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A Simplified Method for
Calculating the Crack-Tip Field
of Functionally Graded Materials
Using the Domain Integral

A finite element based method is proposed for calculating stress intensity factors of
functionally graded materials (FGMs). We show that the standard domain integral
is sufficiently accurate when applied 1o FGMs; the nonhomogeneous term in the
domain integral for nonhomogeneous materials is very small compared to the first
term (the standard domain integral). In order to obtain it, the domain integral is
evaluated around the crack tip using sufficiently fine mesh. We have estimated the
error in neglecting the second term in terms of the radius of the domain for the
domain integration, the material properties and their gradients. The advantage of
the proposed method is that, besides its accuracy, it does not require the input of
material gradients, derivatives of material properties; and existing finite element
codes can be used for FGMs without much additional work. The numerical examples
show that it is accurate and efficient. Also, a discussion on the fracture of the FGM

interlayer structure is given.

1 Introduction

The mechanics of functionally graded materials (FGM), in-
cluding crack problems, have been intensively studied recently.
It has been shown that for FGM crack problems the crack tip
has a regular square-root singularity, the stress and displacement
near-tip fields are of the same forms as those for homogeneous
materials (see Delale and Erdogan, 1983, 1988; Gu and Asaro,
1997a, b). So the influence of material gradients at the near tip
manifests itself through the stress intensity factors. In other
words, the stress intensity factors uniquely characterize the near-
tip field. Knowing the structure of the crack-tip field, it is im-
portant to accurately calculate the stress intensity factors and
determine the effect of material gradients on them for different
geometries and loadings, including those often-used specimens.
Finite element analysis which can handle difficult material be-
haviors and geometries as well as various loadings provides
useful and the most often-used way to solve mechanical and
thermal problems including those involving FGMs. In this pa-
per, we present a simple and sufficiently accurate finite element
method for calculating the crack-tip field for FGMs, which can
be easily incorporated into existing finite element codes and
commercial software packages without much additional work.

The often-used method to calculate the crack-tip field, stress
intensity factors (elastic case), and energy release rate (elastic
or plastic case), involves evaluating the J-integral (Rice, 1968)
using the solved stress and deformation fields around crack tip.
For homogeneous materials, this has been an efficient way since
the path independence of the J-integral allows us to perform
the calculation along a path not too close to the tip so that the
inaccuracy of field variables at the tip region due to the singular-

! MARC Analysis Research Corporation, 4330 La Jolla Village Drive, Suite
320, San Diego, CA 92122.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS for publication in the ASME JOURNAL OF APPLIED
MECHANICS .

Discussion on the paper should be addressed to the Technical Editor, Professor
Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston,
Houston, TX 77204-4792, and will be accepted until four months after final
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.

Manuscript received by the ASME Applied Mechanics Division, Mar. 9, 1998;
final revision, July 14, 1998. Associate Technical Editor: M.-J. Pindera.

Journal of Applied Mechanics

Copyright © 1999 by ASME

ity can be avoided. Later, the domain integral method has been
developed to perform the calculation of the J-integral (Li, Shih
and Needleman, 1985; Shih, Moran and Nakamura, 1986;
Moran and Shih, 1987). The domain integral method has been
shown to be more efficient and more accurate than direct calcu-
lation of the J-integral, since the domain integration comes
more naturally than the line integration of the two-dimensional
space and the surface integration of the three dimensional space
in finite element analysis. Works along similar line as the do-
main integral can be found in the early papers by Parks (1974,
1977), Hellen (1975) and del.orenzi (1982), whose virtual
crack extension method is the special case of the domain inte-
gral. The domain integral method has been implemented in
numerous programs to solve crack mechanics, including the
well-known commercial package ABAQUS. In this paper, we
use the domain integral methodology to treat the FGM case. In
the non-homogeneous case, there is an additional term besides
the regular one due to the variation of material properties. In
our analysis of two-dimensional elastic crack problems of non-
homogeneous materials, to capture the singularity and material
property variation, the mesh is designed such that the smallest
élements at the crack tip are very small, about 1077 times a
characteristic length, which is usually the crack length, and even
much smaller for inelastic problems. The material variation is
achieved by using corresponding material properties at Gauss
integration points (different Gauss points have different proper-
ties ). For such mesh design, to perform the domain integration,
the domains can be chosen as the circular regions formed by
the first few rings of elements. In such a situation, we show
that the second term in the domain integral for nonhomogeneity
is very small compared to the first term, the standard domain
integral, and may be neglected. Therefore the domain integral
can be calculated numerically in the same way as that for homo-
geneous materials, using the standard domain integral. From
the numerical point of view, this allows us to apply existing
finite element programs for homogeneous materials to nonho-
mogeneous materials, avoiding the additional programming
work.

The current study is focused on elastic two-dimensional and
three-dimensional problems. The method may also be extended
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to the nonlinear material behavior. The numerical examples
given include a sandwiched structure with a FGM interlayer,
which illustrates the advantage of using FGM to reduce material
mismatch between the upper and lower layers. For such struc-
tures, cracks may form at one side and propagate to the other
side through the FGM interlayer when the microscopic defects
and external loading are favorable. The crack in the sandwiched
structure solved in this paper is along the layers’ thickness
direction with the crack tip inside the FGM, and the loading
includes remote bending, three-point bending, and four-point
bending. This kind of configuration may also be good for frac-
ture testing of FGMs since the FGMs are usually very thin so
that mechanical testing may be handled when bonding them to
two bulk materials. In general, the solutions to the three-point
bending and four-point bending specimens depend on several
parameters, including geometry, loading, and material variation.
We write them in a compact form such that the functionality
of each parameter may be clearly understood. These examples
show a way to systemically present the solutions so that they
can be documented and are easy to use in practice.

The paper consists of three sections. Besides this Introduc-
tion, Section 2 is the discussion of the domain integral method
in which we estimate the second term due to nonhomogeneity
and show that based on the analysis, the term can be neglected.
Section 3 contains numerical examples.

2 Numerical Method

The crack-tip stress field in a FGM has a regular singularity
(see Delale and Erdogan, 1983, 1988; Gu and Asaro, 19972,
b) and the singular term for plane problems is given by

K; I Ky

= o0y(8) +
T @70./() \/2?

where the angular functions o} and o # are independent of mate-
rial properties and their variations and are the same as those
for homogeneous materials. The displacement singular term is

given by
u; 1/ ui(6) e 1/ ui’ (8).
2,’_1,0

Here, po 15 the shear modulus at the crack tip. The angular
functions u{ and u’ are also independent of material gradients,
and are the same as those for homogeneous materials. Material
gradients only affect the near-tip fields through the mode I and
mode I stress intensity factors, K; and K. The energy release
rate is defined as

ai(8) (1)

(2)

_ o

G = 3
ba (3)
which is related to the near-tip field by
2 KZ
G =5, K (4)
E() E()

where E, is Young’s modulus at the crack tip. The energy
release rate can be represented by the following line integral:

J = lim (W(S]i
o Jr

— o )ndC (5)

where W is the strain energy density and »n; is the outward
normal of the path ', which starts from a point on the lower
crack face and ends at another point on the upper crack face.
For the homogeneous case, the integral under the limit is diver-
gence free; therefore, it is path independent and the limit is not
needed. In this case, the J in (5) is Rice’s J-integral (Rice,
1968). For nonhomogeneous materials, path independence oc-
curs when the crack is perpendicular to the material property
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Fig. 1 A simply connected domain A, enclosed by the contour € (C =
C; + €, + C; + C,) near crack tip. The domain is where the domain
integral is evaluated.

variation direction, since in this case the integral is still diver-
gence free.

There are usually several ways to calculate stress intensity
factors after the stress and displacement fields are obtained,
In the stress matching and displacement matching, the stress
intensity factors are obtained by extrapolating from the stresses
or displacements ahead of the crack tip using (1) or (2). For
example, K; is obtained by substituting the obtained normal
stress ahead of the crack tip into (1). The matching method
has the advantage that almost no additional calculation is re-
quired even in the FGM case, but it requires a high degree of
mesh refinement and often suffers from instability as the crack
tip is approached (see Anderson, 1995). Another way, the do-
main integral method, which is an energy approach based on
the J-integral and which has been proved to be efficient for
homogeneous materials, is the focus of our numerical study
here.

In the domain integral method, the energy release rate J is
calculated through an area integral in the two-dimensional case
and stress intensity factors are then obtained using (4). The area
integral approach provides much better accuracy than directly
evaluating the contour integral in (5), and is easier to implement
numerically. Early works along the line of the energy approach
were given by Parks (1974, 1977), Hellen (1975), and deLore-
nzi (1982). Shih and his co-workers (see Li, Shih, and Nee-
dleman, 1985; Shih, Moran, and Nakamura, 1986; Moran and
Shih, 1987) formulated the domain integral methodology in a
general way. For homogencous materials, it has been applied
in above works to elastic and plastic material responses, me-
chanical and thermal loadings, and two-dimensional and three-
dimensional spaces. We will discuss the application of the do-
main integral to nonhomogeneous materials. In particular, we
will show that the integral term representing the effect of nonho-
mogeneity may be neglected when evaluating the integration at
a region close the crack tip; therefore, the standard domain
integral for homogeneous materials gives sufficient accuracy.
We will discuss the elastic case; the conclusion may be extended
to the power-law hardening case, i.e., HRR singularity (Hutch-
inson, 1968; Rice and Rosengren, 1968).

Consider an annular region A; around the crack tip in the
two-dimensional case, as shown in Fig. 1. For simplicity in the
discussion, we consider that the material variation is along the
x-axis; and only one of the two material parameters, the Young’s
modulus, has a gradient where the Poisson’s ratio is taken as a
constant since its variation is usually small compared to the
former. The conclusion obtained below can be extended to the
general material variation case. Both the inner and outer bound-
ary of the region A; are sufficiently close to the crack tip. The
J given in (5) can be written in terms of the boundary integral,

J = 95 (o — Wb gmyds (6)
¢ .

where C = C, + C; + C, + C, is the boundary of A;; m; is the
outward normal of A;; on Cy, m; = —n;, and on C,, m; = ny;
and g is a smooth function which has the value of unity on C;

and zero on C,. Applying the divergence theorem to (6) gives
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Fig. 2 Finite element mesh of the crack-tip region. In our calculation
four-node bilinear elements are used. The smallest element at the tip is
108 times a characteristic length.

J = f (oyiy — Woy)q ,dA — f WagqdA. (7
Ay Ap

Here, W = W{E(x), e(x, y)]. The derivative of W under the
second integral is with respect to the coordinate x in E(x).
Comparing with the homogeneous case, the second integral is an
additional term which represents the effect of nonhomogeneity.
In numerical implementation, the inner contour C; is usually
taken as the crack tip, and the outer boundary C; is taken to be
the same as element boundaries. The function g defined above
is an arbitrary function as long as it gives the correct values at
the boundaries, C; and C,. It was shown by Shih and his co-
workers in the previously mentioned papers that the calculated
J is insensitive to the choice of g. The value of it within an

element may be taken as
g =2 N

i=1

(8)

where N; are the shape functions of the element, # is the number
of nodes per element, and g; are the nodal values of ¢, which
are assigned in accordance with a smooth function varying from
zero at the outer boundary to unity at the crack tip. The deriva-
tive of g with respect to the coordinate x; is

bi) roZ AN, D
9 _ vy 2N Tk

; 9
;0 o O Ox; 4 )

where 7, are the coordinates in the isoparametric space. Evaluat-
ing the quantity under the integral in (7) at the Gauss integration
points, J is obtained numerically by

J = Z i {[(oiju,-,l - Wég,; — Wiq] det (%)} Wy

A; p=1 Tk

(10)

Here, w, is the weight function of integration, and det (-) is
the determinant of Jacobian matrix.

The mesh design for our nonhomogeneous problems is a
standard mesh design for crack problems. The crack tip is sur-
rounded by an arrangement of wedge-shaped isoparametric ele-
ments. The same type of elements makes circular rings which
surround the wedge-shaped elements at the tip (see Fig. 2). In
this region, the size of the elements increases along the radial

direction according to the exponential scale which gives the:

unit aspect ratio of the elements. The smallest elements at the
crack tip are smaller or equal to 10 °a, where a is a characteris-
tic length. Between the circular region and the region far away
from the tip where the stresses vary regularly, there is a transi-
tion zone in which the element shape changes gradually from
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the curved polygon to the regular element shape. The geometry
of a typical mesh of this kind was shown in the previously
mentioned papers (also see Shih and Asaro, 1989). It is noted
that near the tip the mesh needs to be refined to account for the
high-stress gradients associated with the singularity; in the FGM
case, also to account for the material property variation.

Using this type of mesh, we show here that if we evaluate
the domain integral in the region sufficiently small around the
crack. tip, the value of the second term in (7) involving the
derivative of W is very small, essentially negligible. The domain
integral in practice can be calculated in the region close to the
crack tip (the circular domain consisting of the first 10 or 20
circular rings of elements at the crack tip zone ) as demonstrated
in the next section. In our calculations, as mentioned above,
the smallest element is in the size of 107°a, where a is the
characteristic length. In such a situation, the second integral in
(7) may be estimated as follows. Using the above mesh design,
the first 10 or 20 rings of elements are arranged within the
radius 10 ~“a from the crack tip. The weight functions for the
two integrals in the expression (7) are g and g ;. If the pyramid
shape for the function g (Fig. 3(a)) is used, its derivative with
respect to the coordinates is on the order of 10%a~' considering
that the domain is within a circle with radius 10 ~*a. Then, the
weight functions of the first and second integrals are of the
orders 10* and 1, respectively. Note that a™' in the derivative
of g has been moved to the integrand of the first integral. The
first integral is overweighted by its weight function compared
to that of the second. On the other hand, the two integrands are
not likely to differ by such a large amount as that of the weight
functions, i.e., to be of the same order. This is due to the follow-
ing: (a) they both are essentially energy density terms (energy
density unit/length) calculated using stress and strain fields;
(b) both are proportional to the loading, the square of the stress
intensity factor K7; and (c) the first is proportional to the
inverse of the modulus and the second is proportional to the
derivative of the modulus divided by the square of the modulus.
Since such a small domain for the domain integral is well within
the K-dominance zone, the asymptotic expressions (1) and (2)
are valid within it. The K-dominance zone for FGMs has been
examined in Gu and Asaro (1997b), where it has been shown
that within the distance of a few percent of the characteristic
length, the difference of the stress fields of the asymptotic and
full solutions are within a few percent. Substituting (1) and (2)
into the two integrands, (b) and (c) can be confirmed. This
permits us to write

(a) pyramid function

(b) plateau function

Fig. 3 The two often used shapes of q function
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Fig. 4 Two sandwiched bending specimens with FGM interlayer: (a)
three-point bending; (b) four-point bending

K} £i(6)

Ewa r

KTE; f(0)
E} |

[ first integrand ] =

(1

[second integrand] =

In (11), E{ is the derivative of the Young modulus at the crack
tip; f1 and f; are obtained from angular functions in (1) and (2),
and therefore they do not have much effect on the magnitudes of
the two integrands. In our discussion, we assume that there is
only mode I loading. However, one can obtain the same conclu-
sion for mixed-mode presentation through similar steps. Also,
Eja is roughly proportional to E, as can be seen from the
following example. Consider the FGM interlayer in Fig. 4 with
linear modulus variation, we have E, = (E, + E,)/2 and E}a
= FEyal/2/h when the crack tip is at the middle of the FGM
interlayer, where the subscripts denote the properties for mate-
rial #1 and #2, and { = (E, — E|)/(E, + E)). The variation of
the multiplier {, as E,/E, varies, is small. So, the two scale
factors in the above expression (11) would not differ much as
long as a and /4 do not differ much, and this is similar for other
material variation forms. Note that if 4 is the smallest length
compared to other dimensional lengths, one could chose the
characteristic length a to be % so that a/h = 1. If E, and E}a
are of the same order, from the above analysis we estimate that
the first integral is 10 times the second integral. In general,
the difference between E, and E4a is not significant at all,
compared to that of the two weight functions and therefore the
second term in (7) may be neglected. It may also be shown
that the conclusion is true by a similar step if the plateau shape
for the g function (Fig. 3(b)) is used.

Suppose that rp, is the radius of domain where the domain
integral is evaluated and within it the field can be well repre-
sented by the singular field (1) and (2), then from the above
analysis the error of neglecting the second term can be estimated
as

o }"DE(V)/E()

. (12)
L+ rpE§/Ey

The error is very small if we choose r; to be sufficiently smail.
The simplified method has the following advantages: (a) it
gives the same accuracy for the stress intensity factors as the
domain integral for homogeneous materials, as we shall see in
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numerical examples; (b) the input of the derivatives of the
material properties ( gradients) is not required such that in the
numerical implantation only material properties need to be as-
signed to elements or Gauss integration points and this is easy
to achieve; and (¢) no additional calculations are required as
compared to the homogeneous case.

When the gradient of the thermal expansion coefficient of
the FGM does not vanish and thermal loading (temperature
change) is applied, the additional term related to the gradient
of the thermal expansion coefficient is an integrand under the
second integral in (7) which can be written as

, S5(8)

[thermal term under second integral] = K,Toa{ \/—
-

(13)

where T, is temperature change at the crack tip, o} is the gradi-
ent of thermal expansion coefficient at the crack tip, and £ is
obtained from the angular function in (1). This term may also
be neglected due to the following reasons. First, it is under the
second integral in (7). As analyzed before, the first integral is
overweighted. Second, the 1/r factor in first integrand, given
in (11), is much larger than the 1/\/; factor in (13), in the
domain with radius 10™*a. Third, since the stress solution only
depends on the ratio of the muduli of the two bulk materials
for traction problems (as we shall see in next section), the two
moduli may be chosen in the calculation such that 1/Eyin (11)
is in a normal range. Having these, we can estimate that the
magnitude of (13) and that of the first expression of (11) do
not differ much.

We have gone a rigorous way to show that the standard
domain integral can be directly used for nonhomogeneous mate-
rials. A simple way to argue this is that since the asymptotic
expressions (1) and (2) are the same as those for homogeneous
materials with the material properties being those at the crack
tip, there exists a small homogeneous zone which may be re-
garded as the K-dominance zone so that the standard domain
integral is valid there. But from this simple way it is impossible
to obtain the above error analysis. When the second term is
neglected, the expression to numerically calculate domain inte-
gral becomes

J=3 i {[(Ui/ui.l - Wéyg,l det <%>} Wy, (14)

Ap p=1 8771:

which is the same as that for the homogeneous case.

When the domain integral is obtained, the stress intensity
factors can be evaluated using (4). If there is only mode I
stress intensity factor at the tip due to the symmetric material
properties, the geometry and the loading, it can be evaluated
directly from (4). If it is a mixed-mode problem, the interaction
energy release rate defined in Shih and Asaro (1989) may be
evaluated instead of the energy release rate in (4). Using the
interaction energy release rate, modes I and IT can be separated.

3 Numerical Results

We have extensively tested the numerical method using many
crack geometries and loadings. The results have been compared
with those obtained by other methods, such as displacement-
matching and singular integral equations. All showed the
method to be accurate, convergent to the correct solution. The
domain integral evaluated from the domains near the tip is
stable, independent of the domain chosen. The following are
four examples that illustrate this.

The first example is an edge-cracked plate made of a FGM,
subject to remote constant strain. It has been solved previously
by Erdogan and Wu (1993), using the singular integral equation
method. We use it to check the accuracy of our scheme. The
second and the third are three-point bending and four-point
bending specimens made of sandwiched structures with the in-
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terlayers being FGMs (Fig. 4). The interlayer is a zone of
transition wherein the material properties change smoothly from
the upper layer to the lower layer. The length 2L is assumed
to be sufficiently large so that it would not affect the solutions.
The height of the bars is 2H, the crack length a, and the height
of the interlayers 24. The crack is perpendicular to the upper and
Jower boundaries, and its tip is inside the FGM. The sandwiched
structures can be used to study either the fracture of FGMs or
the interface behavior when the interlayer thickness is small
compared to those of the two bulk layers. The geomeiry of the
first example is the same as Fig. 4, and the only difference is
that it is a single piece of FGM for the constant strain problem.

The mesh design was discussed in the previous section. The
four-node bilinear elements are used in the study. We have
extensively tested the numerical method by changing the mate-
rial properties, the loadings, and the specimen dimensions. We
also have changed the size of the domain by changing the
number of rings of elements. All of the stress intensity factors
evaluated from the domain integral have shown the accuracy
of the scheme. The convergence study results will be provided
in tabular form later in the section. The material property varia-
tion is achieved by using corresponding material properties at
Gauss integration points of each element. We use the software
package ABAQUS to perform the calculation, and only the
user-subroutine UMAT is required for the material variation.
The J-integral is also calculated using the standard domain
integral function provided in ABAQUS.

For real FGMs, the property variation along the thickness
can be linear, exponential, or some other form. For elastic prob-
lems, both Young’s modulus and Poisson’s ratio vary with the
position in general. It is assumed in all examples in this section
that the former has the major effect and the latter is taken to
be constant. It is reasonable to do so since the variation of the
Poisson’s ratios is usually small compared to that of the moduli.
For the problems studied (see Fig. 4), the Young’s modulus is
expressed by the following:

E(y)=Ay + B
E(y) = A exp(By)

where A and B are material constants which represent material
gradients. The origin of the coordinates is at the center of these
specimens and y is along the thickness direction. The first ex-
pression in (15) is a linear form, whereas the second is an
exponential form. Given the moduli of the lower and upper
layer, E, and E,, the two constants are expressed as

(15)

E, — E, +
A= B B , B= B+ E (16)
2h 2
for the linear gradient, and
1 E,
A=VEE,, B=—log|=2 17
1 o F <E1> an

for the exponential variation.

In the first example, material variation along the thickness is
taken to be the exponential form in (15). The loading is a
constant strain ¢, far away from the crack at the two ends which

gives rise to a remote stress field, o = oq exp(By), where o,
= Aeo/(1 — v?). The energy release rate was calculated from
the domains formed by the first 20 rings, using the J-integral
evaluation function in ABAQUS. The results from the first ten
rings are shown in Table 1, given for different E,/E; ratios, and
the results from the domains formed by the remaining ten rings
of elements basically are the same as those of column 9 and 10
in the table. The ratio E,/E, is the modulus of the upper bound-
ary over that of the lower boundary. In the calculation we choose
oo = 1 and the crack length a = 1. From the table, the conver-
gence of the numerical method is clearly seen. When the ratio
is 1, it represents homogeneous material. In the strong material
variation case, the ratio is 10. We see that in both cases the
convergence behavior is the same. So, we may conclude that
the convergence of using the standard domain integral for FGMs
is the same as that for homogeneous materials. The domain
integral scheme has been proved to be a useful one in the
numerical analysis of the homogeneous fracture. Note that those
results from the domains formed by the first two rings usually
have a relatively large error in both the homogeneous and FGM
case, due to the inaccuracy of the innermost elements. Thus,
those results from the domains formed by the first two rings
may be disregarded. The stress intensity factors obtained from
the four cases in the table, in which the ratio is equal to 0.1,
0.2, 5, and 10, are 4.01, 4.22, 6.49, and 7.48, respectively. These
results are the same as those obtained from the singular integral
equation method provided by Erdogan and Wu (1993).

Due to the symmetric geometries and symmetric material
properties with respect to the crack line for the two specimens
in Fig. 4, there is only mode I stress intensity factor at the crack
tip for the second and third examples. Since the near-tip fields
are of the same form as those for homogeneous materials, the
generic form of the stress intensity factor may be written as

— 12 E a ﬁ
K;=Ta Y(EI’H’H’SO> (18)
where T is a representative stress magnitude, a is a characteristic
length (can be taken as the crack length) and Y is a dimen-
sionless function which is related to the geometries of the prob-
lems and material properties: the ratio of the moduli and , the
form of material variation. There are four independent variables
in the dimensionless function Y. For known material variation
£ and the thickness of the FGM h/H, the solution Y depends
on the modulus ratio and the position of the crack tip a/H, and
may be systemically presented by tables or figures. For example,
if using tables, each table contains the solution for given § and
h/H, where the row represents E,/E; and the column represents
a/H . If using figures, each figure contains the solution for given
$ and h/H, and in the figure each curve corresponds to a value
E,/E; with the x-axis being a/H. Given the representatives of
g and h/H, we construct the complete solution in above ways
for others to use. For homogeneous materials, Y is only related
to a/H. It is obtained in terms of a figure or empirical ex-
pressions which are given in the handbook by Tada et al.
(1985).

Figure 5 shows the solution of mode I stress intensity factor
versus the position of the crack tip in the FGM for linear mate-

Table 1 Convergence for the Remote Constant Strain Problem

Energy release rate calculated from the first ten rings [in units of oialE\]

EJE, 1 2 3 4 6 7 3 9 10
0.1 42.43 46.15 46.21 46.24 46.25 46.26 46.26 46.26 46.28 46.27
0.2 33.26 36.17 36.22 36.24 36.25 36.26 36.26 36.26 36.27 36.27
1 20.99 22.83 22.86 22.88 22.88 22.89 22.89 22.89 22.90 22.90
5 15.76 17.14 17.16 17.17 17.18 17.18 17.18 17.18 17.19 17.19

10 14.78 16.07 16.09 16.10 16.11 16.11 16.11 16.11 16.12 16.12

Journal of Applied Mechanics

MARCH 1999, Vol. 66 / 105



40.0 T T T
h/H=0.1, L>>h,H
35.0F = ’ ] .
E,/E,=0.05 Linear Variation
300
250 0.1
a
;I_ 200 |- 0.2
¥
150 0.5
- /_:2——————/;"//
0 1 20 1 10 1
'-8.10 -0.05 0.00 0.05 0.10
(a-H)/H

Fig. 5 Stress intensity factor versus crack-tip position in the FGM inter-
layer for three-point bending with h/H =.0.1

rial variation in the three-point bending specimen, where h/H
= 0.1. The geometry represents the case where the interlayer
of FGM is considerably thin compared to the two bulk materials.
It is seen that the curves in the figure are the nondimensional
function Y in (18) if the characteristic length is taken to be H.
The solutions of this kind for various #/H and § form a com-
plete solution for the three-point bending specimen. Usually
tough materials such as metals have a lower modulus than brittle
materials such as ceramics. From this figure, when the crack
travels from a tough side (the side with smaller modulus) to a
brittle side (the side with larger modulus) the crack-tip stresses
increase. The energy release rate calculated from the domains
formed by the first ten rings of elements is listed in Table 2 for
both linear and exponential material variations. The stable re-
sults in the table again show the convergence of the numerical
scheme. When the toughness of the two bulk materials is differ-
ent, it is expected to vary along the thickness of the FGM and
can be written as I'((a — H)/H) in the FGM. Then, for stable
G< a—H ) _

-growth in the FGM interlayer we have
m )
{*7")
H

o =7) 7).

da Oa

(19)

For unstable growth, in the second equation ‘‘<’’ is replaced
by ““>.”” Let’s consider a special case where the toughness is
constant across the thickness of the FGM. From the figure, we
see in this special case that when material #2 is much softer
than material #1, E,/E, <€ 1, the crack growth is likely to be
stable. This is especially true when the crack tip is close to
material #2. When material #2 is stiffer than material #1, the
crack growth is likely to be unstable. In general, if the toughness
varies with position and the crack is close to material #2 with

E,/E, < 1, it is a stable growth when the decrease of the slope
in the figure overcomes the decrease of the toughness. Figure
6 represents the case when 4/H = 0.5 and other parameters are
the same as Fig. 5. From the two figures we see that the trend
of these curves has a dramatic change as the percentage of the
FGM changes, and this is especially true for those curves with
E,/E; < 1. For many crack-tip positions in Fig. 6 the stress
intensity factor increases as the crack length increases. This
means that if the increase of the toughness at the crack tip as
the crack length increases is not as fast as the stress intensity
factor, it is an unstable growth for the crack tip traveling in
those positions. In the above discussion of the crack growth,
we have assumed that the crack propagates along the original
direction, since these are the cases where geometry, loading,
and material are symmetric with respect to the crack line. A
first-order approximation model, which is based on local homo-
geneity, has been used to examine the crack propagating direc-
tion for several cracked FGM geometries (Gu and Asaro,
1997b). The model also predicts that a crack grows along its
original direction when everything is symmetric.

For the four-point bending specimen shown in Fig. 4, the
two ends far away from the crack line is in a pure bending
state, where the bending moment M = PI[ and [ is the distance
between the applied force and the support of the beam. The
neutral axis changes with material properties, material variation,
and layer’s thicknesses and is known when these are given. Our
numerical results show very good convergence as those listed
in Table 1 and 2. Figures 7(a) and (b) illustrate the stress
intensity factor versus the interlayer thickness for the crack tip
at the center of the beam and linear material variation. It is
recognized that these curves are the function Y in (18) if the
characteristic length is chosen as H. Compared to Fig. 5, this
is another way to present the solution: each curve represents a
case for a value E,/E;, given § and a/H. In these two figures,
for a fixed H and as h/H increases, the K, increases when E,/
E, > 1 and decreases when E,/E, < 1. When h/H is zero, it
is the bimaterial solution. The figure tells us that although the
increase of the percentage of the FGM in the structure due to
the increase of interlayer thickness reduces the mismatch be-
tween the two bulk materials, it may not reduce the stress inten-
sities at the crack tip. The increase or decrease of the stress
intensities depends on the crack position. As far as the crack
propagation is concerned, at this point we do not know how
the toughness changes with the FGM percentage increase (note
that the increase of the percentage reduces the material gradi-
ents). So we do not know if the increase of FGM percentage
can prevent the crack growth. However, under the special case
that the toughness is constant for FGM, we may conclude that
the increase of FGM percentage may not be good to prevent
crack growth. In another paper (Dao et al.,, 1997) we have
shown that the increase of FGM percentage may not reduce
microstress concentration at the grain size level under thermal
loading for a perfect FGM without cracking, The conclusion of
the microstress concentration was obtained from a statistically
based analysis.

Using a similar analysis, the method can be extended to the
three-dimensional case. In three-dimensional space, the domain
can be chosen such that its boundary is a tube, which surrounds
the crack tip and whose radius of the cross section is sufficiently

Table 2 Convergence for the Three-Point Bending Specimen™

Energy release rate calculated from the first ten rings [in units of PY/(HE))]

1Y 1 2 3 4 5 6 7 8 9 10
linear 466.8 507.7 508.4 508.7 508.8 508.9 508.9 508.9 509.1 509.1
exponential 542.7 590.2 591.1 591.4 591.6 591.6 591.7 591.7 591.9 591.8

* The numerical results in the table are for /H = 0.1, (¢ — H)/H = —0.1 and E/E, = 0.1
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Fig. 6 Stress intensity factor versus crack-tip position in the FGM inter-
layer for three-point bending with h/H = 0.5

small such that the analysis similar to the two-dimensional case
can be applied. Detailed discussion of the three-dimensional
standard domain integral can be found in previously mentioned
papers on the domain integral. The reason for which the simpli-
fied method is true is exactly the same as that for the two-
dimensional case, i.e., the standard domain integral is over-
weighted compared to the nonhomogeneous terms. Here we
will only give an example of a special version in three-dimen-
sional space, an asymmetric problem shown in Fig. 8. The
detailed discussion of the general three-dimensional problem
will be given in a separate article elsewhere. The penny-shaped
crack (Fig. 8) is in a cylindrical solid. The radius of the crack
is a, the radius of the cross section is R, and the length of the

a/H=1
Linear Variation
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Fig. 7 Stress intensity factor versus thickness of the FGM interlayer for
four-point bending
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Fig. 8 Penny-shaped crack in a cylindrical FGM solid

solid is so large as not to affect the solution. The Young’s
modulus is considered to vary along the radius direction, E =
E(r). By the structure of the crack-tip field and dimensional
consideration, the solution is given in the form

_pany( B2 a

K, =Ta Y(EI,R,XJ> (20)
where E, is the modulus at the outer boundary and E,; is the
modulus at the asymmetric line. The solution to the problem
can be easily documented compared to the three-layer bending
bars, since we have fewer dependent parameters in the nondi-
mensional function Y here. For given material variation £, the
solution can be presented by a table or a figure. Table 3 shows
the convergence for linear and exponential variations, where
E,/E; = 20 and a/R = 0.5. The convergence is very much
similar to the two-dimensional case. Except for the first one or
two rings, others give the accurate solution.

4 Concluding Remarks

We have shown that the standard domain integral can be
used to evaluate the crack-tip field for nonhomogeneous materi-
als, such as FGMs. The method requires a sufficiently fine mesh
near the crack tip as shown. However, the error induced by the
method is estimated such that one can control the error by
controlling the size of the domain where the domain integral is
evaluated. From the numerical solutions given in the previous
section, we have seen that the energy release rate calculated
from the domains formed by the rings of elements around the
crack tip in this way is very stable and accurate. The examples
are all in mode I where both loading, geometry, and material
variation are symmetric with respect to the crack face, but the
method can be used to calculate the modes I and II stress inten-
sity factors for the mixed-mode case using a defined interaction
energy release rate by Shih and Asaro (1989). The method may
also be extended to the nonlinear case, such as plastic crack
problems. These all suggest that this simplified method, without
the input of material gradients and without many changes of
the existing finite element code for homogeneous materials,
may be well suited for crack mechanics analysis of FGMs where
the materials possess gradients. In the examples of the sand-
wiched structure we have presented the solution in a compact
functional form which can be used to easily document a com-
plete solution for other study and design purpose. Finally, it is
noted that the material variation is assumed to be continuous
across the thickness of the FGM in this study. For real FGMs,
the material variation is created by the spatial distribution of
one material phase relative to the other. The continuous ap-
proach, the proposed numerical method and the fracture behav-
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Table 3 Convergence for Penny-Shaped Crack in a Cylindrical Solid*

Energy release rate calculated from the first ten rings [in units of T?alE]

}9 1 2 3 4 5 6 7 8 9 10
linear 0.04260 0.04633 0.04640 0.04642 0.04644 0.04644 0.04645 0.04645 0.04646 0.04646
exponential 0.03286 0.03574 0.03579 0.03581 0.03582 0.03583 0.03583 0.03583 0.03584 0.03584

* The numerical results in the table are for a/R = 0.5 and EJ/E;, = 20

ior analysis in the previous section, implies that the particle size
of the phases that make the FGMs is very small compared to
the crack length and other geometrical lengths, and the micro-
structure of the FGMs is sufficiently fine. In the above condition,
the effect of the particle size in the mechanics analysis may be
neglected.
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