*([vl) < r
0

Hence 3a <=> 3b.

3a => 3c. We -first -note that all of the level.sets

f*(V)-y < .-r_.Z V - I are tv(X*,L) -local!,.,- L-ecuicontinuous
0 0

this is ust a direct application of 'I'heoreil 2.4 to

Jusc as in the proof c_`- 2b => 3a, where one of the level

sets of i* being 'V7(X*,L)-Iccall-,,r L-equicontinuous inplies

-'--'.-.at all of are. Note also that *(f*) has relative

continuitv points and affdcn*(f*) is closed with -finite

codi,-1,ension fron 3a => 2h. Now given x m, let
l.. - - - ,)- L- of affdonf

. I be a basis 'or a conplereni
{x_ in 11,

let L = M-x and let x, be an element of L which is

st--rictly positive on the w(X*,L)-locally equicontinuous

convex cone (dorf-x 0)-/LL. Take F = �±x 1r... ?+x nJItx n+l 1.

Since { [y] E 'A'*/L : l-c-:*(v)-x y < r I is w(X*/L L)-locallv

L-equicon-11----inuous, its intersection -uith (y0+Fo)/L-L

ev e r y E X*. But t-he --ccession cone of

y E X f * (y) -.-< y < r (v + F is contained in L
01 - 0 -0

hence t' [Y] : f * (Y) -x y < rn (v +FO) /L-�- has recession cone0
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[01 1 and is actually L-equicontinuous by Le-r-,Lma 4. 5. But

this is precisely condition 3c by Proposition 7.1-

3c => 3a. If all the level sets are empty, then

otherwise there is a nonempty level set -Eor

which 3a is true.

3a => 4a, 3b => 4b, 3c => 4c. This is immediate

i-since (M-M)-equicontinuity 'Z)l4eS w(X*,M-M) -compactness

by the Banach-Alaoglu -theore:-- applied to (M-M)* X*/(M-M)

4a => 3a, 4b => 3b, 4c => 3c when the induced topology

on M-M is -the inackey t,---opolcgy -. (�-I-.14,X*/(M-M) -L ), since then

(M-LM-)-equicont-inuity is equivalent to w(X*,M-M)-comQactness.

4a <=> 4d". Pu-"-- the topology on M-M;

this induces a topology on M by translation. But now

4a <=> 4d is eauivalent to the result 2b <=> 3a.

3a => 5a, 3b => 5b, 3c: => 5c. This is iminediate since

w (X*, X) D w (X*, M-M)

Sa => 3a, 5b => 3b, Sc => 3c if M is closed. Suppose

fLy Ex*: f*(ul/-x0y < r0.1 is w(X*,X)-locally (M-M)-equicon-

ti.-nuous. Since MCdomlf , we have M CZ f Y C- x *: f * (Y) -x y < r
0

hence Y �. X*: f(Y) -x ,,, < r is
O- -- 0 w(X*,X)/(M-�-4)-L-lccal1y

But M is closed, so w(X*,X)/(,' -M)

w (X IM - -M) .



5c => 5d => 5e => 5a. IT-mmediate.

5 => 6 if M closed. Suppose 5 holds. Define

L scan M = M+(--,-)-fm I where m E M. Clearly L isI0 0 -

closed since it is the si.Lm of the closed flat M and a

1-dirmensional. subspace; moreover affdomf is closed with

finite codimension in L since M is closed with finite

codimension in L. Now 5 Implies (since M is closed) that

3 and hence 2a holds for *('L*) and M; thus 2a also holds

for *(f*) in L. But then 5 holds for L replacing M, that

is fyc-x*: f*'%%-)-x 'V < is w(X*,X)-local1y L-equicontinuous,
0 0

hence w(X*,X)/!�--local'v L-equicontinuous. Since L-equi-

continuity implies w(X*,TL.1-cor,1.Pactness and w(X*,L

w(X*,X)/L"- by P-rop-osition 7.2 (L is closed), and L M

6 follows.

6 => 5 i-JE M closed and has its mackey topology. As

in 5 => 6, define L = span M = .1 (M"-), a closed subspace.

If the level sets iy EX*: f*(y)-x v < r ) are w'X*,X)/L-"-
0 0

locality compact, they are w(X*,X)/(M-M) -locally compact

since L:)M and hence wk1X*,L):) w(X*,M). But M-M has its

mackey topology, so w(X*,X)/(M-_'..1) 1. -local compactness is

equivalent to w(X*,X)-1oca1 (M-11)-equicontinuity and 5

fo 1 lows.

6 => 7. Trivial since local compactness implies

local boundedness.
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7 => 6 if M closed and barrelled. In this case

I L .1.
w (X*,X) /M = w(X*, (M )) since M is closed and

.L L -boundedness is equivalent to compactness

w(X*/M (-M'L) ) t-

since M is barrelled.
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9. Determining continuity points

In Theorem 8.1 we have given several conditions which

characterize when a convex function f: X - IR has relative

continuity points, or equivalently when riepif 17- 0. In

this section we characterize those points at which f is

relatively continuous assuming that f has such points.

9.1 Theoremn. Let X be a HLCS, f: X - �R convex. Assume

riepif 71 A-hen is continuous relative to aff domf

on rcordomfc, and the following are equivalent for a point

x0 E X:

1. f(-) is relatively continuous at x 0 E domf

2. x 0 E rcordomf

3. do_-ti_-'::-x absorbs x domf0 0

4. Wxedomf, 3E: > 0 st (1+F-)x 0- Fx E domf

5 [do-.--if -x C [dormf -x Ex*: y constant on donfl
0 0

6. fdomir-x is a subs-oace0

7. fy EX*: (f*),,.(Y)-x 0y < 01 is a subsDace

8. x- C-domf, and lrlyEx*: f*(Y)-x Y < rl is a subspace
0 0

f or some r > -f(x 0)

�f(x0 ) and (3f(x 0 )). is a subspace

10. �f(x 01 ) is nonempty and w(X*,a`Lfdomf-x 0) -compact.

Proof. 1 <=> 2. Standard in the literature.
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2 <=> 3 <=> 4. Definition of relative core (relative

algebraic interior).

2 <=> 5. Let C = doml-x 0 ; C is convex and has nonempty

relative interior. Hence by the Hahn-Banach separation and

'extension theorem s, 0 f riC if and only if 3 y (- X* such

that y is not constant on arElf-C = affdo-mf-x0 and

sup <xy> < 0; equivalently, ye C [domf-x0 and
XEC
y CL (dom--;,=-x 01

<=> 6. I -rmmed ia t- e.

6 <=> 7. {v E x*: (f (y) -x0Y < 0}

= Ty E X*- sup <XV>-<x Y> < 01
0

xEdo----�* (-f

= [dom* -x0

Now dom* (--F*) C cldo7mfl, since Ikf + 6c Ido--,nf is a

convex 1sc fun-3tion dominated by f and hence

+ 6 < 04 course, *(f*) < f socldo-mf - L --

do--,nf C dom* (f *) . Thus

domf-x C- dorn,*(f*jl-x Ccldom-f-x
0 0 0

40 and so

0 0 D [cldoimf�-x_x0 -dom.* -x 1 0j

But [do-mf-x0 [cldo-m-:"-x0 so [dom-E-x 01

[does* (f *) -X y E X*: (f (ly) -x v < 0 1and 6 <=> 7
0 0

holds'.



7 <=> 8. Suppose x 0 E do-..q'L and r > -f (x 0 Then

TYE X*: f*(Y)-x 0Y < r) contains an element y 0 and has

recession,,given by

[YE X*: f*(Y)-x 0y < r 1,, = TY C- X*: f (y0+ty)-<x o"Yo +ty><r Vt>Ol

f* (Y +tv) -f* (y f*(Y )-r-x Y0 0 0 0. 0
[YE X*: sup [�� -- - I /, x Y I

t t 0
t>0

f*(Y0+ty)-f*(y 0)
{Y 6 X*: sup x Y}

t>O 0

TYE X*: (f (Y) < x 0Y}-

Thus 7 <=> 8 holds.

7 <=> 9. This is a special case of 7 <=> 8, since

(x {y E X*: f * (Y) -x y < (X and ; f (x --, 0 =>
0 0 0 0

x E domf.

9 => 10. Let M = a'I':j---dom`L-x 0.1 the subspace parallel
I N I

to affdomf. By Theorem 8.1, 3f(xo TYE X*: '*(Y)-x 0Y<-f(xc,

is w(X*,M)-locally cormpact: equivalently ;f(x )/M, is0

w(X*/M'LM) locally-compact. But we have show-ri in 7 <=> 8

and 6 <=> 7 tha+-

�f (IX0 Ty X*: (f (y) -x0Y < 0 [d----.n.'L-x0

But then 9 implies "z(x d 0 7". - x M so
0 0

(x ) /M,) 3 f (x 101',- hence by Lemma 1.5
0 0

A.
9f (x ) /M is actually -com-act and hence 10 follows.

0

10 => 9. Immediate.



III. Duality Approach to Optimization

Abstract. The duality approach to solving convex optLni-

zation problems is stud-Led in detail using tools in convex

analvsis and the theory o--, conjugate functions. Conditions

for the duality for-.malism to hold are developed which

require that the optimal value of the original problem

vary continuously with respect- to perturba-lt--ions in the

constraints only along feasible directions; this is

SU1f4 to in-ply existence for the dual problem and

no dualitv aan. These conditions are also posed asI -

certain local compactness requirements on the dual

-C 4.Leas-Lbility set, based on a characterization of locally

compact convex sees in locally convex spaces in terms of

nonerapty relative interiors of the corresponding polar

sets.
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1. Introduction

--the idea of duality theory for solving optimization

problers is to transform. the original problem,. into a 'dual"

Problem which is easier to solve and which has the same

value as the original nroblem.+ Constructina the dual

solution corresponds to solvinc a "maximurn principle"

for the problem.. This dual approach is especially use-

SOJV4-1ul for nq. prol_-Ilemts �-,_ithl di-If -icult irplic-it constraints

anc! costs (e.q. state constraints in ootiral control

problems) , for uhich t-he constraints on the dual problem.

are r-,uch s-i-.,.D'Ler (oniv explicit "control" constraints).

-or.eover the dual solutions have a valuable sens"-ivitv

interiDretation: the dual solution set is Precisely �Che

subgradient of the chance in nininum cost as a function

of perturbations in hte "inplicit" constraints and costs.

Previous results for establishing the validity of

the duality formalis-r, at leas-1Z in the in-Ifinite-dirensional

case, generally require t-he existence of a feasible

interior point (`!-',uhn--_uc!<er` noint) :`_or the irmlicit

constraint se'L,--. This requirement is restric-C_ ive and

+P-asic references are FP731, r7-761. A ro-e elerenl-arv

Treference 4�s 1168, C'inaoters 7-S]
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dif'-ficult to verilfy. Rockafellar [R731 has relaxed this

to require only c-ontinuity o-'r the optimal value function.

In this chapter we investigate the duality approach in

detail and develo3D weaker conditions which recTuire ithat

the optiraal value of the minimization probler varies

continuously with respec-t- to Perturbations in the i-ITDlicit

constraints on1v alone -Feasible direc-'%----i,--)--,,,s (that is, we

rec7u-ire relative continuity o,-;: 41.--he c7:-�-tiiral ',.'alue function);

-1--his is su-f'----1cient to i,-niv existence for th.e Oual ,Drolnlem

and no dualit--,- cran. !!oreover w-e pose the conditions in

terms of�::' cer-;---a-in local correctness on the
-. 0 1blased on the results of Chapter !I

dual feas4l-ilitv set,

character-izinc- ---he duality, 'hetween rela-ive continuitv

-points and local corPactness.

To indicate the scope of our results let us consider

the Lagrangian formulation of nonlinear proararrinq problerls

with generalized constraints. Let U, "". 1--,�e norTned spaces

and consider the nro'rlem

P infif (U) : 71 E C' a (U) < 0
0

whe--e C is a convex suhset of 17, fff: C - R is conve,),.-,

and r-: C is c,-nlrpx in t�,,e sen!!zE-, tnpt

(tu + (1-t) < t'�J; (U, (U-)) r I C 'I"



..e are as.,,-ur-,,in_ k X has been given th-�2 martial

order-inc induced hA, a none.-Ipty closed convex cone 0 of

$$positive vectors"; we write > X to r-ean x2 2

The dual prober corresponeinq to P. -is well-knm!n to I-e

D 0 = su,,+ in-- [ ̀E ( U+ <Cr MI

U(- C

-,'---his -4'-ol1o-,.rs f7rom ec-uation (2. by tL nc.- L

0, and
0

f (U) -i u C (U) < :,C

F (u, x)

+co 0 e r- s e

e a 1 s o r ea r;' th a t i t -i ss s e -t- or e

P0 n -.i:: S u -2 ( U

u y

sac in--F (u
0

u

where i.,,e have clefined the L'aq-ranqian, -;;:,u--ict---ic)n. II)v
48

C

A, ( U fU) - < (U) U

-4= 11 V

in II-Iein analyzinc t -p r c'-, e-

J-am-il- o--�7 mercury



W in f: f (u) u C f, --;) <

Tt tZhen follows tha' -7,ia, nro�,!e- is Dreciselv the

second ceniuc7ate of P evaluated at 0: D *(P*)(0).
0

Moreover if there is no duali- cap (Po = D then the
0

dual solution set is the suh-gradien":_ ;P(O) of

at 0. `Eol low-inc: s--ari zes t1he duali t-l?

results for t'--.,-is 7,_ro.-Ie.7

--heorer,. Assure P _S ni +-e. mhe 'ollovrinc are

ec.-�_! ivalent:

1) P D ai,-' so -ns
o 0

2 ;P(O�J

/U)

_<g >S D 4n3
o

'16C

4 3 > 0 r > 0 St flkuli >P �.:henever
< C (U) < x.

'k C, ;:-'! - f -1-

A

If 1) is true then u a solution for P 0 U E C

e 4g(u) < 0, and ther s a s a t i s -f, i i n a

A A(U) + <g (U)I > U U
I ,2 > - (

in �-7�jic�j case ce-nier�entar- s�,-�-ness hol0s, J e.

A>
0, and, 3-



Proof. '--Phis follows directIv _frorm Theorem. 2A with F

de-Fined hv (1). A

We remark here that criterion 4) is necessary and

sufficient for the dualitv result 1) to hold, and it is

critical in determining home strong a norn to use on the

perturbation space X (el-uivaIe.-.t1v, how large a dual

space X* is required in fo-_ru1a-;I.-__ina a uell-posed dual

problem-).

The most familiar assurz-�tion which is raCe to

insure that the dualit-v results of Vneorer 1.1 hold is

the existence o-f a Fuhn Tuc':,-.er --oint:

31T E C st -q (U) C int r)

(see Corollarv 3.2). This is a very strong requirement

and again is of-,Ler. critical in determinina what topology

to use on the Perturbation soace X. Store crenerally, He

need only -require that P(.) is continuous at 0

(Theorer- 3.1). Rochafellar has Presented the following

result [R731: if U is the norred dual of a Banach space 17,

if X is a Banach space, if a is lower sericontinuous

in 'Che sense that

e pig U, X) : C� (U) < "-:"I



is closed in U x X (e.a. a is continuous) then

t'he duality results of --'.-.eore-- 1.1 hold whenever

0 E core [g (C) +Q1

!--,i fact, it. then follows -t-hLat P(-) is continuous at 0.

The followina theorem relaxes this result to relative

continuit-v and also -_ro-:.,-_i6Ps a 1,4.ual characterization in

te=s of local co-pact-ness rec-u-ire-lents xahich. are

generall,,,, easier to

1.2 Theo-ren. Ass=. -e < U is t1ne nor-,ed dual

o.f a normed space 1.�, is a Panac"i snace; e,,Dicr is

C�_Osed in U x X. '-,Haven the _folllowinc are eQuivalent:

1) af-,r ra (C) +0] s closely-; and 0 E rcor [cr (C) +01

or e,,7L1iva1ent1-

v u E c, V x > a (u) 3 �_- > 0 and

u g- C St c (U x < 0.

2 Q, n g (c) is a S1_-_'-sz)ace kl; and

there is an e > 0, an x 1 E X, an rE R such

.A-

fv E O' n-,P; Sun[,:_(u)+C-(U),vU%7j > r isthat L

< UE C

noner-,,,P and /-loca-11,,, b o un Ule d

-F e i th. e r ot Ili e a�'- o ve i c Id t h e n is relatively
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continuous at 0 and hence T-heoren 1.1.1) holds.

Moreover the dual solutions have the sensitivity inter-

pretation

P'(O;x) = max'<xy>: y solves DOI

where the maxinum, is attained and P' (0; denotes the

directional derivative of= the ontimal value function

P(-) evaluated at 0.

Proof. This follows directi-v `:ror. Theorem 3.6 -uhere

dom P = g(C)+Q and Su-jfur+q(x)vl
UEC

< 01 Q_ g(c)-.y X*: (0,Y)
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2. Problem -Formulation

In this section we surnarize the duality forr7ulation.

of optiriizat-ion problems. Let U be a HLCS of controls;

X a HIICS of states; u - Lu + x0 an affine, map representing

the system equations, where x. C and T - IU-. - 'X' is

linear and continuous; F: U x X T a cost -E'unction.

We consider the r4 nimizal_:ion ;:)ro.r)le-m

-P0= -in:'! F(uLu+x0
U f.

i-or which f-casibi'Lit-v constraints are represented '.nv the

rec�uireren.-t- +_-Hat (u,,-,,,u+>-,0) E do-r-T. Of course? there are

rL-,.an-,,, wavs. o-' -E--o_=,,u_!a-1'.inrT a giv'e-n optimization p-roh-lem, in

the form (1) by choosinq di-f'-ferent spaces UX and maps

LF; in ceneral t.--e idea is put explicit, easil-v

characterized cost-s and constraints into the "cc..trol"

costs on U and tzo put difficult implicit constraints

and costs into the "state" part of the cost where a

Lagrange nultinl-Ler reoresentat-ion can be �verv use-Ful in

transfor-,iina -irplicil _" constraints to explicit constraints.

The dual variables, or mmllt i p I iers be in X*, and the

dual problem, is an opti.-Inization in

In order 'o 'ro=-1a-e 'he dual prob`ei-� �-,,e co-.s;-1er

a familv of �-,ertur--_-""' nrohle-..s



P(x) = inf F(uLu+x) (2)
UE U

where x E X. Note that if F: U x X is convex then

P: X is convex; however F 1sc does not irply that

P is 1sc. Of course P P(x 0 �-7e calculate the con-

jugate function cf= P:

P*(y) sup[<xy>-P(x)J sup[<xy>-F(uLu+i:)]
X urx

F * (-L *v, v) . (3)

Th.e dual problem of PC) = P(x is given b--,., the second
0

conjugate of P evaluated at x 0, i.e.

D )kx sun r<x -v>-F* (-L*vv) (4)0 0

The feasibili tv set- _`�or the dual problem is just-

dor,.P* = fy E (-L*-,Iy) E dor,-.F*_'r. Vi-e ir-j-nedia-It-ely have

p P(X > D 0 (P 0 (5)

,-�oreove_-, si.nce th-e orimal orobler, 'P'0 is an _infirum,

and the dua'L prcbler-. D 0 is a supremum, and P > D

4f A A
�-,,e see that U v E X* salis-Y

A A

F*(-Lu, T u+,. 0 >

_hn P D (assamirm P E
40 0 0 0



optimal for P, A is optimal for D. T.'aus, the existencey

of a "' E X* satis-Eving (6) is a su'l-ZE-icient condition --1:70r

optimality of a control Au E U; �-.,e shall be interested in

4conditions under -,.7hich (6 Ls also necessary. It is also
clear that arv 'dual control" y E X* provides a lower

I -

bound f-or the original Drob.'em: P 0 > <x 0

for every E X*

The duality an-,-)roach -:L--o oztimiza'Lion problems P
0

is essentiallv'to varv -%'--he constraints sligh.tlv as in the

certurbed -j-1-chlem P(x) and see ho-.; the rinir,= cost
- -hat F is convex,

varies accord',41-nclv. In the c;,-se t

P0= D 0 or no "dualitv ca-," ...cans tha-�- the perturbed
3' -he s'ronaer

=nli-um cost- ::_'unc-�-ion is lSc a,"-. -X0. I-

_s=�C,,U4 remen' -ha- t-- chanue in rminim= cost eoes not drop

of-f too sharply with respect -:,.--o perturbations in title con-

straints, i.e. that the directional deri�,,ative P'(x
0

is bounded below on a neich.1-orhood or- oonds to

t.he situation that P D and the dual Drohlem D
0 0 0

has soll u-Cions, so tha-4C. (6) becomes a necessary and

Isuf_":icien-1_-- condition -for o:�)tiralitv o-f- a contro-1 U"'.

turns out that the solutions o_` D are
0 0 0

Precisely tiie elements of so that c�uai
0

s c 1 u t i o 1-1 s h a v e a s e n s -; t i v in t- p r e `C a. i o r. a s th e s u 1)

gra-clien-t-s o-;:7 the ciiance in _47um cog t with resoec-iZ-



too

to the chance in constraints.

Be"L:ore statina Ene above remarks in a urecise wav

we cefine the HamiltonJ..an and Lagrangian functions

associated with the problem P 0 . Vale deno te by F U

the fanct-ional F (u, - x - F( u, x) : X for u E U.

The Hamiltonian, _funct-ion II: U x X* is defined by

�-I(Uyll = sup [<x,%r>-F(u,:�)) = F M . (7)
U

X

2.1 Proz-,osition The 1.7ar7ilt-onian. I sat-isfies:

IL X)
U

2) ( * ": �_ ) * O") (v)
U u U

3)
u

Moreaver is convex a---d i.7*-lsc X* R; 1 I V)

is concave U if F is convex; i-f -,(u,-) is convex,

proner, and Isc then is conca-,,7e for every v iff

F is convex.

P-ror'-f. T-he eaualities are sIC-raiaht-forward calculations.

(u, is convex and isc since T S
U

s-'L'-raiahtfon:ard to shon.: th.at is ccn7.,ex

F(-) _J s c r-)e 0 n th e_ o e r h a n d i r and
U

is concave ror every EX*, then
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F (u, x) (F *H (x) sup y) is the
u U

Y
sunremum of the convex functionals 'kux) <x,'v> - H(Ulv)

and hence is convex.

The Lag.--angian function Z: U x X* R is defined hy

Z(uy) = in-_E[.',:(uLu+x 0 +Y.)-<XV>,l
X

= < Lu+:-c v> F *(v) (8)

<T. U + -, > (U ,

0

2 2 Pronosi-_.�Ion The _Ta,-.ranc�ian satis"'Ji es

in-F ',.(uy) = <x F
U

2 D (x Sur) -inf

Y u

CLU+X +X)3 -'ZU (F u

4 P P(x inf sup f F F
0 0 u

U V

-for every u EU.

.�loreover Z (u, is convex and -,-7*-Zsc T� for everv

U IT; XI i s c o n,,r e x is convex; if

F f o r e v e _-v u t h e n is con%-e;: i-f-f

s c o nv e;%
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Proof r-Lhe Z"irst eaualitv 1) is direct calcination; 2) then

follo-..is from. 1) and (4). Equaltiv 3) is i,-,7,e'-',-iate Jffrom (8)

4) then follows fron 3) assurinc that *(F F TheU U

final rerzr!--.s follow fror Pro-osition 2.1 an�! '�_.he _-Icact that

Z(uy) = <Lu+x o fly> - F-(UY)

'I"hus f_-om, Pro-cosi-ticn 2.2 we see �_-'_-Le c"lualitv

theo--?-,,r hase6, on conjugat-e functZ.-Jons includes the La7ranaian.

for-.ulaticn of dualit-v ---or in-f-sup problems. For, qiven a

Lagrangian function Tj X X* We can def;ne

F: U Z b- v (u, x) s u__ r < > U, X)
u

v

s o a -tZ

f 'S u (U, 0)
0

U Y

D s i: z) i n f ".,,'uv) sun
U

h c i --f-i t s _J mo. th e c o j u q a t eduali ty frame,�-,,ork.

For the ,7e assur-e as hefore are

"-LCS' s; L: U X s linear and continuous; _x0E X;
F: U x X T7 '_ - L. 1� L I

.. e "-cfire the "ar-ily of optirization Prcblems

in 17 (u , L u -;--.x) P p r < > - F L
U Y

We sha 11, especially -:_,-.tereste,,4 j.n case

th a t- F I S co -n -1-e anc� 'lence 11 is conve:-:.

2 . .3 Pro_,Ics� 1zIIIDn (no -:TaT,) Elect



p Nx > Sup '(u,,.,) > D
0 Z- ,�

u 0

inf sup z u (p
U v 0) (9)

If P(-) is conve��: and D is -feasible, then the -followinq

are eauivaieznt:

P0 0

2) 1PE sc: t e. pr, > -D (x 0
0

3'. s"Un
>

F in

+x 0
0

s e i: 7 z:7 a n d a e e,: i va, c-n 0 i F IF o r
U

u

4 has a s::iddle -,.,-aluc-,, i.e.

5- (u s u n z -, I - 11.

L A- , (U,

u u

Proof The proof, Js 4--e-Jate since P and
0 0

e.-, e n t 4 ) f:7 0 1 1 os f r o r.
0 O 2.2

a-.16, (9) O

2 . "t T`Ileorer- 4 dual solutinnf-I

�r 4 -,min n t



J) D a, n,--! D has soluticns
0 0 0

2) 3 0

F* *A
3) 3 6 Y- s -- 1 1 = <x V>

0 0

4) 3YA E Y s t P- 0= in A"

u

T- r is con-,r--;,-, 'L-hen eacln- c-f' tire a!-,ove s e(iu4 -vra.'ent to

3G-nljhci St -41--z (x >

6 1 J f P >

x-*0

p -P0

ir. Ln.L

F (u L ux-0+t,-�:)0
T-1 n zi ` >

t
r. bh dt->o u rc 1

i fz:� P is conve,-.: and is a no=e--', space, -Haven the

a'.-)o-,,e are ec:uiva--'Len4"-- to:

E: > > 0 s F Lu+x >
0

9) 3 E: > 0 7 > c, u < E:, o 3uc-u st

T,; )
0

A
cr--��over, i" 1) i-, true -v snlv-2s E T-)



A.
and u is a so-lut-ion for P -i-f f t';-,cre is a '�%f satisfyi.-rig

0

a nv o f the conditic.-is -1 -3' ) 11-elow. -- !-,.e followinc,

statenents are ecuivalent-:

A, A.
11) u solves P D , a-,i-'- P Dof 0 0 0

(A N A *A A
21) F ULU+X <X 001"11> F*(-L yry)

3') (-T *A

These irpiv, and are to iff is proper

co 171. V C'- csc X - R f c eve-,-.- �.i e `ollowinr-, ecuivalent

s t-;z t e r� e n s

A A (IN-1, ,41) 0 E an-, U i.e. (AA

s a s a1c'- cd -1 e p o i o f that is
,I < 'or everv u

V) < (u V E.

A (A) VL*' E ; (-TT (U') i.e.
0 U y

A A

so-l-,,,es -in-c -<T.I_I+X v>j and u solves

U ,A A

in f +<uL*v>'.t
u

A
T ion oc DP-- 30,ff. 'L) => 2) -et he a so!,,-:L- L 0 0

T,* (A <
T ' A >.L-qen 0 < of- -Eence 0

r, d )S4 1-4 -n 7 T.'.! > ve E P, Pt, 0
3) n Oc

-,.e d a i3 de
0



3) => 4) => 1) !=ediate -from (9).

If P(-) is convex and P(x 0) E Rr Men 1) and 4)-9)

are all equivalent by Theorer, !I.3.2. The equivalence

of ll)-5') _`ollows fro-7- the de-'Hini-tions and

Proposition 2.3. t3

Rerark. In 41.--he-case that 'X, is a no=ed space, condition 8)

of: r'Cheore-m 2.4 prmrides a necessarv and suffficient. characteri-

zation for w-'.en dual solutions exist (-,.:-;th no dualit-v Crap)

th.at shoves e:-:z�licitlv how their existence depends on what

topology is u-sed for the space of perturbations. in

general the i�"-_ea is to talke a no= as weak as --)oss-ible

while still condition 8) , so that the dual

problem. is fornulat-ed in as nice a space as Possible.

For example, In or)-L.-imal control nroblers it is ��:ell knoi-m

that when there are no state constraintsperl--urba',,---ions can

be taken in e.g. an TL, no= to set dual solutions v (and
2

I
--ostate-T*V) in L v,,hereas the presence of state constraints

21

requires perturbations in a uni-for= norn, with dual

options onl,., existina in a soace of reasures.

It is a-Iften useful to consider Perturbations on the

dual prohler.; t--,he dual-it%,, results for ontirization can
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then be applied to the dual family of perturhee problems.

No-., the dual problem, D 0 is

-D inf [F*(-L*vv)-<x V>I.
0 0yex*

In analogy Keith (2) �-:e define Perturbations on the dual

p-roblen by

D ( v _J n f 17 VE-U*. (10)
Vex* all

'.-�hus D( is a convex map U* T�, and -D 0 D'( O'll

It is -are- to calculate

(*D) sun [ <uT�->-D (-%,) 'j

(u, Lu-x

Thus the "dual of the dual" is

D) * (0) = J n (u,."U+X 0).
UEU

In particular, if F then the "dual of tL- ',-.e dual"

is aqain the pri-ral, i.e. dor-..*D is the feasibility set

I.or P 0 and -(*D)*k'O) 710 "'ore aene.-allv, �,-7e have

P 0 = P (X0) > " J-1 ) > D0 =_ -,r) (0) E * (P (12)



3. Dualitv "Cheorers for optimization problens

'21hroughoult: this section it is assumed that UX are

HLCS'S; L: U X is -1inear and continuous; x 0 E X; and

F: U x X - -R. Again, P(x) = inf F(uLu+x 0 +X), Po = P(x 0
U

V>-r, *D *(P*)(x SUO [<x . . (-L',,,rv) I. !'e shal I Ine
0 O.-

vk,),

interested in conditions under whicjlh O'P(x for "..hen
0

there is no duali-L--v c-az) and there are solutions --f"or D
0

T -.-.ese conditicns wil-I be cond4.tions which -insure -t'nat

P1.1 is relativelv cont-inuous wi th res-ec- to

Caffrdom P, 'L---hat is affdo- P is con4U-inucus at x
.C O ed loccio,-r f-fdom P. T-Te t'--Ier,. ha,-�.,e

-.. e lrlal-lc I.- o n za

P (x

0 0

the solution set for D is preciselv 'OP(x
0 0

pi (x x <XV>.
0

YE P (x

This !ast- result pro-vi--�es a very important sensittivitv

interpretation -'For t,-le -dual solutions, in terms of the

rat-e o-' chance in .--ini--um cost with rF�spe---- to T-erturbations

in "state" cons'Crai.nts -:in,,-:- costs. o r c.- r ,, -2

h o I s t h e n e e 2 . q v k -- s n c e s s , i r i n (I

sa c i e n t c c n C-1, o n s o, r E t 0 S O e



3.1 'I'heorer.. Ass u:--e P 4.-s convex (e.q. r is convex).

if P(-) is bounded above on a subset C 07-F y,,r ,�ihere

x0E riC and affC is closed -,,ith finite codimension in

an airline suhspace -N! containing a.ff"do7. p? then (1) 'molds.

Proo:ff. From Theoren. 11.8.1, II-,) => 2b), �..?e k1now that P(-)

is relatively continuous at x 0. O

3. 2 Col-ollarv (_T',uhn-T-i:;-c!-Ier -point). Assuoie P(-) is

convex (e.q. F is convex). !-I there exists a u- EU

s u c: th a TF \1 is boun-1:1--e, alnove on a su!-)sek-_ C of X,
T, 4-riC an_-3 a"EC -:s clo-sed -with -5ini+-e

where LI - - -
0

codirens-Lon in an af- f: i n e subs;.Dace ,'I containing affOorn- P,

t-hen (1) hol"Is. Tn �)articular, if therf- is a UEU such

1-hat F(U,-) 41-s bounded albove on a neiahlclor!7nod of L;E+x

then (1) holds.

Proof. Clearly P(z) = inf F(uLu+x) < F(U-,L�E+x), so
U

Theorer II.8.1 applies.

The Kuhn-Tucker condition of Corolla-v- 3.2 is the nost
widel- used assu,--npt- 4-1 on :ffor duali'[--y 1--761. -he d-' -;:4'icu1-I-v

I L Z" - - _L ;-

in applvina the mo-_re c-,eneral -- '--.eorer 3.1 is that, in

cases �-;he.-e Plk-) is not actualiv continuous but on1v

relatively continuovs' It IS usualiv d4;_ -f f: 41- c u 1 t t o

dete="Ine af�_-Fdon P. Of cou-,se, do- P = U
UEU



tic

but this rav not be easv to calculate. T-?e shall use

Theorem II.S.1 to provide dual conpactness conditions which

insure that P(-) is relat--ivel'y continuous at x

rJet K be a convex balanced w(U.U*)-comnact sub-

01 Tset of U; eauivalently, we could take vhere 11

is a convex balanced 7..(U*,UI-O-neic.-.horhood in Ly*.

Define the -function g: X* b,7

inf,0z (v-L*vv). (2)
V

that cT is a 1-ind of' "sr-.oothin7.' off" ----,*(v)

F* (-L*v,,v) which, is eve_?-IV,,here majorIzed 71*. The

reason vh-v -e need such a c is that r is not

necessaril'y 'sc, w'-n-ich properi_-v is for applving

con-Dactness conditions on the level sets of however

is autoratically X'.sc and *g dominates P, �..,hile at the

same tine *q, approx-inates P.

3. 3 Ler=a. Define as in (2). Then

q) (x ) < in -f [F ( u , L u + x) + s uo <UV>l

U VrE K

then P (x) < (*c7) (x) -for every x E d-o:7 P. r e o v e r

don. *c,, D U [dc-T- F (u, -Luj
uEspan K

Proof. By dc`ini tion O-f- C', we have (*cT)

Sup sup 0[<Y.,,,,>-F* (v-L*yv) 'j, o -.., f c r o v e ruU ai d



v EY, F*(V-L*17,v) > <UV-L*v> + <Lu+X,,v> - F(ULu+�:)

<UV> + <xy> F(ULu+x) h,7 definition of P*. I I en c e

for every uE U,

(*g)(.%-) < sup [F(uLu+%)-<uv>l
VEK

F(uLu+x) + SUD0 <uv>
%, E - -_, "

F(ULu+;,:) + sun < U

there the last equalitv since K is balanced.

Thus �-.-e have ;Dro%,ed the first inecual-itv of thie _!e7-�na.

Now suz)cose F (F*) ane. x rt dom P. ,,i n c -e- 1`0

is a m(U*,U)-O-ne4cThborh.-_od "n-a-t,7e

(*cj) (x) = su-3 tun
v Y

> lim sun sup [<xv>-F*(v-L*,vv)]
VC)

_J m i n -f`7 i n IE [ F(v- L * Y PY) < X->

where the lin. in.-1:7 is ta:-,en in --'--le
V-*O

Define h(v) = in' [F* (V-T > so t!"_ at

> - 1--i'm inf h(v). �.:o�-7 (*I,.) (u)

su-- sup [<u,-,r>-F* V

V �j

F (u, Lu+x). I Ie n c cP(x) <rean.s that
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inf ll'(uLu+x) < +-, i.e. *h so that we can replace
u

thle lim inf bv the secon-14-1 con-;uqate:

cg) (x) > im in f1f h (v) h) (0)
V-*-O

-(UTU+X)inf
u

T h e 1 a s t, s t a t e m e n-J ne 1 e numa follo-,.,-s from it-he

first ineauali+-y in the ler-,ma. For

x dar-' F -Lu -c f 3 u S (U, T.U+X) < +co,
u(span

i f='-f: 3 u st sup < and F(u,--,.u+x) < ince
T�O

v

0 -- (UTl,+X) + SU--(1:0)) --r 3 u st <u,%r> < + and
VE I,

this ir-!.--I-;es tIat- x E -o7 Hence dom. *cT

[dor, F(u,-)-Lu.]. 7..'iote that (:7,om P is c;i-v-en hy
u E s p an K

U F C u, - ) -Lu
Cu

3. 4 Theorer. Assur-e F = *f\F*) , P < +-J. and there is a

--r(u U*) -=--�Dact conve;,: sub-set. of: U such t'-nat-

span K D U ,-",cm F X) lcun-oose
XEY

v < 01 is suhsnace0

2) an E

7r U) Q -n e o c)

an r Such t-Inat
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< > <in-F F* (V-L*yJ1_ r - I s

none.,m-,., and local!%, -L"_equi continuous

the

Th.en a_-Hdom P is closed, P(-) affdom P is cont-i.-nuous

at x for the induced tonolog�? on affdonP , and (1) holds.
0

7-TProof .. e rav assume t11-a-l�_- _K is balanced and contains

_0 0 0L-,v replac_4=7 co !,)a! (COUNT (Ro n - K 0 0 _'T 11 -
C,, n I do'-1 CT

Define as J- T`p first snow t1iat o,

o.- r rdo- F ul U
u sn, a. n

do--- *cr by Ler-7--ia 3.3. T-,,,:t also by Ler-va _3.3 i-e havc

(x); < (*c) .'or e-t-rer- (since Oor 'D C: Cto:7 *C-)

so dom P :D Clo-; *c and hence c2ori P dor, *r,-.

This also i-olies c.1 dom t1dor- *Cr, since

C1 (P*) = C1 (�O:�n P (no -IC--e

P* since P* has a nonemptv level set by hypothesis 2)).

Hence b-7 the definition of recession 'ffunctions ;-:e

have (P*)c;. c�c. = ((*c-,)*) s-raicht-For---rard calculation

u s i nc.7 P r o TD o s i -t i o n 1,23 a n CIL t:F a c t t h a t Pv)

F* (-11*vv) -vields

(P

< 01 is a01
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sul�s;Dace, hence -L,.,

q - x and
0 0

closed a-Ef ine set c o n -Cai.---ing domaBut h-vz)o-thesis 2)

then implies that rieni*- 0 and af-fdor q is closed
with, finite codir-,ension in x + -L'T

0 �-, bv Theore", IT-8.1.

-0rem,;-er b�,, Theorem II.9.1, *c-(-) is actually relatively

continuous at x 7, Nor g - x I
0 0

CJL affdom *g Xo; since a -= f do r. *g is a closed suh-

set C.-ff X + cla--5:fdorn *c-, we nust ha-ve afrfdom *CT

claf-fdom *g. Vinally, Amoco P = dean *g and - < *cr,

P(-) is bounded a'--ove on- a relative neichbor'-Iood of7 x

and In-ence is rela-t-i-.-el,,, continuous a-L- x.. 0

T'e shall be inte--est-e- in t,,.To -%rerv usef`ul snecial

cases. One is when U is the dual of a no=ed space V,

and T�!e Put t'--.e -topolog-,, as the oricinal

t-opology on U; for then U* V and the entire space U

is the s-an of a w(U-,V)-compact convex set (namely the

unit ball in U) 'I'lence, i--F U where is a

no.-T--ed space, and 1-7 is conve;-c and, w(UxX, %7xx*) -ZSC,

then conditions 1) and 2) o.-;:-= --I--eorer-- 2.4 are automaticalIv

sufficient for (1) to hold.

T'he other case is X is a barrelled space, so

th.at interior condJA-tl ons to core conelitions for

closed sets (eamivaien��--!-, co-ractness cond-41tions reduce



to boundedness conditions in X*) For simolici tv w-e con-

sider onlv F-rechet. mDaces for v.-hich it is immediate that

all closed subspaces are barrelled.

3. 5 'heorem. Assum. e F (F*) ; P < --co;

.L 0 X is a Frechet

space or Bana-ch space; and there is a w(UU*)-coroact

convex set K in U such that span K D U dor F(-,x).

Then the follow-inq are equivalent:Z

1) af fdom P is closed; and x rcor dom P, or
T�l < =>

eauiralentlv F(u 0 +X 0+.

an d u, f- TJ- s t F (u, LuX-FX) <
J_ 0

2) fy E X*: (F*) < x V > < 0
0Ir - - is a

su!)sz:)ace 'IT-; and", there exists a P.(L!*,U)-C)-

neigh-borhood IT in U*, a n x1E X, an r R

such that Irly EX*: inf F*(v-L*-yrv)-<x,,y> < r
V 6 �.7

is nonermtv and w(X*,X)/M-local1y hounded.

I LI either of 'Che above holds, then P(-) � affdom P is

continuous at x 0 Lor the induced raetric topoloav on

affdor, P and (1) holds.

Proof Tle rst note that S4 nce span K- D U dom F xl

we have as in --heorem 3.4 t-hat- dom P dor *c-T anc!

(P*1gC",
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1) => 2) Wle show that a is relatively con-

tinuous at x 0 and 41.--.hen 2) fill ffoj_'Low. Z.Tow

dom P = dom *g, so x Ercordom P. Le�_ affdom P x
0 0

be the closed subspace Parallel to dom P, and define

h: II - 9: w, - *g (x +w) Since *cr is Zsc on h is

r on the barrelled space W. But 0 E care don h (in VI,

hence h is actually continuous at 0 (since v", is

barrelled) , or equivale:-itly *q is relatively continuous

at x0 Applying ""heorem 1I.9.1 we nor see that 'I is
.%-L . I -main - - J..

the sul.)space ; me re de- of 2) then fo 1 lovis -f rom

Theorem !I 1 sinc--,! g (y) F* I

A

2) => 1, '-.7ote that -Lill -is a Frechet space in t"ne

induced topology, so w(X*,X)/"_-lccaI lboundedness is

eq-u-ivalent- to i.7(X*,X)/.'I-1ocal co.-mactness. But now

we nay siply appl,,,- Theorem, 3.4 to get P(.) relatively

continuous at x 0 and affdom P close"; of course,

1) follows. C]

3. 6 Corollary. 1".ssu.7--e P < T' �-.-Iiere V is4- 0

a no=-ed space; 4;_s a Frec'--.--"--, space or Banach space;

F(-) is conve�: and ,?(Ux:�, Vx:--'*)---sc. 7'hen the following

are equivalent:

a_-F-Idor P �s c-losed; an-- x 0 E rcordor, P, or
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equivalentlv F(u 0 LU 0+x0+x) < +- => 3 E: > 0

and u 1 E U st F(u Lu1+X O_ EX,) <

X*; < 01 is a subspace M;
0

and there is an E > 0, an x 6 x an E R

such that X* i _n f- F * (v- L *v y) - < xv> < r

lvl<�-

is nonermtv and houn�'ied.

I_` either of`= t-he al�ove holds, +---'-,.en P(,) t a f -f'd o -m. P i s

continuous at x Cor the induced metric tocolocr,- on
0

af-;ffdon P and (1) , 1_,,o'ds.

-o !-�e the c'osed unit ball in U

a.'.: e 41 _L

the.n. 1" is --7(1UV11-co7,-ac-'_- anc� snan 1-1 = U. The corollary

then f'ollows --::,rom '-7heorem 33.5.

In the case that af'fdor. P is the entire space _X', ee

have the -following useful corollary. 717ote that

conditon 1) considerably Generalizes the Kuhn Tucker

comd,'i-t-ion of Corollar-T., 3.2.

3 7 Coroliar�_7. .7"ssu:-.e P < +-; V* -hiere V is
ZL- 0

a norred space; is a space? or Panach space;

TF is co-nvex anc7 Th�,n the f-ollo-u-ina

are equ;valent:

X0 E cordor 'F co-- [dom F(u,-)-Tu1
UC:



2) 'v E X*: V)-<X Y> < 01 = 10'�t - ' f - - L I;
0 -

and there is an E > 0, an x E X, an r1 E R

such that {y C X*: inf F* -<x Iy> < r
"V,,<E: 0

is noneripty and w(X*,X)-local1v bounded.

3) there is an > 0, an r E R such that

ly C X,*: inF 'P*(v-L*-,,,,v)-<x .%, > < r 1 is
IVI<E: a 0

noriempty and -bounOled.

Tf any of 'he above holds, then P(-) is continuous at

X and (1) holds.

Proof. Iric--.ediate fro;--,t Coroll;ary 3.6 with af-J"-do.-,LP = X.

';e car also appl-v these theorems to pert-urnations

on the dual problem, to get eN-4stenc---i of solutions to

the original -roblen P and no duality gap Po = D . Ast, 0 Z 0

an example, �,:e qive the dual version of Corollarv 3.6.

3.18 Co--rollarv. Assume P > -- ; U = V* where V is a
0

Frechet space or Banach space; X is a no=ed space; F(-)

is convex and '�,r(T-TxX' SU-Q-'-)oSe

(u (= U: F (U, Lu+x ) < 0 is a sub-saace -`-1, and 1:11, ere is ar.00 0 - t

E > 0 . an x an r such that

fUE U: in 11' F (u, Lu+x < 'r is nonemotv and
0

<

locally compact. -2 en n'0 D0 an,�� 7,0has solutions.

Proof. Apply Corollarv 3.6 -L-o th.e diual pro',--,le--. (.2.10)



IV. Minimum No---.-i and S�oline Problems and

a Separation Theorem

Abst-ract. Results in duality theory --fo-r opti-mization

prcblems are applied to -,,,iinimum norm and spline problems

and improve previous existence resul-IC-s, as well as

expressing +--'net in a duality 'Lr,--mewo--k. Related results

include cond'it"--ions for t-he s,,:n. of two closed convex sets

to be close'--' leading to an extended separation principle

for closed convex sets.
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1. Minimum norm extremals and -'the spline r)roblei-.

We apply our results on the relationship between

continuity points of convex functionals and locally equi-

continuous level sets of conjugate _`:unctionals to derive

a duality principle JEor r-Animu," norT-. problems. it is

well knmm , for exarmle, that in a norred space X. the

minkmuTm distance from a point- x 0 to a nonempt-,,, convex

set C is equal to the naxinuum of the distances from- the

point to the closed h--yperplanes separating the point and

the convex set C. I n o ther �.,orldds,

inf i XX 0 T-ax in Et` (::-X O)Y,
XEC VEP XEC

where B Cl.enotes -he closed unit ball in ane the

r.axLr.,,,_m on th.e PHS is attained by some AEB. 'This alsoY

characterizes the minimurm-norm solution: R�EC attains

A
the -infimum, on the L.-IS iff x_.X 0 is alicTned with some

A I A 1% %

yc-B, i.e. X_x (X-X )Y; and it is easy to see that
0 0

such solutions exist whenever C is closed and X is

either reflexive or the dual 01 a sepa-rable no=.ed space.

'-Te aenera 'lize these results tc include the spline oroblem

and also develop 7,u-_E.L_;.CLent conditions 11-or a solution to

the minimum nor-, prohlem, -to exist.

"le consider the follo,-ri-ric gene-a'izeCt s731inc,_

prober. Let UX. norr,.e(: linear spaces? a
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nonempty convex subset- of U, Ta hounIc",ed linear rap,

from U into X; then --for xE Xr Fk'x) is the, minirur-

norm problem

i n f u +
UEC

TI'7e consider perturhlalC_-ions in x, i.e. calculate t-he

conjugate o-ff P an�" develop a dual p robler * (P*)I (x)

"e then take nertu--l-;ations cn the Cual prohlem to, de-rive

existence co-n-d-itions for the c_-iginaai p-rch.l.-tc

.Lo calcu-Iate tZhe deal de-Eine f (u) (u)

anu q (x) the-7- P Y) = i n f u cr ('2u- + x) 7 n-7

U

just ---.is s-,.rport function o C a n,4 s
C

Jiust the i-nd-icator of 1--all B = f--,,EX*: <

hen--e P*(,.-) + sun u,-T*-,,-) + 6 (v)
B

liec

6. (y) inff (Tu)y. T-1).us, -IL-I edual problem,. is
U E (C'

(P W c; uo xv- Ikv) suo in-F 'Tu+x)v. Clea-r-lv
'It3 UECY -Z

P (x) > (P *) (:4 i t-h equal-4tv iff is lsc a-�_-- x.

T'e no,,,,, de'4ne perturl-ations on the dual prohlem...

T.'o-- each x let D I)e the ffunctional on U.*

C, I e_ n 1D V

D I'v) in`(:-:-v + suo
X.

Y v C _B UEC



O-'E course, :Eor v = 0 DX(v) i s i u s t thd e dual 'orobler-

(-,,.ith a change in sign to nake 0 convex):

D (0) (P*) (x) To calculate the conjucate of
X

perturbations on the dual problem, v.,e have

D ) (U) (u) + (g -iu+x) = 6 (U) + ',-U+,Xl
X C:L C

where the no-,-r. is �-,7eakly isc so c-,

Hence, the Cual of the dual is

D )*(O) inf ITu+xI.X ue CIC

which is again (7-4nuM primal problem PW f c

is closed. In ceneral we have

P(x) > -(*DX )*(O) > -D 1% (0) W

1-Te are no;-z read��7 to state the main results. 1-1'e

(::enote the null space of T. by 11 H T ({01), and for

rr > 0 we �-,-rite d(u,!') < rl B

where B is the ooen unit hall in

iheorem 1. Le' UX be norT-ed linear spaces, C a

nonemTDtv convex subset- of T a houn-,`ed linear map

.;_rose U into X. For x e X1, let P (x) 1-N e -IL--- -�-,-e r-inirurn-

norr prohler

0 P(x) = inf, �,,Tu-xl
UEC
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and consider the dual �Problern

*(P*) W = max inf (,-;..,U+X)Y.
vEB ukC

Then we alwavs have P (x) (P*) (x) where the naximization

in (P*) is attained bv soine A IE B. Moreo-t,,er 'U"' E C

So_e A
solves P W i f f thl e r e i s Y B for which

_ A
.Lu+XI in which case solves *(P*)(x).

Sui'_`cient conditions for P(.) to have rini7izin-_-r

solutions u EC are:

1) U is reflexive, C _Js closed, TU is closed.

2) C n L' 74 is a subsoace M

C3) is nonampt%, and t--7ea!:l%, locally bounded

;n U/M, Jfor some r > 0.

Before provinq�the theoreri, we make a few remarks

about the existence theorems. First, sor-te authors do

not assure that U is reflexive, but that X is

reflexive and ITI is finite dimensional. Flowever this

actually implies that U is reflexive, since U/N is

topologically isororphic to T-U, a closed subspace of X.

In -.-Eact, when. TU is closed we have U ref1e_-Ii't.,e iff

�.i and are refLlexir- iff and TU are reflexive,

and' t-he latter is certainly true if: and are

reflexi'%,'e.



Secondlv, we examine the cond;tion 3). BIr

r
CrNN /_M �-,-e of course rzean u+'! E UP Tz: u E C n II

It is straightfon-,iard to sho,,.,, th.at i-f CnNr s

locally bounded for some r > 0 suE-ficiently large so

that C r% Nr is nonermpty, then it is actually true

rthat C n N /M is locally bounded -for everv r > 0

(argue along the lines o_-F I.-P-roposition II.1.4). Thus

3) is reall%- equivalentC to

r
31) C n It.-I is weak,,., local!-,,, h1ounded in U/!!

for every r > 0. By wea��ly locally '--called in U/?'-- we

( r./ �,! ,mean locall-,, bounded in the t-oooloqv -,.7

there U/M. is a noted snace and is norm-conaruent

to (UP-1) (note that C n 7�.' 1 -i sclosed since C,,,,co

and 11 are closed). Since weak 4Z-oDolOg77 '.,7 ( U I -M

on the quotient narmed space U/M is the same as the

quotient- 1.-7(UJU*)/M of the weak IC-ozology i.,-(UU*) on U,

r
we see that C r) 11 /M, is weakly locally bounded in U/m

r
I f f C r) N, IS Wealrzlv local1v '.f- -equLcontinuous in U,

that is iff there is a finite sulhset- F of U* and a

c E C n �, Irsuch that Sup d(u,"!_) < +-,
0 Uf 1. -Tr 0n(C 0 F)

(we note that Co�_,'Ar is locally at

e ve rv Po int i �-ff i t i s a t a s in,7 I-,ooC01 as in

4D Proposition ii.1.4). Th-us 3) is e,7ui,_,-_-_!en-,L_ -L�-_o



E C n�,r3 finite F C X*, r > 0, c st

sup d(um) <
ufCnNrn(c + F)

0

and implies the existence o--;r such an -F f-or every
-;-- can also be shm-in that

0, c e C n NFinallv, il.-0

3") is also equivalent to

3"') there is a f-inite subsetZ F o::-: U* and a

c E C such that ever-v no=-con-veraent 'sequence0.

U. +,,Ii, or u. E C n (c + r) and ni. E 11, hasI 0 1

d( T-,i, 'L7) bouz-u--'ed.

C tr -sel' �-:eaklvThese are certainl,�, --rue if -s it -

1 o c a 1 1 y ho u n-c" e --:' o r " IT i s f i n i -I-- edi-.-ensional. And they

e 4 fC (I '11,rare certainly tru - is a c t --1 a 1 11-v 11'.7L-equicontinuous

r
(not just w(UU*) -locally so), e.g. if C r) is hounded

or C is bounded 0-- C is !! -equ-7continuous

(i.e. sup di(uM) < As in 3 ... �-.-e note that
uec

C n is M -equicon-Itinuous iff::7 every nor7--convergent

sequence x- . +TI Z- or x E Cand 7, E I'17 Inas d

bounded.

Proof of the theore-,. Ue I-E-irst notl-e -;,--hat-Ps a

finite, conv-ex, and norm-continuous --funct-ional on :,".

For, it is clearly convel--I� since C is cortex, T 1 S
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linear, an6 the no-= is cozivex; and i-f c 0 is anv element

o f C then

P W < l'I'C 01 + ]xi

and P(-) is bounded above bv a continuous function.

Thus we innediately have P(.-<) = *(P*) (x) E -D x (0), and

the subcradient ;s noneripty anI4 Vr (X*, X) -compact.

I -

But -IL--.he elements of- �P(x) a_-re just those ""EX* �-ihichY

attain su7Dreimum in supTx,.,--P*(-)1 *(P*)(x), so that

V
fP*) '4k- I (x) -::: -D_(0) Inas, sclut--ions v -his DI-oves the

f i -- s t z)a r t o f t h e `C_ h e o r e 7.,.

To oh"tain existence of solutions -for P (x) , we naist

shc-..., that x (0) :14 �J, --:=or 'ODx(0) is precisely the

solution set oF P. �-.-e shall actually sho-,;, that under

th-e condit-ions 1) "-.o 311 D is no--m continuous at 0

on a_`=fdcrID(-'J ML in TU*. "-,e Iffirst notle that D is

convex and �-7 (U* U) -lsc at 0 for every x E X; for, both

D (ON and (*D )*(O) are Dinched het-v.Teen the values
x

-P W and -*(P*) W , so b-.7 'ne, ecTuali tv of t1i

,,..e must have D (0) = (*D_) * (0) (In fffacIL:-, rore is true.
x �1.

f7 ,, e de -Iffine, a ne�,,, priMal probleriPv(x) = in,;;_:C,'Tu+xJ-uv)
UEC

we cet a dual prohie7- *(P and the sar-.e

arg=erit -,,-Ields D (v) = (*D f or e%,e r%- v E: E- X.
X
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Thus to show that 9 DX (0) is nonemptv, We must show that

(*D X)*(-) is relatively continuous at 0 in the norr,

IL-o;)oloqy (which is the m(U*,U) topology on U* ,Then IT

is reflexive), or equivalently, (by Theorem !I.3.2)

that the level sets of (*DX H-) have weakly localiv

bounded (equicont-inuous Bleakly bounded in a reflexive
-he quotient s ace where

Banach space) 4nace in t P

M {u: (*D ) (u) < 01 is recurred -,-.o be a subsoace.X 00
ITU+xl + M, and since (*D

IN (*D (U) = I I '-) isC X

convex and wea�:lv 1sc -..re have the eas,., calculation

.*D (C + t:--.) - * D (c
(*D (U) = SU-0 X 0 0 MU I + (U).

t>0 C=

Thus we require 0 C,, to be a subspace as in 3)

The level sets of (*D..) are precisel-,.,
h.

r
tu: (*D X. )(u) < rl = C r\ T (-x+rB) U.e. those u EC for

which '7,u is within r of -Y.), for r > 0. To insure

that we take r sufficiently larce so LI-hat the level set

40 is nonempty, ae take r > ;for anv c E c and
0

for convenience r > 1x'. Then the level set is contained

in C n T (2rB). �-or T has closed range, so there is

an E: su_-H iciently s;-all so that.

E: d (u < -ui < '__1d ( uNii)

(-'---his -erely states that U/N is topologically iso-r'lornthic



to TU under the raoning T as taken on U/-.:) But

this means that the se"L-- T_ i(2rB) is certainly contained

+ Jr.* ,,,,3r/---
in the set E B . Thus, it is sufficient to

require that C n '-.1 3r/F- have %,;eakly locallv bounded

image in U/M. llottinq that C r� N rP1. is weakly locally

bounded for every r > 0 i:E-f it -is locally bounded for

some r > J nf{t: C n 'T �7` -!,,,e have the cond-t4on 3)

or V).

nemarks. 1`ff U is not ref-lex.-ive, -it is still true that

P (,%) has a solution if_ the ot-her con-11-it-ions hol,_4 and

(C r) r
/:-I is none:ntpy and weakly locally compact in

for s-o.--e r > 10. OZE CCUrSe, compactness in a

nonre-flexive soace ma,! be dif=_Hicult to characterize.

it is also possible 1_--o prove sinilar e-xistence

results whilen UX are the duals of separable nor-med

'S �_7 (U IT*) -. 7 (X, *1spaces, s e,,7 uentially continuous,

and C is *r,:)-se,:�-en+-ia1I,: closed.

Since the spline existence conditions j--'-:o.- P(x) e. o

not derena on the point. -e see `Ch.at- -we have actu,.ally-

,�4-40n -Co_de-u-eloned a sufficient con to 1,e closed

C-.:-Tin X, or equivalent-l-,, is c1,,):Ied) -F c. r

closed' lin U. -21-le to f;,ach, sn'line

Prol-,le-ris is to aonlv .7I)_ie-udon n. es1en-rer, [1)661 For the

I. �_ - __.. 1, Col"I'VO."close ness o]'t" -L--.he su- o` -1-seIC'. s-��ts, n�77el,!



that be locally con-pac-11: or fini-te dimensional

(that is, locally corn-pact) and that C,,rl 1". = f-1. Our

conditions are nuch -..Teaker, na--el-,,- t1nat. C,,,. n N be a

subsoace M., and that C (I N r/,"I. be weakJI7 locallv

corpact in U/M (local compact-ness in a HLC�-- al-,-7a%,s

.;-..Pl-;es weak local com-pactness, as noted in the rezriarl._I-s

4:.ioI1o-,-7ina Corollary 1I.I.10) In par-t-icular, the null

4space IN of T need not '.J-e ;__Lnit-e-ei-_ensionaI, and

"o
L- 1�N� n e e d no4--' reduce "'o

infinite dir--el-IS-1c.-al.

iEI U u(-) is a.-s cont on (0,11 and

rLOY- waere < < �-e shall ta!:e the

cost to depend on the (Derivable U' only over t-.;ie

intervals (Of 1 and 21 1 w i n o de r _4 va t i ve c o s t o n

L 2 -,e linear ooera'or to heHence 'cake th

T� u -t Tu �...here
F-

./t) 2Uk t E: 0 U (_j, 1 1

(Tu) II.:) T-'qe constraint set
1 2t

i S C U C I I U(0) 1, U(-) 0, U�7) 0,n
1 2 tl,ere areand < 1 f or t. Er note -. __ I-__

1 2
constraints cl: t"e for t E [ 3,35' so that

t1he null snace of is -1--ruely in-F-inillZe, dirensional.
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TT1Clearlv U is reflexive C is closed convext T
p

iias closed range on H (TU -is congruent to

1 X 2L 0 r 3 'N' ku C- 11p: u is constant on [Of'-T I and

Constant on 2 11 C (U*1"1
co 0 -: u (0) =u (1) =0, u (t) =0 for

t E[j'2],. Th us n C 0 is a subspace. And
3

r r 1
C n ,T u E 11 : ue C and d (u <rJ C

p

(U: U(O) 1, U( 1 0, 11 U(1) 0, ha(t) I < I
on 7,71 and u t) < somc constant function on

2
(lo I -Si U [71 'which is boun6e,", because o--f:' the Oerivative

and endpoint- constraints. --',-,.us, the e�--:_istence conditions

of-': 7heorem. 1 are sat-isfied and t-he Mjn4rUj_.. norm. pro".1en.

in.JE !_�u+x Inas solutions.
UEC

Ex, a m pe, C. n N not necessarily O

Let U,"�-" be reflexive Banach spaces, u - x

bounded linear with closed range, and C a closed affine

suhse-'-- of C.. Then C., is the subspace C-C parallel

to C, hence condition 2) is always saisfie,�,. if C,,. n 1!

is finite dimensional (e.g. NN or C -'s finite dimensional)

IC-hen the mininum norm problem P (x) = inf 11'Iu+x has

solutions. 1-.1ternativelv, if C is a _'in-ite-codimensional
n

closed -Elat c n v- ff o r E U r,, E P , en
k= 1

C n :7/C, e'� is a finite-dimensional a"-�r' in
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D u/C,,nlN and hence C nN r/Cm n!'! is locallv

bounded, so again spline solutions exist....

D

0

a

a

0

0

0

0

0
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2. On the separation of closed convex sets

The spline existence conditions developed in Theorem 1

essentially constitute a sufficient condition for the sum

of two closed convex sets to be closed, namely the sum of

the constraint set C and the null space N. We can use

the same techniques to develop a general crtierion for the

sum of two closed convex sets to be closed in a reflexive

Banach space; this extends Dieudonne's theorem [D661 in

this context and leads to a separation Principle. In what

rfollows we define B 1x CX: inflx-bl, < 61
beB

B + c-(open unit ball), for e > 0 and B C X.

Theorem 2 Let X be a reflexive Banach space wi-t-h AB

closed convex subsets of X satisfying:

1) A00 r) BCO is a subspace M

2) A n BL is nonempty and w(XX*)/M-locally bounded,

for some c > 0.

Then A-B is closed. In particular, if A and B are

disjoint then they can be strongly separated, i.e. there

exists y EX* such that inf ay > sup by.
afA beB

Proof. We may assume that AB are nonempty. Suppose



z E A---B; we show that z 4U(A-B), or equivalently that

inf inf la-b-zl > 0. By translation we may assume that
aEA beB

z = 0. Define the convex lsc function f: X by

f (Y.) = 6 W + inf x-b
A

bEB

Then f* is given by

f*(Y) sup suD[ay-Ia-bj1.
aEA bEB

We show that conditions 1) and 2) are sufficient to prove

that f*(-) is relatively continuous at 0. By Theorems II-9-1,

7) => 1), and II.8.1, 7) => 2), it suffices to show that

a level set of f is locally bounded in the topology
is required to be a subspac-e-

w(XX*)/M, where M = L'x: f.(x) < Oil = ACO n B,, B fit the level

sets of f are precisely {x: f(x) < el = A n B for F_ > 0,

so that 1) and,2) are the required conditions.

Thus f*(-) is relatively continuous at 0, and con.-

sequently 9f*(O) 3� 0. This means that there is an

x0 E�f*(O), or equivalently that 0 E�f(x 0), i.e. x 0

solves inf f(x) = inf inf ix-bl. Hence in-.:-' inf ix 0-bl,
X x6A bCB xCA beB

inf Ix -bI > 0, where the last inequality follows since
b6B 0

X. t B (recall An B = O since 04A-B) a,-na B is closed. Note

that since OE a(A-b), A and B can be strictly separated.



If A00 (I BCC is a subspace and A is locally bounded,

then conditions 1) and 2) follow immediately. In

Dieudonne's theorem [D661 A00 n B is required to be f0l'

with A locally bounded.



Chapter V
(pages 135 to 164)

was removed from thesis.



VII. Optimal Quantum Detection

Abstract. Duality techniques are applied to the problem,

of specifying the optimal quantum detector for multiple

hypothesis testina. Existence of the optimal detector is

established and Necessary and sufficient conditions for

optimality are derived.

4b



1. Introduction

The mathematical characterization of optimal detection

in the Bayesian approach to statistical inference is a

well-known result in the classical theory of hypothesis

testing. In this paper we consider detection theory for

quantum systems.

In the classical formulation of Bayesian hypothesis

testing it is desired to decide which of n possible

hypotheses 11J.....Hnis true, based on observation of a

random variable whose probability distribution depends on

the several hypotheses. The decision entails certain

costs that dej!end on which hypothesis is selected and

which hypothesis corresponds to the true state of the

system. A decision procedure or strategy prescribes which

hypothesis is tc be chosen for each possible outcome of

the observed data; in general it may be necessary to use

a randomized strategy which specifies the probabilities

with which each hypothesis should be chosen as a function

of the observed data. The detection problem is to deter-mine

an optimal decision strategy.

In the quantum formulation of the detection problem,

each hypothesis H. corresponds to a possible state p

of the quantum system under consideration. Unlike the

classical situation, however, it is not possible to
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measure all relevant variables associated with the state

of the system and to specify meaningful probability

distributions for the resulting values. For the quantum

detection problem it is necessary to specify not only

the procedure for processing the experimental data,

but also what data to measure in the first place. Hence

the quantum detection iroblem involves determining the

entire measurement process, or, in mathematical terms,

determining the probability operator measure corresponding

to the measurement process.

We now formulate the quantum detection problem.

Let H be a separable complex Hilbert space corresponding

to the physical variables of the system under consideration.

There are n hypotheses Hl,...,H, about the state of the

system, each corresponding to a different densit operator

pj; eve is a nonnegative definite selfadjoint trace-

class operator on H with trace 1 and is the analoq of the

distribution functions in the classical problem. Let S

denote the set S = {1,...,nl. A general decision strategy

is determined by a probability operator measure (POM)

m: 2S -*'� (H) ; in this case the POM effecting the
s +

decision needs only n components mlf""Fmn where each rn.

is a positive selfadjoint bound linear operator on H and

n
E M



The measurement outcome is an integer if-S; the conditional

probability that the hypothesis Itiis chosen when the

state of the system is pj is given by

Prii1j) = tr(Pjmi) ij=l,...,M. (2)

We remark that it is crucial here to formulate the problem

in terms of general probability operator measures rather

than resolutions of the identity. For example, an

instrument which simply chooses an arbitrary hypothesis

with probability 1/n without even interacting witl-, the

system corresponds to a measurement process with the POM

given bv I

m = I/n;

these are certainly not projections.

We uenote by Cii the cost associated with choosinq

hypothesis H. when H.- is true. For a specified decision

procedure effected by the P011 fTnJJ'...'.mn1, the risk

function is the conditional exnected cost given that the

system is in the state Pj, i.e.

n
R (j) = tr [P E C ifil.

If now �i specifies a prior probability for hypothesis

11 the Bayes cost is the posterior expected cost



n n

RM E RM (j)'W tr fimi (3)

where f is the selfadjoint trace-class operator

n
(4)

1 j=l 13 3 3

10 The quantum detection problem is to find m 1O...Imn so as

to minimize (3) subject to the constraint (1) and subject

to the condition that the operators m. he selfadjoint

and nonnegative definite, r i > 0.

The minimization problem,. as formulated above is an

abstract- linear programs ing prohlem, where the positive

cone is the SEIt of all selfadjoint nonnegative definite
I n

bounded linear operators (m lf ... "mnl E. S(H)+)

shall pose this problem in a duality framework, construct

a dual problem,, and give necessary and sufficient conditions

which the solution nust satisfy. Moreover we shall show

that solutions exist, although t-hey need not he uniaue.



170

2. The finite dimensional case

It is interesting to explicitly construct the form of

the problems in the finite dimensional case. This will not

not onlv exhibit the primary features of the prohleri, but

also show why the usual linear program,-ing techniques do

not apply because of the nature of the positive cone.

Moreover the finite dimensional case is of interest be-

-cause it includes the situation where the quantum states

Olt ... tPnare pure states.

Hence, for this section only, we shall take H to be

Cq where q is a positive integer. The compact, trace-

class, and ho-,�nded selfadjoint operators are all complex

qxq self-adjoint matrices, which we may identify �--7ith the

real linear space Rq�. For example, in the case 11 C2

we Tqay identify every self-adjoint operator f E-� 2
s

with an element of R 4 by

Im
f f2+if3

1 'r2 C3 4 4
f 2 3 4 f = (f 'f ER (5)

f _if

To save notation, we shall write out the proYler explicitly

only for H = C2; the general finite dimensional case is

an easy extension.

'J'"he quantum. detection problem for n hypotheses is,

from (3),
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n 2) n
P = inf E -6-r(m.f MlF...,?m E + E

j=1

where I is the identity operator on H C and each

m or f (C2 is identified with an element

m or f (f 1 f 2 f 3 f 4) E R4 as in (5). The

positive cone (C2 consists of the nonnecTative
s +

definite matrices; f (1!) means that f > 0S +

4 1 4 2 2 3 20, and f f > (f + (f ) lence, if we define

the positive cone R' ( C C R 4by
S +

4 1 4 1 4 2 2 3 2R = {m E R ri > 0 rn > 0 , --q M > (m ) + (m (6)

then the problems becomes

n 4 i I ) . nP = inf Z E MI f (mlj,...,m and
j=1 i=l

n 1 n 4 n 2 n 3
E - E r, - = 0 Z r. (7)Mi 1 = ir j=j 3 M

j=l j=l j=l

Note here that the duality between (11) and 'Z(H)
s s

given by <fm> = tr(fri) has simply reduced to the
4 2 4

usual inner product Z f M for f E T s(C R

2 4
and m E R The problem is in the form. of a

s
finite dimensional linear vroaramming problem. except that

I r,

the closed convex cone K of "positive' vectors is no longer

0 polyhedral that is an intersection of a finite number of
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closed halfspaces. In the next section we shalU define
the dual problem hy t-k;- ---: &-I- &-

-1 -9 p--r' II 4. '-- Z� 1-1 L. %_0

n A

'--'.-.e constraint Z M. = I ER-; the dual problem here is
j=j D

4
thus a minimization problem over R in general, for a

linear programming problem of the -form

inf I< f m>: m rz Q, Am = cT} where is a closed convex

m

cone and A is a continuous linear map, the dual problems

is given by supf<gy>: f - A*v E T.-Te do not derive this

u

here but simply state that the dual problen for (7) is

1 4 4 -Ir
D = supfy +Y : v E R -Y E K+

j

where the dual Positive cone Y, + is (by straightfon,!ard

but tedious calculation)

4
+ 4 > 0

K ly E P, inf m y

MiK

iy ER4 y1 > 0, y4 > 0, 4y 1y4 > (y2 )2+(Y 3 2

Ilence? the explicit form of the constraints -for the dual

problem is

1 4 4 1- 1 4_ 4 2_�c 2 2 3_ f 3 2
Y < f y < f 4(f y )(f Y ) > (V +(y

for every j = 1,...,n. Clearly, the usual duality theory

for finite dimensional linear programming is not applicable.
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Because of the explicit nature of the linear constraint

n
Z r-, = I in the original problem, we shall see that

j=l 3

duality theory does work for this proh1en. In general,

however, it is possible to have a finite duality gap for

linear programming problems with positive cone of type K.

We construct such an exanple now,,.
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3. A linear programning problem with non-polyhedral cone

which has a duality gap

e c o n s i d e r an e a rO --, ramr �

form (7) with n = 2 (that is, a problem in R except

that we change the linear equality constraint. Define

the closed convex cone Y, in R4by (6); K+ is given bv (8).

2 3 4 1 2 3 4
Let u. = (m 1 ','l ' '1 ' '1 ' '2 , M2 1M2 M2 represent

a vector in R 8 and define the prohlen. P bv

P inf{u (2) : u KxR, Au = (0,-1,0,0)1

where A is the linear map

Au (u 1_u6, u2-u8, -u5, u3+u7

If yE R 4 is a dual variable, then A*v is Qiven by

A*y = (y Y2, y4 -Y3V -YI Y4 _y2

The dual problem is

D supi-Y2: (0,1,0,0,0,0,0,0) - A*y iK+xK+

First, let's solve the primal problem. From the

constraint Au = (0,-1,0,0) we have u 5 = 0; but

5 6 7 8 5 6 7
(U U u u )E K so u u u O.' Again from

6
Au = (0,-1,0,0) we now have u U 0, which since



1 2 3 4 2 2
(U 'u 'u 'u )E Y, implies u 0. Thus u = 0 for every

feasible u; in fact every feasible u looks like

u = (0,0'O'u410,10,10,1) with u4 > 0, and P 0.

Now consider the dual problem. The constraints are

2 4 K+ and (y3 rV1 4 +y2 )E K+. The first(-Y�I-y O'-Y IME I . -Y

constrain-IC -innediately implies y 2 1; in fact every

1 3
feasible y is of the form y = (y rlry ,0) where v 1 < 0

and Y3 -> (y1)2/4. Pence D I = -1 and there is a finite

duality gap P1-D 1

Where does tho difficulty arise? If

P = inficu: u 60, Au=bl is an abstract linear program,

where Q is a closed convex cone in a Banach space U and A

is a bounded linear map from U into a Banach space Z,

then P has solutions (assuming P is feasible) and P = D

where D = sup{yb-. y EZ*, c-A*v EQ +I whenever CO 1kO is

A

closed in RxZ, or equivalently (in the case that Pi has

closcd ranae) whenever Q +jYTC'l is closed + But
!A

consider the cone K; if we fix m 2 and m 3 in (6) with m 2

and m not both zero, then the cross section of K in

M I-M4space looks like

+ ff denotes null space.
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4
M 1 4 2 2 3 2

A<- M .M > (M + (M

M

This is precisely the infamous example of a closed convex

4
set whose sum, with a closed subspace (e.g. the m ax

need not be closed or eauivalent1v whose image under a

closed-range bounded linear map (e.g. the projection

onto the r,.1axis) need not be closed.
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4. The quantum detection problem and its dual

We formulate the quantum detection Problem in a

daultiy framework and calculate the associated dual problem..

Firsl: we summarize some well-known duality relationships

between various spaces of operators (cf. [Sch601).

Let H be a complex Hilbert space. The real linear

space of compact self-adjoint operators (11) with theXs

operator norm is a Banach space whose dual is isometrically

isomorphic to the real Banach space T s(H) of self-adjoint

trace-class operators with the trace norm, i.e.

'KS (11) T-S (H) under the duality

<AB> = tr(AB) < JAI '1BI A E Z (I 7) , B �E X (H) .tr s S

Here JBJ sup{JBfl: �E H, Jtj < 1}

supftrA.B: A ETs(H), JAj tr <11 and JAI tr is the

trace norm E < +- where A E T.01) and {Xj'J are

the eigenvalues of A repeated according to multiplicity.

The dual of (11) with the trace norrq is isometricallv

isomorphic to the space of all linear bounded self-adjoint

operators, i.e. T-010* (H) under the duality

<AB> = tr(AB') A s (H) , B E ts (H).

Moreover the orderings are compatible in the following
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sense. if + (11) + , and -< (H) denote thes s s +

closed convex cones of nennegative definite operators

in S (H), 7's(H) and -'Os(IT, respectively, then

(H) O I) and T (11)s s + s + s +

where the associated dual spaces are to be understood in

the sense defined above.

Let f. 'be given elements of (H) (as defined
I s

in (4)), j 1,...,n. Define the functionals

F. (H) by
I s

Fi (A) 6>0(A) + tr(f iA) A E ,?- s(11) p j A, . 0, n'? (8)

where 6>,(-) denotes the indicator function for the set

J�s (H)+ of nonnegative definite operators, i.e. 6>,(A)

is 0 if A > 0 and +o� otherwise. Each F is proper

convex and w*-lowersemicontinuous on (H), sinces

/IS (H)+ is-a w*-Closed convex cone and A �-* tr(fiA) is a

continuous (in fact w*-continuous) linear functional on

s (H). Define the function G: �es (H) by

G(A) = 6{01 (A) A IE 4s(11) (9)

that is G(A) is 0 if A = 0 and G(A) is +- if A 0;

G is trivially convex and lower semicontinuous. Let

m = (ml?....-rrin denote an element of H )n, the
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Cartesian product of n copies of 6C s (H). Then the quantum,

detection problem (3) may be written

n
P = inf I E F - (m +G (I-Lm) : m = (m X (,,) n (10)

j=1 3 s

where L: '�S (H)' (H) is the continuous linear

operator

nr Z
L(m) r1i 1-a C -S(H)'. (11)

We consider a family of perturbed problems defined by

n
P (A) = in f E r (M + G (A-Lm) : n E (H)s

A ic' S(H).

P(-) is a convex function s(H) and P = PM.

Note that we are taking perturbations in the equality

constraint, i.e. the problem P(A) requires that ever-

feasible in satisfy Lm = A. We remark that G(-) is nowhere

continuous, so that there is certainly no Kuhn-Tucker

point m such that G(-) is continuous at IF as required by

the duality theorem in (ET76,III 4.1].

In order to construct the dual problem corresponding

to the family of perturbed problems (12) we must calculate

the conjugate functions of F and G. Ile would like to pose

40 the dual problem, in the space (H), so we considers



4S(11) _Cs(H)* and compute the pre-conjugates of FirG.

Clear1v *G 0. By a straightforward calculation we have,

f or Y Z s00

(*F M = supftryx-F (X) : x t
i S

= sup{tr(Y-f X: x E Zs (11) +

0 i'C -Y E Zs (H) +

+- otherwise

O<f.(y).

Now L: 4so..)" - S W is continuous for the

W* W ( -e- s(II) 1, ZS 01) ) topology on GCS 00 , so we can

calculate the pre-adjoint. (where we identify

, 7- (,) n) as
S (H)' S

(11) (H) ': Vs L S

n n
Hence (*P) Z (*F )((L*v) + (*G) (y) Z 6 M.

i <f.j=l j=l - 3

Thus the dual problem is (*P)*(I) = sup[tryI-*P(y)1 is
y

given by

(*P) * (I) = sup f tr (y) : v E 'r (H) , fv > 0 !,...,n). (12)1 s i - -

We have irinediately PM > (*P)*(I) with equality iff P(.)



is w*-Isc at I.

lie now define perturbations on the daul problem.

Let D(-) be the functional on -C (H) n defined by
s

D(-v) inf{-try: y EZ s (H), y < v �=l'...,nl (13)

where v (vi....,v n )�-- 7's(,)n. of course, D(f) is just

the dual problem (with a change in sign to make D(.) convex)

for f = D(f) = 4*P)*(I). Moreover the dual

of the dual problem is again the primal, since F. and G

are w*-,Isc:

*(D*)(f) sup{<fm>-D*W: M E il s (H)'�'

n n
supf I tr(f Tn E (*F )*(m (_Lm_,) :m tZ n

j=1 j=1 s

n
sup[ E tr (f M -m E (H) 61 j=1 n,-Lm = I

j=1 s +

n

-inf{ Z tr(f M n. E (H)+#, j=l,...,n and Ln.=Il
j=1 s

PM.

In general we have P (1) H (D*) (f) > - D (f) (P*) (I) .

We shall show that D(-) is continuous for the norm topology

on T S(,,)n , and hence that D(f) = *(D*)(f) and

P(I) = *(D*)(f) has solutions. Equavalently, we could

show that the level sets



M Cc '�s( H) nD*(m)-<fri> < rl

n n n
{M t X S(H) + Z M I and E trf rij < rl, r 16 R

3=1 i j=l 3

are bounded and hence w* W(j (H) n V (11)n) compact,
S S

and then aPply Theorem III-11.5 to show that D(-) is

continuous at f. In fact, in this case the feasibility

set for the primal problem,

n
domD* M.

s +

is itself w* compact and hence it is easy to see that P

has solutions.

Eroposition 1. D(-) is continuous on n. Hence
s

D(f) M and *(D*)(f) = P has solutions in (H)'.

Proof. By Theorern 111.11.5 applied to the dual problem.

we need only show that domD = rs(H)n. G'dven

(,I)n, set v = n 1/2
V = (V11 ... v It E (v . *'t'r -

ri S j=l 3 3

1/2
Where (v, v is the unique positive square root of

*V 11'2_V. >the positive operator v i i > 0. Since (v, v i) I - 0

for every j, then y < v. b;j and hence y is feasible

- 3for D, i.e. D(v) < -try < Hence dornD (11)

Proposition 1 shows that there is an optimal solution

for the quantum, detection problem and that there is no



duality gap. The difficult part is to show that the dual

problem (*P)*(I) has solutions. It turns out that the

level sets of the dual cost function are bounded in T (H)
s

but not weakly compact; equivalently, P(-) is norm-continuous

at I but not ri( -�S (H), TSOO)-continucus. This suggests

that we imbed TS (1-11) in its bidual Irs(11) S (11)

and extend the dual problem to the larger space; it will

then turn out that there are solutions in T s (H). This

approach works because rs (H) has a natural topological

complement as a suhset of (I'l)S

Proposition 2. (11) oo S (i x (H))-j- where Jo,, S s 1 s

is t-he canonical imbedding o 11: S (H) in 6� s(111) . in

other words, every bounded linear functional y on Z s 00

may be uniquely represented in the forn y 'yac e ysq

where Zs (H) and s gE W s (11) _L , and
_Y ac E

-y (A) tr (Ya CA) + ys g (A) , A E -� S (11)

+ lys
9

Proof. From [Sch5OIV.3.51 we have the identification

6� (11) M 1 X(H)L; it is only necessary to show

that the sane result holds for the real linear space

(11). But everv (real-linear) -Y C- � (11) * corresponds
s s

(IT ) *to a unique -(complex-lin�,_ar) A satisfying

AW) = AW, and conversely; this correspondence is given



by

y(A) = [A(P.)+W(A)1, A EZ s(H)

A (A) = y(A+A*) + iy(A-A* A E (11)
2 2i

Hence, the theorem follows.

Before calculating the dual problem, it is necessary

to determine what the positive linear functions look like

in terms of the decomposition provided by Proposition 2.

Proposition 3. Let y E �_' (H) Then E (H) I+s s +

s (H) + and y s�T C [/s(H)+]if f Yac C_

Proof. It is innediate that 'y E (H) I+ ifS +

'Yac s(11) + and -Y sg s (H) +1 Converselv, suppose

Y (-["� S(H)+] Then clearly for every compact operator

IT)
C E 7(s (11) + (ZS.+ we have

0 < Y(C) = tryacC.

+
Hence Yac E: I RS (10 +1 Zs (H) Now let A E: 4 s(H)+
be an arbitrary positive operai--or- Take fPi to be a

norm-bounded net of projections with finite rank such that

P t I in the sense that P > P for i > i' and

P - I in the strong operator topology. Then

A 1/2 P-A 1/2 has finite rank and A1/2 P A1/2 t A in the



strong operator topology. Hence

1/2 1/2 1/2 1/2
Y(A-A P A ysg (A) +tr ty ) I - Ysa (A)

where the limit in the last step -Js valid since

1/2 1/2 _.,
A-A P A 0 in the w* = w (H) (H) ) topo logy

i s s

on s(H) (this is weaker than the strong operator

topology). Thus ysgt [Zs(H)+]

With the aid of this last proposition it is now

possible to calculate the extended dual problem in -�f s(H)*.

The conjugate function of G is G* =- 0. '."he conjugate

of F. is
3

F

F.*()r) sup{trt(y -f) XI +Ysg W x E -,P S (11) +}
ac

0 if fj-yac�- Zs(H)+ and -,yscJE- (ks(H)+I+

+- otherwise

6 <f.(Yac ) + 6<((Ysg)
- I -

where by ysg < 0 we mean -y E 'S(H)+]+. The adjoint

n n
o f L: (H): m - E M. is

s s i=l I

(11) (H) *n: y _ Hence
S s

n n
P*(v) E F.*(-(L*v) )+G*(y) E 6

.=1 <f (-Yac) + '<o(ysg)-
3 j=1



Thus the dual problem (P*) (I) sup [y (I) -P* (y) is

y
given by

*(P*) (I) = sup{tr(y ac +y sg Y s Ysg < 0, y ac < fj

Note that this is consistent with the more restr'icted

dual problem, (*P)*(I) given by (12). Vie prove that P(-)

is norm-continuous at I, and hence PM = *(P*)(I), *(P*)(I)

has solutions.

Lemma 4. I f A E Z s (11) and JAI < 1, then I+A > 0. In

particular, ICint S(II) +and Y(1) > 0 for every

nonzero y E I Xs (H)+

Proof. Suppose JAI < 1. For every

<(I+A)fl�> = Ifl 2+<Aflo-, > Ifl 2_ JAI .1�12 (1-IAI) 1�12 >

Hence I+A > 0 and I C int ;�?_, (H) Now surpose

y (H) I+ y 34 0. Then there is an A C t (H) suchs + f S.

that JAI < 1 and y (A) < 0. Hence y M > y (I+A) > 0.
T3

Proposition 5. P(-) is continuous at I, and hence

;P(I) in particular, *(P*)(I) = P(I) and the dual

problem *(P*)(1) has solutions.

Proof. By Theorem III.11.5 it suffices to show that

I E int dom.P. But if A s(H) and JAI < 1, then by



ie7

Lemma 4 I+A > 0 and m = (I+A,0,0,...,O) e Z (H)' is
S

feasible for P(I+A), i.e. I+A EdomP. Henc,',

I r-, int domP and DP M 0

It is now an easy matter to show that the dual

problem actually has solutions in 'rs(H), that is solutions

in s(H) with 0 singular part.

Proposition 6. Every solution y E Gt (H) * -of the extended
s

dual Droblem *(P*)(I) satisfies vsg = 0, i.e. v belonas

�_o the canonical image of ZS(H) in Zs(H)**.

Proof. Suppose y E Z S (11)* is feasible for the dual-

problem, i.e. yac < f for j = 1,...,n and y sg < 0.

If ySg �' 0, then tr(Y ac )+v sg (I) < tr(Y ac ) by Lerina 4.

Hence the value of the objective function is improved by

setting ysg = OF while the constraints are not violated.

Thus if y is optimal, then y sg = 0.

To surimarize the results, we have shown that if we

define

n
P = infJ E tr(fim (m1'm2:F ... Imn s(H )n;

j=l

n

m. > 0 for j 1,2,...,n; E mi (14)

-D = sup{tr(y): yC- ZS, Y < f for j 1,,2,...,.nl (15)



then P = -D and both P and -D have optimal solutions.

Since P is an infimum and -D is a suprenum we immediately

get an extremality condition: m solves P and y solves D

if and only if m is feasible for P, y is feasible for -D,

and

n
Z tr(f iri try.

-;=lJ

This leads to the following characterization of the

solution to the quantum. detection vroblem.

Theorem, 7. Let 11 be a complex Hilbert space and suppose

n
(fl,...,fn) C -CS(H) Then the quantum detection problem P

defined by (1-1) has solutions. Moreover, the following

statements are equivalent for m = (pi 1""--mn) E S(H)'-.

1) n. solves P

2) E m. m. > 0 for i=l,...,,n;
j=1

n
f-m- < f. 'or i = 1,...,n

j=l 3 3

n
3) E I; m. > 0 for i=l,...,,n;

J

n
E m f < f for i

j=1

Under any of the above conditions it follows that



n n
Y E f.m. 7 m-f- is self-adjoint and is the unique

j=l J 3 i-1 3 3

solution of the dual problem -D given by (15); moreover

P = -D = tr(Y).

Proof We must show that the conditions 2) and 3) are

necessary and sufficien-- for m E.-� s (H )n to solve P.

Note that the first part of each condition 2), 3) is simply

a feasibility requirement.

Suppose u solves P. Then there is a y E-t s(H) which

solves -D such that y < f for i = 1,...,n and

n
E tr'(f m tr(y).

j=l i i

n n
Equivalent-ly, 0 Z tr(f imi)-tr(YI) Z tr(f j-Y)Mj

j=l j=l

since Z m. = I. Since f--y > 0 and m. > 0 we conclude
3 3j=l

from Lemma 8 which follows, that (fi-Y)m-, 0 for
n J n

j = 1,...,n. But then 0 E (f.-y)m. = -7 f.m,-y and
j=j

2) follows. This also shows that y is unique.

Conversely, suppose 2), i.e. m is feasible for P and

n n
Z f.m. < fill i = 1,...,n. Then Y f.m. is feasible

3 3 3 3j=1 j=1
n

for -D, and Z tr(f m tr(y). Hence m solves P and
j=1

y solves -D.



Thus 1) <=> 2) is proved. Since tr(f iM tr(m if

n
1--he proof for 1) <=> 3) is identical, and y 47, f.m.

j=l 3 3

n
7I- m - f - is the solution of -D.j=1 3 3

We have made use of the following easy lemma.

Lemma 8. Let A ET (HN (H) Then AB > 0, ands + s +

trAB = 0 iff AB- 0.

Proof. If C-H, then <AB�j'qb> <A 1/2B1/2B1/2A 1/2 �11�>

1/2 1/2 1/2 1/2 1/2 1/2012
<B A flB A 1B A > 0. Since AB > 0,

trAB = 21'<A.B�ij�i> is 0 iff AB = 0, where is a
i

complete orthor-ormal set.

Remarks on the literature. [YKL75] claims the necessary

and sufficient conditions 2) with the additional constraint

n n
that Z f.m. 7- m.f.11 but the proof of these conditions

j=1 j 3 j=1 3 31

is not correct. [H731 states that the conditions 2) are

sufficient, but of course this is the easy part. it is

interesting to note that in the commuting case where

[Pi-P jl"k_�'Z I = 0 for ijkZ jl,...,n1, the problem

reduces to the classical case, i.e. the optimal quantum,

detector m = (mi"...,.m n) corresponds to a finite resolution

of the identity and the decision is made in the usual way



by maximizing the posterior probability.

Added Remark. Prcfessor Mitter has brought to my attention

Holevo's paper [H761 in which the detection results given

here are oroved using a somewhat different argument. How-

ever he does not aiDoear to have extended these results to

the more general estimation problem considered in Chapte-,r-- IX.



VIII. Operator-Valued Measures

Abstract. Let S be a locally compact Hausdorff space and

XZ Banach spaces. A theory is developed whcih represents

all bounded linear operators L: C (SX) - Z* (without0

requiring L to be weakly compact) by Borel measures m which

have values in L(XZ*) -ind are countable additive in a

certain operator topology. Moreover this approach affords

a natural characterization of various subspaces of L(XZ*)

in terms of boundedness conditions on the corresponding

representing measures. The uaual results for representing

bounded linear maps can then be obtained by considering

T- (C0(ISX) Y) as a subspace of DC. (SXIJY**), for Y a

Banach space. These results have applications in the theory

of quantum estimation.



Operator-valued Measures

It is clear that the formulation of quantum estimation

problems requires some techniques in the theory of operator-

valued measures. While proving -the necessary properties of

such measures I noticed that the approach I had taken,

while natural for Ls(H)-valued measures, was somewhat dif-

ferent from thelgeneral theory of operator-valued measures

developed in the literature, as we shall see. Let S be a

locally compact Hausdorff space with Borel sets 13. Let

XY be Banach spaces with normed duals X*,v-*. C (S'X)
0

denotes the Banach space of continuous X-valued functions

f: S - X which vanish at infinite (for every e > 0, there

is a compact set K CS such that lf(s)j < F_ for all se S\K),

with the supremum. norm jfj,,,, = suplf(s)j. It is possible to
ses

identify every bounded linear map L: C 0(SX) - Y with a

representing measure m such that

Tf ."m(ds)f(s)

S

Cfor every 0(SX). Here m is a finitely additive map

m: B - L(XY**) with finite semivariation which satisfies:

1. for every z EY*, m z: J3 - X* is a regular X*--valued

Borel measure, where mz is defined by

mz(E)x = <zm(E)x> E., f. Z , x 'e X .(2)



2. the map z - m is continuous for the w* topologies

on z CY* and m z1E C0(sx)*.

The latter condition assures that the integral (1) has

values in Y even though the measure has values in L(XY**)

rather than L(XY) (we identify Y as a subspace of Y**).

Under the above representation of maips LE L(C0k'SX),Y), the

maps for which Lx: C0(S) - Y: g(-) 1- L(g(-)x) is weakly

compact for every xE X are precisely the maps whose

representing measures have values in L(XY)II not just in

L(XY**). In particular, if Y is reflexive or if Y is

weakly complete or more generally if Y has no subspace

isomorphic to c', then every map in L(C (SX),Y) is weakly0 0

compact and hence every L( L(C0(SX),Y) has a representing

measure with values in L(XY).

In the conte;,. of quantum mechanical measures with

values in Ls(H), however, I identified every continuous

flinear map L: C0(S) - LSIIH) (here X=R, Y=Ls �H)) with a

representing measure with values in Ls (H) rather than in

Ls(H)**, using fairly elementary arguments. Since Y = L s(H)

is neither reflexive nor devoid of subspaces isomorphic

to C (think of a subsoace of compact operators on H having0

a fixed countable set of eigenvectors), I thouaht at first

I had made an error. Fortunately for my sanity, however, I

soon detected the crucial difference whereas in the usual



approach it is assumed that the real-valued set function

zm(-)x is countably additive for xfzX and every z EY*, I

require that it be countably additive only for x EX and

z EZ=Ts(H), where Z=Ts (H) is a predual of Y=L s(H), and

hence can represent all linear bounded maps L: C 0(SX) - Y

by measures with values in L(XY). In otij_f words, by

assuming that the measures m: B - L s (H) are countably

additive in the weak* topology rather than the weak topology

(these are equivalent only 1.7hen m has bounded variation),

it is possible to represent every bounded linear map

L: C0(S) - Ls(H) and not just the weakly compact maps.

This approach is generally applicable whenever Y is a dual

space, and in fact yields the usual results by imbedding

Y in Y**; moreover it clearly shows the relationships

between various boundedne..s conditions on the representing

measures and the corresponding spaces of linear maps. But

first we must define what is meant by integration with

respect to operator-valued measures. We shall always take

the underlying field of scalars to be the reals, although

the results extend immediately to the complex case.

Throughout this section we assume that ;B is the

u-algebra of Borel sets of a locally compact Hausdorff

space S, and XY are Banach spaces. Let M:,,B, - L(XY) be

an additive set function, i.e. m(E 1U --�'2 m(E1)+m(E 2
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whenever El,..Vl are disjoint sets in B. The semivarial-ion2

of m is the map M: B - R+ defined by

n
M(El == SUp 7 M(E )xi!'

where the supremu.-,n is taken over all finite collections

of disjoint sets El..."E n belonging to Dn E and

X,.....,x belonging to X By Zr)E we mean the sub-a-algebran

f V E Z: E' C E' {E In E: E C-J311 and by X we denote the

closed unit ball in X. The variation of m is the mao

m 'B defined by+

n
m (E) = sup E I m (E

where again the supremum is taken over all finite collections

of disjoint sets in J3 n E. The scalar semivariatlon of m i s

the map m: ;B R+ defined by

n
m (E) sup a m (E

where the suprem-um is taken over all finite collections

04L disjoint sets El,,,--,Enbelonging to En E and

al.--,,anE R with jail < 1. It should be noted that the

notion of-semivariation depends on the spaces X and Y;

in fact, if m: a3 - L(XY) is taken to have values in

L (R, L (X, Y) L (X, Y) , L (X, Y) L (L (X, Y) , R) respectively



then

M = M (3)
L(RL(XU)) < m = mL(XY) < �m' = �m'L(L(XU)*,R)_

When necessary, we shall subscript the semivariation

accordingly. By fa(BW) we denote the soace of all finitely

additive maps m: B - W where '. is a vector space.

Proposition 1. If m E f a (23, X*) then F.1 -n More generally,

i IL m ( f a(BL(XY) ) there for every z E. Y* the finitely

additive map zm: B - X* satisfies zm = lzml.

Proof. It is sufficient to consider the case Y = R, i.e.

m E fa (2,X*) clearly M < Im I. Let EE 'Band letEl.. ?E
n

be disjoint sets in a3 nE. Then 7 m (E sup Em (E �X.
i xiEX

SUP 17m(E )x ! < m(E). Taking t--he supremum over alli
xi
disjoint E.( Bo E yields m < m (E)

We shall need some basic facts about variation and

se-mivariation. Let XY be normed spaces. A subset Z of

Y* is a nornting subset of Y* if- supfzy: zE ZIzl < 1], Y

for every y EY.

Proposition 2. Let XY be norned spaces, f a T,(XY)

If Z is a norming-subset of Y*, then



m (E) sup Z,-,l I (E) , E
z z 1 < I

m (E) sup SUP 1zm(-)x!(E) , E E: JS
ZEZ"zf<i X(-XIxl<lI 1- I I-

Moreover ly*m(-)x'I[E) < !xi'-1y*mJ(E) < !xi-!y*1-Jrr,1,(E)

for every x E X, y* Y*, E C-

Proof. Let {E11...,E n be disjoint- sets 'n- E and

XJJ-..fX n IE x1 '1' h e n

n n n
M OE x sup < z, E m(E X. > Z zm(E x

zEZ

Taking the supremum over {E and 1"x Vields

m(E) = lzml(E). Similarly,

n n
sup Z a m(E H sup sup sup <z, E a m(E )X>

i t 1�' I - i i
la,1<1 41-=l a , I XEX zrCZ

1 1

n
SUP E I;zm(E )XI
XEX

zC-z'
I

and -'C-aking the supremum over finite disjoint collections

C ZOE yields m(E) sup suo zM X
!.X!<.L !zl<l

Tt is straightforward to check the final statement of the

theorem. C]



Proposition 3. Let m Efa(c(i, L(XY)). Then m, m, and !ml

are monotone and finitely subadditive; !ml is finitely

additi-,.re.

Proof. It is immediate that M, M, M! are monotone.

Suppose El I F C. and E n E 0, and let F,
2 1 2 I ... 1-n

be a IL inite Collection nf disjoint sets in c8 r) (E Q E
1 2

Then if Ix <.l, i = 1,...,n, we have

n n
7- m(F.)x (m (F. A E +m (F ))x

2

< 7m (F n E + --,m (FiE
2)xil

< in (E1)+m(E 2).

Tak4Lng the supremum, over all disjoint Fl. IF E 1) fE V E
n 2

yields m(E U E2) < m(E1 2( E2 Using (3) we -irrLrnediately

have M, iml finitely subadditive. since lmi' is always

superadditive by its de-,Ein-ition, ;M!, is finitely additive.i I 0

We now define integration with respect to additive set

functions m: L(XY). Let ca�X denote the vector

space of all X-valued measurable simple functions on S,
f(s) n

that is all functions of the form 1E. (S)x

where iEl....,E n "I is a finite disjoint measurable

partition of S, i.e. E. e aD ��i, E. nE. = O for i J



n
and U E S. Then the integral Irm(ds)f(s) is defined

i=l S

unambiguously (by finite additivity) as

n
m(ds)f (s) 7 m(E. )xi. (4)

S

We make ROX into a normed space under the uniform norm,

defined for bounded maps f: S - X by

tf� Plf(SH .co
lb S E S

Suppose now that m has finite semivariation, i.e.

m(s) < From the definitions it is clear that

rm (ds) f (s) < M_ (S) f (5)
S

so that f �+ fm(ds)f(s) is a bounded linear functional on
S

(a OX, 1 - 1, 4.. , m (Si = sup, rM Ids) f (s) < 1 , f I-4?0X'

is the bound. Thus, if m(S) < it is Dossible to extend

the definition of the integral to the completion M(SX) of

Dox in the norm.. M(SX) is called the space of totally

a-measurable X-valued functions on S; every such function

is the uniform limit of -_�&-measurable simple functions.

For fE:M(SX) define

.;/'M(ds)f(s) = lim -1'm(ds)f (S) (6)
n

S n *co S



where f n OX is an arbitrary sequence of simple functions

which converge uniformly to f. The integral is well-de---,:'ined

since if {f n is a Cauchy sequence in o&OX then

ffm(ds)f ks)l is Cauchy in Y by (5) and hence converges.
S n

Moreover if two sequences ff n gnj in c&OX satisfy

ig -fl. - 0 and �f - f 1 - 0 then ifm(ds) f (s) -. I'm (ds) g (S) <n 1-n n n

ffi(S)If 1 0 so lim J"m (ds) 'L (S) = lim .,m (ds) g (S) -
n-9n. CO n n

n-*,)cs n-+oo s

Similarly, it is clear that (5) remains true for every

fIE M(SX). More generally it is straightforward to verify

that

m. (E) = supf f m'ds) f (s) : f E `4 (S, X' f < 1, suppf C El (7)

Proposill-_-ion 4. C0(SX) C M(SX)

Proof. Every g(-)E C 0(S) is the uniform limit of simiDle

real-valued Borel-measurable functions, hence every function

n TI

of the form f(s) E gi(s)x Z- u-Ox- belongs to

MISX), for giC C (S) and x-E X. These f'unctions may
- 0 1

be identified with C 0(S)OX, which is der-se in C 0 (SX) for

Ithe supremum norm[T67p4481. Hence C 0(SX) = ClC 0 k S) OX C_ M (S I X)

To summarizes if m (-fa(,_6, 'L(XY)) has finite semivariation

m (S) < then rm (ds) f (s) is wel 1-def ined f or

S

S



f E M(SIX) OC0(S, X) , and in f act f - f m (ds) f (s) is a bounded
S

linear r-;-- -, from C0(SX) or M(SX) into "J.

Now let Z be a Banach space and L a bounded linear

map from Y to Z. If m: g& - L(XY) is finitely additive

and has finite semivariation then _-_Mll: J3- L(XZ) is

also finitely additive and has fini�_e semivariation

LM(S) < ILI-m(S). For every simple function If J�OX it

is easy to check that L.I'm (ds) f (s) (ds) f (s) By
s s

taking limits of uniformly convergent simple functions we

have proved

Proposition 5. Let m Ef1a(o2OL(XY)) and m(S) < Then

Lm Efa(a , L(XZ'I) -for every bounded linear L: Y- Z, w1th

Lm (S) < + - and

Lfm(ds)f(s) = "Lri(ds'lf(s). (8)
s s

Since we will be considering measure representations

of bounded linear operators on C (SX', we shall require
0

some notions of countable additivity and regularity Recall

that a set function m:,J� W with values in a locally

convex Hausdorff space W is countably additive i----f

CO .00

m( U En m(En -for every countable disjoint sequence
n=l n=l

fEi I in By the Pettis Theorem (DSiv-10-1) countable



additivity is equivalent to weak countable additivity,

i.e. m: cG - W is countable additive iff it is countably

additive for the weak topology on W, that is iff w*m: R

is countable additive for every w* EW*. If W is a Banach

sjDace, we denote by ca(kiW) the space of all countably

additive maps m: J� - W; fabv(,:bW) and cabv(o&,W) denote

the spaces of finitely additive and countably.additive

maps r(i:.b W which have bounded variation Imi(s) < + Co.

If W is a Banach space, a measure m, Cfa(,I�,W) is

regular iff for every > 0 and every Borel set E

there is a compact set KC E and an open set G DE such

that im(F)i < z whenever F E c&n(G\K). 'T.he followina

theorem shows among other thinqs that'- regularity actually

implies countable additivity when m has bounded variation

11mi(S) < (this latter condition is crucial). By

rcabv(Z W) we denote the space of all countably additive

regular Borel measures m:<i W which have bounded

variation.

Let XZ be Banach spaces. We shall be mainly concerned

with a s-ecial class of L(XZ*)-valued measures which we

now define. Let -r� L (X, Z*) be the space of all

m. Efa(o�S, L(XZ*)) such that <zm(-)x>C-rcabv(b for

every x E X, z E Z. Note that such measures mE L(XZ*))

need not be countably additive for the weak operator



(equivalently, the strong operator) topology on

since z**m(-)x need not belong to call for every

X E X, Z** E Z**.

The followina theorem is very important in relating

various countable additivity and regularity conditions.

Theorem 1. Let S be a locally compact Hausdorff space

with Borel sets cFj . Let XY be nor-med spaces, Z1a

norming subset of Y*, m � f a ( c& , L (X, Y), If zm(-)x: cf3 - R
or ever Z,

is countably additive f y z 1E 'V x E X then

lml(-) is countably additive If zm(-)x: cO - R

is regular for every z EZ1,1 xE X, and if m'(S) < +m,

then Im',(-) r--'abv(o9 R If !m!(S) < then m(-)+

is countably additive iff Iml is and Ml-) is regular

iff !ml is.

Proof. Suppose z.-n (-)X (- ca R) for every z E Z X.

Let (Ai be a disjoint sequence in Let LB,?...,B ni

be a finite collection of disjoint Borel subsets of

cc
A.. Then

n n n
j m(B Im( A rN B SU;D lz M( U A nB )X.,.

j j --1 X EX Ji=1

Ez

Since each z M(-)x is countably additive, we may continue

with



n 00
_7sup a-m(A r�B )X.! SUP 7- !z.m(A.nB )X

j=1 X (-X i=l �=l XIEX i=l� J

z (Z z z

n 00 n M
(Ain B 7 7 t IB-)I < 7' 1ml(A

i
J i=1 j=1

00

Hence, taking the supremum over all disjoint �rB C A

0. cc

we have WI( U A < E iml(A,). Since 1M: is always

countably superadditive, Iml is countably additive.

Now assume zm(-)x is regular for every zE Zi. XE X,

and W(S) < Obviously each zm(-)x has hounded

varitation since �xnl (S)< hence zm(-)xE ca(ol�) by

[DS III.5.131 and zm(-)x( rcabv(oO lie wish to show

t-hat is reaular; we already know WE cabv(,;&).

Let E e > 0. By definition of 4mi(E) there is a

finite disjDint- Borel partition "El,, ... FEnJ O.L E such

that im!(F') < + -_/2. Hence there a--re

ZJJI ... Iz E z and xl,...,x E X, !x-� < 1, such that
n n I!

n
IM'(E) < Z.MI(E.)x. +

Now each z im(-)x is regular, so there are compact K E



for which zin (Ei I X < F/2n,, i 1,,...,n. Hence

m (E K ) in (E) ri 1 (K)

n n
< r Cz.m(E )X + Z.M(E ni" )X.

n
E z m(E K i)X + F-/2

< E:

and we have shovm that 'Iml is inner regular. Since

,ni(s) < +-, it is straightforward to show that Im" is

outer reqular. For if n EJ3, c > 0 then there is a

compact K C S E for v-Thich 1, m i (S < ', T-, I (Y\) + P- and

so for the open set G S\ K DE vie have

I m I (G \ E) I T-i 1 (S E) - I m 1 (K) < F- .

Finallv, let us prove the last statement of the

theorem. We assume m E f a L Y) and ml! (,-C;) < +-.
0

Fi.-st suppose m(-) is countahly additive. Then for

I
every disjoint sequence tA in JO

co n
IM( U A Z r-, (A.) I - 0, so certainly

4=1 1
i=1 -L '..

00 n
Y*m( U A.)x - E y*m(A )X. -+ 0 f or eve ry y x E X

AS



X,07

and by what we just proved Iml is countabiv additive.

Conversely, if irn.', is countal)lv additive then for everv
00 n

disjoint sequence {A we have 1m( U Ai Z mfAiH

n
Im( U M I < lmj( U A Iml,( UA.) - lml(A.) - 0.

Similarly, if m is regular then every y*r-(,)x is regular

and by what we proved already Iml is regular-. Converselv,

if Iml is regular it is easy to show that n is regular.

Theorem 2. Let S be a locally compact Hausdorff space

with Borel sets 6& . Let XZ be Banach spaces. There

is an isometric isomorphism L*4 m between the bounded

linear maps -.,: C0(S) - L(XZ*) and the finitelv additive

Measures m: J� - L(XZ*) for which zm (- ) x � rcahv (,;8, )

for every x E X, z (-- Z. The correspondence L - ir, is

given by

La = f q0s)r(ds), qeC 0(s)
S

where ILI = m=(S); moreover, zll(Ox a(s) zm(ds)x and

IzL(-)xi = lzri(-)xl(,,;) for x E X, Z 6 Z.

Remarks. The measure m Cfa(kJ, L(XZ*)) need have neither

finite senivariation F(s) nor bounded variation llrd(s)-

It is also clear that L(g)x f g(s)m(ds)x and
S

zL(g) f g(s)zm(ds), by Proposition 5.
S



Proof. Suppose L t L(C L(XZ*)) is cTiven. Then
0

for every xE X, -_ EZ the rap g - zL(q)x is a bounded

linear functional on C 0 (S), so there is a unique real-

valued reqular Borel, measure n cTJ - R such that
Xz

zL(q)x Ir IL(s)m XZ (ds).
S

For each Borel set F def-ine the map n(E) : X

by <zri(E)x> mxz (E). It is easv to see that

m(E): X - .71* is linear from (11); moreover it is con-

tinuous since

m M < M= (S) sup I zr- x 1 (S) sup M 11
xz

.Ixl,<l x1<1

lzl<i

sup IzL(-)x, = ILI.
ix1<1

jZ11<1

Thus m M EL (x-, z f or F E ar d m E f a L (X, z

has finite scalar seralvariation M=(S) = JLJ. Since

M = M L (R, L (X, Z *)) is finite tile integral in UO) is

well-defined for q EC (SIC tl(.,;,P,) and is a continuous

linear map g - irm(ds)g(s) Not,, (11) and Propositicn 5

S_

imply that

ZL(g)x = TzM(ds)xg(s) <zfm(ds)a,(s)-x>

S S



for every x(-X, zE Z. Thus (10) follows.

Convergely suppose r,,i Efa( Z, L(XZ*)) satisfies-,

zr,(-)x ( rcabv(oFJ for every x( X, zE Z. First we must

show that Ti has finite scalar semivariation =M(S) <

Now sup lzm(E)xl < Izri(-)xj(S) < +- for every xEX, z�-
E (-a

lience successive applications of the uni'Lo=, houndedness

theorem yields sup jM(E)xI < + for ever,,,' x6 x and
E E,8

sup Jo. (E) I' < i.e. T-, is bounded. Put then by
E E.&

Proposition 2

n
r (S) = Islip I zr, XI (E�) slip Sun, 4. Izm(E )xi

x1<1 Ixj<l EI disjoint i=l

:1<1 <1'.1 - 1z1-

= SUP sup E+zm(E )x - E-zm,(E,)X
IxI<1 E. disi J.

2.

Z

SUT) sup zM(U E X - zn, (U- E-"; ) X
jxj�l E-disj

IZ1<1

sup 2 up x 2. sup I r (E) < +m,

ixl<l E E eb

1z1<1

where E + and U* (Z- and U-) are taken over those i

for which zri(E X > 0 (zrn (Ei)X < 0). Thus i, (s) is

finite so (10) defines a bounded linear map

L: C0 (S) L (X, Z*) .



I-le now investigate a Fire restrictive class of

Ibounded linear naps. For L E L (C 0(P L (x

define the (not necessarily finite) norr.

supl E L(g.)xi!

where the supremum is over all f inite collections

9l I... I 9n f co (S) 1 and xlf...,Xn E X I such that the ci

have disjoint support.

Theorem 3. Let S be a locally compact 11ausdorff space
'I, .- spaces. There

with Borel sets Let X be Danach

is an isometri c isomorphism L r, #- L between the2

linear maps L C (S) - L(XZ*) with 1IL111 < +-; theI 0 1

measure s n ( f a I L (X, Z with finite sertivariation

rt (S) < 4- f or which zr, ( - ) x e rcabv ) for everv

z EZ, x EX; and the bounded linear naps L,: C (SIX) Z*.0

rl-'he correspondence L, m I,- L2 is given bv

LI g = m (ds) g W g ' Co (S) (12)

L2 f = I (ds) f (s) f E C 0 (S' X) (13)
S

L, (g (-) x) = �Llg) X g E co (S) X. (14)

Moreover under this correspondence JIL 1 1 1 F (S) I L21



and zL2E C0(SX) is given by zL2f zin (ds) f (s)

where zmErcabv(*9,X*) for every z 6 Z.

Proof. From Theorem 2 we already have an isom-rphisrn

L1+-*m; we must show that JIL111 = F(S) under this

correspondence. We first sh(,a that JJLJII < F(S).

Suppose 911 ... ?an E C0(s) have disjoint support with

Igil',' < 1; xl,...,x EX with xi I < 1; and z6 Z with
n

IzI < 1. Then

n n
< z L a )xi> E f zo (ds) xi' �'i (s)

i=l S

n
< zM il(suppgi)

n
< E zm I (Suppgi)

where the last step follows fron Proposition 2 and Ixil < 1.

Since IzmJ is subadditive by Proposition 3, we have

n n
<Z' E L1(gi) xi> < It Zro IU suppgi) < I Zri I Qq) .

laking the supremum over IzI < 1, we have, again by

Proposition 2,

n
Z L 1(gi) xi I < I sup zm I (S) M- (S)

z1<1



Since this is true for all such collections (all and

(xi1, JILIJ < F,(S). I-le now show F(S) < JILIJ. Let

e > 0 be arbitrary, and suppose El....,E n ea& are

disjoint, IZI < 1, IXiI < 1, i = 1,...,n. Bv reaularitv

of zM' (.)xi, there is a compact K iC E such that

I zm (-) xi I (Ei) < F- + I zrl(-) xi I ('.Ki) , i = 1,... n. Since

the K i are disjoint, there are disjoint open sets

Gi D Ki. BV Urysohn's Lemma there are continuous -functions

gi with compact support such that 'K < gi < 1C Then

n n n
E zn,(E )x E zL(g i)x i + E f(l E -9i )(s)zn(ds)x

i=l -1=1 i=l i

n n
< E ZL(q.)x. + E f(l 1 )(s)zm(ds)x

E K. i

n n n
< E zL (g. ) x + E I zr-, x I (E K < E zL (cri) xi+c

n
< E L(g.)x.l + E

j=1 I 11

< JILIJ + E.

Taking the supremum over Izi < 1, finite disjoint collections

[Ei1, Ixil < 1 we get F(S) < JILIJ + E. Since c > 0



w,-- sa r b ry F(S) < I ILI I and so (S) 1iLl I

It remains to show how t-11-e L2 L 0

11071 gjVa,-j Tare related to L and ri. or equiialently r.,

it is i=ediate from the def-`:----i-1--ionothe intearal (6)

that (13) defines an L 2E L (c 0(SX) Z*) with

IL If Conversel-.,, supp se L21 = F(SI < +-' F - I C) 2 E L (Co�S'X)

is q;-ven. Then (14) de-JE:ines a'---Counsel-. ninear map

L C (S) L (X, Z t'--. < T-.oreov,-r it is

eas-v to see that 11,LM < i-r O co,,,Irse, L unique!

dete=ines a measure m L ( xz witi-I

II, < I L 1, s u c. 1 t 1 2 11- o, d. s �'oT .7 s upp c s e21

n
C cri E c0 1%S)e-x;

n n
,m (ds) -E (s). E L X4 = E L L2 2(f)'j=l I=!

H-ence (14) holes -.'-'or f E C (S n 6, sn c e C0(S) is

dense -in C (S,'A') we hale0

T SIL sup I m (d S) f (s)21 2-c
fcc S)

< <

< S Z'O fm (ds --S S

(Ez:

jfi <1

r. (S)



Finally, it is ir,-,edia+---- f=i Proposition 5 that

zijf = fzr.,(ds)f(s) for f EC0(SX) , z E Z. !--,e shc-,,7 that
S,

zr, E rcal-v X*) f o r z E ZZ Since Zm I (S) < j ZrF1 (S)

bv Proposition 2, zm has bounded va-ri-a-l-ion. Since -"='or

each x E Xil zi- x E rca'.I)v we :7av apple, Theorem1

i th Y to get zin. 1, E r c a-'-v and z-1.1 ;E rcabv(j� X*)

The follo-.-7ing interesting corollar- 4s ir-:-�ed;ate -Fro-,

1IL111 = IL21 in Theorem 3.

Corollarv. Let- -I�2: C0(SXII he llnear and bounder,

�-.-hel-e X,%r are Banac'-- s-pac-:-%s a-..-' Ss a iccallv compact

IT ausdorrf space. Then

n
suplL

21 2 i=j

-where the suoremum- is over all .1-init--- col-1--c`C-ions

I J C C (,q an 0, al -1 F . .. :1 1 E such tha-

isuppgil are disjoint and
J 4 1

Proof. 'fake Z v* and

L2 (S , X) d t h -2e c I i sr o 7--.

1"L in Theorer, 3.I II 'T2 1

-e no-.,,, consJc�,er a su`s�z- o-,Dera+--or.-;

L- E L (co X) 4-1 4
Z



namel,,- thos,�- which correspond bound'ed 1-inear

0 C ;sxo Z); eauivalenltlv, ,,;a shall see tll-Latt these r-aps
CJI , T"

correspond -IC-o representing measures m L (x, z*)

i Z.. c'I. i Al la v- ef in i t e total variation It m I IS) < +-, so th at

r,-t C rcabv Z , L ("'., ZZ, *) ) . For 112 --,:- L (c 0(S , X) Y) we de f ine

the (nor'-. necessarily finite) no=

Z I T.,
2 11 = SuP n

where the sunre-,un, is over al! 'init--e collections

... Ff I r-ur-"ctions it-! havincT disjointzn 0

suz)::�ort. and f i < 1 T-n applyincT t-Inle del-7inition to

(C L (x , Z L Y) 4 "t
0 10

y L Z -we -'et

n
Sul-,

where the supremum is over all-I -finitte collections

,g j of func-'�-ions in (17) ',,�zvinq disjoint
I TI

support and 1q.1, < l.

DeJffore nroc��edinn, shouic' a -fen- remark--, al-,ou-k

snaces,. we -�:_,nct-:� aen s o

r o -',,a ctl s -o a c e oa n c ct c



a R X E X Z G Z (O a are not

unique deter=.ined). The-re is a na'Cural duality between

X 0 and L (XI Z*) given bv

n n
< a x 0 z; a <z Lx

Moreover tire nor--,. o-,i';' L L as a iin�ear functicrial

C4Sel-,.,, itso n 6 Z i r. t) r e u-sual op-e-1--at-or norm

iLl =sup <zL.,,,7.> %-,,,-ien Z is -7-ade into a nor-med "

XI, <1

Z 1 <-,
L

sDace X Z unO,,c-,,-r- tensc- -orod-,zc_`_- norr -7 (:-Iefinec�
7-7

n n
7 n zi,. u x 0,) Z u EX 0 Z.I

j=1

It is easv to see -,--hat 7(x �1 z) z ror zEZ

(the canonical injection X x Z X, Z i S C o n t- i n u Ou S

a.-nd in facilz _J s r o n a e sn o o.n t 1
,IS prooe_ty. T, A

Z -e
T:

X 0 Z for the 1-1 norm. F v e - -,7 7, Z e-xtends -o

a uniq.1_-1,.2
17

T-7 'h t-e

sare no.-. 17 ria-yr hle a-7;

i n. f in te Z 0

Z 0 an(-'
i



;Z/7

identify (X 0 Z) w i th L (M bv
IT

co co

< a.x. 0 z >
I I i i=l 1 2. a.

The following theorem provides an int-egral representation

A

of C0 (SX 0 71, z)*.

4. Let S be a Hausc-lor:'-f locally conpact space

with '.Dorel sets Let XZ be -B---r).;---c'h spaces. The-re

is an isom.at-ric isomorphism, L Q4 74 L *--* L bet�--?een
2 3

Z- i th IJIL
the linear maps L C0 (s) L (x I IH <

the finitelv additive measures L (X,2'.*) �-.Tith

-Lnie variation i S ) < + f o r I z r. r c alh,,

T.1-or every z 7- I-" ; t I i e 1r.. e a r a,:7� S -LI : C (S X) - z
2 0

< a n d t- h e u nd e Ici n e a r f un c t i o na 1 s

A
C (S, X 0- Z) R. The Correspon-dence L r, L

0 3

is q i v e n

qL1g f m(dsq(s) C0

S

L2 f m(d--)-F ( El' C)
S

L u r <u(S) -.-I(dS, > u C :?I z
3 0 17 (17)

S

<--, TC-)-.:> = <ZT
2



Under this correspondence 11IL1111 = Ind(s) = 111Li t I 2 1 1 1

I L and r, E rcabv L (xl Z*)31

Proof. From Theoren.- 3 -we already have an isomorphis-vn

LI *--,- rm *--'*L 2; x.,-e must- show the no=s are carried

over under this correspondence. As in --heorem 2, -we

assume that L " r-, e-� L 7 i !L
1 2 11 I Ir 21 <

X le r s 4'.. short L V,2!'I;

igl? . . . ?CT I-I 0 have dIsjolp't suppo--rt and -x <

1.)%then a E C (S X) have dlisjoint- with

< so
I g-z

n n
T IL (a, Z�: L.) (C-T jjl�L

j=1

<alzing tlie su-7--enur. oVer

n
IIL (Crj)j < !','L I and h e n e < L2 21"'

i.ei--t e t
2111

-F ..... f C C (SX) have (:�Jsjo-int suipport ancn-L' n 0

i h lzil < 1. Th 0 rL

n n
z iT C 7

L, z z
2

a st- (7) to

n



n n
E z L (f < I ri (s U-DP m U s upp

2 i

.Lakinq the sunrer�-,im over z 1 'yie- ld s 7: T!, f i< (s)
1=

and over f. yields L < (S)
,,cw we sho...T > 0 be

(S) < Le

arbitral-, and suppose El. are disio-Lit and

'Xil < 1, izil < !,...,n. y r e cul 1 a r o

7Z'C
z4T7-(- X; ,there is a compact Such I -a, t

Czir. xi,, (Ei) < + II C- e

the T". -is4o4nt open sets
are disjoint, there are

U I-,,- S 0 h nT., 1,E,.C-i'D i, _7

of cont-inuous functions C!

t 1 i 1 < < 1,

n
z r-1 T z L J-

n n
< 7� z-L z. r.'ds

n n
< z

n
< I CT 4



n
(E < T, -,I n C e, s u p m oN. e, r a 1

disjoint P -vields !ml (SI < T'l + C.
n

Since c was arbit-rarv, 1,T-." (S) < I 1 I T-le also note

that- ifr m < thl. e n r- E r c aid c�5 L Z

by Tliecrem 1.

it rci7ai.nz to s-orr hc�-1.17- Trans L C (F- 0_ 7.)
3 C)

arc -�_,lat_.ed to
r,, anrl- Close L E C Z)

3
t 1,

is- qilfen. Define L, C 1� IV

<Zlil %E Z Cz T
3 0

-0, d i s j <
0

n
< <

arie, _41F :x < z i CO

a rld- S O

n n
T Z. (q T < T,

3

n
T g < a n rl < C O nv ZS 61 -1

j=1 3

S'a ZO "'j; slnc < + rncorrespcn e I .7-1 <

k i o a t i - c al v rca")v Z)

TA. a t U.S cl-�-,_f ine Z 2 -C -Ls an

iso-l:,:�,_--pli_-;s,-, �b,:, n s

0 7) -.,e,�iz'ur,:��,- :7,

r I 7 J� L



L u = I < u (,s) , ri (ds) > anC].L m(s 7hu s (1 7) ho Id s.
3 3.

S
and -the theorem is proved.

Thus, to su=arize, we have sho-...-n th-at there is a

continuous canonical injection-

C (s , x o z) L(c (S X) , z L (C (S) rX, 7---)
0

each of these spaces corresponds to o-Perator-valued Rleasur;--s

mc L(xz*)) which have %--a-rLation TlS

finite semivar-La-t-l''OT-1 M(s) , and' fi-n-i-�C-a scalar semi-variation

m. (s) , resnect-L-vely. By posing t-he +--'.n-e3rv in ter-S

measures with values in an L S ---.a:---e -!.rather -IL--h-7- n --: n

LMY) space, we have develoz,-ed a natu--al and complette

reoresenta-t-ion of linear operato-r-s on C0(SX) spaces.

"".1oreover in the case that Y is a soace ('�,:i-t-hout

necessarily being reflexive), s -possi-Ible to represent

all bounded linear operators L� (SX",Y) b� operator-
0 Y

�-l , r a I U C� 4va ued measures m n L

ral-'--er than in L (xy**) ; this is -4-,Ccor"---znt --for -L-'-q e q u -a n t- u-n-1

applications we have in im-JnO., 7.-;heare llike to
;7� C Iq ',7 U !'ZL

represent A-A(C (s), L LA
0 S s

operator measures rather -11-han

�C)7. (g c3 u s -ep r -e or,
ve t,,,,,o exa=ies t s n-

e o r e m s f c 1. 1 aw a s c o r o 1 1 a r IF hc7a s'

---'absnace O'E



-7

Corollar-,Ir [D67, III-19-51. Le- S be a locally co-zipact

H au, -_-I d o r- fspace and XY Banac-1) so-aces. There is an

isometric iso7morphism betw:,6-zn bounde5 linear mans L:

C (S,. Y) - Y and f initely add I't- i ve maps m: L (XY**)
0

with finite semivar.-;tion M(s) < for .�Thich

1) Y*m (-) E rcabv (n, X*) -Floor ever,,.- Y* (_ Y*

2) Y* t-�- Y*m is continuous -for the .weak * topologies

on Y*, rcab-,,,,(k),X*) �_"- C (SX�*. This corresnonl-Ionce
0

L,(-4 m is given by Lf r (ds) "'s) or f CE C (S , X)
0

and !L! = EI(S).

Proo-f. S e t Z = Y* and cons-,:-' =L r Y as a no-rm-cl osed

subsoace of Z*. An element of belan-cTs to Y

iff the linear "L 0 1 Y is continuous for

thi_- ,,q* topology on Y*. H e n c e t-In e ima -o s LL (C X) Y

wh-ich correspoind to --.qaos L S , X' -,Y7 are -precisely0 j - -

the maps for which z <zLF-> are cont-i-nuous in the

W*-topology on Z = Y* for e----er,.;? JE- r-- CC) �Slx), or

equLva1ent1v those rnaps L -,:hich z L',,z is coz-l-

tinuous for the w* topologies On Z = '-,-* C0 (S X) k

-he res--lts then follow directly f -rom .,h

v,,e note th,.-. .- i= L *-4

<f,7 *- >Z <zL-!E_> S



L.- C (SX) - Y can be uni-Tue-1--1, re;Dressn--ed as
0

Lf = fm(ds)f(s) e C0(SX)
S

wh � re m C f a ( o�O L (X, Y) has f= i --- itte s e. tilar i at ion,

i,-, (s) < +co an',_4 satisf ies Y*m, (-') x E -,rcabv (oD for every

x C- X, y*t Y., if and only if fDr-- eve-,,;- x E X the bounded

linear o7oerator L -. C (S) )x) s ,., e a' Kx 0

co---.-)a--t. In that case Li and' L*y* is given

b-v (L--;:y*) f = fy*ri (ds) (s) E -- c-abv, X*) f- o r
S

every v* E Y*.

Remark. Sunpose Y Z* is a -,.:a"- sz----ace. Then by

Theorem 2 every L E M,0(S , X) has a repres-enti-ng

measure m 1XY) C oo -a ry 2 sas s, t ha -

the representing measure m act-dal 7v satisfies

Y*m(-)x rcabv(�D) for every NY* 1-an-, not Just for

every y"', belonging to the cancnical -:--r-age of Z in

z** = Y*) , if and- only if L -s comz,.act C (S) --- Y
x 0

for every x(- X; i.e. in this 'made (in our nota-1--ion)

E. -rr, ( E1 L (X, Y h e r e Y s e c d i r i t- o -is

4-dual Y**.

P r o o A g a i n , I e t Z = Y a n 7, Y to b

Canonical injection o-F 17 T h eou n

linear operat-or C (S) sx 0



T, "IS) 'Y** has image L C (X)** which is a subset
X 0

of JY [DS, VI.4.2'1. First, su;3;3ose L X is weakly compa��'-,

so that L C0 (S)** - JY for evelw x. Now the map

X X OE-) is all ele-inent of C 0 (S)** "-:,,-here we have

identif ie-d X E rcabv (,D) C 0(S) F, or 6 ar, id

LX (X - X (E)) = (z <zm (E) x>) E Y**

-K(Z , L(xz*)) is -he re=E�sen`rg ineasure

W�.-Ilere ra

of: J L: C 0 (SX) - Y**. Since L -is c Om.

<ZM(T-'Ix> must actually belong to jYCY**, t' is

z t- < Z, -TIL ( E) x> i s w * c o n t i n u ou s a n'--'Cx t i Y . Hence rr,

has values in L (XJY) rather t'n -;z -;ust. L(xy**).

Con-verseD, if m E-ht(C-1 , LI r.:,, jV_.) reoresents an

op e r at- o rL L (C 0 (SX),Y) by

JLf = fm(ds)f(s),

then the map L X : Y* - C 0 '(S)* r c z < z , mL x >

is continuous for the weak on Z Y-�-, and the

-weak * topology on C 0 (S) rcab77 ;�4y S cc M X E j Y

.Lo _r. eve-ry E E x X. Henco �'Q, "T 4.71, is

.,;ez,-kly



IX. 03D11--imal Quantu:,:i Es-tim-a-Cion

Abstract. Duality techniques are applied to the problem
-he ontimal esti--t.--or 'or auan�-um estimation.

of: sn--c-ifv--Inc4 41- L -

Existence olf- the optimial esti,-Inat-or is est-a-blisirl-2d and
-, - - �L i - -, -i7-tali ty are

necessary and su-;"Fic'e-it cond'-�-'ons 'or or,)4

derived.



1. Introduction

The mathemati,7al character-J-zation off optimal estimation

in the Bayesian approach to statistical inference is a

well-known result in classical est-Linat-ion theory. In this

paper we consider estimation theory for- quantum systems-

In the classical formulation of Ba-:esian estimation

theory it is des-ired to es1%--_-ima1"_e th-e unk-n-own value of a

rando-in paraMF-ter s E S based on obse-rva-L-ion of a random

variable whose probability 6ist--r-i'll-Dution depends on the

value s. The procedure -for det-=-ining ;---n esti-mated

7-arameter valule s, as a func-rion of -;Z-1-le experimental

observation reore.-3ents a declsilon strat2gy; the problem

is to find the ontimal decision stra-&,_- en. ;g

In 1--he c�uant-um formulation of: -Gore es--t-i7nation problem,

each ParameCer s E S c-o-rrespo-nd'is to a s--a-',--e P (s) of the

quanturm system. The aim is to esC-imate `Z_-he value of s by

PerEcorming a measurement on the q-aant= S7. 7siten. Ho�,.7ever,

the quantum situation precludes -ex:'iaust.-,,,e r...-.easurefrents

of the systems.. This cont-rasts -.-7Li_-h 'L -I'L e_ c- lassical situation,

where it is nossible in Principle ;,---c -,e-asure all relevant

variables determining the state of the syStEem and to specilff.y

mean-i-ng-'rul -robabilitv densi-'�-_- -for the resuitinci

values. For -IL-.hz-! It is nececsary



7

to not only the best orc-Ced-u--re for processing

ex;Derime.-;.�_-al d-,ta, but also to -.-easlire in the first-

place. Hence quantuai d-2c-'sion prob-lem is to determine

an ontilr.,.--il measurement o r , 4:- -n- m a t-In e:7. a t i c a 1 t e -r m s

to dete-r-Ane -the on-tirnal probability cnv�arator rnleasure

correesponding to a measur�=Lzen._ -proced-_,re.

We now for_-iulat::� the crua-_--:_-,_--- est-1- tion -crobla-7-n.

Let H be a separable complex snace corres-oond4jn-

to -the -,3h,?s4_-aI variables of� un-er cons-ideration.

L e t S b e a p a r a m- e "t e r s p a c:_- , Jnab I e S- e t- s

E'ach s E S s-cecifi--s a st a ̀ Z_ e S) O a n t U z- .1 s v S t GT,

i.e. every P(s) is a nonne�::,_:%-_-_-I7e-d e f i n- i -"-e self-adjol n t

trace-class operator on !I trace 1. A

decision strategy is '-sy :process

whe -re m: cb (H) I a r, c s, Ive onzracr -va I U;'�,

measuro (POYI) on tire s-pzace

is a Positive 0 inear

oz)e_-ator on H Lor every E T an--Ik is

countably additive for th-_- fa, aOe a 3 tOO3IOq7,, 0-n-
S

The -measurement- nroccss vi S a n e z 7-, '--e of

narameter; for a aiven �--nd a

ai ven se L,' E J)

estima'Ced value 'S"' I 1,2 S i IS cl_,-__��n

Pr 7F, 'E"



Finally, we assume that there is a cost function c(sS4

A
which specifies the relative c-�)st o-E- an est-irziate s when

the t--,,;e value of the oararmeter is s.

For a specified decision proc�adure corresponding to

4the POM m(-), the -_,risk function is t11--ie condi-1--onal expected

cost given the parameter value s, i.e.

R (s) = tr[p(s)1rc(st)-m(_-,!-_1j. (2)
m S

if -now is a .-robabilit-y measure on (S, which

S3:Dec--, fies a prior distribut-ion- fcr -;[_-h�-_ para_-eter value s

1--he Saves cost i -- the poste-ric-r expactez-d cost-

R (ds') (3)

The q1_,an-1[_-um_ est-i77ation problem.. is to JE-41--d' a Po-%!- ma f or

which the Baves expected cost R_ is

A formal int-erchanae of order o-f yiclds

R
S

whe-re f(s) fo�--7-2-,11%7 at les s--,
S

u--oblem is to minJ_mizc th�_-, 1-_'1.nc_-ar _`_-�Ln-c-l'--ional (4N

(s,over all PC,'.I's o n al� . 7 " e s- a dual it-

theorv for ont-imizatLion nPro'_b_1_-:-s to e of

S o IL 7-II- ;Lon and' tto



for a decision strall-eav to be o-z)-;-al, -uch as in the

("etect-ion problem with a f number hvPot-J-hLeses. (a

s-ecial case of the e-z;timation r-roblem where S is a,

finite set). Of course we must -LE-i-rst rigorously def-in----

what is meant by an -intleziral o' thle 'Ec--m note t'

both the integrand and the measure are operator-valu.--3,

mus-41-- t-hen show the eauivalen--e oJE 13) and (4); this

entails proving a Fubini-type --for oz�,erat-or-valued

Tneasures. Finally, �,.-;e must ;r-n a-,Dnro7Driate dual

T. J nearspace for POM's consistent -i -i h;. � 2 1 -' ,inctional (4),

so that a dual 7oroll-j'11--m can be " c r ed�,' .

Before proceedings s -,a =-:z fize --he results in an

in-ffo-rmal ...,a%, -L-o be ma--'-.e precise 11-ater. -E'ssen-lially, we

shall see tl,.-,Ia4-- there -is alwa-s an solu--on, and

that necessary and suF--4L::-icien+-- con-l"'.1it-ions 'Ear a POIM m to

be oz:)tlmal a-,-e

S.J'f-(s)m(ds) < f(t) f or e-:.-,c-

S

It then turns out t- ha tu tf: (s'j rt (d s �oee I o n a s t o SS
(t'L--Lat i-S, selfadjoint) and sales oosterior

ey.pected cost-is

T r

S



2 IntegratLon OJE real-val-_.-;.-_-1_J functions, with respect to

operator-valu-,,--_-�, measures

Ln quant-am mechanical mea-surement theory, it is nearly

always the case that- physics! quantities have values in a

nlocally compact Hausdor'- - c= S, e.g. a subset of R

The integra-ltion theory may be ex-tended! to more general

measurable soaces; but- since for duaIi`t.-_Y puroos--�s we wish

to interpret operatc-r-valued -.,-e_=s1ares on S as continuous

linear maps, we shall always ass-;-_-e that- the parameter

s7,,ace S is a lo-cally corapac-il: Szo-ace Haiti the induced a-algebra

o'L E-Drel sets, and that th-e on-efat-o-r--valued n..e_--zure is

rec!,-! ar. in nafticula-_,-, is second', countabble then

4 C,--- e- C D 4 n - co,_.naC-i Cat� -DnS is countable aL_ n-Einit-y k- f

S has a countable neig'!-_.hcr'_-_Iood basis a-,,- i-a.-Al --Verb,

complex Bo-ye! measure on S :s reaquiar; also S is a

complete separable raetric sp-a-ce, so 'the Baire sets

and Borel sets coinci.-J"e.

Le', 11 be a commo-lex Hii-l-'fert space. A (se!_F-adjoint'

onerator-valuad reg-u-1ar Bo_--:�!_ ---Pleasure on s a m _-1 n

M such t.-.-it. <77�,-) a regular Bork�-!l.S

T_ -nt4measi-l'-rc on S for e-v2ry ,Lciilar, sincc

for a nenasuro & r-I--I V I -�I v S

a I n1- to �.-ia c o; a n t a]:-, I 0- L 7



is a (no-rm-) countably additlive H-valued measure

for every y�C-H: hence whenevel- "'Ed is a Countable

collection of disjoint subsets in -IC-hen

M( En Z m(E n
n=1 n=1

where the sum is convergent in s,-rona operator topology.

lie dcmote by J� , df S (H)) --eal linear s-Q-:zce of all

operator-valued regular Borel measures on S. ;�,Te define

s c a I a r s en %7 a r i ai o n o f M (H)) to be the no---,.i

M(S) Su (5)

where <m(-) d e n o t- e s th., e t- a 1 -,,, a ra o n i -..e a s u r e

of the real-valued, Borel measu--e E - <r, (,E'),� The

sc--,Iar semivariation is alw.-YE: _"�-:nit-e, as oroved in

Tlieorc-,', VIII.2 by the uniform, theore-_ (see

"Operat-or-Valued %ieasures" for a-'C-e r n a -_ ive de-fl: O-L

n(s); that when m(') is self-adf`oint vai-cd -he

rq(s) Sur, SU'O <7 (sl reduces to (5)).

A �Dositive circular B-ore-I measure is

(IT) S S 4 _5.ieasure m w., -, IS

M (E) 0 LJ E f



Z.3,Z

where by m (E) > 0 we -mean m ('E" belongs to the positive

cone (H) of all operators. A
S +

orobabil'�-v opera-i-or rneasare -s a Positive

operator-valued measure C- v �- f 1, 7-H) w1n. I c1a satis-Eies
s

M (S) = I.

If rtn is a PO!"]. then every is a probabil-i-tv

measure on S and m(S) 17 a C u a recSolu�-io.-n

of -th-,2, identity is an mE C'-:-i Sa S f i e s
s

m(S) = I and m(E)m(F) = 0 n F it is

then t--?-ue ithnt m(-) i s TDr an.--'! sa:;--isfies

m (E (-N F) = m (E 1, m

'Vi'e now consider in -Legrati��:- of _---al-valued `unctio r. i s

witth respect to B-asicaily,

identify the regular Bore! 7:;-:1 I'd E- d -M e a s ur e s

+Proof F _'-._-st, ina(-) is oro4 C 3 1�. s !DV 'r n i te

a ul d i t i v i t Y

Ti, (E) (E) -,q (S) in, (E)

an- --he last terms is 0 since E f -,� S

have b,,, finita addlit ivity

--q F

m

L C! t t

disjoint seL-s.



3
-,-,,%r operators

(H)) with the b -,--Handed li .__

L-. C (S) -,' (H) , using t'-le integration -1--heor- ofO' 0, s J

Chapter VILII to get a gene-ralizattion o. the Riesz

Rec-esentation Theore-ri.

1. Theorer..-,. Let S be a 1ccaliv co7-,o_:-ct- Hausdor'--E space

with Borel sets Let H be a 11-il"be.-t sea There

r TIs an isori-e-ri- �scmornhism b=---een -he opera

valued re�iular Borel measure.3 r (H) and

bounded linear maps LE L (C 0 S (H The correspondnece

t-4 T is given b,�

L11g) = fg(s)m(ds), g E C 0 (6)
S

where the intearal is well-de-F ined -F'or E MIS) "b o u n d e d

and totally measurable -maps g : S and is converg-fl-it

4:.for thie su-,)re7-,u.,n no.-m on M(S) i 't hen 01

<T (g) Ig > ITan-! <M

s

Mo r e o,.�- z L i s Positive (naps C (S)
0 s 4-

m is a nosit.ive mea5u--re; L is nosJ"11-_i-::�_-% L

-n is a ?O�"41 ; and L is an a 1 _h L (1) i

i f f 7,. i s a r i--- s o 1 u t i c, n o c -'a' 'C_ %..?'n J c h c as L

is tually an is37netric alc-e',-;-.,- L S C C S O t G

a norln 11-cj(_)Z-,-d sub;:ilrjehra



Proo The correspondence is i=ediate from

Theore:n%'l_"-2. If rq is a pos-it-i-je measur,-.- then

<m(EW�5> > 0 fo-,r every E and E H, so

<L (g) la, (s) (ds) > 0 whenever g > 0,

and L is positive. Co.,---_:-rsely, if L is positive then

<m(-W(�> is a pcsi-'Cive real-valued measure -cor every

E H, so m is Positive. S-imi lar I y L is posi-t-ive

and L(') if' m is a Pnl. It on-l, .,, r e m as 41- 0

vo-f-.-L-ify the final st-atement of: the +_-hec)rt::ln-.

Sun�7,ose Y-,, is a reS3!,i+-;O-_l OF t-z ident-it-yr. if

n
91(s) (s� and g (S) b 1 (s) are s�mDle

j=j J 2 4-i

func-L-ions, wage and {Fir,..,rF a_-e each
n n

fini-Le dis�o`nt sub-o'lections o -hen

n m
g 1 (s)rm (d s Z a.b-1 L,- ,-I92(s)m('4s) 7 ', k

-�=l k=l J

n m

7 a-b M, (E n Fk
3

He-ice g J'g(s)-m(ds) is an alr-el-ra ho=-,,�rnl`sm from,

th.e algel,,,ra o--,!::: func-'li_-,,-.S C.-n I n - .0

1,1-ore,371rcr :Show th i t he ho --- i I f- L C 10



(s) m (ds) Igi, 9,;,

n
Convl��-rsely, for a Z a 1 71,1;e m a,,, c o s. -a to be

j=1 J

in the range of the projection ra'(E'

to get

(s) n, (ds) > max < rg (s) m, s,

ma:�,,_ la
n

Flax

-- "Us g 'cr (s) m (ds) is -iso-- e t-r_;,- o-

Since simple functions are unifor7,11Y sense it

follo-.,- - by taking limits of s -.-plle that_-

fg,(s)T,,s)_r (s)m(ds) 's) (,-7- s) and
92 'S'c!2

rg (s)_-..i(ds) I = 1,gll, f o r e v e 1"I S I 041-7 cours-2�,
J 1 I 0:1

t_11_e sar,,,o is then true for gl'g2 E C0 C S Since

C (S) is comole-t-e, it -followS.- L is an is--.-reiEric
0

isorqorphisn. of C (SI) or--L---.o a
0

Now assume thaL-.-- L is an al-7 ra arid

T (1) I Clearly m(S) = L(l) S c

0 (S TnL1q L(g, for ev-2r:.

afe posi -I,-- -:Lve.



:;Z

�T (g I-I(S fds) -fh(s)-m(ds) IgIs)h(s)m(ds)

h 0 (3)

Then M 1 contains C 0(S) Flow if g E IM (S) is a uni-

f ormlv bou-- se --uence which c,-n-,.-erges ooint-wis-- -;--:D g0

ti----n fq con'-'.-erges i- i-he weak operator
n

fto�l":"!-I-gy to Ig0k I-, (ds) bv th.a dominat-ed convergence

theorem aT,,-Iied to each o'-L'-' the regular Borel measures

.i H (1--he in-ecrals actua .7 converge for

the nor-m topoloc�v on (H) whenever 19 I 'O 0).
s n-90

H e n!-- e is closed under iDo-'r-'-wise co-n--,;-ercT:--,nce of

unl:ornly bound-&d' sequences, and so e,:7-ials all of M(S)

by regularity. Similarly, le-'t-

M(S� : "qIs)m(ds)-"'h(s)-.r-,(ds) 'g(s)'-1(s)7,L-(ds)� 2 t.--

for every gI--%.(S)).

Then %1 co-ntains C (S) and must- therefore el-,ual all o' M(S)
-2 0

L -is7oin-L-- -s
it is now ira-imediate whe-e-----,r ":-,F are se t

i n them

71 r 0
F

T'Cius r-n i saresolutio-a o 'L

Re-a-rk. Since every real-li-e---f fr= a rt3al-iinear

na c



subspace of a complex space correspo-n-'s to a un-ique

;lz,-rr-,-'tian" cor)olex-linear on the co-molex lirlear

04space-s, we -Just as eas-4-',,:- �,---ntifv the- (self-adj nt)

ooer-ator-valued reaular measures i'Y"k,"'. (H)) with
S

the complex-linear maps L: C (5,C) which

satisfy

Llkg) L(g)*, gEco (S "r)



3. Integration of -C S (H)-valded -functions

We now consider a subspace of "operat;-ons'

T(H) , -"'-(H)) , that is, hounded linear maps .:7-om

into '�- (H) . is Possible bl-ecause i.-f A 6 't (H) and

B E --10- (H) t1nen AB and BA b:E?1-onc: to (1 a nd

I'ABI < W . 1,Bjtr t-r I I

B?� < 97)-1tr !tri I

tr tr (BA)

, v., - --F Rion

Then every B 4 -1" 1;-0 def4nes boun-e,", 'linear unc--

LR : T(Ii) -Z-OH) by

L_(A) = 2�3, A,�-

with !E31, IjL 1.+ In oarti--,.:;7-,r, -rA3 defines a

continuous linear n A 'E and

i n f a c t every 1-ine-air f-uncttional7 is c) -F this

-Lori-L for so-ie -fl E(HI (cf C enot that

A and B are selfacljc�'nt is real

Fron (7) 1 < On-7:=-q-7V and <1, 1<1B

then 1L >
�tr < B >

hence II L >
B



3

(a!though it is not necessarily true that AB is self-

adioint unless AB BA). Thus, it is oossible to identify

the space _.(H)* of real-linear continuous functionals
7- 'H) w-i t-h (IT)

on aq-4-in under t'l---- nairing

<AB> t r AB, A B E- zf ' (H) Fo--r- our purposes we
s

shall be especially interested -in this lat-ter duality be-

tween the spaces (H) and (H) , wh-ic-1-1- we shall use

to fo=iulate a dual problem --F o I- _- quant- est -4 Mation

situation. Howe'rrer, we will also need -;,---o consi-d er Z (H)

as a subspace o--,:: (H) so t1na-t- we may integrate

Cs O"11',-valued funct-ions on c- wi t In rez_--Inect to 410 (TH11) -valued

operator measurers t-o get an e'_e7-en-:[_- of "-L;-(H).

sunnose 7-, C- cc�, zf (H) is an one--a-1--or-va-lued
S

regular. Borel measu_--��, an.-I f: S - -E' s (-_-0 is a siLmPle

u n c- tion with -finite range otff t 1�_e f or---�

n
f (S) '_" 1- (S)

j=l

re 0 (H) a; n d E e d se in tha-
s

S -C E 4 4 +. -
O Z' (II) + Th e n. _11!c� 7-a (by I-

s

additivitv c1c m) defin�? t h e i g a I

s P, S _2 M

S

+



The ques-tion, of course, is to w'A-.at class o-.cL J-1anctions

can we Proper1y extend the deciniition of the inte-ral?

N-ow i".7 m has fini te total varia-t-iOn En' (s) , then the

map f i- If (s)m(ds) is continuous -Lcor -Clhe suoremum norm
S

f suolf(SNII on (H) , so t-1hat bv continuitytr s
S

the int-j-ral map extends to a con-41---inuOus linear map fro-,.,I
the closure M (S, .El) )of O Crl) with the

s I L s !_

1 - ICAII norm into 't-(H) In �)articular, the integral

fE(s)m(ds) s w e 1", - d e -F i n e d (a S -_ h e 1 I ml t o h e i n t e g r al s

s

4of un_`_:or-,.1v conve=ent shape f7unc�E-icns) for every bounded

and cont-i-nuous -"urnction fS s(10 UntFof tunat-ely,

_. _: 4-it -is no-t- the case 'E-hat an ar-'-'t-ary 'POY M Inas

total variaticn. Since we wisn to ceneral quantum,

measul-ement nl-ocess-es as reoresent-eldf" b-,,- s m(in narti-

culair, resolutions of the ide-_41t.--�'-) , v.-� -air oni-v assume

ri-, has f in L te scalar se,--2'_-.7ar-! atinn r-, (S) < +Co.

Henc-12 we must ou'C stronger restrict- _4' o' ---s on class of

7unct-ions ...? h JL C '---we integrat

C,
wle mav con3 de- evz2-rv r-. -I' a n eem n

o JE H.) in -:1'e way: 0 _r

PU 4-E op -E-

M M

'tl rl a S C.: (j7 E, S



of �e (H) is the sa:7-a as the scalar semivariation
S

of rr, as an elernent of -CIH) , -t(H) since

the norm of B E (H) is sam._.:- as the norm of B as

the rnap p - pB in T (H) (H) By the representation

Theore:i VIII. 2 we ma,,,, uniquel-., identi-Fv

nt E. �;I 'O -I- (,& , -�' ( -C- (H) (H with a linear

operator L (CO (S) s (H) 11 C_ P (C0( S O'C"'

Now it is well-kno,...,n that fo_- Banac'-n- s--aces XYZ we

may identify

(X A
0 Y I z (X, Y - , (X, (y,

where X 0 7 Y denotes tll,,�-_ c,-;-.!7�,letion o--'-' the tensor pro,-'uct

space X C 'Y for ;,--.he -proJect-i-ve tensor product _n o -f m

n n
in x OY IE � X 0 Y

J

(XY: Z) deno tes the spacc of continuous bilinear forms

9 X x Y Z i t hn o' _r r,,

.B! suo s ,.I 0
(.IK, Y; 17) -

:xl<i <

an�-, -t (x ,--.4,(Y, Z, O COurf7--I___ e he �z,,Dace continuous

n ea- r r,,. a-,, s L : X (X , Z

S "I rj
2 Y, ZI



Z4;z

The identification L B 112 is given by

TL (xOy) = B(xv) 2 Y.

In our case we take X M(S), Y '?-(H) to identif'%,

(M (S) 0 Z (H) , T(11) (_"l (S) -31f (H)

Sinc�� -L-i,:.e map g fg(slji-,(ds) is contirvacu,_s 'from I.I(S)

i r., t o ci, (H) C 'H) -L:::o r e v e m E
s

t 4we see that we mav iden L.Ly m w-i------ a continuous linea--

map f - ffdrr, for f �:_- M(S) 0 ? Clearly if

IML (S) 0 th a t- is i f:

n
L S), gi (S) pi

j=

f o _r g i6 !"A' 'S and n

n
J.(s)m(ds)
S

Vlo-reover the imap is cont-inuous and Hnoar
S

For -norm o r. S So -.7C-l - a-,.7 ex�_-end 1-h��

de nition o' -he complotion

by se n 1-j

:(ds') --- lim _rf nxS ) mC�

n



wh e r f E N' I (S) 0 '� (H) and -_F n - f i n the norm
n IT

In the section which follows prove that the cc-plet'ons

A(S) G t-(H) an d C mav be identified with
0 7

subspaces of M (S, '� (TH) and C (S resDectively,
0

i-e. we can treat elements f o f M (S) CAD 71 Z (H) as totallv

measurable f unc I'--- ions f : S (1H.) . !,.-e shall sho-,..7 that

under suitable condi-tions the -mass f: S - 'C(H) we are

interested in for quan'tum est-L--a tion P-roblems do belona

to C (S) 0 an-,-' hance a--e -intearable azanst
O' 7 S - L_.

arbitrary operat-G17-valued r_:�asures 7-

2. Thec-e-m- Let- S b--.:-- a locally co.-.pact Hausdorf

sr)ace with Borel sets iJ' LE�-_ br-% a lriilb::�rt snace.

T.Iiere is an iso-netric isomorph-S-, T T b e tz. ea n
2

the bounded 1-,-near ma-cs LI: C C) ks"0 t1ne
77

o-oerator-valued:, regula-'r Bore! measures -n1 .7-

(Sand the bounded linca-r maDs L',

The co_:-respondencF, L <_> M is giNlen '_-v

L ff) ff(s)mlds), f E

S

L (g)p L p J'a C T,
2 1

aLn,-', under this c or I-,- �s p -:D ic--31 n c 2 e -

Lz, C- o q r;n

S



and linear from Yl.(S) 0_ -C(H) into 7"- H

er, A 'ion w-'.qi.-h fo'lows we
E-_Oof. From Theor of the secL-

A

and 'Inence C -C mmav identify M(S) 0 7 0 (S) E)-!r Li

as a su-s-oace the totally measurable fthat is, Uniform.

1 im i ts of` simple functions) functions _-F: S The

results -then f ol from The--r-e:r%'M.2 and the isometric

i somlor;Dhi s7M

(C _.J#
0 (S) 0 T (H (H) (C 0 (S) T (H)

(81 T-as in I � -i e n o t- e a t b y a H v a 1 u e d

regular Borel Feasible we mneean a map FO

6 JEcr whic'n t_-C-m is a complex Bol-e! --resume
7 "I

or ev.-�_ry E; It' (In C E 'X (HI apolication

04: VM2 '�'(H' Z (H�

7* T T -i -o a c u I a r t h i s i s s t i s i ed- '1-o-- everv

(H)
s

3. C o r I I f m E '�Y' -? (H) t n h e n t- e g r a
s

r f (s--I)m(ds) is T�.jell-def ined ev�--; _:ff E �14 (S 0

S

R e rt-, a I t s h o u i d b e e .7, p 11 i az s i z,- t- hla t.

strictly than the

SUD (s) e ni. C C , IC (H)tr
s

S� - s C" C



-7

o4 M, (S) G (H) is a subsnace

The Qurno-.--�a of this section is to show that we 7,..av

ident-ify t h e t e n s o r p 1- o d u c s c e 0 (H) w i t h
s

a s u b s n a c e o f "---.h e t o t a 1 1 a s a bl e u n c �Z_, o n s

S -C s (H) in a well-def-iLneed way. ':,�he reason why

(S) A IC (H)
this is i-moortant is that tho ffuncticns

71 s

are those for which we -Iiay leg"i-ately ari in c ral

s M d", s o _r a r b r a r v o p e r a t va 1, uen d m e a, s u r e s
S

m (H) s ince f �'s -i s), is a continuous

!�--r rrap from M(S) 0_ L in oarticii....lar,

it is obvious that C (S) 0 be iden-L-ified wi �'-_h
0 s

a subspace of cc,__�_-inuous fL S 7' s (f in a

4--i� --decined way, just a Js to dc� inc tet - - _ _L -J.;

;7 (S) r,-. r C,, S) 1 , co-:Di---ions

integ-ral for llni inea-
S

n
f(s) g (S) P E C (S) 0 'H is not-

4=1 0J

ob v i c u, s is ti-la the C 'S
s

t1h -_ tensor Droduct norm 1�e -f J_ i t- a

-7- q,sulbsnac-:� of cont-i.-1--cus S

Before nrocec,�-,4-g, '-sic 'ae-+-s

tensor F-o-luc�_- soac!--s. Let snacos . B

T;E-, dinotl-.-_ a V

�-.Inlclll is +_-,he� vectoc snac:- 4:



n
a. X - E) Z a - ER, x - E X, z E Z (lo-Lz' course,

j=1 3 3 3 3 i

a X, e not uniquely deterrmine�dl. There is a naturalj, iJ'Zi ar

dualitty between X O Z and ct(XZ*) a'Lven by

n n
< F a.x. 0 z., L> Z a-,<z Lx

-Z=l J I I j=1J

Ncrec-�-ver the nori-ni of L E aS a linear -func-ional

on X 0 Z is precisely its usual ope-ra-11-or norm

"Li sup sup <zLx> when X G Z -is madc into aI I �7'

Z < 11 X I < I

normed space X 0 Z under tine tz--tnsor nrc"-'.uct nor-m
71

10

defined b-

n n
inf{ 7- Ix-1-11z 7 X Z f E X (D Z.

j=1
ID

It is easy to see that Ix (D z! 1x"-'z1 for
X, z E Z (the call ca! -.nj--:�i= X x Z X 0 Z

on-i- is

con t inuous with norm 1) and stronges

norm on X 0 Z with Uthis Ey X 0 Z v;c dono-1--e

the Completion of X O Z for nor-m. F: v e -- Y
7T

L E X Z extends to a unic-ue bc-.ind- =-d linear func t 4onal

am. e n o I- �a Sso7erator .!orm,

thaa-1- we iden-1'-_if- (X Z)* s p a c 7�., x

may be identifi-e-" mo r P_ c o e O s L �M,' s



Z a. x z - where x 0 in X, z 0 in Z, and
j=1 I 3

co
E jajj' < [S71, III.6.41, and the oairing between

j=1

A
X 0 Z and -- (XZ*) by

co co
< E a.x. 0 z L> E a <ZiL-:e-->.

j=l 3 3 j, i=l i

A second important topology, on-X-:.4 Z -Js t'-n--- c-topology,

with nor-7-,

n n
a.x. z max 5-' a.<x.,x*><z z*>i

!z* i<l

It is easv to see -�-hat is a e.

Ix O z! Ix-Iz!, and that < the -F-topology

is finer than -the -E - t- op, o 1 o g vde n. c tel by X 0 Z the

tensor product space X 0 Z witl-h- -'U'-qe a n d 1--0, -,, X 0z

the comoletion of X 0 Z in t-he z-norm- canonical

injection of X 07Z into X(F.,zis co-nti-rucus (W i t h

norm 1 and dense imzagel; this cano:,4Cal continuolj�-

X

7t ap a Z --�, X 0 Z It is own, 'n c7ener-

map is one--'�-o-one. In th-,,--�- s eX.71 ae -H i 1.,) r t

spaces we may ident-ify X 0 or tracc-

Class Ma';)sT Z) and X

an--Ik JL-L is woll



-to-one [c-'� r67, III. W e a ro'Z X0 Z is ane
E

interested in the case that X = C(S) and Z (H);

; '-3 :-- nv .we ma,,,, then C (S) 7- (H) wit-h C(S, r(H))

(3,nce the is oreciseLy t1ne norm when

CC (S) O 7-s(H) is idemtified with- a �-Lubsnace of

C(S' (11) and C (S) 0 (H) is dense in
0 s 0

-L- -'k= to be able to consider
S and ��.,e wou'-1 11

o

A

C Zs (T-0 as asubspace o' C (S, -_(H)). Similarly
0 0

we want to consider MIS) O T(H) as asubsnace of

,'..I (S' T (H,)

4. Theorem. Let X be a Ba-na-�'n- s�)a--e and H a Hilbert

A

s n- Ft cl TTien -t-h-e canonical nin-pinq o-f- X 0_ 'r(H) into

A
x O (H) is one-to-one.

Proof I t s u --r- f ices to show t'--lat the ad'-'Join-'�--' of the -maoz�'Lng

in quest-Lon has weak * dense in

(X A
(H) X, , 5-61' ( He -z, ,.: eidcnti-fied

(T-1Qk- --ote that th-e ac��Joint is one-to-one,

since the immage of the canonica-l manz�--':.ng is clearIv dense.

�-"!hat we must sho�.,: is tl!iat- in,-� Of (X 'C), F11

t'he so-called manni-s X into

Ot, x , h;�!z s ,.; e a 1: d e n s c. z - aq;- Of course, the set

01 11--tear cont t o

to



(H) we sha I 1 actua 1 1%, show t Ilat_ these finite-rank

operators are weak* dense in (X, (H) We theref ore

nced to prove that fo-r every -2- 6(X 071 Z(H))# L

E > 0 there is an L 0 in with 'Linite rank

such that I<fL-L0>1 < f has reo_-tesentation

f - a.x. 0 z.
j-1

00
with a < + x G a n d z n

[S7'-,, III.6.41, and

<:fL-L > Z a <Z (L-L0)X.>.
j=1 i

The lemama which- prc%�es Cliff-, follo-,-ing fact: to every

cof-pact subset 1-4 of X andL eve-r-,r 'u-neig.',"t-lorhood V of

there is a cont-iin..-D-ds linear L : X t- h0

f":ii-nitc ranll-, such. tha�_-- (L-L0V. TUS ing t1n,--, ren--r-e-s-en-L-a-

tion -'lu") , we take K ro'!

co
10== > <la.l. T`7r� cn har:c '<',L-L

ty," Y2 0

as desired.

The le-mia requi red 'Lcr

s -a LSi Cs, th I



Banach s --ce X the finite rank o-jerat-ors aria dens-a in

:�_'(X, Z*) for the topology of unifc:orm. conve:.--.7enc-e on

c�D_:7pact subsets of X. It is nol�-_- whether every

locall��' -- ,nvex sioace satisfies -"-',-ie anor-oximation pro-de--ty;

-this question (as in the pressnt- Situation) is closely

A A
related to when the canonical 7--na-oning X 0 Z - X 0 Z

is one-to-one.

5. Lernma_ Let X be a Banac'2_ s-cace, TH- a Hilbert s-_-ac--�.

'For every L E 4(X, 4' 01-10 evcry cc:7ipact- sahset- K o-Ac-' X,

and every 0-neighbor-hood V in klij t1nere is a continuous

.Z 4 _;=�li-r-eal- r,.iap L X - 9;zC ( ii W.L I- !--nk such that

(L-L 0 )(K) C V.

r C+_Proo'. �U - p n be p-rojectic-S n f i , wh c- r

I is the identity operator on -H (e.c. tal-Ile ann-y- complete

orthonormal basis 1 e t - be the

4:lamily of all finite subseLs of J, s---+-- irc1,_,s1O__

a n,--, f o r n E N d e f i n e P to t-Ine orjorat-o-r
n

>p for F S u L E (X In jjf- n

Then P L E 0,1'- (X, 4' (H h a s `E r n- c on e s
n

Doint-wise to L, since (P P Mo r e o -e r
n

ip T.1 is uni_-Fcrml�, T
n

tv the Fla)rac'� +



1',-rzela-Ascoli Theorem the co:v:2rqen---e P L - L is uni-F-,-.-.-,i
S. This ri,�!ans for ev-ar- O-neig-bc�-hood

C.-I Z-'�:-lc t S 0- k- - L- l- J -1 .. -

t' T; T- a nd ever,:, co:1,3aclL--- subseit: olE X, it is true

t-h-al--- for n sufficiently lar-e

(T -P nL) M C v 13

6 et S be a 'Totally ccmoact 'Hausdorf

sz-aace, H a Hilbert space. Tl�-- canonical mappinU

(H) - C (S , 'Z- (H) is one-to-one, and theCo (S) 0 rl 0
A zircanonical mapping M(S) 0 k:l'l --?,- ;'-l(S, -C(H)) is one-to-one.

Proo-'E. This follows Jlr-ro--,.i n--evious t'�----crem and the fact

that C (S) 0- may be identified with C (SZ) wi-I.--h the
0 0

supre-.um norm, for Z a Banac-h- space. Similarly

M ( S O Z = TM(qZ) w J h t h e slp

Remark. In Theorem VIII.4 -,.-:e e-,�-nlilcitlv identified

A, A
(C Ci (S) 0 (H) (C0(S) a n 'IL C O(S) 0 C 'Z-(H)

(S , "I- (IT) ) *
C w- th the i-.- r;, (H, having

n s rm ivariation and IF il ni----2 t--ot'�-al va-riat I-on, resoective ly.



5. A Pubini theorer. the Baves post-e-r-ior exnected cost

In the quantu,_n estimatio-n probken., a dec-1 sion st-rategy

corresponds -'L--o a p-_-.)bability operator m.-_;_:�sure m X (H) )

with Post-e--ior expectei cost

Rr' Itr [p (s) !C (t, s) m (dt) �',Li (dt)
S S

-where 'L o r- each s o (s) specifies a s+--a-I'Le o-"- the cfuantum

SVs+L_-PM' C (t, s) is a cost ful-r-ct- on, and u is a nr ior

probability measure on S. would like to show -k,-,at the

order of intec;-ation can be int:a_-c'_han.7ed to yield

R trJ S),-. (d S)
in. S

where

-F (S)
S

is a rza o f : S (H) that belongs -"---o th-e space
S

,�,l (S) 0- 01H) o= -cuncL- o n s i In `C: e g --r- ae ag a i n s t op e r a -IC-or-

valued m-easures.

L e 'C_ (S, b e a f _J n c n n e cT rC meas-1-re sp-_7�icc_-

X a Bana-ch space. A functioln S

there is a seauence- L of mew-, a s,,,i -LAble-
n

con%;-ercTJng P o _J w i S to f i c-' ry

S. ii se c r on



following [DS III.6.91: f is maasurable i-ff- it is

separably-valued and for every o-:.-,en subse, -L- V o -Ic X,

f-1 (V) rc vS in particular, every E C (S'X) is

measurable, when S is a locally c c -m o a c t lHausdo--l-ff soace

with Bore! sets A func-'lon f: S - -XI -Js integrable

LI:- s measu- rable and s) (ds' < +:;�, in which ca se
S

the integral f f (s) -o (ds) is as .-;�-,chner's
S

integral: we donote bv L son-ce of all

inferable funct-Ions f: S -X, anci-nei soace undle--r the

L nor7,-,i f (S) Li (ds) on

S

f8nct-ions -E S X i s d e f n by f (S X)

denot-es -L---he Banach st)ace o--If all un-ifc-= 1--i--J--S- of�--

s -IeX-valued func-L-tons, with nor-, ,

closure of the simple X-value--7 --functions v.-it-Irl t'le- -un f o

�jnorint. 'le abbreviate M(SR) to -�"-'(S)

T T7. , Proz�osit-ic-,--i. et S be

space ,.-ith Borel. se-IC-s -,.--asure on

and H a Hilbert space. S �-,e on g s
s

o C(s an'd j J, ma n
s

satisf -.v

t - C (t, - C- L (S'

s



f (s) = IC (t, s) p jj (dt) (12)
S

n- f ;-: 'm S

�'.--)reover 0- S (H) and for every operator-valued

a s u r e M s (H)), we have

ff(s)m(ds) f p ( t.) C (t, s) r. (d s) (13)
S S S

Moreover if t t-* C in fact belongs to L (S' CO (S)

then f EC T

Proo---F-. Since t C (t, E Li �S, n

there i s a -s ii-a-le f unction C E L S, JJ' (S) such that

J, 1 C (t, -) -C (t, (dt) < (14)
S n --I 2 n

Each simple function C n is o--= the form

k
n

(ts) = E 9 I- , I 't)
C n n.11 (s) IE , k

k=1 nk

whelre E jr...#,E are disjoint' su!---ets of and
n, nk

gnl""'gnk belong to M(S) (in the case that
n

(t, - L (S C S Cr in
n

(S S i n -- -2 c. S (f -F o r- e a ch n h .2 c i s a
o s

sim-ple -measurable function SS k-4 s-- --I c h tan

s --IT) C, 5)2n
t n



x

We -Jay assame, by replacing eac'_h se-t with a disjoint.2 nk

subpar"Eition corresponding to t-he J_'in-'Ice nu--,,,her of values

taken on by p th1at each is in -fact c-" the -form
n

k
n

p ( t p 1 t)n nk Ek=1 n k

Def-Hne f S -C (H) b--
n S

X: (S) r
4 ( t , S) p (t) i-1 (d

n n n
S

k
n

F g s

nt-�: nk
k=1

0-F' course, each be longs M 'S' I
Ln s We shall

sho,. -t-'lat- f 7 i S a Cauchy -.or the nor.- on
n

Y" (S) !�9 (H), and th, a t f n(s), (s) o r ev, e r y. s E S

since t-he -1-imit o-[' t-he sc-:�uenc-e i s a uniuuo

func 4on, bv Theore-m we sez� t h a -t- f i s-C-he -lir,.iii

Of Tf and hence belon.--s 'Clo CO-.7"I'let"1011
n

M 6 A 7- (H)
S

We calculate an uppo', N o W

n+,[(S)-f n S

LI k n
n7rin

J



and hence

!f f I < (16)
n+l nl�. -

k k
n+l n

E fig p !,-+"g (E nEj=" k=l n+lj n+lj -pnk n-'lLj_�"nk' nkitr n+-'-,i nk

X4 StS aSuppos e- E E �f, i.e. e E o En+!,j nk r 0 n+lj nk'

Then frog (15) we ha've

< 0r -P'to)ltrn+1,j_�'nk n 1,J- ("o i+--r nk

-n+f
2 n

LT h u st h e f: i r s -t- a 1 f ot h e s,,-: at o ni n(16) is ',,,founded

above by

kn+l kn I
IE r1c

"n+ 1 n-I n-Ln2 n-1 j=l k=11 k' n2 S

11C:7:n-l' n+ll

< (1+! C!
n2

Dv 11c: 1, we mean of C as a

e 1 em :n tc -f L -FC-

f r om Sim-ilar-1-y- the h�,al_� of tnEl

!,oun(led abov�_,



k k
n+

p E n EI gn. -9n,,K +1 nk
j=i k=1 n

I-n+l- Cn! II

< pi +I) - 1
n2 n-1

whl- re again the last ineq1aa1i---,-- foilo-,

-Z� - I - L- .,7s since

1"C < b-- (--,4)- Let- a be a constant largern-Cill n
n2

than 1 + and 1 + adding the las-L tv.,o

inequal i ties from (16) we ha-ve

f < a-
n+1 n O "n-2

Hence -for e'very m > n > 1 it. --:=allows that

a 3aIf f < !f aL < <
m n j=n j j=n n2 n-2 n -;=1 2n-2 p-

T h u S- f is a Cauchy sequence, for them n o -- 7-.,. o n
n

m ( S '), E) Ts(H) , anc-2 hence has. 0 E M(S) O -IT S(H)

S-ince it certainiv Follows that 'L 7i so (in.1 - n 0

fact in th-e Uniform no=,, sin-ce < and since

it is straig'.111,--for-7ard to show t-at f (s) f1s) for

e-very s E S, f -F in the ca, s e t

t - C(t, S C 0(S) n E co L



and hence -1-im f !,eionc-s to C,
n

It on-!,?, re7aim-�, to that (13) holds-, T'ssentiall",

th is foilo�:s f ro:7 th-�2 api�ro:---irl- tions -.-.,e ha-ve atlreadv ra(1D

with, S-ir.11-n'le -f7unct-10--s. -.-�ovy clearl,.,

k n
j- (d sn nk�j

r (t
n t) 6

S O 3 s s a t i s f ie�! t- IIIF-, C Z) C__ 071 3

in
T7N

S
53, 7_� < S) ---, 0

a n::� �e C= c- S o n. e e. n

te Pl-C' f
1-n z vu 6.1 ity

t -1- i E,.n T 1 e A�- n f 1 r, ) , r i C, I A

O-) r
L m (ds

L
n

+ T-1
t C!

<

Y,
n7:

< C!
co

+



Fire the las'L ineaua-l-itv follows f- (14) cand (15) an-

again 111cli f C 't, - cu denotes the norm of C
- S

as an eler-.ent-- 0 f LUS D (S



6. The quantum estimation nrohie.- an-4, its -21ual

We a,-re now preoared -'Co fo-,.-ulate 'L-'-�-e auantum ciet-ection

proble-r. in. a duality fraLrewc-ri: and ca-1c,,ziate associateOl

d,,:. a p r oh., 1 Let he a "A-oca1';,_-,1- compac-IL: 17ausOo_-ff soace

wi4 Ecr-l se+-s Let 17 be a snace associal.---e-d'

4Milan zhe txivsical va--r�a.-les o h- -- sister-. un�2er cons-ieera�.'-on.

-Pcr each Parameter value s C- S le t s be a or

den-si.t-v operator for the q-uantt=-- s-;s�-- ;.e. everv

is a nonneqative-def iziit-e se 1-fad t 1- opera-tor

on If 1 ..7 i -'t-- h trace 1; wz� a s T, -2 a S S,�17- e

th. a t t-nere is a cost C S 'S ,,:-.ere

S-ec 4 1-7 -1-es -L--.he relative cost- n-f an t thle -- race

U 4n ra:- en. e r -v a - t

correspc)ncl�s a anci

decilsion stratec-, t'.-Ien the cost is

P,

Li s a r o r ob a 13 e-:- s r e on

P r c o s i t- i o n 7/ this el t I,

C' C a, F"
-in -C thin c' -4 n 4--- --a I 0 n t'

la,., n t CT

r



SI) t) C (-:L--, S) .; (ds)
S

.L..e cruantum est.4.;-ration prob.L,,-- is to (17) over

opera I-or-valued measures, ',,--hicll are

i.::!. t--e constraints tl)at > 0 for

and M(SN = Tj -

'�=cr-.-rula-41--e the es-'i-,a-4on probler, in a e-ue,"iti,7

a -71 -2 w. O S ciza-- e c

on C- E�l C- u a T.

U C ion

T-) + tr 01-

CZ

t-h C 0 title r,-! 4 0> for

ya
a n:

x)

is O
T

en t

+C-

0

t c

C;



co-nside-r a fanil% of pert-ur' hllers Tv.

(TT)Ox) = i n f { F (n.) + C. (x - Lm) s 16

Thus we are tall"ing perturbations in tha equalitv constrlint,

i.e. the nrobllemm P(.%,) r e cu e s t'na,;l-_ ever- _":'easible m

he nonnz2gative and satli S Z-y I--- Z. c.-;_ course

Ce T0 = PM Sin F and C a r e c,-- nve P S

CC_'-`re-X .-e (!T, ) - T, .

In editor to const-ruc-11--_ dua--l nrcliler, ccrroFnonCi--ncT

to of pertur;hed -rcllerf-, P(x), i-e 7ust C -a 1 c u a- --e
+-he co-n-�uca'e fu.-,c`_-JrD_-,.s o" an" C. -vorl- in

j - L j_

th. e n o topology of the s z c c t a t
s

lp T *__e cuai Clearl,,.- G* 0.

4e acll o n o the oneralt-o--l- I i 5 C7 -I- v P

L*:
s

'To calcula�'Ce F*(L*17), �-,,c hai-ee File o I I

Al
TTLo-_i. Suppose a, n d T

T T

S a

jr (SI 5) m
Y < -&C, r Jck 1 19

c) r e,\,, e r ypositive T,

1-1, len an 0, -or _2`l_:_-__-l E c7 .7r.
�l C

CTI n



and
Ya C S - Sg

Prnof. Fix anv s E S. Let x be an arbitrary ele--ent-0

0- I)c S(10+, and de_�-:';_ne the p,�,sitivc ope.rator-,valued

ri--.e as ure r-, otf O 1)+

x SCE

S
C

Taen (S) v (x-) tr x) a r_ s m sac S C7

t--P T'n (x'j < Si -ce0 a- 0

a s a r Ib t r a -TI.3S +

49 that �v ac < f (s0 (i.e. f (t_-, 0 -V ac C S (H) +) and

r I
y < 0 O e.S9 S C,
"'ith "le aid of th; s l c, - - ;- -

a s,,, to v;-% r v t-

<
0 a S, and < 0

F*
c t -h e r-. T I s

< +

I c�,, If- 0 1 I 0 t1h, a P* F (L* + 0

< 0 a nd r" r

o therwiso . prnl-l



D M
0

<SI-,Pfltry +y (T) v 'E v < 0
ac sg s SCT 0

1,,'e show that P(-) is nor-r. continuous at 1, and hence Caere

is no duaii-'�_.v c-Llo (P =D and D has solutions.0 0 0

Moreover vle e:-:pect, as in t.,,e de,:ecticn case, that Che

c-::,-timal solutions for D 111 always Iave 0 sinmilar
0

par'�_, i.e. will be in S

9. PrOTDOSition.. The perturiDation function is

Tuous at 1, and hence In psrt-icTliar,

P D and -:C-he d-�ial Pro'oic has cn--_i-.a1_
0 0 0

-,oreovor event so1ti"C' 'Ion o f `_--hie (fuaL. �orohle-,-

A A

D h a S 0 s - c-,, i IL a r -Pa ri.e. %r = O and %,
o ac

Tbelongs 4Co the canzonical i-i-a- CTel o f s

Proof,. Vle sh---.,- 'Chat T(-) s 1- o u� L: a e c a r c,,.. e o -,L,� a -, n Ic_

b a 1 II ce n r -2 d a t I. S 1-1 n p 0 S E- < 1.

B -v L a �'T I.4, I+X > 0. Le s- an ar-',-,11,_:rarv0

of S and- eefinc the s- u _r e

+

T+x E

m (E")

-'-on __C 1.0



trff Wmk'ds) trfl(s C) < 2 F
0 tr

Thus P (I+x) .-- 21 -F (s I list e n e r x'� < so P(-)

above on. a -,.eiqhbor;-;.ood c:E_ I and so hv

convexitv -is continuous at I. Bv Theore.- I.11.1 it

follows that'- 3p(x I-ence P D0 and D has

A
solutions. Sunnose now that v E S is an optimal

AV � S;solu-'Cion for D if i7, of _11- .C, 7 SCT
0

-10 Tan. d I n t 0- (i i t f o -1 lo%-s -:Ero 1'e--ma V11.4 thal-
+

tr(Y + M < tr(n Ecrce -the %?-;-:ilue of"' the dual
ac YS(T a,-

ob-jacti,%re if-unc-tion is strictly i- )room-' In-v set -inc.

A 0 v7l-�_ile cons:tra-in-ts --r-ar-a-in satisfie-3., so
Ys-:i
that i f- 4s it rus-:- Ine t! 0.

y nat y_Swq 0

In or,_:-_,_r to s::11,)�.-, that t-'--c -) r o I has solul.-I-ion.-;,

w�e could Liefilne a c-F (D_:a1_ -.OroOje-is DM

0 v 7 Z11S (h) and is cont-i-n-i-ic-us.
J. n-?,JncT

Or coul' tahe the alternlat-47.-e- oE sh-, ha' t�

s!2t o_` feas:_1A,.� PO.'!'-s i's anc' t-- cost

runction is weakl-lsc w1hen c, ('s CZ-

4._10jjt-: -=4 ad as- t7-, nor-.-�al 1 c sp;_7,_ ce C (S)
0

46

<

t I r



predual C, us) (10 (11_5_::� 1) bv
S

4.-P-o-position 7 it su_`_-,l:_ices to assume a C t

beloiiqi3 to L, (S C (S)I t 0

10. Proposit-ion. The set o"ff POM's is co:,lnact for the

A

weak-* E- -w( (H) C 1% S) e, (II!)) tonolcav.
s 0 S

I 1� t V_ C (t E: L (s C S) tl e. P has ooiral
0 0

S C DU t i C) n s r..,

49 Pr c.,o f since s (!!'I Ls the r�orre,_:' dual of

ICC0(S) E) ri z s(11) it sufficeS to sho-.- t-hat- t'-,,-e set ol

P s is hounded; in. fact., �.-e show t'hat m:(S) for

every PO',.-, M. If E In ancl ; -- I = 1 , then. < �,,m >

is a regular !'orz--l -probab; 1 ty -- zure on S whmereve- 7--,

is a POII, so that- -the total -T-riat-or. of >

'precisely 1. Hence

< >n S UID S IU D

<1

Thus 1-z"ne set of is a sj_';set OA_

Unit lDal n c e T F C)

C bel Orion,-,, to 4 t'-l;_- n

A
�_ (II) b,,, rc o s t i on -17 so 7, f

0 (S) 0 .7 s k s

is ZI '�_Te,__l

41 i t s i f o n t c)



7

he f o3 owina -heorem surnarizes t-- results we have

ob"taine--l so far, as v;all as -,rovidinq a necessar", an,!

su�:'--L�;---ient caaracteriza"Li-on of-F the op-,.-imal solution.

jTi1-1. Theorcm. Let 11 he a - lbert space, S a 1ocallv

co pa--'L'-. Ylausdorf-,E space Borel setts & . 1i-et

P m ( ST, (H) C S x S - P, a T-n. a p s a t i s f v J- n. c.
S

t C('�-,-) 6 L1(S ,,I; C(SI), and �t a -,,robabilitv

measure on S T h, e nor e -v e r-,,:- P.

trfo(t) f c s ) r. (d t r f s rM s
S 1.5 S

v.-here f EC (s) 0'- is defFin-el", Ihlr

f(s) t) C s) 1-! (d s)
S

D�f4lne the opt-imization Pro!ijie-�s

P fo-- every
0 -s

D su-af-tr-v,: YE- -F -fo r e�-:--- --y s
o S

-;'i en P a D '-av�--,0 or 0

re o,.7', r are O

m (- rq a suy- i: -nor m and m > r
S

e v rv



1) ri solve 0

2) f c. ) m (d s )< f (t) -for every t E S

s

3) fm(ds) f (s) < f (t) o _r. e %, e r, S

S

Under anv of the above condi-tions it -;Colors that
(s) r, s) f r-., (,.-Is, (s) is scl-fadjoint and is the

L _J

S S

unicue solution of D oil

= D
0 0

Proof. e n. e, �:: d, oI y v e ry t -"' e q _3 a I e n c e o, 3

the rest follclws -from PrOpo�=1_-jtzcns 9 and r.

solves P ""men there is a E T -whicb solves
0

so 'Chat v < -flt) f or e-�,'cr,., -'t

S

E a u i v,-- le n t 1 y0 = trf f (s) -.. Ws) -- t-ry (s) -y) -,, (,:Is/
S

S _4 r. c e s > 0 fo_- eva-_ry' s > 0 it

4-�-'L- O = f and lencc 2)
j n IM

S

T 1-j. is 1 a, s t cn a 1 i t v a 1s, osho-,.--� Lz3

Conversely, 2'1

Is feas-ible for T) aiid

,:"-nco P 0 > D or it 'allows n



Thus 1) <=> 2) is The proof of 1) <=> is

e n t i c a 1 . a s s --ui. Li t t r.i- f (s) --i (d s) = tr 11"r (d s. I/ f (s)

for every f EC (S) But the latter is true0 s

( T. Tsince tr-:%3 = trBA for ever�-!- A 6 Z .. O�- (H)

and hence it is tru-a for everv f r- C(S) El
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