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Abstract

A general strain rate independent crystallographic slip theory which incorporates non-Schmid effects, is presented. This
constitutive law is a rate independent isothermal idealization of the theory developed by Dao and Asaro (1993). The
non-Schmid factors are estimated for NizAl as well as for some simple metals. A general method to study the bifurcation
modes for the general three-dimensional multiple slip geometry is described. Three-dimensional bifurcation analyses for
single slip mode as well as multiple slip mode are presented. With moderate non-Schmid effects, coarse slip bands (CSB)
are found possible in single slip modes as well as multiple slip modes, where critical localization criteria may be satisfied
with significant strain hardening. Non-symmetric multiple slip geometries are examined and the bifurcation results show that
shear bands close to the conjugate slip system are often more favored. Non-Schmid effects, elastic anisotropy and stress
state may have important influences on the critical localization conditions. A mechanism for the transition from coarse slip
bands to macroscopic shear bands (MSB) is suggested. The predictions of the theory are compared with existing
experimental observations and good agreement is obtained for both the coarse slip bands and macroscopic shear bands.

1. Introduction

It has been realized that the localization of plastic flow in ductile crystals is not only common but appears to
be an entirely natural, inevitable outcome of finite deformation processes. This is true for single crystals and
polycrystals of simple metals and alloys. This is, in addition, also the case for crystalline materials which have
ordered crystalline structures.

The relation between deviations from the Schmid rule of a critical resolved shear stress and localization of
plastic deformation in ductile single crystals was first studied by Asaro and Rice (1977). They recognized that
whereas the Schmid rule — which states that yielding occurs on a slip system when the resolved shear stress
alone on that system reaches a critical value — is often a good approximation for simple crystals, deviations
from it are inevitable. Asaro and Rice (1977) listed a number of familiar physical mechanisms which cause such
deviations and present a detailed model analysis of cross-slip in what could either have been a crystal of a
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simple fcc or bec metal or a more complex crystal such as an ordered intermetallic compound. Based on this
they formulated a very general rate-independent yield criterion and a flow theory, and used it to analyze the
bifurcation of a uniform state of plastic flow into states characterized by highly nonuniform and localized
modes. Their results showed that such modes were possible even during single slip when the strain hardening
rates on the individual slip systems fell below critical values on the order of A, /G <&(n?) where G is a
representative elastic constant and m stands for any one of a number of parameters that measure the extent to
which other components of stress affect yielding on a slip system as compared to its resolved shear stress. The
analysis was among the first to indicate reasons that uniform plastic flow in crystals is inherently unstable and
how localization of deformation may occur in materials of nominally uniform properties and which are
positively strain hardening. Subsequent analyses (e.g., Asaro, 1979; Chang and Asaro, 1981; Peirce et al,, 1982;
Peirce et al., 1983; Harren and Asaro, 1989; Bassani, 1994) showed that multiple slip involving the
simultaneous activity on more than one slip system leads to further destabilization of flow and produces modes
that involve nonuniform lattice rotations and geometrical softening.

Significant departures from the Schmid rule have been reported in crystals containing the L1, structure; for
example in Ni; Al by Paidar, Pope and Vitek (PPV, 1984) and in Ni;Ga and Co;Ti by Takeuchi and Kuramoto
(1973) and Takasugi and Izumi (1987). Paidar et al. (1984) have, in fact, constructed a model for initial yielding
of Ni,Al using a cross-slip pinning dislocation model that fits within the general framework including the
cross-slip dislocation models developed by Asaro and Rice (1977). In what follows we make specific contact
with the PPV model as well as with independent experiment data for stress state dependent yielding in Ni; Al
crystals; some estimation for non-Schmid factors in simple fcc and bee crystals are given as well. Nemat-Nasser
et al. (1981) extended Asaro’s model (Asaro, 1979) with plastic volume expansion and pressure sensitivity,
giving a general analysis of strain localization. Recently Qin and Bassani (1992a); Qin and Bassani (1992b),
within a rate-independent framework, applied the non-associated flow theory to Ni; Al single crystals. The yield
criterion they used was effectively the same as in Asaro and Rice (1977); their analyses are consistent with the
original findings. Most recently, Dao and Asaro (1993) developed a general rate dependent crystallographic slip
theory incorporating non-Schmid effects; their numerical results showed that the onset and further development
of single slip shear bands are quite different from those of muitiple slip shear bands.

There are some previous studies in metal plasticity and a large body of work in rock and soil mechanics
which seek to model pressure sensitive materials (non-associate flow rule), since Coulomb proposed his yield
criterion over 200 years ago. Relevant to this work, as far as the constitutive formulation is concerned, are the
works by Mandel (1947), Spencer (1964), Mehrabadi and Cowin (1978), Mechrabadi and Cowin (1980), and
Christoffersen et al. (1981), who proposed models based on double slip taking into account the pressure
sensitivity and in the latter works the plastic volume change. In geomechanics, as far as localization analysis is
concerned, some early contributions are by Vardoulakis et al. (1978), Mehrabadi and Cowin (1980) and
Nemat-Nasser (1983). A model is recently developed by Drucker and Li (1993) and Li and Drucker (1994) to
explain the instability and bifurcation on the basis of a non-associated flow rule, which is different from the
earlier approach, e.g., by Rudnicki and Rice (1975).

Although in simple metals, non-Schmid effects are usually small, non-Schmid factors as small as 0.04 (easily
unnoticed in experimental verifications of the Schmid rule) can be the cause for localization at quite high
hardening rates (see, e.g. Asaro and Rice (1977), Chang and Asaro (1981) and Dao and Asaro (1993); Dao and
Asaro (1994)). In the present work, efforts are made to understand the formation of coarse slip bands (CSB)
and the transition to macroscopic shear bands (MSB). In this regard, Chang and Asaro (1981) found'that the
critical conditions for the onset of CSB’s are related to that of the single slip shear bands predicted by Asaro and
Rice (1977), where the presence of small non-Schmid effects was believed to be the major factor. Dao and
Asaro (1994), using large scale finite element calculations, confirmed that, indeed, the small non-Schmid effects
can result in CSB’s and, later on, trigger MSB’s.

This article represents the first part of two describing non-Schmid effects and localized deformation in
crystalline solids and shall be referred to as Part I. Here a rate independent version of a finite deformation slip
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theory incorporating non-Schmid effects is presented and a general method is applied to study the critical
conditions of localization. In the second article, referred to as Part II, a rate-dependent version of the finite
deformation slip theory incorporating non-Schmid effects is introduced where large scale finite element
calculations are carried out to study the deformation patterns and the development of localized deformation
processes. Some preliminary results can be found in Dao and Asaro (1993); Dao and Asaro (1994).

In this paper, we present a general strain rate independent version of a finite deformation slip theory that
specifically accounts for deviations from Schmid’s rule. It is, in fact, a rate independent idealization of the
model developed by Dao and Asaro (1993). A general method is presented to study the critical conditions of
localization in three-dimensional geometry. Unlike previous studies where only two-dimensional slip geometry
is used to study the localization for general multiple slip mode, the procedure given in this paper can account for
three-dimensional multiple slip geometries, elastic anisotropy, and different stress states. The predictions of the
critical conditions for localization are consistent with those existing experimental observations. A comprehen-
sive analysis about the non-Schmid effects and the polycrystal behavior was done in another paper (Dao et al.,
1996).

The plan of this paper is as follows: In the next section, we review experimental observations and
interpretations of CSB’s and MSB’s to place our analyses in perspective; in Section 3 the constitutive theory is
presented and, Section 3.2 introduces a general method to perform three-dimensional bifurcation analyses.
Section 4.1 gives some estimated non-Schmid factors for Ni, Al; in Section 4.2 some estimation of non-Schmid
factors for simple metals are given. Three-dimensional bifurcation analyses for single slip mode and multiple
slip mode are presented in Sections 5.1 and 5.2, respectively. A brief summary is given in Section 5.3.
Discussions follow in Section 6.

1.1. Notations

Standard tensor notation is used throughout. Bold faced symbols are used to denote vectors and higher order
tensors, the order of which will be clear in context. Products are indicated with dots, which denote summation
over repeated Latin indices, and products containing no dots are dyadic products. Latin indices range from one
to the number of spatial dimensions, and repeated Latin indices are always summed. Inverses, transposes, and
transposed inverses are denoted with a superscripted — 1, T and — T, respectively and superposed dots indicate
differentiation with respect to time ¢. For example,

A:B=A;B;; AB=A;B,bbbb;
cd=c;dbb; B-c=Bc;b;

ac 0
H:A = HijklAlkbibj; Ei' = 'a—zbib )

B=—1pb,
ar

where e, is the permutation symbol. The basis, b;, is Cartesian and independent of time. Greek indices are
used to identify slip systems and range from one to N = the number of slip systems. Summation over repeated
nonparenthetical Greek indices is implied while repeated parenthetical Greek indices are not summed, e.g.,
¢ d, means ¢;d; +c,d, +... +cydy and c,d,, means either ¢;d;, ¢,d,, ..., or cydy.
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2. Perspectives on coarse slip bands and macroscopic shear bands

Three localized deformation modes in single crystals are studied here: (i) diffuse necking, (ii) coarse slip
bands and (iii) macroscopic shear bands. These three modes are often observed during large deformation of a
single crystal, and are often observed simultaneously on the same sample crystal during deformation.

2.1. CSB’s and MSB’s in simple metals

As an example, precipitation hardened alloys containing GP-I and GP-II zones form an interesting class of
material which displays intense shear bands leading to fracture. Elam (1927) performed early experiments on
Al-Zn single crystals, Beevers and Honeycombe (1962) on Al-Cu, Price and Kelly (1964) on Al-Cu, Al-Zn,
Al-Ag and Cu-Be single crystals, and Chang and Asaro (1981) on Al-Cu single crystals. Chang and Asaro
(1981) and Chang (1979) have done systematic experiments on Al-2.8wt%Cu single crystals (fcc) in simple
tension and compression; Harren et al. (1988) performed tests in plane strain compression on Al-2.8wt%Cu
single crystals. There are characteristic observations on the formation of coarse slip bands and macroscopic
shear bands which are important to outline.

Fig. 1 shows CSB and MSB formation in a GP-II Al-2.8wt%Cu single crystal. The crystal is oriented such
that slip begins on the primary slip system where after the lattice rotations that occur induce slip on a second
system, the conjugate slip system. The CSB’s formed on the primary slip system first, then became clustered,
and finally within the cluster of CSB’s, an MSB formed. The orientation difference between CSB’s and the
MSB is one characteristic observation. Fig. 2 shows CSB and MSB formation in another GP-II Al~2.8wt%Cu
single crystal. It was observed that CSB’s formed first on the primary slip plane and then a MSB formed on the
conjugate slip plane. Additional observations by Chang and Asaro (1981) and Chang (1979) show that, in
addition to the two cases in Figs. 1 and 2, CSB’s may form first on planes close to the conjugate slip plane and
subsequently MSB’s may form on planes near the primary or conjugate slip plane. Fig. 3 shows CSB and MSB
formation in an Al-2.8wt%Cu single crystal; CSB’s formed first on the conjugate slip plane, the CSB’s then
clustered and finally a MSB formed on the conjugate slip plane within the CSB cluster. Fig. 4 shows a
Al-2.8wt%Cu single crystal under compression, the loading axis was oriented for symmetric slip on both
primary and conjugate slip planes. The CSB pattern was clearly shown on both primary and conjugate slip

Fig. 1. CSB and MSB formation in a GP-II Al-2.8wt%Cu single crystal. The CSB’s formed on the primary slip system at first, then became
clustered and finally within the cluster of CSB’s formed an MSB. Noting that the orientation difference between CSB’s and the MSB.
(Photo taken from Chang and Asaro, 1981.)
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Fig. 2. CSB and MSB formation in a GP-1I Al-2.8wt%Cu single crystal. CSB’s formed first on the primary slip plane (frame 25) and then a
MSB formed on the conjugate slip plane (frame 34). (Photo taken from Chang, 1979.)

planes. Localized deformation modes of the CSB or MSB type are observed in bcc crystals as well, i.e. Spitzig
(1981) and Deve et al. (1988) have reported on the shear band formation in Fe—Ti—Mn single crystals (bcc) and
Reid et al. (1966) in Nb single crystals.

2.2. Intermetallic compounds

CSB patterns have been observed in ordered intermetallic compounds such as Ni;Ga (L1,) (Takeuchi and
Kuramoto, 1973), TiAl (L1,) (Kawabata et al., 1985) and Ti;Al (D0O,y) (Minonishi, 1991). Fig. 5 shows
examples of compression tests along a fixed orientation at three different temperatures for Ni,Ga. CSB’s are
clearly observed at the low temperature (77 K) and as well as at the higher temperature (993 K); the spacing
between coarse slip bands are much smaller at 993 K than at 77 K. At the intermediate temperature, deformation
looks very much uniform. From our analyses, it appears that at the intermediate temperature (458 K) the
hardening rate is too high to meet the critical conditions for localization, although the non-Schmid effects are

Fig. 3. CSB and MSB formation in an Al-Cu single crystal. CSB’s formed first on the conjugate slip plane (frame 33), the CSB’s then
clustered and finally a MSB formed on the conjugate slip plane within the CSB cluster (frame 39). (Photo taken from Chang, 1979.)
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Fig. 4. An Al-2.8wt%Cu single crystal under compression, the loading axis was oriented for symmetric slip on both primary and conjugate
slip planes. The CSB pattern was clearly shown on both primary and conjugate slip planes. (Photo taken from Harren et al,, 1988.)
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Fig. 5. Compression tests along a fixed orientation at three different temperatures for Ni,Ga. (Photo taken from Takeuchi and Kuramoto,
1973.) We can see clearly CSB’s at low temperature (77 K) and high temperature (993 K), the spacing between coarse slip bands are much
shorter at 993 K than that of 77 K. In the intermediate temperature test, deformation looks very much uniform.
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the strongest around the anomalous temperature. Heredia and Pope (1989) studied Ni, Al (L1,) single crystals in
tension. They found that the crystals often fracture on {111}-type shear planes. Such abruptly occurring localized
plastic flow has been reported in crystals of other ordered intermetallic compounds such as NiAl (Wasilewski et
al., 1967) as well as in TiAl alloys containing duplex vy/c, microstructures (Inui et al., 1992). What appears to
be common to these materials is that they display stable and, often high, rates of strain hardening, yet fail via
highly concentrated shearing.

2.3. Summary of experimental observations on CSB’s and MSB’s

To summarize the observations from previous experiments, we conclude that

(1) CSB’s often appear before any obvious necking and load drop; MSB’s usually form after necking and
after the load drop.

(2) In single crystals originally oriented for single slip, CSB’s can initiate on both primary and conjugate slip
systems; MSB’s can initiate on both primary and conjugate slip systems as well.

(3) CSB’s are closely aligned with the active slip planes; MSB’s are typically several degrees (5°~10°)
misoriented with respect to the active slip planes. MSB’s can initiate at planes closely aligned with the active
slip planes, but when the deformation gets larger they usually rotate further away from the active slip planes.

(4) CSB’s may initiate under single slip modes as well as multiple slip modes; MSB’s are believed to initiate
under multiple slip mode (Asaro, 1979; Peirce et al., 1982; Peirce et al., 1983; Dao and Asaro, 1993),

(5) Clustering of CSB’s appears to be part of the formation of MSB’s.

(6) In intermetallic compounds, CSB’s are often found. These materials usually have stable and, often high,
rates of strain hardening yet fail via highly concentrated shearing. Significant deviations from Schmid’s Law are
observed in Ni;Ga (Takeuchi and Kuramoto, 1973) and Ni; Al (Paidar et al., 1984).

MSB’s have been studied extensively, i.e. Asaro (1979), Peirce et al. (1982); Peirce et al. (1983); Dao and
Asaro (1993); Dao and Asaro (1994). Geometrical softening, caused by the non-uniform lattice rotations within
the shear bands, was found to be the major factor in triggering MSB’s. Dao and Asaro (1993); Dao and Asaro
(1994) found that non-Schmid effects may significantly affect the critical conditions of localization. To explain
the formation of CSB’s, Price and Kelly (1964) had suggested that CSB’s may develop at quite high hardening
rates as they do not tend to persist at the same location but, instead, tend to be coarsely spread along the active
gage length of the crystals. Chang and Asaro (1981) found that the critical conditions for the onset of CSB’s are
related to that of the single slip shear bands predicted by Asaro and Rice (1977), where the presence of small
non-Schmid effects was believed to be the major factor. Most recently, in a preliminary report, Dao and Asaro
(1994) confirmed that small non-Schmid effects combined with high hardening rates (but lower than the critical
hardening rate of localization in single slip) can result in CSB’s, and saturating (positive) hardening rates with
deformation can result in clustering of CSB’s and initiation of MSB’s. There are, however, outstanding
questions that need further explanation, e.g.: (i} why CSB’s often form first on conjugate slip system, and what
are the critical conditions; (ii) why MSB’s often form first on the conjugate slip system, and what are the critical
conditions; (iii) why and under what conditions do CSB’s form under multiple ‘slip modes; (iv) how do we
categorize CSB’s and MSB’s with respect to single slip shear bands and multiple slip shear bands. To answer
such questions along with studying the experimentally observed phenomena listed above, we have extended our
focus to three-dimensional non-symmetric slip geometry, incorporating non-Schmid effects in single slip as well
as multiple slip modes.

3. The theory and numerical considerations
3.1. The rate-independent constitutive law

The rate-independent constitutive law can be written in a form developed by Hill and Rice (1972); Asaro and
Rice (1977); Asaro (1979) and Hill and Havner (1982), which is based on the pioneering work of Taylor (1938).
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What we add here is the non-Schmid effects for the multiple slip mode. It is the rate-independent and isothermal
idealization of the rate-dependent version of Dao and Asaro (1993). Recently Qin and Bassani (1992a); Qin and
Bassani (1992b), within the rate-independent framework, developed a slightly different form, where only pure
shear stresses are taken into consideration as sources of non-Schmid effects.

Assume there are o =1, 2, ..., N slip systems active, where N = 1 stands for single slip, N =2 stands for
double slip, N =3 stands for triple slip, ... . Slip system « is defined by orthogonal unit vectors s, m, and
z,, where s is the current slip direction, m, is normal to the slip plane and z, is normal to both s, and m,.
The total deformation rate D and spin rate §2 are composed by two parts. The first part is the plastic part,
where material deforms by shearing along the various slip systems of the crystal; the plastic deformation rate
D? and the plastic spin rate QF are given by

DP=Py, and 02°=W5,, (3.1)
respectively, where ¥, is the shearing rate of the o slip system, and

P, = L(sum, +m,s,), (3.29)
and

W, =3(s,m, —m,s,). (3.2b)

The second part is the elastic plus lattice rotation part, where material deforms by elastic deformation and the
Jattice rotations; this part of deformation rate and spin rate are denoted by D" and €7, respectively. Thus we
can add the two parts together to obtain

D=D"+Py,, (3.3a)
and
=0"+Wy,. (3.3b)

Take the lattice deformation to be elastic and unaffected by the plastic slips, let L to be the elastic moduli
phrased relatively to lattice directions, then

v

o +ou(D")=L:D", (3.4)
where

v

0'=6-Q" -ct+to- 027, (3.5)

where ¢ is the ordinary time rate of Cauchy stress, o, following the material element and Cartesian
components of

are the ordinary time rates of the components of & on axes that rotate rigidly at the lattice spin rate Q. To
study material deformation, we also need a stress rate whose components are formed on axes that spin with the
material as given by

v
o=0-2 0c+o0- 0. (3.6)

The two rates,

v v
o and o,
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are related by

v v

o—o" =(c-W,-W,-0)%,. (3.7)

Expressing D" and " in terms of D and € using Eq. (3.3), Eq. (3.4) becomes

o+ 0o u(D)=L:{D-PBg,}, (3.8)
with
B=P +L (W, -o—0W). (3.9)

Following Dao and Asaro (1993), the general yield criterion is given as
Ty T N:O=m, 05, +1,:0=g,, (3.10)

where 7, is the current value of the resolved shear stress, g, is the current resistance, and m, is the tensor of
non-Schmid effects for slip system o which, when aligned with s, m, and z, takes the simple form

s 0 My
n= O T]mm T]mz * (311)
T]sz Tlmz T]zz

If the slip system a is to remain active, taking derivatives of both sides of Eq. (3.10) with respect to time ¢, we
must have

d(m,-o-s,+n,:0) _
P = hopYVps (3.12)

where h,g is a hardening matrix, the off diagonal elements of which represent latent hardening. The explicit
form of the left-hand side of Eq. (3.12) depends on how §, and r, are defined. Asaro and Rice (1977)
discussed various possibilities which differ in how lattice elasticity is accounted for, and practically same results
were obtained. For the present, we will assume that s, and m, remain othogonal unit vectors and simply rotate
rigidly at the lattice spin rate Q*. Thus, in view of Eq. (3.11), after some rearrangements, we obtain

d(m,-o-s,+1n,:0) v
=0 0", 3.13
= Q.0 (3.133)
with
Q,=P +T% n T, (3.13b)

where T is the transformation tensor between lab axes @; and the « slip system s,, m,, z,, ie. if ef =s,,
e; =m,, e =z, then T;; = a,- . From Egs. (3.12) and (3.13), a general flow rule, incorporating non-Schmid
effects, is simply given as

v \4

(P,+T% 0 TT):0" =Q,:0" =h,g¥s. (3.14)
Replacing D* and Q* with D and Q from Eq. (3.3) and using Eq. (3.4) to evaluate

v

o,

Eq. (3.14) becomes
LD = Py5}:0, = hog¥s- (3.15)
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Fig. 6. Cartesian coordinates and reference crystal axes a, b and ¢, where the right hand triad a, b and ¢ are some specific crystallographic
directions of the single crystal, Surface of localization is shown with unit normal », having components n,, n, and ;.

Inverting Eq. (3.15) we have

Yo =Nop @s:L:D, (3.16a)
where
NaB =haB +Qa:L:PB. (3.16b)

Finally, with Eq. (3.16), Eq. (3.8) becomes

o + 0 (D) =L:D— (L:E,)N;} (@4:L:D). (3.17)

3.2. A general method for three-dimensional bifurcation analyses

For materials described by idealized rate-independent constitutive laws Hill (1962) has given a general theory
of bifurcation of a homogeneous elastic-plastic flow field into bands of localized deformation. For this to occur
there is first the kinematical restriction that for localization in a thin planar band with unit normal n (see Fig. 6)
the velocity gradient field inside the band dv/8x can differ from that outside, 8v°/dx, as

— ——=gn. 3.18

dx  ox & ( )
In addition, there is the continuing equilibrium requirement that

n-c—n-¢°=0 (3.19)

at incipient localization where ¢ is the stress rate inside the band and o° that outside.
Constitutive law Eq. (3.17) along with the conditions for localization (Egs. (3.18) and (3.19)) can be solved
to get critical conditions for the onset of localization. We first rewrite Eq. (3.17) to be

o={L— (L:B)NG(Qu:L)}:D+ @ -0~ o @~ 0 (D). (3.20)

and recognizing that D and { can be expressed in terms of the velocity gradient. With Eq. (3.18) in mind, we
have

D—D°=%(gn +ng), (3.21a)
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and
02-0°=%(gn—ng), (3.21b)

where D and €} are measured inside the shear band and D® and Q° are that outside. Multiplying Eq. (3.20)
from the left with n and using Egs. (3.19) and (3.21), we obtain

{n ‘L-n— (n -L:ﬁa) s (Qs:L n)} g+A-g=0, (3.22a)
where

A=z{(n-o-n)I?-0o—(n-o)n—n(o-n)}, (3.22b)
and I® is the second order identity tensor with I =3, Let
M=n-L-n—(n-L:B)NZ}(Qs:L-n)+A4, (3.23)
then Eq. (3.22a) becomes

M-g=0. (3.24)
Now we can solve for the critical conditions of localization using

det{ M} = 0. (3.25)

Only in some special cases, a close form solution can be obtained for Eq. (3.25). To study more general cases,
like non-symmetric slip geometry, three-dimensional multiple slip modes and anisotropic crystal elasticity, we
will use a numerical method to solve for Eq. (3.25). In this study, a simple bisection method is used to find
solutions.

4. Estimation of the non-Schmid factors

4.1. Estimation of non-Schmid factors in Ni; Al

Dao and Asaro (1993) have estimated the non-Schmid factors for Ni; Al at several different temperatures (see
Table 1).

Table 1

Non-Schmid factors for Ni; Al at several temperatures

Temperature Stress state M5 N MN;; Mz Nsz

6=293K Tom > 0, T, >0 0 0.008 —0.008 0.008 -0.015
Tsm <0, 7., <0 0 —0.008 0.008 -0.008 -0.015
Tom > 0, 7., <0 0 0.008 —0.008 0.008 0.014
Tom <0, T, >0 0 —0.008 0.008 —0.008 0.014

6=600K Tom > 0, 7, > 0 0 0.036 —0.036 0.037 —0.065
Tom <0, 7o, <0 0 —~0.036 0.036 —-0.037 —0.065
Tom > 0, 7., <0 0 0.030 ~-0.030 0.031 0.054
Tom <0, 75 >0 0 —0.030 0.030 —-0.031 0.054

0=800K Tem > 0, T, >0 0 0.046 —0.046 0.048 -0.083
Tom <0, T, <0 0 —0.046 0.046 —0.048 —0.083
Tem > 0,7, <0 0 0.037 —0.037 0.038 0.067
Tom <0, T, >0 0 —0.037 0.037 —0.038 0.067
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Fig. 7. Normalized critical resolved shear stress |, | versus temperature 8 curves obtained by the general yield criterion (Eq. (3.10)) and
those estimated components of v tensor. T stands for tension and C stands for compression. The calculated curves are essentially the same
as those in Fig. 13 of Paidar et al. (1984).

Fig. 7 illustrates the normalized critical resolved shear stress |7,,| versus temperature § curves, obtained by
the general yield criterion (Eq. (3.10)) and those estimated components of the w tensor, where f,, =
Terss/CE1/b) with E; the APB energy on {111} planes and b the length of Burgers’ vector . The calculated
curves in Fig. 7 are essentially the same as those in Fig. 13 of Paidar et al. (1984). This demonstrates that the
estimated m tensor describes, as in Paidar et al. (1984), the relative importance of each stress component
contributing to flow.

4.2, Estimation of non-Schmid factors in simple metals

Asaro and Rice (1977), Chang and Asaro (1981) and Asaro (1983) have given some estimated non-Schmid
factors for simple metals. Barendreght and Sharpe (1973) found in Zn single crystals m,,, could be as high as
0.17. Spitzig et al. (1975) had reported the strength differential to be as high as 0.07-0.1 in high strength
martensitic steels. The strength differential, SD, is defined as the ratio (o, — 0,)/[(c, + ¢,) /2], where o, and o,
are yield strengths under uniaxial compression and uniaxial tension, respectively. As pointed by Asaro and Rice
(1977), the strength differential can be expressed as

4x

SD = —, (4.1)
3

where k is the pressure sensitivity factor. If m, =m,,,, =m,, = k/3, their values are estimated to be

nss = MNym = T]zz = %SD (42)

Estimations and observations of non-Schmid factors for several materials are summarized in Table 2.

5. Critical conditions of localization
5.1, Bifurcation analyses for single slip

In this section, Section 5.1, we will neglect the slip system identifier subscript o, for there is only one slip
system active. For example, s,, m; and z, are denoted by s, m and z respectively.
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Table 2
Non-Schmid factors for some simple metals
Zn*® Al-Cu® Steel (martensitic) ¢ Cross-slip model ¢
Nsz — 0.044 — 0.03-0.1
TNz — — —_ 0.005-0.03
s — — 0.018-0.025 —
Moo ~0.1 — 0.018-0.025 —
. — — 0.018-0.025 —

* Data from Barendreght and Sharpe (1973).

® Data from Chang and Asaro (1981).

¢ Data from Spitzig et al. (1975).

¢ Theoretical results from Asaro and Rice (1979).

5.1.1. Close form solutions

Asaro and Rice (1977) have developed a rather comprehensive close form solution for the criteria that allow
for bifurcation to occur under single slip. The derived criteria for bifurcation take the form of a critically low
ratio of hardening rate to various measures of elastic moduli. Their perspective was that, at the points where
localization occurs, hardening rates are generally decreasing functions of strain. Thus criteria were sought for
the conditions where localization could occur with the largest positive hardening rate. Solutions of this kind fell
into two broad categories, namely localized bands that lie nearly aligned with the slip plane (slip band) and
those whose normals are nearly aligned with the slip direction (kink band). Assuming o /L is very small (where
o stands for the order of the components of stress tensor o and L stands for the order of the components of
elastic moduli L), Asaro and Rice {1977) have found bands that lie nearly aligned with the slip plane, but
optimally oriented such that the critical hardening rate is maximized, become possible when

h=h,=3(q:t-s)(s-#s)"" (s:m); (5.1a)
these bands have the normal

n=m+i(s-#5)" (s :m), (5.1b)
where

A=L—(L-m)-(m-L-m)™"-(m-L). (5.1¢)
For bands whose normals are nearly aligned with the slip direction,

h=h,=3(n:Z m) - (m-& m)"(m-Fq); (5.2a)
the normal to those bands is given as

n=s+i(m- m)"(m-F:m), (5.2b)
where

F=L—(L-s)-(s-L-s)™"-(s-L). (5.2¢)

If we retain terms of order @(c), a term (m - o -m —s - ¢ -5) can be added to Eq. (5.2a) for the case of a
kink band, viz.,

h=h,=3(n: & m) - (m- & m)" - (m-Fm)+{m-oc-m—s-o-s), (5.3)

where the normal to the bands is still given by Eq. (5.2b). Eq. (5.3) was recently applied to model the critical
conditions of kink band formation in fiber composites by Dao and Asaro (1996b).
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When the elasticity is taken to be isotropic, the critical conditions of slip band Egs. (5.1a) and (5.1b) become

1 2
h=hcrzG<~q§Z+4—g[(2§— ), +2&n,,] } (5.4a)
with the normal to the bands given by
1
zm—l—n”z+4—g[(2§—l)n“+2§n”]s; (5.4b)

and for the case of kink band, (5.3) and (5.2b) become

1
h=h,= G{wﬁnz + Zg[(2:; - 1)m,, + ZEnmm]Z} +{m-o-m—s-0o-s}, (5.5a)
with the normal to the bands given by

1
n=S+anZ+;g[(25— 1)m,, +2Em,,, ] m. (5.5b)

In the above,
E=(A+G)/(N+2G), (5.6)

and X\ is the Lame constant and G the shear moduli. Before going into detailed analyses, it is of interest to

—explore the numerology of Egs. (5.4) and (5.5); for this purpose we take Poisson’s ratio v=1/3 and hence
£ = (0.7. Noting further that for metals G is of the order 100 to 1000 g,, where g, is the initial yield stress, then
if the m’s in the brackets of Eq. (5.3a) are of order 0.05, then h. /G is of order 0.008 and A, itself of order
0.8 g, t0 8 g,. On the other hand, if the same ’s are of order 0.01 then A, /G is of order 2 X 107* and h,, is
of order 0.02 g, to 0.2 g,. Not only can #, be positive but for materials which have relatively large non-Schmid
effects such as NiyAl, &, can be quite high. Similar argument applies to kink bands as well, small non-Schmid
factors could make the bands appear at significant high hardening rate. On the other hand, even if we have a
large non-Schmid factor, i.e. m = 0.1, then from Eq. (5.4a) the misalignment between the slip band and the slip
plane is only about 2.9°. We thus find that for single slip, while the critical hardening rate can be quite high, the
misalignment of the slip band with respect to slip planes is expected to be very small. As discussed by Chang
and Asaro (1981), single slip shear band modes of the type are, kinematically at least, closely related to what
they termed coarse shear band (CSB) formation.

5.1.2. Bifurcation analyses for bands nearly aligned with the slip plane

We first define the crystal geometry as in Fig. 8. Fig. 8a shows the geometry of the slip system s, m and z
and the band of localization which is defined by the band normal n. Reference lab axis X; is chosen to be
aligned with z. In Fig. 8b, the normal to the band of localization n is defined by two angles, viz. \s; and ,;
with such definitions, s can be defined as ; = &, ¥, = 0° m can be defined as ¥, = —(90° = ¢), and Y, = 0%
and z as §; = 0°, §, = 90°.

5.1.2.1. General features of slip bands. For the case where the bands are nearly aligned with the slip plane, we
seek solutions where ¥, = —(90° — &) and {, = 0°. We obtain our bifurcation analyses results by solving the
bifurcation Eq. (3.25) using a simple bisection numerical method, while comparisons are made with solutions
estimated directly from Egs. (5.1) or (5.4). From our calculations for &#(c) < G, as expected, the influence of
the stress state (o) is negligible. For the moment we assume the crystal’s elasticity is isotropic with G = 300g,
and v = 0.3 where g, is the initial yield stress, take ¢ as 30° so that —{s; = 60° and Vs, = 0° corresponds to the
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—— Slip Plane

- Plane of Localization

X ¥
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Fig. 8. (a) Geometry of the slip system s, m and z and the band of localization which is defined by the band normal n. Reference lab axis
X, is chosen to be aligned with z. (b) The normal to the band of localization n is defined by two angles, viz. Uy and W, ; with such
definitions, s can be defined as Y, =&, ¢, =0°, m can be defined as §; = —(90° — ¢), ¥, =0°, and z can be defined as W, = 0°,
U, = 90°,

slip plane normal, m. Fig. 9a shows the calculated critical hardening rate & plotted against the two angles U3
and s, for the case where m;, = 0.06; the highest hardening rate k. = 1.08 g, is achieved at —; = 60.0° and
i, = 3.4° (which is consistent with the numbers estimated from Eq. (5.4) where h,, = 1.08 g, with — s, = 60.0°
and {5, = 3.4°). Fig. 9b shows the calculated critical hardening rate / plotted against the two angles s, and ¥,
for the case where m; = 0.08; the highest hardening rate h,. = 1.37g, = £én2,G is achieved at — s, = 57.7° and
, = 0° (which is consistent with the numbers given by Eq. (5.4) where h,, = 1.37g, with —¢, =57.7° and
¥, = 0°). It is evident that localization is possible at significantly high hardening rates and that the correspond-
ing band of this type should closely align with the slip plane. The shape of the surface of critical hardening rate
is nearly axisymmetric about the optimal (i.e. largest) value for s, . We notice that 8k/3y;, and dh/dy, are
very large in terms of absolute values, which means beyond a 2 to 3 degree deviation from the optimal plane,
the critical hardening rate falls quickly below zero; in this case no localization is possible unless there is
significant softening. The large absolute value of 34/3y, and 9k/3(s, implies that the single slip shear band
should be much sharper compared to the plane strain multiple slip shear band when we look ahead to Fig. 14
where 94 /3y, is much smoother.

Additional calculations of the surface of critical hardening rate were made for different combinations of
non-Schmid factors. In general it is found that: (i) when Schmid’s rule holds, there is no localization possible at
positive strain hardening, and, as G increases, the cone-shaped surface of critical hardening rate becomes
sharper, i.e. the absolute values of 3h/8y;; and 8h/dys, get larger at the same amount of deviation from the
optimal position; (i) when there are non-Schmid effects, , o G and if G increases the absolute values of
0h /30, and 3k /0y, increase.

5.1.2.2. Influences of elastic anisotropy. Elastic constants for some simple metals and some intermetallics with
cubic symmetry are listed in Table 3, where A =2C,, /(C,; — C,,) is Zener’s ratio of shear anisotropy. For a
wide range of crystals, Zener’s ratio of shear anisotropy, 4, is usually around 1-4 and maybe as large as 8.5 for
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Fig. 9. (a) The calculated critical hardening rate & against the two angles §; and s, for the case that n, = 0.06, the highest hardening rate
h., = 1.08 g is achieved at —{;; = 60.0° and Y, = 3.4% (b) the calculated critical hardening rate & against the two angles U, and s, for the
case that m,, = 0.08, the highest hardening rate . = 1.37g4 = £n2,G is achieved at —y, = 57.7° and s, = 0°.

CuZn. To study the influence of the elastic anisotropy towards the critical conditions of localization in single
crystals, we take the crystal axes a;, a, and a; to be aligned with the reference axes X, X, and X;
respectively. For crystals with cubic symmetry, three constants Cy;, Cy, and C,, are needed to describe the
crystal elasticity. If we assume the only non-zero non-Schmid factor is m;, the normal » of the optimal
localization plane lies in the plane defined by U, = 0° due to symmetry; therefore the intersection line of the
plane of U, = 0° and the surface of critical hardening rate can obtain most of the information, including the
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Table 3

Anisotropic elastic constant for some simple metals and intermetallic compounds

Material Structure Cy; (GPa) Cy, (GPa) Cy4 (GP2) A
Al® fee 108.2 61.3 28.5 1.22
Au? fce 186.0 157.0 42.0 2.90
Cu?® fce 168.4 1214 75.4 321
Ni ? fcc 246.5 1473 124.7 251
Fe ® bee 228 132 116.5 2.43
Mo ? bee 460 176 110 0.77
Ni; Al ® Li, 223 148 125 3.34
CusAu® L1, 187 135 68 2.60
NiAl © B2 212 143 112 3.28
CuZn® B2 129 110 82 8.49

? Data from Kelly and Groves (1970).
® Data from Yoo (1987).

highest possible hardening rate and the optimal position defined by the normal n. For m,, = 0.08, Fig. 10 gives
some results for several cases where C, =300g, is fixed while C;; and C,, vary to give different
combinations of anisotropic elasticity. We find from Fig. 10 that, (i) elastic anisotropy can have a significant
influence on the critical hardening rate whereas the magnitude may vary as much as 30 to 40 percent, and (ii)
while 4 varies a lot with the presence of elastic anisotropy, the critical angle for the localization varies little.

We also conducted bifurcation analyses for other cases of non-Schmid effects and some of their combinations
Ge. m,,#0, M, #0, n,,#0 and m,; #0, ...), similar results were found regarding general features of slip
bands and the influences of elastic anisotropy.

Influence of Elastic Anisotropy

h/G n, =0.08
0.006 T T T T T
0.005 | e Mo 1
[ARY
Isotropic
0.004 b —--—-- Cu 1
.................. NiAl
0.003 - ———= Cuzn y
0.002 - 3 -
3
1
0.001 \\‘ position where m is N
0.000 Fm=m=mmm o m e o o e . -
-0.001 L . L , -
50.0 55.0 60.0 65.0 70.0 75.0 80.0

-y, (degrees)

Fig. 10. Results for several cases where C,, =300g, is fixed while C;, and C|, vary to give different combinations of anisotropic
elasticity. m,, = 0.08 was taken for all cases.
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5.1.3. Bifurcation analyses for kink bands

For the case of kink bands, the crystal geometry is again defined as in Fig. 8, where s is defined by 1, = ¢,
b, = 0°. Now we will seek solutions that {; = ¢ and i, = 0°, Again, we obtain our bifurcation results by
solving bifurcation Eq. (3.25) using a simple bisection numerical method, while comparisons are made with
solutions estimated from Eq. (5.2).

5.1.3.1. General features of kink bands. As seen in Egs. (5.3) and (5.5a), the stress o may have some influence,
and the magnitude of the influence of the stress term is of order &(c). Assume the crystal elasticity to be
isotropic with G =300g, and v = 0.3 where g, is the initial yield stress, take ¢ as 30° so that s, = 30° and
i, = 0° corresponds to the slip direction s. When under uniaxial tension with o, =2 g, and m,,, = 0.08, the
calculation of the surface of critical hardening rate plotted against the two angles {; and y, shows that the
highest hardening rate h, =0.35g, is achieved at s, =27.8° and Wy, =0° (which is consistent with the
numbers estimated from Eq. (5.18) where h, =0.37g, with §; =27.7° and {1, = 0°); when under uniaxial
compression with ¢, = =2 g, and 7,,,, = 0.08, the calculation of the surface of critical hardening rate plotted
against the two angles {s; and s, shows that the highest hardening rate , = 2.39g, is achieved at ), = 27.6°
and U, = 0° (which is also consistent with the numbers given by Eq. (5.18) where h,, =2.37g, with ¢, =27.7°
and {5, = 0°). The shape of the surfaces of critical hardening rate for the two kink band cases calculated above is
found to be similar to those observed for slip bands with a nearly axisymmetric cone shape. It is evident that
kink bands are possible at significantly high hardening rates, the stress state ¢ can have an important influence
and bands of this type should align closely with the slip plane normal. The shape of the surface of critical
hardening rate is nearly axisymmetric about the optimal position where highest possible &, is obtained. Similar
to the case of the bands nearly aligned with the slip plane, 8h/3y, and 9h/dy, again have large absolute
magnitudes.

Here both non-Schmid effects and the stress state ¢ have a significant influence on the critical conditions of
localization. As an example, when s, m and X, are within the same plane, for uniaxial loading along X, axis,
Eq. (5.5a) becomes

1
h=hcrzG n%nz+zg[(2g_1)nzz+2gnmm]2 —0-22(:0524)' (5‘7)

This suggests that, for this case, if ¢ < 45° compressive loading helps the onset of kink band and ¢ > 45°
tensile loading helps the onset of kink band. Different non-Schmid factors and their combinations were
explored, in general, it is found for kink bands that (i) stress state o can influence the critical conditions of
localization and (ii) similar to the case of slip bands, if G increases then k. increases and the cone-shaped
surface of critical hardening rate gets sharper.

5.1.3.2. Influences of elastic anisotropy. Elastic anisotropy plays an important role here too, for example, (i) the
magnitude of A, could be altered by up to 30 to 40 percent, and (i) whereas h, varied due to elastic
anisotropy, the critical angle for the localization varied little.

5.2, Bifurcation analyses for multiple slip

Although modes of deformation involving primarily single slip are often very nearly achieved in single
crystals, crystalline deformation invariably occurs via activity on more than one slip systems. In polycrystals,
compatibility constraints among differently oriented grains impose multiple slip system activity in all grains
even under the simplest globally imposed strains. In single crystals, oriented initially for single slip, lattice
rotations lead to states of multiple slip often after what typically turns out to be only modest globally imposed
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Fig. 11. Geometry for actual (a) and idealized (b) symmetric double crystalline slip. The case of a fcc crystal or a Ni; Al single crystal
oriented for symmetric primary-conjugate slip is shown in (a); note that both the tensile axis and two slip directions are in the plane of the
drawing but that the two slip plane normals are tilted outward. An idealized version of (a) is shown in (b) where both slip directions and slip
plane normals are in the viewing plane.

strains. Aside from global multiple slip states just mentioned, slip on other than the primary system (i.e. that on
which activity is highest) can occur locally through the action of concentrated stresses developed at the tips of
slip bands or at substructural sites such as dislocation boundaries. As shown by Asaro and co-workers (Asaro,
1979; Chang and Asaro, 1981; Peirce et al., 1982; Harren et al., 1988; Dao and Asaro, 1993; Dao and Asaro,
1994) multiple slip gives rise to several critical differences in phenomenology that have important implications
vis-a-vis on localized plastic deformation. Two of these are the appearance of yield vertex like idealized
rate-independent yield surfaces and the second is the development of geometrical softening within the
deformation patterns that, in turn, induces localized plastic flow. These phenomena have been studied
extensively both experimentally and theoretically in the above listed work.

5.2.1. Close form solutions

To explore localization in multiple slip, we first use a simple model to get some close form solutions
incorporating non-Schmid effects and to obtain some general conclusions. Here we adopt the original model
proposed by Asaro (1979) for a single crystal deforming via a primarily double mode of slip. A schematic
illustration of this is shown in Fig. 11. We note there are two slip systems symmetrically oriented about the
tensile axis where ¢ is the angle each slip plane makes with it; the crystal is again subject to tension along the
X, axis.

Again we have the general hardening rule (see Eq. (3.14)):

v
(P,+T* - T): 0" =hypgg. (5.8)

For the two-dimensional crystal model we need only keep the in-plane components of , viz. n,, and m,,,.
Now to account for incompressibility it is convenient to define n* and m~ as

n+=nss+nmm’ n_=n:s_nmm (59)
and 1’ as
, = m? 0 ™0
n = 0 T ol I § (5.10)
Tlmm ZT] Zn
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In terms of these, Eq. (5.8) then becomes

v
Q.07 +%ﬂ+p=haa'?a’ (5.11)
with
Q=P +T*-q T (5.12)

and where the pressure rate can be expressed as
. 1 v v 1
p=z{ 0oy + 0| =7(01 +62). (5.13)

The development of the constitutive relations that govern this crystal follows directly and straightforwardly from
the procedure found in Asaro (1979). For example, Asaro’s relation (Eq. (3.15)) becomes

D=L‘1:{z;'-|-0'tr(D)}+PmNmB (QBLD)-{- P Z Bn *p, (5.14)
where
Naﬁ=haB+Q’a:L:PB. (5.15)

To complete the constitutive analysis we next assume that the crystal’s elasticity is isotropic and incompress-
ible; this has the effect of simplifying the relations and preserving the phenomena. Then t{D) = 0 and the first
term in Eq. (5.14) becomes

1 v
—0,
2G
where G i 1s the elastic shear modulus. We next, as in Asaro (1979), take /4 to have the elements k) = hy, = h
and hy, = hy, = h;, and write tensile stress o = 0,,. Together those yield for Nmﬁ
Nl = 1 h+G —h, + Gcosdd — G~ sm4¢> 516
«B 7 qetN | —h; +Gcosdd ~ Gn~ sindd L+ G (5.16)
and finally
1 v Gsin2¢(sin2¢ +m~ cos2d) P
Dy =-—=o,~ 3 gy (Dp—Dyy) ===, (5.17a)
2G (h+h +2Gsin®24 + G~ sin4d) 2G
1 < Gsin24(sin2¢ +m~ cos2¢d) dp
D,,=— + D,,~Dy;) +—, 5.17b
2796 727 (h+h +2Gsin24 + G- sin4¢)( n=Du)+ 55 (5.17b)
1 v G(2cos2d—0/G)(cos2d —m~ sin2d)
Dy =—= 0oy — ST 125 (5.17c)
2G (h hy +2Gcos*2d — G sm4¢)
along with the incompressible constraint, viz.
D, +D,,=0. (5.17d)
8 is defined as
2Gm" sin2d
(5.18)

" (h+hy +2Gsin®26 + Gn sindd) |
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Alternatively, the above relations may be rephrased in a form used to study the influence of pressure sensitivity
in bifurcation within the plane strain tension by Needleman (1979), viz.

lel =2u Dy +(1+3)p, (5.19a)
oy =20 Dy + (1-8) p, (5.19b)
o = 20Dy, (5.19¢)
and again

D, +D,, =0. (5.19d)

To make specific contact with the plane strain incompressible forms used by Hill and Hutchinson (1975), and
for the single crystal by Asaro (1979), the first two of Egs. (5.19) are combined to yield

v v
0p = 0y = 21" (Dy — Dyy) —23p. (5.20)
In the above
2G(h+hy)
20" = = — : (5.21a)
(h+hy +2Gsin*2¢ + G~ sindd)
2G(h—h,+ocos2d—omn” sin2d
2p= (h=hy ; — ). (5.21b)
(h—hy +2Gcos*2d — G~ sindo)
Note that when G > o, G> h and G > h;, we have
i h+h s
BT G220 + - sin2d cos 26 (5.222)
h—h +ocos2d—om~ sin2d
2 = —— —. (5.22b)
cos“2d —m7~ sin2d cos2¢
and
+
n
(5.22¢)

8= .
sin2d +m~ cos2d
When the bifurcation conditions listed in Egs. (3.18) and (3.19) are applied to the above constitutive
equations, the consistency criterion for localization takes the form

(1+3)(pn—30)nf + {2(20" — p) —do}nin} + (1~ 8)(n + 30)n3 =0, (5.23)
where n is again the normal to the shear band and ¢ is the tensile stress. Writing n? = cos?(8) and n3 = sin*(6)
in Eq. (5.23), using Egs. (5.22a) and (5.22b), we have the close form solution

h c0s26 — cos?26/cos2d + 3(1 — cos26 /cos2¢d)

T (1 —g)cos?28/B + (1 +q)sin®26 /A + (1 — q)8 cos*26 /B’ (5.24a)
where

A=sin?2d +m " sin2d cos2d, (5.24b)
B=cos?2b —m~ sin2d cos2o, (5.24c)

q="h/h, (5.24d)
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Fig. 12. The critical ratio (h /o), for a band of localized shear inclined by the angle 6 is shown for the case of ¢ = 30°, Several sets of
non-Schmid factors are taken as (a) m, = 0.08 7,,,, =0, (b) m,, = 0.04 m,,,, = 0.04, (c) my; =0 M, =0.08, (d) My, =0, =0.05, (&)
Nes =0 My, = 0 and () m,; =0 m,,,, = —0.05, respectively.

and d is given by Eq. (5.22c). When Schmid’s rule holds, i.e. n™=10 and ~=0 so that 8 =0, Eq. (5.24a) is
reduced to

h c0s28 — cos?26 /cos2d

T ’ : 5.25
o (1—g)cos*20/cos*2d + (1 + g)sin*26 /sin?2d (5.25)

which is the same as given by Asaro (1979). Nemat-Nasser et al. (1981) had given a quite general extension of
Asaro’s model, in that they included both the pressure sensitivity and the plastic volume change. A slightly
different form of Eq. (5.23) was developed (Nemat-Nasser et al., 1981).

For a crystal of this type undergoing multiple slip, the critical conditions for bifurcation take the form of
critical ratios of hardening rate to tensile stress, o; examples are shown for various combinations of the
parameters m; and m,,,, in Fig. 12. Note that the curve marked ‘e’, pertaining to the case where m,, =m,,,, = 0,
was originally shown by Asaro (1979). The effects of deviations from Schmid’s rule are significant in that when
Nss T N = 0.08, for example, the critical hardening rates to stress ratios can be nearly 30-40 percent larger,
In this particular orientation the optimal orientation of the bands is affected only slightly, although a range of
band orientations under conditions where £ is positive is distinctly possible. We noted that, (i) A, for multiple
slip is of order 0.1g, ~ 0.5g, (say, for the sake of discussion, take a reasonable number as o = ¢,, =2 ~ 3 g,),
while . for single slip with some non-Schmid effects is of order g, ~ 5g,; (ii) the absolute value of 84 /8s,
in multiple slip case is much smoother than the case of single slip, suggesting that the multiple slip band would
be less sharper than the single slip band.

5.2.2. Three-dimensional bifurcation analysis for multiple slip

The geometry of double slip in three dimensions is divided into three types. Fig. 13 shows three different slip
geometries. The first is characterized by having the line of intersection between the two slip planes
perpendicular to both slip directions s, and s, (Fig. 13a); the second is characterized by having the two slip

directions s; and s, symmetric about, but not perpendicular to, the line of intersection between the two slip
planes (Fig. 13b); the third is characterized by the two slip directions s, and s, not symmetric about the line of
intersection between the two slip planes (Fig. 13c). Type I may represent the case of bec crystals with two
{111){211} slip systems active; type II may represent the case of fcc crystals with two (011){111} slip systems
active; type III may represent the case of HCP crystals with two different types of slip systems active, i.e. basal
and prismatic slip. To study the localization conditions in three dimensions, we will focus our effort on the first
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Fig. 13. The geometry of double slip in three dimension can be divided into three types: (a) the intersection line of the two slip planes is
perpendicular to both of the slip directions s, and s,, (b} the two slip directions s, and s, are symmetric about but not perpendicular to the
intersection line of the two slip planes, and (c) the two slip directions s, and s, are not symmetric about the intersection line of the two slip
planes.

two types of slip geometry which are most common for bec, fce and intermetallic compounds, although the
general method presented in Section 5.1 can be applied for any slip geometry including type III and those cases
where more than two slip systems are active.

5.2.2.1. Type I geometry multiple slip shear bands

General features of type I geometry shear bands. Now for the case of the type I geometry, we define our
reference lab axes to be X,;, X, and X; where X is parallel to the line of intersection between the two slip
planes and s, and s, are symmetric with respect to X, (see Fig. 13a). The normal n to the plane of localization
is again defined by two angles §; and s, as seen in Fig. 8b. When under uniaxial loading with X, being the
loading direction, this is actually a perfect plane strain geometry which is the same as that defined in Section
5.2.1. Noting that for this double slip geometry, g in Eq. (3.18) has to be within the plane determined by s, and
s, or only small perturbations allowed. We thus expect solutions such that {s, is small. Fig. 14 shows a
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Fig. 14. A three-dimensional bifurcation analysis where the non-Schmid effects is taken as m,,, = 0.08 for both slip systems, and the
elasticity is taken as isotropic with G =300g, and v = 0.3. The highest possible hardening rate /i, =0.20gy = 0.0670,, is achieved at
U, = 41.5° (90° — ¢, = 38.5°) and W, = 0°,

three-dimensional bifurcation analysis where the non-Schmid effects is taken as m,,, = 0.08 for both slip
systems; the elasticity is taken as isotropic with G =300g, and v =0.3, the stress state is uniaxial with
5, = 38, The highest possible hardening rate h,, = 0.20g, = 0.0670y, is achieved at U, = 41.5° (90° — ¢, =
38.5°) and W, = 0°, which is consistent with the numbers given by Eq. (5.24) where h, = 0.0670,, with
{r; = 38.5°. A symmetric solution can be found for the conjugate slip system. This critical hardening rate is
about 30 percent higher than that for the case where Schmid’s rule holds. It is evident that for the case of double
slip the optimal plane deviates much more from the slip plane than that for the case of single slip. Also it is very
interesting to observe that while 3k /3y, remains quite steep 9k/dys; is very smooth as compared with the
single slip mode (i.e., compare Fig. 14 with Fig. 9a and b). This suggests that this double slip deformation mode
may have bands that are broader than the single slip bands.

When o,, varies at the onset of localization for different materials, we find that (h,./c,,) remains constant
although 3k /3y, slightly changes along the surface of critical hardening rate. If we vary the elastic moduli L,
as long as @(L)> 04, (h,/0,,) remains constant. Thus we conclude that, for the type I double slip
geometry, the critical condition takes the form h, = F(a,,, non-Schmid effects).

To summarize the general features for type I geometry double slip shear bands, (i) the critical shear band
angle is typically several degrees (= 7-10°) misoriented from the active slip planes; (ii) non-Schmid effects
have a significant influence on the critical hardening rate k., while critical shear band angle is not strongly
affected by non-Schmid effects; (iii) the surface of critical hardening rate is much less sharp as compared to the
surface for single slip shear bands.

Influences of elastic anisotropy. When we take the crystal axes a,, a, and a, along with X,, X, and Xj,
for crystals with cubic symmetry, unlike the single slip case the elastic anisotropy does not affect the critical
conditions for localization although 3k /3y, slightly changes along the surface of critical hardening rate.

Influences of non-symmetric loading. We next explore the influence of non-symmetric loading conditions,
i.e. those cases where the primary and conjugate slip systems are not symmetrically loaded. Let the uniaxial
loading axis deviate along U5, away from the perfect plane strain case where the loading direction was defined
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by ¥, = 0% and {5, = 0°. If we let the deviation be ¥, = A (A was taken between 0-30°), the uniaxial stress be
again denoted by o, it is found that the critical conditions depend only on the tensile stress along X, axis
0,y = 0 cos®A.

When we let the uniaxial loading axis deviate along ¢, the geometry is no longer symmetric. There are
many cases where both the conjugate slip system and the primary system are active at the same time while the
slip geometry is not symmetric. This might be the case when the latent hardening ratio is smaller than unity, or
when there is overshoot for the case where latent hardening ratio is larger than unity. For cases where Schmid’s
rule holds and where the non-zero non-Schmid factors are m;, ,,,, Or m,,, the critical hardening rate will be on
the plane defined by ¥, =0 due to the symmetry. We thus let the loading axis tilt 2° from the symmetric
position, i.e. the loading axis defined by ¢, = A=2° (and ¥, = 0°). Fig. 15a shows the critical ratio 4/c
(where o is the tensile stress along the tilted loading axis) plotted against 90° — s, for the primary and
conjugate slip system respectively, the solid line is the case where loading is symmetric; the elasticity is taken as
isotropic with v = 0.3 and Schmid’s rule holds for plastic yielding. Fig. 15b shows the critical ratio % /¢ plotted
against 90° — (s, for the primary and conjugate slip system respectively, the solid line is the case where loading
is symmetric; the elasticity is taken as isotropic with v = 0.3 and non-Schmid effects are taken with m,, = 0.08.
Fig. 15c shows the critical ratio /o plotted against 90° — s, for the primary and conjugate slip system
respectively, the solid line is the case where loading is symmetric; the elasticity is taken as isotropic and
incompressible, and Schmid’s rule holds for plastic yielding. We note that small deviations from the symmetric
axis can result in significant increases in the critical hardening rate for the conjugate slip system. This means
that for the cases when the loading axis is close to the symmetric axis the major macroscopic shear band may
tend to form on the conjugate slip system. From Fig. 15a and b, the strong influence of non-Schmid effects
towards the critical hardening rate is apparent. From comparing Fig. 15a and c, it is evident that elastic
constants have an important influence on the critical conditions, especially under non-symmetric loading. It is
therefore concluded that, under symmetric loading incompressible elasticity idealization works perfect whereas
under non-symmetric loading incompressible elasticity idealization is not accurate.

Similar results were obtained for m,, # 0 and/or m,, # O that these non-Schmid effects may also signifi-
cantly increase the critical hardening rate 4 for as much as 30 to 40 percent while the bands deviates from the
slip plane several degrees (7—10°), the results take the form of the critical ratio of /0, and elastic anisotropy
does not have first order influence on the results.

5.2.2.2. Type Il geometry multiple slip shear bands. For the type II geometry shown in Fig. 13b, we will focus
on the fcc type of geometry, i.e. two {011){211} slip systems active. Let [101)(111) and [011](111) to be the
primary and conjugate slip system, respectively, define X; =[110], X, =[001] and X, =[110] for convenience
(see Fig. 16). The normal # to the plane of localization is again defined by two angles s, and U, as seen in Fig.
8b.

General features of type Il geometry shear bands. When under uniaxial loading with [112] the loading
direction, the deformation mode is double symmetric slip. Fig. 17 shows the results of a three-dimensional
bifurcation analysis where the non-Schmid effects are taken as m,, = —0.06 for both slip systems; the elasticity
is taken as isotropic with G =300g, and v = 0.3, the latent hardening ratio is taken as ¢ = 1 and the stress state
is uniaxial with tensile stress to be 2g, along [112]. The highest possible hardening rate, A, =1.17g,, is
achieved at 90° — {; = 36.8° ({s; = 53.2°) and {, = 3.1° which is very close to m, (s, = 54.7° and U, = 0°),
The result shown is for primary slip system, and a symmetric solution can be found for the conjugate slip
system. Localization may occur under positive hardening is clearly shown. The order of 4, is similar to what is
obtained from the single slip analyses, i.e. of order g, ~ 5g,. The absolute values of 3h/dy, and dh/3ys, are
both quite large which is similar to the single slip case. It is very unlikely that localized deformation will persist
at the same location if the material strain hardening is of order g, ~ 5g,. Therefore coarse slip bands may form
if the critical conditions are met for this case. Symmetric solutions for both primary and conjugate slip systems
suggest that for many cases the coarse shear bands tend to appear on both primary and conjugate slip systems at
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Fig. 17. A three-dimensional bifurcation analysis where the non-Schmid effects are taken as m;,= —0.06 for both slip systems; the
elasticity is taken as isotropic with G =300g, and v = 0.3, latent hardening ratio is taken as ¢ = 1 and the stress state is uniaxial tension.
The highest possible hardening rate h, = 1.17g, achieved at 90° — §; = 36.8° (Y, = 53.2°) and s, = 3.1°, which is very close to m,
(&, = 54.7° and ¢, = 0°).

the same time. When there are no non-Schmid effects, i.e. Schmid’s rule holds, our bifurcation analysis shows
that localization is not possible unless there is material softening or perfect plasticity.

The case for this geometry with m,, = —0.06 is very similar to the case of single slip in a sense that elastic
constants including elastic anisotropy play an important role here and critical hardening rate is almost
proportional to the elastic constants (h /G ~ const. for a specific material), although the stress terms (o) do
have some small influences (< 10%). Similar results were obtained for other m’s when they were not zero, m,,
was found to have similar order of influence as m, while the influences of n,, n,,,, and m,,, were found to be
an order of magnitude lower than those of m,, and m,,.

In short, for type II multiple slip shear bands, (i) when Schmid’s rule holds, there is no localization possible
at positive strain hardening, and, if G increases, the cone-shaped surface of critical hardening rate becomes
sharper, i.e. 3h/dy; and 8h/dy, become larger; (ii) when there are non-Schmid effects, h, @ G and if G
increases, 0k /3¢, and 8k /9y, become larger which means sharper cone-shaped surface of critical hardening
rate; (iii) elastic anisotropy is an important factor, where critical hardening rate could be changed as much as
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30-40% while no significant changes were observed with critical orientations of the shear bands; (iv) m,, and
M,, were found to have similar influences towards the critical hardening rate, while influences of m,,, m,,,, and
M, Were found to be an order of magnitude lower. We must emphasize here that, for crystals deforming in a
multiple slip mode, non-uniform lattice rotations and geometric softening may play a very important role,
therefore multiple slip shear bands of this type may initiate on planes very close to the active slip planes and
rotate away once the bands persist at the same location.

Influences of non-symmetric loading. We next study the influence of non-symmetric loading conditions, i.e.
those cases where the primary and conjugate slip systems are not symmetrically loaded. First, we let the uniaxial
loading axis deviate along U, away from the perfect plane strain case where the loading direction is defined by
§; = 0° and U, = 35.3° ([112]). Let the deviation be ¢, = 35.3° + A, it is found that A, varies with different
A’s, but usually less than 10 percent.

When we let the uniaxial loading axis deviate along s, the geometry is no longer symmetric. Again, if the
conjugate slip system becomes active before the primary system rotates to the symmetry boundary (g < 1) or
when there is overshoot (g > 1), this type of double slip geometry should be the case. When loading axis varies
with {; (while §, = 35.3° is fixed), the critical hardening rate is achieved on the plane defined by s, = 3.1°
We thus plot our results on the {, = 3.1° plane for the three-dimensional bifurcation analysis. Let the loading
axis be tilted 4° from the symmetric position, i.e. the loading axis is defined by W, = 4° (and ), = 35.3°). Fig.
18a shows the critical ratio #/G plotted against 90° — s, for the primary and conjugate slip system
respectively; the solid line is the case where loading is symmetric. The elasticity is taken as isotropic with
G =1300g, and v=0.3; Schmid’s rule is used for plastic yielding. It is found that when Schmid’s rule holds
localization is very unlikely to occur at relatively high strain hardening rates where CSB’s usually appear. Fig.
18b shows critical ratio /G plotted against 90° — ¢, for the primary and conjugate slip system, respectively.
The solid line is the case where loading is symmetric. The elasticity is taken as isotropic with G =300g, and
v=0.3; non-Schmid effects are taken such that m , = —0.06. We note deviations from the symmetric position
actually promote shear bands that are close to the conjugate slip system (where resolved shear stress is smaller);
whereas the difference between the critical hardening rates for the primary and conjugate slip systems is fairly
small, suggesting two sets of shear bands may exist simultaneously. This is in agreement with the experimental
results. Chang (1979) and Price and Kelly (1964) both observed that for many cases CSB’s appeared first on the
conjugate slip system, and two sets of CSB’s belonging to different slip systems may be observed simultane-
ously.

5.3. Summary of bifurcation analyses and comparison with experimental observations

To summarize our bifurcation analyses, Table 4 shows some selected results we have calculated under
unijaxial tension, where for all the isotropic elasticity cases, the elasticity was taken as G =300g, and v = 0.3,
and where for the single slip modes and double slip modes the tensile stress o,, was taken as 2 g, and 3g,,
respectively.

As speculated by Price and Kelly (1964), among others, CSB’s can only form at relatively high hardening
rates where the localized deformation modes are not persistent. This argument is confirmed in Part II of this
series (Dao and Asaro, 1996a). Therefore relatively high optimal critical hardening rate may be a good indicator
to identify cases where CSB’s can form first before the formation of MSB’s. As our calculations in Part IT (Dao
and Asaro, 1996a) suggest, h, of order g, may lead to CSB localization pattern. With that in mind, we
conclude that for CSB’s:

(1) With moderate non-Schmid effects (non-Schmid factors as low as 0.04, easily unnoticed during
experimental verifications of the Schmid rule), CSB’s are possible in both single slip mode and double slip
mode (type I and type II geometry); when Schmid’s rule holds, CSB’s are not possible.

(2) In single slip mode, i.e. m,,# 0 or m,, # 0, CSB’s can form on planes that are almost parallel to the
primary slip plane; misorientation between shear bands and primary slip plane is usually no larger than 3°.
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Fig. 18. (a) The critical ratio & / G against 90° — s, for the primary and conjugate slip system, respectively. The solid line is the case where
loading is symmetric; the elasticity is taken as isotropic with v = 0.3 and Schmid’s rule holds for plastic yielding. (b) The eritical ratio & /G
against 90°— {s; for the primary and conjugate slip system, respectively. The solid line is the case where loading is symmetric; the elasticity
is taken as isotropic with v= 0.3 and non-Schmid effects are taken with m_, = —0.06.

(3) In double slip mode, i.e. m,, # 0 in type I geometry and m,, # 0 or m,, # 0 in type II geometry, CSB’s
can form on planes that are almost parallel to either the primary slip plane or the conjugate slip plane; CSB’s
that are almost parallel to the conjugate slip plane are favored, while the critical hardening rates for the primary
and conjugate slip system is fairly small, suggesting two sets of shear bands belonging to different slip systems
may exist simultaneously; misorientation between shear bands and the active slip planes is usually small
(3°-4°), but may go as high as 5°-7° if there is significant non-Schmid factor m,, in type II geometry.

The above listed theoretical predictions regarding CSB formation, agree very well with existing experimental
observations mentioned and summarized in Section 2.

As of MSB’s, when the deformation gets larger, we expect there will be more than one slip system operating
within the shear bands. There are two possible origins of MSB: (a) starting first with a persisting single slip
shear band which is almost parallel to the primary slip plane; as deformation gets larger conjugate slip system is
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Table 4
Selected results of shear bands for different deformation modes and slip geometry
Deformation mode g Misorientation  Influence of Influence of
elastic anisotropy ~ nonsymmetric loading
Schmid’s rule single slip 0 0° — —
double slip (type I) 0.15g, 74° no favor conjugate
double slip (type ID ~ 0.080¢g, 0.6° yes favor conjugate
M, = 0.04-0.08 single slip 0.34-1.37g, 1.2°-2.3° yes —
double slip (type I) 0.18-0.21g, 7.9°~8.5° no favor conjugate
double slip (type I) ~ 0.15-0.30g, 1.2°-2.3° yes favor conjugate
Npm = 0.04-0.08 single slip 0 0° — —
double slip (type ) 0.17-0.20g, 7.9°-8.6° no favor conjugate
double slip (type II) ~ 0.086-0.091 g, 0.6°-0.6° yes favor conjugate
N, = 0.04-0.08 single slip 0.03-0.13g, 0.3°-0.7° yes -
double slip (type I) 0.17-0.18 g, 7.5°-8.1° no favor conjugate
double slip (type I) ~ 0.46-1.34g, 3.7°-7.3° yes favor conjugate
Ny, = —0.04-—0.08 single slip 0.48-1.92 g, 2.3°-4.6° yes —
double slip (type I) 0.52-191g, 3.2°-4.5° no favor conjugate
double slip (type II)  0.56-2.02 g, 2.3°-4.6° yes favor conjugate
N, = 0.03-0.05 single slip 0 0° —_ —_—
double slip (type D) 0.16-0.17g, 7.6°-8.6° no favor conjugate
double slip (type I}~ 0.077-0.075g, 0.6°-0.6° yes favor conjugate

activated, and the lattice within the shear band will gradually rotate away from the surrounding lattice, which
can result in geometrical softening and the band itself will rotate further away from the primary slip plane; (b)
starting with a type I or type II geometry double slip shear band, where MSB’s can form on planes close to
either the primary slip plane or the conjugate slip plane with bands close to the conjugate slip plane a little
favored; as the band fully develops, the lattice within the shear band will rotate away from the surrounding
lattice, which may result in geometrical softening and the band itself will rotate further away from the primary
slip plane or the conjugate slip plane. After reviewing our results in Table 4, we thus conclude that, for MSB’s:

(1) the well developed MSB’s from either origin (a) or (b) will be typically several degrees misoriented from
the active slip planes — primary or conjugate;

(2) MSB’s may start on planes close to either primary or conjugate slip plane;

(3) non-Schmid effects can have significant influence toward the critical localization conditions;

(4) when Schmid’s rule holds, MSB’s are possible with low but positive hardening under multiple slip
modes, while there is no shear banding possible with positive hardening under single slip mode.

The above mentioned theoretical predictions regarding MSB’s agree well with previous experimental
documentations that are summarized in Section 2.

6. Discussion

Localized deformation may lead very quickly to ductile failure; therefore to determine quantitatively the
critical localization conditions (i.e., &, and shear band orientation) is very important. From the results obtained
in this study, it is again evident that localization is possible while material is strain hardening. Consistent with
existing experimental observations regarding CSB and MSB formation, our results obtained and summarized in
Section 5 provide some explanations towards several outstanding questions, e.g.: (i) why CSB’s often form first
on the conjugate slip system, and what are the critical conditions; (ii) why MSB’s often form first on the
conjugate slip system, and what are the critical conditions; (iii) why and under what conditions do CSB’s form
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under multiple slip modes; (iv) how do we categorize CSB’s and MSB’s with respect to single slip shear bands
and multiple slip shear bands.

It is very interesting to notice that elastic anisotropy can play an important role in determining the critical
localization conditions, which means the elastic properties and plastic properties act together to determine the
material’s critical localization conditions. For example, for Cu or Ni, Al single crystals, considering the elastic
anisotropy may increase the critical hardening rate for localization 30% to 40%!

In this study, our latent hardening ratios ¢ for multiple slip cases are all given as 1. For cases that g <1 or
g > 1, the results are in general the same as that ¢ =1 while s, may change 5-50% (no order of magnitude
changes). What is important with reference to the value of the parameter ¢ is that the latent hardening can
substantially affect primary-conjugate slip activities. For example, with g < 1 the conjugate slip system can be
activated long before the crystal reaches the symmetric boundary, while with ¢ > 1 the conjugate slip system
has to ‘overshoot’ the symmetric boundary in order to get activated, and there is a conjugate = primary switch
here. It is thus speculated that whether or not a shear band can form on planes that are close to the conjugate slip
plane will be affected by latent hardening.

It is very important to understand that bifurcation analyses results can only serve as necessary conditions
towards strain localization (see also Dao and Asaro, 1993), geometric factors like geometric softening or
geometric hardening, different boundary conditions and latent hardening may play decisive roles in determining
whether or not the shear bands develop and the orientation of the bands. Rigorously accounting for the
non-uniform lattice rotations during the large deformation process is, therefore, very important. In order to
achieve this and to obtain a more complete picture of localization process, we require large scale finite element
calculations. In Part II of this series (Dao and Asaro, 1996a), we will specifically deal with non-uniform lattice
rotations and study the deformation patterns of the different localization modes.
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