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Abstract

A rate-dependent multiple slip model incorporating non-Schmid effects and thermal deformation, developed by Dao and
Asaro (1993), is implemented into finite element codes to study deformation patterns before and after the shear band
initiation in single crystals. Simulations using different hardening rates and different non-Schmid effects show that
non-Schmid effects provide a consistent explanation for the formation of coarse slip bands (CSB), and that high hardening
rates, typical of single crystals, can cause localization to not persist. Serrated flow is found accompanying the development
of CSB’s even with significant strain hardening. Elastic anisotropy has important influences on the onset of shear bands that
form in single slip. Whether macroscopic shear bands (MSB) form first on directions that are close to what would be the
primary slip plane or conjugate slip plane in a single crystal test, depends on the slip system geometry with respect to the
loading orientation and the hardening function (self hardening and latent hardening). The transition from coarse slip bands to
macroscopic shear bands is simulated and analyzed in detail, showing the importance of non-Schmid effects and the
hardening function. Geometric effects, especially non-uniform lattice rotations, play important roles in the formation of both
coarse slip bands and macroscopic shear bands. Consistency between the calculations and the theory predictions of the
critical conditions of localization in Part I of this series (Dao and Asaro, 1996) as well as the existing experimental evidences
are found.

1. Introduction calization. In Part II, herein, we will present a rate-
dependent version of the finite deformation slip the-
ory incorporating non-Schmid effects and use finite
element calculations to examine the critical condi-
tions for localization predicted in Part I. The simula-
tion will also be used to study the development of
localization and the transition of localization modes
after the initiation of the localization process. Geo-
metric effects such as non-uniform lattice rotations
(geometrical softening) and orientation effects, along
with material parameters like non-Schmid effects,

* Corresponding author. self and latent hardening are the major focus in Part

This paper represents the second part in a series
concerned with non-Schmid effects and localized
deformation in crystalline solids, and henceforth shall
be referred to as Part II. In Part I (Dao and Asaro,
1996) we presented a rate independent version of a
finite deformation slip theory incorporating non-
Schmid effects and applied a general bifurcation
analysis method studying critical conditions for lo-
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II. A detailed review of the literature relevant to this
study can be found in Part I of this series (Dao and
Asaro, 1996).

As mentioned in Part I (Dao and Asaro, 1996), it
is important to understand that bifurcation analysis
results can only serve as necessary conditions to-
wards strain localization (see also Dao and Asaro,
1993), geometric effects like geometrical softening
may sometimes play a decisive role in determining
whether or not the shear bands will develop and the
direction where the shear bands form.

Exploring the initiation and development of coarse
slip bands (CSB) that are predicted in Part I (Dao
and Asaro, 1996), studying the initiation direction
and the development of the macroscopic shear bands
(MSB) which are indicated possible in Part I, and
providing a more comprehensive understanding of
the transition from CSB’s to MSB’s are of particular
interest here. Finite element computations of local-
ized deformation pattern in polycrystals with non-
Schmid effects were presented elsewhere (see Dao et
al., 1996).

The plan of this paper is as follows. In the next
section, Section 2.1, the rate-dependent constitutive
theory is presented and Section 2.2 contains a de-
tailed description of the finite element implementa-
tion used. Results are given in Section 3, where in
Section 3.1 a brief description of the crystal model is
given and the predictions in Part I (Dao and Asaro,
1996) are reviewed; in Section 3.2 results of localiza-
tions in single slip mode are given and the focus is
on the initiation and development of CSB slip pat-
terns; in Section 3.3 results of localizations in multi-
ple slip mode are examined under both symmetric
and non-symmetric loading conditions; and in Sec-
tion 3.4 the transition from CSB’s to MSB’s is
discussed in detail. Discussions follow in Section 4.

2. The theory and numerical considerations

Standard tensor notation is used throughout. Bold
faced symbols are used to denote vectors and higher
order tensors, the order of which will be clear in
context. Products are indicated with dots, which
denote summation over repeated Latin indices, and
products containing no dots are dyadic products.
Latin indices range from one to the number of spatial

dimensions, and repeated Latin indices are always
summed. Inverses, transposes, and transposed in-
verses are denoted with a superscripted —1, T and
—T, respectively and superposed dots indicate dif-
ferentiation with respect to time ¢. For example,

A-B=A; B bb; AXB=e; ABb;
A:B=A;B;; AB=Ai-Bk,bib.bkb,;
cd = c;d;bb;; =B,;c;b;;

dc  d¢

H A ijlAlkblbj’ ad ad‘ lbj;
J

aBU
= _—"b‘b,
ar

where ¢, is the permutation symbol, the basis b; is
Cartesian and independent of time, and greek indices
are used to identify slip systems and range from one
to N = the number of slip systems. Summation over
repeated nonparenthetical Greek indices is implied
while repeated parenthetical Greek indices are not
summed, e.g., c,d, means c¢;d, + ¢c,d,
+ +++ +cydy and ¢, d,y means either ¢,dy, ¢,d,,
ooy OF Cydy.

2.1. The theory

The reference configuration is taken to be a de-
fect-free perfect crystal, with an undeformed, stress
free lattice along with its embedded material. The
position of each material particle is given in this
reference configuration by its position vector X. In
this reference configuration, slip systems, designated
and numbered by Greek letters are defined by the
orthogonal pair of unit vectors (s, m,), where s, is
parallel to the o slip direction in the reference
configuration and m, is normal to its slip plane.
Note that such vectors are embedded in the crystal’s
lattice and will convect with it, i.e, they deform and
rotate with the lattice in ways defined by models for
plastic flow. The current configuration is defined as
the elastically, thermally, and plastically deformed
crystal, where the current position of each material
particle is described by its current position vector x.
The displacement vector, u, is given by u =x — X,
and the deformation gradient F that maps the cur-
rent configuration from the reference is given by
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Fig. 1. Kinematic scheme of the deformation gradient decomposi-
tion.

F=0x/0X=I1+9u/3X, where I is the second
order identity tensor. In order to reach the current
configuration from the reference, the plastic, ther-
mal, and elastic parts of the total deformation are
decomposed according to the kinematic scheme illus-
trated in Fig. 1.

One imagines that the material flows through the
undeformed lattice by shear along the various slip
systems of the crystal to reach the first intermediate
configuration. The spatial velocity gradients of this
plastic shear flow are written as

FP FPl=q s,m,, (2.1)

where v, is the shear rate on the o slip system and
F? is the plastic part of the deformation gradient,
The value of F is given by the path dependent
integration of Eq. (2.1).

From this plastically sheared state the second
intermediate configuration is reached by imagining
the crystal undergoing a general thermal deformation
described by the thermal part of the deformation
gradient, F® where 0 represents temperature. The
spatial velocity gradients corresponding to this ther-
mal deformation are written as
F® F l'=fa; a=oa,aa (22)

ijritye

where o is a tensor whose components, a;;, with
respect to the time independent Cartesian base vec-
tors, a;, are the thermal expansion coefficients. The
base vectors are aligned with the crystal lattice in the
reference configuration in some standard way, e.g.,
in cubic crystals, it is most convenient to align the a,
base vectors with the cube axes, in which case o
would be diagonal with all components equal.

The current configuration is reached by elastic
deformation, along with possible rigid body rotation
of the crystal lattice along with its embedded mate-
rial. This part of the deformation is described by
F*, the lattice part of the deformation gradient.
Hence according to the scheme described in Fig. 1,
one obtains the deformation gradient decomposition,

F=F*-F°% F". (2.3)

Here, F is the deformation gradient describing the
complete deformation. In reality the elastic distortion
of the lattice, thermal deformation and plastic flow
occur simultaneously, but it is clear that the current
configuration of this model crystal can be reached by
the above imagined steps of deformation. For con-
cise further presentation of this development, we
combine the various parts of the deformation gradi-
ent as follows,

F=F% F® and F=F" -F° (2.4)

The loading parameter for slip on slip system
cx,'rf , 18 primarily the result of the so called resolved
shear stress on that slip system along with what are
generally thought to be relatively smaller contribu-
tions from components of stress other than the re-
solved shear stress. A particular form for the plastic
flow law is described below. The generalized stress
which acts to load a slip system is given as

T =T N T=m s, T, (252)
s;=F-s; m.=m - F !

= Xme (2.5b)
r=Jo, (2.5¢)

where J = det{ F} is the Jacobian, 7 is the Kirchhoff
stress tensor, ¢ is the Cauchy stress tensor, s, is
along the « slip direction in the current configura-
tion, m is normal to the a slip plane, z; is normal

a
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to both s; and m;, and m, is the tensor of non-
Schmid effects for slip system o which, when aligned

with s;, m; and z_, takes the simple form,
s 0 Mg

n= 0 nmm nmz ¢ (2‘6)
nSZ nmz T]ZZ

The kinetic description of plasticity on each slip
system is cast in terms of the loading parameter 77
and the slip rate on that system as

T(a)

1/m
g(a) }

where 7, is the current value of the resolved shear
stress, T2 is the loading parameter for slip as defined
in Eq. (2.5), and g, > 0 is the current value of the
slip system hardness. In Bq. (2.7), m is the material
rate sensitivity exponent (which will, in the examples
described herein, be taken the same for each slip
system), and & is the reference shear rate. The slip
system hardness g, is obtained by the path depen-
dent integration of the evolution equation

Yo = fo Yl lde,
(2.8)

D

(2.7)

ga = haB(’Yq)FYBI +ggé,

where h,g is a matrix of (positive) hardening mod-
uli, g8 is the rate of change of slip system hardness
with respect to temperature alone, and vy, is the
accumulated sum of slips. The initial condition for
this evolution are given by g, (y,=0, 6 =10,)=
80(6,) where 8, is an initial temperature.

The single crystal’s constitutive description is
completed with a specification of its elasticity, which
is expressed in terms of S*, the lattice-based second
Piola-Kirchhoff stress, and E *, the Green strain of
the lattice. These quantities are written as

E*=3(F'T-F*-1I);
§*=F*"!.g.F*"T, (2.9)
where I is the second order identity tensor. Let

® =®(E;;) be the Helmholtz free energy of the
lattice per unit reference volume, then

DL
VeE]

E"=E’a.a,

_*
Sta,a;; @45,

ety

(2.10)
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where the time-independent Cartesian base vectors
a; are aligned with the crystal lattice in the reference
configuration in some standard way. Differentiation
of the first of Eq. (2.10) with respect to time gives
the rate form

S*"=K:E*; K=K, a,0;0,0a;
K o 2.11
l'jk/ 8E aE}‘[ ( * )

The final constitutive theory is expressed in terms
of the second Piola-Kirchhoff stress, S=F~!.¢
F~T, and the Green (or Lagrangian) strain, E
= 3(FT-F —1I). Straightforward manipulation of
the above equations give the rate form of the govern-
ing constitutive equation, viz.

S=L:E-4,X,-60Y, (2.12)

where

Lurn ik Fl lKl\Iqurplﬁn_ql’

L=L,aaaa, F'=F'gqe  (2.13)

and

X,=F ' {K:A,+2H) FT;

Y=F' {K:B+2Q} FT

A, = {F*T'F*-FO-{sum(a)}-Fo'l};

H = { {Samia) - F°"~S'};

B=sym{F*'T-F*-a}; Q=sym{a-S"}.
(2.14)

Given the current state s={S*, E*; F?, F®,
8.}, which is described by both state and internal
variables, one can obtain the slip rates, ¥, unam-
biguously from Eg. (2.7). The state s also unambigu-
ously specifies the tensors L, ¥, X, and Y, so that
Eg. (2.12) provides a linear relation between S and
E. Using the linear elasticities ensures that X ik 18
invertible, since plasticity here is still taken as in-
compressible we have det{Ff}=1 and for finite
thermal expansion coefficients it can be shown that
det{ F®} > 0 so that L is invertible. Therefore, the
relation between S and E is always invertible ensur-
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Fig. 2. Plane strain primary-conjugate double slip geometry, where
two slip systems tilted from the double symmetric slip position for
s degrees and both the slip vectors s, 5, and slip plane normals
m,, m, are in the drawing’s plane.

ing the uniqueness of solution to mixed boundary
value problem in this study.

2.2. Numerical implementation

The rate constitutive equations, notably Eq. (2.12),
are implemented by the one step, explicit rate tan-
gent method introduced by Peirce et al. (1983). In
this method, an estimation is made for the change in
shear rates, +,, within the current time increment.
An algorithm was also proposed by Rashid and
Nemat-Nasser (1990), Rashid and Nemat-Nasser
(1992) for a rate-dependent double slip single crystal
model, which is suitable for implementation in an
explicit finite element code such as PRONTO2D and
appropriate for high strain rate problems.

Although the theory in Section 2.1 is developed
for a general three dimensional slip geometry, we
use the planar primary-conjugate double slip geome-
try as shown in Fig. 2, where the two slip systems
are tilted from the double symmetric slip position for
s degrees (& = 0 represents double symmetric slip)
and both slip vectors, s, and s,, and slip plane
normals, m, and m,, are in the drawing’s plane. For
the actual crystals, this is not strictly true though the

deformation patterns will be quite similar for the real
crystals and the idealized ones studied herein.

Within two dimensional geometry, we rewrite Eq.
(2.6a) to be

*

=my T S, TN, Sq T So T NpmMa T M
=Ty + N7 F N T ™ s (2.15)
where
T,=M, TS T =g TS,
Tt =my T m;. (2.16)

Assuming non-Schmid tensor m =n(6), differenti-
ate Eq. (2.15) with respect of time we get

é£=+a+nssﬁr&m+nmm7&nm +M6’ (217)
where
T] mm
pr= ey Dom il o (2.18)
90 a8

The slip increment on slip system « for the time
increment, A¢, beginning at time ¢ is defined by
A t+ At

Yo =Yoo = Vo (2.19)
where (-)" and (-)**2* indicate (-) evaluated at time

t and ¢+ Ar respectively. A linear interpolation is
applied within the time increment to obtain

[(1 _ @),Ya + @,Yr+At]

The parameter @ ranges from 0 to 1; @ = 0 corre-
sponds to simple Euler integration scheme. To ap-
proximate the last term in Eq. (2.20) a Taylor expan-
sion of the rate relation given by Eq. (2.7) to the first
order in incremental quantities is employed,

(2.20)

¥ 3
orar =gt 4 =52 | AP+~ A g,
07y |, 98y |,
D 1/m
-
= sen{,}{ | ==
8(a)

A"(a) Ag(a)

{H_
m

where AtP =4PAt and Ag, = g,At. An expression
relating 72 and 4, is determined as follows. Manip-
ulating Eq. (2.16) yields

}, (2.21)

T(a) 8(a)

Ty =8, C-8-myy; (2.22a)
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=(5-su)~§'(6's(a>); (2.22b)
M= -8 m,, (2.22¢)
where C=FT-F is the right Cauchy—-Green strain

of the therma] and elastic deformations and § = F ™!
-7+ F~T is the second Piola—Kirchhoff stress on the
first intermediate configuration. Differentiating Egs.
(2.22a~c) with respect to time and using Egs. (2.4),
(2.9), (2.11), (2.14) and (2.17) we obtain after ma-
nipulation

10 =XP:E ~R2:[§5Aq + B] + G2 + M,

(2.23)
where
XP=F-1.RP.F-T,
R} =R, +n Ry +m,,RI";
GP =G, +n,,G* +m,,G", (2.24)

and where

R,=K:A +2H_;

RZ=K:[C" - F" (5,5,) F-C"]
+4sym[ F®- (5,5.,) - F*T-C” -8*];

RI" =K:[Fe'T (mgmgy,) -Fe—l];

G, = sym{F‘6 (somey) FPU+FO - (s,my,))
-Fé'1>:S* -C*

Gy =25, FT-C"-8*-C"-F° s,;

Grm=2m, - F*"'-8" - F*Tomg,. (2.25)

Using Eq. (2.23) and the first of Eq. (2.8) (which
gives g, in terms of ¥,) in Egs. (2.21) and (2.20)
one obtains after manipulation

NaBAYB

——(X%):E~RY,):0B

OAr| 1
=y At 1+ —
m

(d)

, (2.26)

where
O At
Nyp =35 -
m
RP A h
(o) 2B ( )
5 + sgn{ B}————-“)(‘3 (2.27)
T(a) 8(a)

Note that for fixed ® and m, N, is invertible for
sufficiently small At. Also in general, N, up ™ Nap-
Inverting Eq. (2.26) and dividing by At yields

Ay,
Y=t = f 4 R, (228)
where

OAr| 1
P ar=1s D _pD .p
fa= awé[H—m {;?;(Gw) R:0B)

[} M .
_(§_<_ﬁz_T oyl (2.29)
&py T@)
_ "yéAt
I;'(!='1V(!Bl ,nT(g X(IB)) (2-30}

and where (* )¢ indicates the time discrete rate of
)

The temperature change for the increment is de-
fined by

AB=0FAr— g1, (231)

As for the slip increment a linear interpolation is
employed within the time increment to obtain
A8 =[(1-@)6'+ @8+2] A, (2.32)
§ is expanded in a Taylor series about time # to first
order in At. The substitution of this expansion into
Eq. (2.32) and division by At results in a time
discrete rate of temperature change of the form

., A6
09=—=0'+0Ob4Ar.

At
Identifying 6 with its time discrete counterpart for
the increment, §¢, allows both f, and F,, and hence
V¢, to be determined from the state at time # If
further, one identifies ¥, with its time discrete coun-
terpart for the increment, ¥, the time discrete ver-

(2.33)
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sion of the governing rate relations, Eq. (2.12), can
be written as

§t=peEd - Xun (2.34)
where
L*=L-X,F,; X"™=fX —6Y. (2.35)

L* and X'"" are determined explicitly from the
state at time ?.

Boundary value problems in this theory can be
solved using the finite element method. The above
numerical integration scheme is implemented in a
finite element context via the principle of virtual
work, as is outlined in Déve et al. (1988), Harren
and Asaro (1989) and McHugh et al. (1993). In order
to enforce equilibrium at the end of the time step, the
principle of virtual work is written as

fn”"A’:SF av= ft’“’ - duds,
1% S

(2.36)

where the body force has been ignored. The integra-
tion is over the reference configuration V, whose
surface is S. Also, £ =N -n is the nominal traction
vector (N is the outward unit normal to S), n = F~!
-7=8-FT is the nominal stress and Su is an
admissible variational displacement field that is com-
patible with the variational deformation gradient
field, 8F. To obtain the evolution of the solution
through time, the explicit difference relation n‘*4!
=n'+ At is substituted into Eq. (2.36) as are the
relations

n':3F=S":3E: 8E=sym<(F’)T-8F>;

#48F = SUBE + (8- (F4) ) oF. (2.37)

The governing time discrete rate form, Eq. (2.34), is
substituted into the result yielding

'[V[BE:L"‘“:E"-I- {s*- (F‘d)T}:SF] dv

1 1

— Ftan _ ___ Qt SEdV 4+ — t+ AL, ds.
fV{X AtS}Sd-l—Atht Suds
(2.38)

This time-discrete variational equation is then writ-
ten in Cartesian indicial form on the reference or-
thonormal base vectors e; and then the usual finite

element interpolation and gradient operators are in-
troduced to obtain a linear system of equations. After
applying the appropriate rate boundary conditions
the equations are solved for the time discrete nodal
velocities which yield F¢, E¢ and the incremental
displacement field.

In updating the state from time ¢ to time ¢+ At
one begins by calculating the slip increments using
Eq. (2.28). Next, the increments in g, are obtained
from Eq. (2.8). The increment in the stress state is
obtained from Eq. (2.34) using the now known E¢.
Once the incremental quantities that depend on the
geometry at time ¢ have been found, the geometry
itself can be updated. The new displacements give
the new deformation gradient, F. The increments in
F® and F® are obtained using Egs. (2.1) and (2.2),
respectively. The new F* is then given by F* =
F~!. The specification of the new s, m. and 72
completes the update, allowing one to proceed to the
next time increment. In choosing stable time steps
for the integration algorithm the scheme presented in
Harren et al. (1988) was used.

In this paper, we simulate only deformations per-
formed at a constant temperature. Specific reference
to temperature will be omitted in later sections.

3. Results

3.1. Model perspectives

In a two dimensional geometry as described in
Fig. 2, the only non-Schmid factors are m; and m,,,,
(N5 =MNpm = 0 corresponds to Schmid’s rule) and
this geometry is actually the type I double slip
geometry discussed in Part I of this series (Dao and
Asaro, 1996), assuming both primary and conjugate
slip systems are active. Noting that the primary slip
system will be activated first for s # 0°, the defor-
mation is in single slip at first and then gradually
transfer to a double slip mode. We thus will use this
geometry to explore the localization process in single
slip and multiple slip mode.

Since there are systematic experimental documen-
tations about Al-Cu single crystals (see Harren et
al., 1988; Chang and Asaro, 1981; Chang, 1979),
Al—Cu single crystal material constants are used in
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our computations. Here we apply the general method
used in Part I (Dao and Asaro, 1996) to identify
critical localization conditions under single slip as
well as multiple slip mode.

3.1.1. Critical localization conditions in single slip
mode

If we take, for example, the critical resolved shear
stress at initial yielding g, =46 MPa for Al-Cu
single crystal, the elastic shear moduli G = 26 GPa
= 570g, and Poisson’s ratio v =0.33, and assume
that m,, = 0.08, then the critical hardening rate 4,
for single slip shear bands is given as h, = 2.736g,
= 126 MPa and the misorientation of the bands will
be about 2.3°. When m, = 0.04, A, will be 0.684 g,
with a band misorientation of 1.1°; and when
Schmid’s rule holds, A < 0 with the band’s misori-
entation being 0°. For details, refer to Part I (Dao
and Asaro, 1996; Asaro and Rice, 1977). Elastic
anisotropy is found to have an important influence
towards the critical localization conditions (Dao and
Asaro, 1996).

3.1.2. Critical localization conditions in multiple slip
mode

For the case of double symmetric slip, taking
& = 30°, when m,, = 0.08 the critical hardening rate
h., is calculated as h,=0.071c,, with the band
misorientation of 8.5°, where o, is the tensile stress.
If we take a reasonable number for the saturation
value of the resolved shear stress on one slip system
to be 1.8 g, which gives oy, =1.8g,sindcosd =
4.156 g,, then for m,, = 0.08 we have 2, =0.295g,.
Similarly, when m, = 0.04 we have k= 0.0600,,

Table 1

= 0.249g, with bands misorientation of 7.9% and
when Schmid’s rule holds, we have h, = 0.050a,,
= 0.208 g, with bands misorientation of 7.4°.

If the slip geometry is not symmetric, the conju-
gate slip system is favored by our bifurcation analy-
ses. Elastic anisotropy is found to have negligible
effects towards the critical localization conditions in
this case. It was also speculated in Part I (Dao and
Asaro, 1996) that the latent hardening ratio would
have an important influence towards the initiation as
well as the development of the localized deformation
mode, i.e. for g <1 double slip mode may begin
before the symmetric boundary is reached and shear
bands will favor conjugate slip system, while for
q > 1 double slip mode may begin only after some
overshooting (a conjugate to primary switch happens
here) and shear bands will favor the originally pri-
mary slip system (but actually the currently conju-
gate slip system),

3.1.3. Summary of theoretical predictions

Some results of critical localization conditions are
listed in Table 1 for both single slip and multiple slip
deformation mode (type I geometry) under the planar
slip geometry. For this plane strain geometry (Fig.
2), it is obvious that when m,, # 0 the single slip
bands can form under high strain hardening rates and
the single slip bands are very close to the slip plane
(less than 2.3°) while the bands forming under condi-
tions of double slip are 7°~9° misoriented. The sin-
gle slip shear bands with m,, # 0 can form at much
higher hardening rates than the double slip bands
(type D; and if the Schmid rule holds, single slip
shear bands are not possible unless there is perfect

Selected results of shear bands for different deformation modes and slip geometry

Deformation mode he Misorientation Influence of Influence of
elastic nonsymmetric
anisotropy loading

Schmid’s rule single slip 0 0° — —

double slip (type I) 0.208 g, 7.4° no favor conjugate
7, = 0.04-0.08 single slip 0.684--2.736 g, 1.1°-2.3° yes —

double slip (type I) 0.249--0.295g, 7.9°-8.5° no favor conjugate
Nmp = 0.04-0.08 single slip 0 0° — —

double slip (type D) 0.241--0.279g, 7.9°-8.6° no favor conjugate
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plasticity or strain softening, while at the same time,
double slip shear bands (type I) can still form under
significant positive strain hardening.

3.2, Shear bands under single slip mode

From the bifurcation analyses (Dao and Asaro,
1996) which are summarized in Section 3.1 for the
slip geometry we are using here, it is obvious that
when m,, # 0 there can be single slip bands forming
at quite high hardening rates, while there will not be
any single slip bands under positive strain hardening
when m,, =0, n,,,,0 or when Schmid’s rule holds. It
is also speculated that, if the strain hardening is
significant, shear bands will not persist at the same
location, but instead bands will tend to be coarsely
spread along the active gage length of the crystals
(Price and Kelly, 1964; Dao and Asaro, 1994, Dao
and Asaro, 1996). The misorientation between the
single slip shear bands and the active slip system
should be very small, and elastic anisotropy should
play an important role. To verify those theoretical
predictions, we will design a computational experi-
ment as follows: (1) imagine a defect free virgin
crystal (except very small geometric imperfections),
the slip system geometry is as shown in Fig. 2 with
& =30° and ¢ = 10°% (2) let the self hardening rate
hiy =hyy, =h be fixed from O to 3% macroscopic
engineering strain for this ‘model crystal’; (3) latent
hardening ratio g=1; and (4) the finite element

Fig. 3. Finite element mesh used in calculations for single slip
shear bands. The mesh is built with two grips, where the gage
section is L, long and b, wide with 31 X7 elements.

mesh is built with two grips (see Fig. 3), with the
small initial geometric imperfection taken as Ab, =
0.006b, cos(2mx*/L,), where the gage section is
L, long and b, wide (31 X 7 elements). One notices
that this tensile ‘specimen’ is oriented for single slip,
at least initially.

3.2.1. Influences of strain hardening and the non-
Schmid effects

When the elasticity is isotropic, the critical hard-
ening rate for localization is of the form

hcr = hcr(n:s’ G) x n?sG

for the two dimensional geometry, where G is the
elastic shear moduli.

3.2.1.1. Effect of strain hardening. If we take, for
example, the critical resolved shear stress at initial
yielding g, = 46 MPa for Al-Cu single crystal, the
elastic shear moduli G = 26 GPa = 570g, and Pois-
son’s ratio v = 0.33, then the critical hardening rate
for the onset of single slip shear bands will be given
as

i = hE2(n,, = 0.08) = 2.736 5,

In what follows the material rate sensitivity exponent
m is taken as 0,005 for all cases.

Fig. 4a—f show maps of the accumulated sum of
slips at 3% engineering strain under different harden-
ing rates: (a) h=1.05A5"=28728g,, (b) h=
0.8h5° =2.1888 g5, (c) h=0.5kr=1368g,, (d)
h = 0315 = 0.8208g,, (e) h = 0.04h° =
0.10944g,, and (f) k=0, respectively. It is very
clear that (1) when &> h,, (i.e. Fig. 4a), the defor-
mation is essentially uniform, no localization ob-
served in the gage section; (2) when 4 is significant
but & <k, (i.e. Fig. 4b-d), CSB localization pattern
is the major deformation mode; where localization
develops faster and deeper as h drops; (3) when 4 is
very low but still positive (i.e. Fig. 4e), the CSB’s
tend to develop close to each other — or in another
word clustering; (4) when A =0 (i.e. Fig. 4f), the
shear band will persist at the same location, no CSB
pattern is forming; and (5) the peak strains accumu-
lated in those CSB’s go higher as the hardening rate
decreases (see Fig. 4b-f). In Fig. 4b-f, all shear
bands are closely aligned with the active slip system.
Fig. 5a—c show maps of shear rate on slip system 1
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at 1%, 2% and 3% engineering strain respectively; their positions instead of persisting at the same loca-
the hardening rate was taken as h = 0.53°. Noting tion as the macroscopic strain increases. The same
that in Fig. 5a—c, the most active slip bands switch sort of ‘switching’ was also found in cases where
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(d (e) 0

Fig. 4. Maps of the accumulated sum of slips at 3% engineering strain under different hardening rates: (a) = 1.05h5° =2.8728 g, (b)
h= 0.8k = 2.1888 g, (¢) h = 0.5K° = 1.368 g, (d) b = 0.3H° = 0.8208 g, (€) b= 0.04h5° = 0.10944 g, and (£) = 0, respectively.
Tilt angle ¥ is given as 10° and the non-Schmid effects are taken as m = 0.08, m,,, = 0 for all cases.
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< 5.1880e-03 8,1524e~03 5.23356~C3

4,9584e-03 6,5218e-G3 4,9569e~33
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Fig. 5. Maps of shear rate on slip system 1 at (a) 1%, (b) 2% and {c) 3% engineering strain, respectively; the hardening rate was taken as
h=0.5h5". The non-Schmid effect is given as m,, = 0.08. The most active slip bands switch positions instead of persisting at the same
location as the macroscopic strain increases.

h=0.04, 0.3 and 0.84°. Fig. 6a—c show maps of show counter-clockwise rotation), at an engineering
the lattice rotations, measured in degrees toward the strain of. 3%; the hardening rate was taken as (a)
tensile axis from the original 10° tilt (positive values h=0.5h5, (b) h=03h%, and (c) h=0.04Ar"°,

< 1.7720e+G0 < 1.9757e+G0 2.5894e430
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Fig. 6. Map of the lattice rotations, measured in degrees toward the tensile axis from the original 10° tilt (positive values show
counter-clockwise rotation), at an engineering strain of 3%; the hardening rate was taken as (a) A= 0.5A5°, (b) ~=0.345, and (c)
h=0.041g°, respectively. The non-Schmid effect is given as m,, = 0.08.
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respectively. It is evident from Fig. 6a—c that (1) the
lattice mismatch across the CSB’s is finite but very
small (less than 1°), and (2) the lattice mismatch
across the CSB’s increases as the hardening rate
goes down. All the shear bands described in these six
example simulations were found closely aligned with
the active slip system, and the lattice mismatch
across the bands is very small.

There is no localization found in cases when
Nss = 0, My # 0 or Schmid’s rule holds, consistent
with bifurcation analyses results. When m,; <0 (i.e.
m,, = —0.08), there is no localization either al-
though our bifurcation analyses predicted possible
localization, which demonstrated again that bifurca-
tion analyses give only necessary conditions for lo-
calization to occur — consistent with discussions
given by Dao and Asaro (1993).

3.2.1.2. Serrated flow. Fig. 7 shows stress strain
curves for different hardening rates. For h < 0.3h;°

er?
strong serrated flow is observed, while for & > 0.5A%°
no serrated flow is observed. Examining the flow
curves, one finds that (1) serrated flow can occur at
significant hardening rates, i.e. no material softening
is necessary, (2) CSB’s do not necessarily introduce
load drop (serrated flow), only when the hardening

rate is low enough, serrated flow will accompany

2.15 T T

CSB’s, and (3) each serration corresponds to one
switch of the most active localization position (or
positions), where each switch may involve one to
several CSB’s shifting to other places. This serration
mechanism may be responsible for serrated flows
found in many single crystal as well as polycrystal
mechanical tests, where material is still under signifi-
cant hardening.

3.2.1.3. Influences of the non-Schmid effects. We
also performed calculations with different non-
Schmid factors while keeping other material proper-
ties fixed, i.e. using m,, =0.06 and 0.04 instead of
0.08. It was found that, as long as there were shear
bands forming, (1) the lattice mismatch across the
CSB’s is finite but very small (less than 1° in our
calculations), (2) the lattice mismatch across the
CSB’s goes up as the non-Schmid factor increases,
(3) the peak strains accumulated in those CSB’s go
higher as the non-Schmid factor increases, and (4)
the magnitude of serrated jumps, if there is any,
becomes larger as non-Schmid factor increases.

3.2.2. Effect of elastic anisotropy

Our bifurcation analyses (Dao and Asaro, 1996)
predicted that elastic anisotropy may play an impor-
tant role in determining the critical conditions of

2.1F

205

Engineering Stress (gg)
5
W
L]

h=0

0.005 0.01

0.015 0.02 0,025 0.03

Engineering Strain

Fig. 7. Stress strain curves for different hardening rates. Noting that, for & = < 0.34°, strong serrated flow is found, while for # > 0.54i°

cr

no serrated flow is found. The non-Schmid effect is given as m, = 0.08 for all cases.




M. Dao, R.J. Asaro / Mechanics of Materials 23 (1996) 103-132 115

localization. To verify this, we take elastic constants
scaled with Cu single crystals but keep the elasticity
constant Cy = G*° =570g,, ie. C;; =1273.05g,,
Cy, =9171.745g, and C,, =570g,. In this case, us-
ing the general method presented in Part I (Dao and
Asaro, 1996), the critical hardening rate for single
slip shear bands is given by

R =191 g,

which is 30% lower than for the isotropic case. Two
cases will be tested: (a) = 1.15h%° = 0.8 =
2.1888g,, and (b) A = 0.72h3° = 0.5h"° =
2.1888 g,. In case (a), h° < h < Hi°, thus there
should not be any localization for anisotropic elastic-
ity, although if the elasticity is isotropic there is
going to CSB’s (see Fig. 4b). For case (b), h < s
< B°, there should be localization whether or not
the elasticity is isotropic or anisotropic. Fig. 8a, b
show maps of the accumulated sum of slips at a 3%
engineering strain for cases (a) and (b) respectively;
the elasticity was taken as anisotropic. No localiza-
tion was found in the gage section for case (a) (Fig.
8a), while there were CSB’s forming for case (b)
(Fig. 8b). If we compare Fig. 4c with Fig. 8b, though
the hardening rate was given the same value, the
intensity of localization was less and the develop-

7.0857e-02

< 5.6854e-G2

2 4,7107e-G2

3.5331e-G2

< 2,35b4e~G2

1,1777e-02

< 0.0000s+30

(a)

ment of CSB’s were less complete in Fig. 8b due to
the elastic anisotropy.

3.2.3. Summary of single slip results

To summarize, one concludes that both the strain
hardening rate and the magnitude of non-Schmid
factors are very important in determining whether or
not there will be localization, also whether or not
there will be CSB patterns or persisting localization,
and whether or not there will be serrated flow; a
decrease of the strain hardening rate or an increase
of the magnitude of the non-Schmid factors can
result in an increase of the peak strains accumulated
in the CSB’s, an increase of the lattice mismatch
across the CSB’s, and an increase of the serration
magnitude if there is a serrated flow; elastic
anisotropy influences the critical conditions of local-
ization and the development of the shear bands; and
the general method given in Part I (Dao and Asaro,
1996) gives good predictions of critical localization
conditions for general anisotropic elastic single crys-
tals.

Bearing in mind that usually the strain hardening
is a decreasing function of accumulated shear strain,
if CSB’s form, clustering and persistence at the same
position would be expected at larger strain levels.

< 8.7752¢-02

7.3127¢-02

5.2501e-02

4,3878¢-02

2.9251s-02

1.46252-02

< 3.0000e+03

®

Fig. 8. Maps of accumulated sum of slips at 3% engineering strain for (a) h = 1.154%5° = 0.8 45> = 2.1888 g,, and (b) h = 0.72h201% =
0.5h%° = 2.1888 g, respectively; elasticity was taken as anisotropic. The non-Schmid effect is given as ), = 0.08.
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3.3. Shear bands under multiple slip mode

As studied by Dao and Asaro (1993), non-Schmid
effects have important influences on localizations in
multiple slip mode. Unlike the single slip shear
bands where non-Schmid effects are necessary to
introduce localized deformation at positive hardening
rates, multiple slip bands can form at positive strain
hardening with Schmid’s rule. Noting that if n,, =
0.08, critical hardening rate for single slip shear
bands is much higher than that for double slip shear
bands, there might be CSB’s forming before any
multiple slip shear bands present. In this section,
Section 3.3, we will focus ourselves on ‘pure’ multi-
ple slip bands, ie. m,,=0, m,,#0 or m,,=0,
Npm = 0 (Schmid’s rule); the cases where there may
be possible CSB’s to MSB transition will be studied
in detail in Section 3.4.

For the multiple slip bands, our analyses about
critical conditions of localization (Dao and Asaro,
1996) suggested that, (1) shear bands that oriented
close to both primary and conjugate slip systems are
possible under positive strain hardening, while ‘cur-
rently’ conjugate slip system is favored; (2) shear
bands will be typically several degrees misoriented
from the active slip systems and geometrical soften-

ing resulting from non-uniform lattice rotations plays
a major role in the initiation and development of the
localization; and (3) non-Schmid effects can signifi-
cantly raise the critical hardening rate of localization.
While the bifurcation analyses give us good guid-
ance towards the critical conditions of localized de-
formation, those predicted conditions are only ‘nec-
essary’ but not ‘sufficient’ conditions, therefore fi-
nite element methods were used to study non-uni-
form lattice rotations and different boundary condi-
tions.

3.3.1. Double slip shear bands under symmetric
loading

To study localizations under symmetric loading,
the slip geometry is given as shown in Fig. 2, with
tilt angle ¢ =0° and ¢ = 30°. When isotropic elas-
ticity is assumed, the elasticity is given the same
numbers as for the case in single slip studies, i.e.
G=570g, and v=0.33. For the calculations pre-
sented here, the hardness g is specified by

g(’Ya) =go+hw’Ya + (goo_go)

ho_h;n)
8= " 80 ,

X tanh{ Ve

2.848%e+00 3.8203e+00

1 1] 2.2077¢+00 2111188400
< 1.86018+0Q ! < =1,60%6a+0Q0
152456400 A ~a3z310400
T 1.18306+00 : £ ~7,04060400
N i
T %
i 8.41380=01 : < -9.78812+00
] {]
e HH % 49380001 { =1,24760+01
]
L 1.5822e~01 -1.5103a+01
() ® (©) )

Fig. 9. (a) Original mesh used in double symmetric slip mode of deformation; the aspect ratio b,/L, is given as 1 /3 and the mesh has
16 X 48 rectangular elements. (b) Deformed finite element mesh, (¢) a map of accumulated sum of slips, and (d) a map of lattice rotation
measured in degrees (positive values show counter-clockwise rotation), at a engineering strain of 0,15, The non-Schmid effect is given as
Ny = 0.08.
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where g,=g(y,=0), hy=g'(y,=0), and h, =
g'(y, = ), and where the prime denotes differentia-
tion with respect to the indicated argument. In the
calculations, we take g, = 1.8g,, h,=89g,, h,=
0. The above mentioned plasticity properties are
identical to one of the cases used in Peirce et al.
(1982) that proved to be useful for Al-Cu single
crystals. Material rate sensitivity exponent m is taken
as 0.005 for all cases.

Symmetric conditions are assumed across both the
axial and horizontal sections of the crystal and thus
the calculations need only be performed on one
quadrant of the crystal. The boundary conditions
used are;

2'=0,72=0 on x'=0, (3.1a)
#?=0,T'=0 on x*=0, (3.1b)
T'=T2=0 on x'=by+Ab,, (3.1c)
#=UT"'=0 onx?=L,. (3.1d)

The relations in Eqs. (3.1a) and (3.1b) impose dis-
placement symmetry and shear free traction condi-
tions across the axial and horizontal centerlines,
respectively. Traction free conditions are imposed by
Eq. (3.1¢). Finally, a fixed displacement rate and no
shear conditions are imposed on the top boundaries
in Eq. (3.1d). The initial geometric imperfection,
used to trigger nonuniform deformation, is taken of

the form
- 2 x?
+ )
g, cos I

(3.2)

with {; = 0.0042 and {, = 0.0024, in our single slip
calculations. The aspect ratio b,/L, is given as 1/3
and the mesh has 16 X 48 rectangular elements as
shown in Fig. 9a.

7 x?

0

3.3.1.1. Cases under Schmid’s rule. This type of
localization has been studied in detail by Asaro and
co-workers (e.g., Asaro, 1979; Peirce et al., 1982;
Peirce et al.,, 1983) Peirce et al. (1983) found that
localized deformation patterns are sensitive to latent
hardening and material rate sensitivity and geometri-
cal softening plays a very important role. Material

rate sensitivity can delay or even diffuse the local-
ized deformation mode. Strong latent hardening (i.e.
g = 1.4) can induce patchy slip patterns where only
one single slip system is dominating within each
‘patch’. The patchy slip and strong latent hardening
can give rise to kinematic constrains that prevent
shear bands from propagating across the gage com-
pletely. Our calculations get the same results as
given in Peirce et al. (1983), a detailed description
can be obtained from Peirce et al. (1983).

3.3.1.2. Cases with non-Schmid effects. Fig. 9b, c
and d show deformed finite element mesh, a map of
accumulated sum of slips and a map of lattice rota-
tion measured in degrees (positive values show
counter-clockwise rotation), respectively; the defor-
mation is 0.15 engineering strain. The development
of macroscopic shearing follows a pattern quite iden-
tical to that which occurs within the Schmid descrip-
tion (Fig. 9b and c¢), and the non-uniform lattice
rotations are observed across the shear band (Fig. 9d)
which causes geometrical softening to the most ac-
tive slip system within the band.

For a more quantitative view of the development
of shear localization and the influences of the non-
Schmid effects, we compare cases where Schmid’s
rule holds and where m,,, =0.05 and 0.08. Fig.
10a—f illustrate the accumulated sum of slips at
distances measured along a row of elements across
the shear band location; these six figures correspond
to the engineering strains 0.11, 0.114, 0.118, 0.12,
0.13 and 0.15. Fig. 10a—d correspond, evidently, to
the strain range in which the localized shearing
initiates. The rapid increase in accumulated sum of
slips (at a distance of about 0.6) illustrates the initia-
tion of the band, along with the fact that this initia-
tion is abrupt, i.e. it occurs within a very narrow
overall macroscopic strain range. Fig. 10e and f
correspond to the strain range in which the shear
bands fully develop. For the cases with m,,,, = 0.05
or 0.08 the localization starts earlier and accelerates
before slows down. If we take a look at the map of
lattice rotations (Fig. 9d), it is found that the lattice
inside the band rotates towards 45° tilt angle. Once
the lattice rotation reaches 45°, the effect of geomet-
rical softening saturates, this is why eventually the
accumulated sum of slips under Schmid’s rule catch

up.
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Fig. 10. The accumulated sum of slips at distances measured along a row of elements across the shear band location; these six figures
correspond to the engineering strains (a) 0.11, (b) 0.114, (c) 0.118, (d) 0.12, (e) 0.13 and (f) 0.15, respectively. Three cases compared are
Schmid’s rule, m,,,, = 0.05, and m,,,, = 0.08.
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Localization patterns under different latent hardening ratios (¢) and tilt angles

Latent hardening Tilt angle () Mesh (gage section) MSB close to
g=14 10° 7 X 21 elements primary slip plane
5° 7 X 19 elements primary slip plane
g=10 10° 7 X 23 elements primary slip plane
5° 7 X 21 elements primary slip plane
g=075 10° 7 X 26 elements primary slip plane
5° 7 X 23 elements conjugate slip plane
g=05 10° 7 X 23 elements conjugate slip plane
5° 7 X 23 elements conjugate slip plane

The localization process with non-Schmid effects
follows a pattern quite similar to that found with
Schmid’s rule. The bands are observed to form at
larger values of /¢ than when Schmid’s rule ap-
plies, consistent with the rate-independent bifurca-
tion results (Dao and Asaro, 1996). Shear band
orientations are also consistent with the general trends
found earlier (see for example, Asaro, 1979) in that
the bands are characteristically misoriented with re-
spect to the active slip planes. For the crystal model
with slip systems oriented symmetrically about the
tensile axis the shear bands tend to develop signifi-

cant misorientations with respect to the slip planes.
Misorientations of 5-10° are, in fact, typical.

In all cases, elastic anisotropy has virtually no
effect on the localization process, which is consistent
with conclusions in Part I (Dao and Asaro, 1996).

3.3.2. Double slip shear bands under non-symmetric
loading

To study localizations of this type, the slip geom-
etry is again given as shown in Fig. 2, with tilt angle
¥ =5° or ¢ =10° and & = 30°. The material proper-
ties are given the same as those used in Section
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Fig. 11. Engineering stress-strain curves for a: g=0.5 and ¢=5% b: ¢=0.5 and $=10°, ¢: ¢=0.75 and Y= 3°, & ¢=0.75 and
b=10%e: g=land ¥=35%f g=1land y=10° gt g=14and y=5° h: g=1.4 and & = 10°, respectively. Schmid’s rule is used for

all cases.
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3.3.1. The finite element mesh is built with two
grips, similar to that shown in Fig. 3 except that the
numbers of elements may be assigned differently for
each case. The small initial geometric imperfection
taken as Ab, = 0.004b, cosQmx?/L,), where

bo/Ly=1/3.

3.3.2.1. Cases under Schmid’s rule. A total of eight
cases were studied here under different tilt angles
and different latent hardening ratios gq. Table 2 shows
the parameters chosen and localization patterns found
for each case studied. Fig. 11 shows engineering
stress—strain curves for those eight cases studied.
Bearing in mind that bifurcation analyses predicted
conjugate slip system is favored while localized shear
banding close to both primary and conjugate are
possible under significant hardening rate, our results
show that some conditions other than those given by

the bifurcation analyses are also very important in

determining along which direction the shear band is
going to form. From observing the stress—strain
curves, we notice that usually a MSB corresponds to
a sudden drop in its stress—strain curve. Thus it is
observed that the strain at which a MSB starts to
form gets larger when latent hardening ratio g gets
larger or when the tilt angle { gets larger. Noting
that double slip shear bands can only form under true
double slip mode, and since the strain hardening we
use here is rather fast saturating (i.e. # — 0 fairly
quickly), whether the sample crystal reaches true
double slip mode dominates when the localization
will occur. Large latent hardening ratio and large tilt
angle may both delay the coming of the true double
slip mode, and therefore delay the initiation of MSB.
In looking at the stress—strain curves, it must be
understood that we did not intend to solve stage I to
stage II slip transition using our simple latent harden-
ing model, a discussion of this matter can be found
in Cuitifio and Ortiz (1993).

To better understand important conditions towards
localization other than those necessary conditions

predicted by bifurcation analyses, we will look into
details of the non-uniform lattice rotations and strain
accumulations and their development. Fig. 12 shows
the development of the localization process for the
case where the latent hardening ratio is taken as
g=1.4 and the initial tilt angle is taken as = 5°,
Fig. 12a and c show maps of accumulated sum of
slips at engineering strains of 0.15 and 0.19, respec-
tively; Fig. 12b and d show maps of lattice rotations
measured in degrees (positive values show counter-
clockwise rotation) at engineering strains of 0.15 and
0.19, respectively; and Fig. 12e shows the current
traces of the currently most active slip system in the
center of gage section at 0.19 engineering strain.

Fig. 12a-b correspond to an engineering strain of
0.15. The accumulated sum of slips v, in Fig. 12a is
seen slightly non-uniform at this stage. It is very
interesting to observe the overshooting in Fig. 12b in
the middle of the gage, noting that rotations above 5°
— the initial tilt angle — is overshooting. About
1°-3° overshooting is observed, in agreement with
predictions made by Peirce et al. (1983) for ¢ > 1.
Noting that we have got a conjugate to primary
switch here, at least at the middle of the gage
section,

Fig. 12c-d correspond to an engineering strain of
0.19. Unlike the case with symmetric loading condi-
tions where a shear band across the whole gage
section is constrained by the ‘patches of single slip’
for g=1.4 (Peirce et al., 1983), a MSB is well
developed under non-symmetric loading here as
shown in Fig. 12¢. The MSB is found to be close to
the original primary slip plane. From Fig. 12d, the
map of lattice rotations, it is found that non-uniform
lattice rotations and the resulting geometrical soften-
ing are again playing an important role here in
promoting the localizations. While the gage section
rotates counter-clockwise, the lattice inside the shear
band rotates much slower than that outside, making
the originally primary slip system having the highest
shear strain rate. It is noted that the slip system

Fig. 12. Development of the localization process for the case where the latent hardening ratio is taken as ¢ = 1.4 and the initial tilt angle is
taken as s = 5°. (a) and (c) show maps of accumnulated sum of slips at engineering strains of 0.15 and 0.19, respectively; (b) and (d) show
maps of lattice rotations measured in degrees (positive values show counter-clockwise rotation) at engineering strains of 0.11 and 0.15,
respectively; and () shows the current traces of the currently most active slip system in the center of gage section at 0.15 engineering strain,

where some traces of ‘bands of secondary slip’ are evident.
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hardness (or resistances) of slip system 1 and 2 are
not equal at the same ‘material point’, thus the
criterion of geometrical softening should be related
directly to the shear strain rate of each slip system
instead of only the resolved shear stress! Fig. 12e,
the current traces of the currently most active slip
system in the center of gage section at 0.19 engineer-
ing strain, shows that the lattice inside the shear band
is at an angle of about 6° with respect to the sur-
rounding lattice. Some traces of ‘bands of secondary
slip’ are evident. '

Fig. 13 shows the development of the localization
process for the case where the latent hardening ratio
is taken as ¢ =1 and the initial tilt angle is taken as
¢ =5° Fig. 13a and ¢ show maps of accumulated
sum of slips at engineering strains of 0.11 and 0.15
respectively; Fig. 13b and d show maps of lattice
rotations measured in degrees (positive values show

counter-clockwise rotation) at engineering strains of

0.11 and 0.15, respectively; and Fig. 13e shows the
current traces of the currently most active slip sys-
tem in the center of gage section at 0.15 engineering
strain.

Fig. 13a-b correspond to an engineering strain of
0.11. The accumulated sum of slips vy, in Fig. 13a is
seen slightly non-uniform at this stage. There is no
apparent overshooting found in Fig. 13b in the mid-
dle of the gage, noting that only rotations above 5°
— the initial tilt angle — is overshooting. This is
also in agreement with predictions made by Peirce et
al. (1983). Therefore, unlike the case with g = 1.4
and { = 5°, no conjugate to primary switch in this
case. :

Fig. 13c—e correspond to an engineering strain of
0.15. A MSB is well developed at this stage, see Fig.
13¢, and the band direction is close to the primary
slip plane. From Fig. 13d, the map of lattice rota-
tions, non-uniform lattice rotations and the resulting
geometrical softening again have important influ-
ences on the direction of shear band formation.
While the gage section rotates counter-clockwisely,

the lattice inside the shear band rotates clockwise
(backward), which gives higher resolved shear stress
on the primary slip system inside the band. Noting
that for this case, the slip system hardness (or resis-
tances) for slip system 1 and 2 are the same for any
‘material point’ at any instance. Since there is no
overshooting at the onset of localization, the primary
slip system will have a higher resolved shear stress
and higher shear strain rate, and therefore the MSB
starts with a direction that is close to the primary slip
plane; once the MSB starts forming, the non-uniform
lattice rotations result in the resolved shear stress
inside the shear band larger than that outside, the
shear band will intensify as the deformation gets
larger. In Fig. 13e, the current traces of the currently
most active slip system in the center of gage section
at 0.15 engineering strain, shows that the lattice
inside the shear band is at an angle of about 8° with
respect to the surrounding lattice. Some traces of
‘bands of secondary slip’ are evident.

Fig. 14 shows the development the localization
process for the case where the latent hardening ratio
is taken as ¢ = 0.75 and the initial tilt angle is taken
as ¥ = 5°. Fig. 14a and ¢ show maps of accumulated
sum of slips at engineering strains of 0.09 and 0.13,
respectively; Fig. 14b and d show maps of lattice
rotations measured in degrees (positive values show
counter-clockwise rotation) at engineering strains of
0.09 and 0.13, respectively; and Fig. 14e shows the
current traces of the currently most active slip sys-
tem in the center of gage section at 0.13 engineering
strain,

Fig. 14a-b correspond to an engineering strain of
0.09. The accumulated sum of slips in Fig. 14a is
seen slightly non-uniform at this stage. No apparent
overshooting can be observed in Fig. 14b in the
middle of the gage, noting that only rotations above
5° — the initial tilt angle — is overshooting. There-
fore, there is no conjugate to primary switch here.

Fig. 14c—e correspond to an engineering strain of
0.13. A MSB is well developed at this stage (see Fig.

Fig. 13. Development of the localization process for the case where the latent hardening ratio is taken as ¢ = 1.0 and the initial tilt angle is
taken as = 5°. (a) and (¢) show maps of accumulated sum of slips at engineering strains of 0.11 and 0.15, respectively; (b) and (d) show
maps of lattice rotations measured in degrees (positive values show counter-clockwise rotation) at engineering strains of 0.11 and 0.15,
respectively; and (e) shows the current traces of the currently most active slip system in the center of gage section at 0.15 engineering strain,

where some traces of ‘bands of secondary slip’ are evident.
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14c), and the band direction is found to be close to
the conjugate slip plane. From Fig. 14d, the map of
lattice rotations, it may be seen that non-uniform
lattice rotations and the resulting geometrical soften-
ing again have important influences on the direction
of shear band formation. While the gage section
rotates clockwisely, the lattice inside the shear band
rotates counter-clockwise at a faster rate than the
surrounding lattice. Although both slip systems are
experiencing higher resolved shear stresses, that on
the conjugate slip system becomes larger. Note that
for this case, the slip system hardness (or resistances)
for slip system 1 and 2 are different at the onset of
localization, where the conjugate slip system has the
lower hardness since g = 0.75 < 1. Thus the conju-
gate slip system has the higher shear strain rate, and
the MSB starts in favor of conjugate slip system.
Fig. 14e, the current traces of the currently most
active slip system in the center of gage section at
0.13 engineering strain, shows that the lattice inside
the shear band is at an angle of about 9° with respect
to the surrounding lattice. The domination of the
conjugate slip system is clearly seen and some traces
of ‘bands of secondary slip’ are evident,

As we increase the initial tilt angle to 10° and
keep the latent hardening ratio g = 0.75, we find that
the shear band formation follows a pattern very
similar to that observed in Fig. 13 where a MSB
close to primary slip plane formed. For this case,
again there was no overshooting observed before the
shear band initiation. What happened was that, al-
though the hardness (or resistance) of the conjugate
slip system is smaller than that of the primary slip
system at the onset of localization, the rather high
initial tilt angle (10°) makes the lattice still highly
skewed in favor of the primary slip system, therefore
the shear strain rate of the primary slip system is
much higher than that of the conjugate which results
in localization started at a direction close to the
primary slip plane.

3.3.2.2. Cases with non-Schmid effects. Fig. 15 shows
engineering stress—strain curves for Schmid’s rule
and non-Schmid factor m,,,, = 0.08; latent hardening
ratio is taken as g=1 and the initial tilt angle
§ = 5°. One notices that the sudden load drop, which
indicates the initiation of the localization, happens at
a later stage for the case with m,,,, = 0.08 while our
bifurcation results predicted the opposite. This is
another perfect example showing that bifurcation
results are only the necessary conditions for localiza-
tion. The localization process is found very similar to
that observed in Fig. 13 where a MSB close to
primary slip plane formed.

Fig. 16 shows the accumulated sum of slips at
distances measured along a row of elements across
the shear band location at engineering strains 0.11,
0.13, 0.14 and 0.17, respectively; results under
Schmid’s rule are in solid lines while results under
Nmm = 0.08 are in dashed lines. For the case of
MNmm = 0.08, the localization starts slower, and then
catches up at higher strains.

The reason why there is a slow initiation and an
acceleration process can be understood by studying
the lattice rotations involved. The lattice rotations
involved are found to be nearly the same for Schmid’s
rule and m,,=0.08 in this case. From Fig. 13b,
which illustrates the lattice rotation before shear
band formation, the lattice is seen more or less
uniformly rotating counter-clockwisely, which re-
sults in reduced stress 7{) (the stress component
associated with non-Schmid factor m,,,, for slip sys-
tem 1). This kind of lattice rotation will result in
continuously increasing 1L, for v, =0.08. while
for Schmid’s rule 7! is always a constant. A slow
initiation is thus expected for m,,, = 0.08. As the
MSB develops further (see Fig. 13d), and the gage
section rotates counter-clockwise, the lattice inside
the shear band rotates clockwise which leads to a
higher Schmid factor for primary slip system and
higher values of 7{)). This type of non-uniform

Fig. 14. Development of the localization process for the case where the latent hardening ratio is taken as ¢ = 0.75 and the initial tilt angle is
taken as ¢ = 5°. (a) and (c) show maps of accumulated sum of slips at engineering strains of 0.09 and 0.13, respectively; (b) and (d) show
maps of lattice rotations measured in degrees (positive values show counter-clockwise rotation) at engineering strains of 0.09 and 0.13,
respectively; and (e) shows the current traces of the currently most active slip system in the center of gage section at 0.13 engineering strain,
where some traces of ‘bands of secondary slip’ are evident. The MSB is found to be close to conjugate slip plane.
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the intensity of the shear band for m,,,, = 0.08 will
eventually catch up with that for Schmid’s rule.

3.4. Coarse slip bands and the transition to macro-
scopic shear bands

As the bifurcation analyses suggest (see Table 1),
for the planar slip geometry used here, the single slip
bands are very close to the slip plane (less than 2.3°)
while the bands forming under conditions of double
slip are 7°-9° misoriented. Another interesting fea-
ture is that single slip bands can form at much higher
hardening rates than the double slip bands as long as
there are modest non-Schmid effects; and if the
Schmid rule holds, single slip shear bands are not
possible unless there is perfect plasticity or strain
softening, while at the same time, double slip shear
bands can still form under significant positive strain
hardening. From the above analyses, and bearing in
mind that hardening rates are generally decreasing
functions of strain, we can envision two possible
scenarios of shear band formation in single crystals:
(1) if Schmid’s rule holds, then deformation usually
starts in a single slip mode. When the deformation
intensifies the lattice rotates so that the conjugate
slip system becomes activated, and at the same time,
the hardening rate drops with deformation. When the
hardening rate drops below the critical hardening
rate in double slip, shear bands initiate at an angle
which is several degrees misoriented from the active
slip systems (whether primary or conjugate depends
on latent hardening, tilt angle and boundary condi-
tions); (2) if there are non-Schmid effects, then as
the deformation starts in a single slip mode and as
the hardening rate drops with deformation, when the
hardening rate falls below the critical hardening rate
of single slip, single slip shear bands can form on the
planes almost parallel to the slip planes. With very
high hardening rates the bands will not however,
persist at the same location, but instead will tend to
be coarsely spread (CSB’s). As the conjugate slip
system becomes activated and the hardening rate
drops below the critical hardening rate of double
slip, double slip shear bands initiate at an angle
which is several degrees misoriented from the active
slip systems (MSB’s). Again, whether MSB’s will
form close to primary or conjugate slip system de-

pends on latent hardening, tilt angle and boundary
conditions.

In this section, Section 3.4, the focus is on the
above mentioned second possibility where CSB’s
form before MSB’s. We thus taken m,, = 0.08 as our
non-Schmid effects. The elasticity is simply taken to
be isotropic and consistent with numbers used in
Section 3.3. The plastic properties are given the
same as those used in Section 3.3, except latent
hardening ratio ¢ may vary.

3.4.1. CSB’s to MSB transition: MSB close to pri-
mary slip system

To study localization mode of this type, the latent
hardening ratio is given as g =1, the tilt angle in
Fig. 2 is given as ¢ = 10° and the angle ¢ = 30°.
The mesh was built with a grip on each end, the gage
section had 19 X 50 rectangular elements and the
initial aspect ratio of the mesh was 1/3
(width/length). The small initial geometric imper-
fection, used to trigger nonuniform deformation, was
taken of the form Aby=0.006b,cos(2mwx>/Ly),
where b, and L, are the initial width and length of
the gage section, respectively.

Fig. 17 shows the development of CSB’s and a
MSB for this case. Fig. 17a and ¢ show maps of
accumulated sum of slips at engineering strains of
0.09 and 0.15, respectively; and Fig. 17b and d show
maps of lattice rotations measured in degrees (posi-
tive values show counter-clockwise rotation) at engi-
neering strains of 0.09 and 0.15, respectively.

Fig. 17a and b correspond to an engineering strain
of 0.09. CSB’s are well developed at this stage, see
Fig. 17a, and there is no apparent necking. The
CSB’s are closely aligned with the primary slip
plane. It is also noticed that the deformation mode at
this stage is still essentially single slip, i.e. ¥; >+,
= (). In Fig. 17b, lattice mismatch across the CSB’s
is finite but very small (less than 2°).

Fig. 17c—d correspond to an engineering strain of
0.153. A MSB is well developed at this stage, see
Fig. 17c, and the band is close to the primary slip
plane. The MSB is found to be misoriented about 5°
from the primary slip direction s, of the surrounding
lattice. The lattice inside the MSB is rotated away
from the surrounding lattice by about 5°-7° (Fig.
17d). Necking in the gage section where the MSB
forms is apparent. It should be stressed that, if there
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are no non-Schmid effects, there are no CSB’s ap-
pear in the calculations, although the MSB’s form in
much the same way as described in the cases dis-
cussed in Section 3.3 where there are non-Schmid
effects or 1,,,, # 0.

Fig. 18 shows the engineering stress—strain curve,
noting that there is serrated flow associated with the
CSB’s. Since our finite element mesh is not fine
enough to catch all the details of CSB formation and
serrated flow that goes with it, the band width and
the magnitude of serration can not be taken too

‘serious, but this type of calculations shows that

non-Schmid effects and the micromechanical pro-
cesses that induces non-Schmid effects can be the
origins of serrated flow.

3.4.2. CSB’s to MSB transition: MSB close to conju-
gate slip system
A example of this type of deformation mode can

‘be found in the case where the latent hardening ratio

is given as g = 0.7, the tilt angle in Fig. 2 is given as
¢ = 10° and the angle ¢ = 30°, The mesh again was
built with a grip on each end, the gage section had
11 X 49 rectangular elements and the initial aspect
ratio of the mesh was 1 /5 (width /length). The small
initial geometric imperfection, used to trigger
nonuniform deformation, was taken of the form Ab,
= 0.006b, cos(2mx*/L,), where b, and L, are the
initial width and length of the gage section, respec-
tively.

Figs. 19 and 20 show the development of CSB’s
and a MSB for this case. Figs. 19a and 20a show
maps of accumulated sum of slips. Fig. 19b, Fig. 20b
and Fig. 19c, Fig. 20c show maps of current shear
strain rate on the originally primary and conjugate
slip systems, respectively. Figs. 19d and 20d show
maps of lattice rotations measured in degrees; posi-
tive values show counter-clockwise rotation.

Fig. 19 corresponds to an engineering strain of
0.085. From the map of accumulated sum of slips
(Fig. 19a), and especially the map of the shear strain
rate of the primary slip system (Fig. 19b), the CSB
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Fig. 18. Engineering stress—strain curve, noting that there is
serrated flow associated with the CSB’s from the blown up
portion. Non-Schmid effects are given as m,, = 0.08, the latent
hardening ratio is taken as g =1 and the tilt angle is taken as
= 10°.

slip pattern is clear and there is no apparent necking
observed. By examining the shear strain rate of the
conjugate slip system (Fig. 19c), one can find that
the deformation is essentially single slip at this stage,
although there is small but finite shearing activity on
the conjugate slip system. In Fig. 19d, lattice mis-
match across the CSB’s is found very small (less
than 1°).

Fig. 20 corresponds to an engineering strain of
0.137, where a MSB is well developed along a
direction that is very close the conjugate slip direc-
tion. Highly concentrated shear can be found from
accumulated sum of slips (Fig. 20a) and shear strain
rates on both primary and conjugate slip systems
(Fig. 20b—c); a double slip mode of deformation is

Fig. 17. Development of CSB’s and a MSB for the case where non-Schmid effects are given as v, = 0.08, the latent hardening ratio is
given as ¢ =1, the tilt angle in Fig. 2 is given as y = 10° and the angle ¢ = 30°. (a) and (c) show maps of accumulated sum of slips at
engineering strains of 0.09 and 0.15, respectively; and (b) and (d) show maps of lattice rotations measured in degrees (positive values show

counter-clockwise rotation) at engineering strains of 0.09 and 0.15, respectively.
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Fig. 19. (a) A map of accumulated sum of slips, (b) a map of current shear strain rate on the primary slip system, (c) a map of current shear
strain rate on the conjugate slip system, and (d) a map of lattice rotations measured in degrees (positive values show counter-clockwise
rotation), at a engineering strain of 0.085. The non-Schmid effects is given as 7, = 0.08, the latent hardening ratio is taken as g = 0.7 and
the tilt angle is taken as ¢ = 10°.

evident. The MSB is found to be misoriented about the middle and as much as about 15° at the ‘necking
7° from conjugate slip direction s, of the surround- step” (Fig. 20d).

ing lattice. The lattice inside the MSB is rotated Fig. 21 shows the engineering stress—strain curve
away from the surrounding lattice by about 7°-9° in for this case. The abrupt drop indicates the formation
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Fig. 20. (a) A map of accumulated sum of slips, (b) a map of current shear strain rate on the primary slip system, (c) a map of current shear
strain rate on the conjugate slip system, and (d) a map of lattice rotations measured in degrees (positive values show counter-clockwise
rotation), at a engineering strain of 0.137. The non-Schmid effects is given as ,, = 0.08, the latent hardening ratio is taken as g = 0.7 and
the tilt angle is taken as = 10°,
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Fig. 21. Engineering stress—strain curve for m = 0.08, ¢ =0.7
and ¢ =10°.

of the MSB. There is no apparent serration observed
for this calculation. Noting that the CSB’s do not
have a chance to be well developed (i.e. accumulate
a lot of strain) before the MSB takes over, and
bearing in mind that the mesh is very coarse for this
kind of phenomenon, the serration might be diffused
by the mesh; in reality there may still be serrated
flow (or load drops) associated CSB formation of
this type.

4. Discussion

The results of large scale finite element calcula-
tions are consistent with our bifurcation analyses in
Part I as well as existing experimental observations.
It is again demonstrated that localized deformation
can form within defect free, work hardening crystals.
Non-Schmid effects, slip system geometry, different
loading conditions, and latent hardening are found to
‘be important parameters with respect to the initiation
and development of localized deformation,

CSB’s can form within crystals undergoing signif-
icant hardening and elastic anisotropy has a big
influence in terms of the critical conditions of CSB’s.

This is the result of the constitutive laws that govern
the anisotropic slip geometry and of the deviations
from Schmid’s rule. Our results of CSB’s confirmed
the speculation by Price and Kelly that relatively
high hardening rate could result in shear bands
switching positions after some strain accumulation. It
is quite interesting to find that CSB’s may be a
source of serrated flow. Since CSB’s can form under
significantly high hardening rates as long as there is
moderate non-Schmid effects present, serrated flow
can also occur at high hardening rates. It is thus
speculated that, CSB slip pattern may be an impor-
tant source of serrated flow in polycrystalline materi-
als.

MSB’s are found to form first on directions that
are close to primary slip system as well as conjugate
slip system, Non-Schmid effects, latent hardening,
and loading' geometry (i.e. the orientation of the
loading axis with respect to symmetric boundary) are
important parameters affecting the initiation and fur-
ther development of the localization process. Geo-
metrical softening associated with non-uniform lat-
tice rotations is crucial for the development of shear
bands. When the single crystal orientation reaches
that corresponding to a double slip mode, there may
be large differences between the critical resolved
shear stresses for the two slip systems, one slip
system may have higher resolved shear stress than
the other but the shear rate may be lower than the
other slip system because the other slip system has a
much lower critical resolved shear stress. Accurately
accounting for the latent hardening is therefore im-
portant. Recently some very encouraging efforts were
made along this line, especially with the models
developed by Wu et al. (1991), Bassani and Wu
(1991) and Cuitifio and Ortiz (1993), where orienta-
tion dependent stage I/stage II hardening in copper
single crystals can be well captured.

Numerical calculations for transitions from CSB’s
to a MSB are found consistent with existing experi-
mental observations. It is noted that when Schmid’s
rule holds (no non-Schmid effects), our calculations
did not show any CSB’s. This suggests that non-
Schmid effects play a very important role in the
initiation and development of the localized shear
bands.

For simple FCC metals, Schmid’s rule is a good
approximation. Non-Schmid factors as small as 0.04
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(easily unnoticed in experimental verifications of the
Schmid rule) can significantly increase the critical
hardening rate of localized deformation modes as
demonstrated throughout this two part series. Noting
that intermetallics may display very high non-Schmid
effects, e.g. as observed in Ni; Al (Umakoshi et al.,
1984) and Ni;Ga (Takeuchi and Kuramoto, 1973),
the critical hardening rate of single slip mode is
significant, heavy shear banding is observed for those
intermetallic compounds at large strains (Gottstein et
al., 1989), although very high hardening rates may
prevent any significant strain to build up locally, at
least at small nominal strains,

Now it is clear that ‘secondary’ material proper-
ties like non-Schmid effects and latent hardening are
very important in determining the localized deforma-
tion modes. To find the accurate description of those
material properties is a great challenge since those
parameters are usually coupled together and may
evolve with the strain accumulation. Efforts must be
joined by micromechanical modeling (i.e. dislocation
dynamics), micromechanical testing (i.e. in-situ
TEM) as well as carefully designed mechanical tests,
continue mechanics modeling and accurate full
boundary value numerical computations.
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