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Abstract—In this paper, we propose a power-efficient under-
water sensor network scheme employing compressed sensing and
random channel access. The proposed scheme is suitable for
applications where a large number of sensor nodes are deployed
uniformly over a certain area to measure a physical phenomenon.
The underlying assumption is that most physical phenomena have
sparse representations in the frequency domain. The network
is assumed to have a Fusion Center (FC) that collects the
observations of sensor nodes and reconstructs the measuredfield
based on the obtained measurements. The proposed method is
completely decentralized, i.e., sensor nodes act independently
without the need for coordination with each other or with the FC.
During each frame, a Bernoulli random generator at each node
determines whether the node participates in sampling or stays
inactive during that sampling period. If selected, it measures the
physical quantity of interest, e.g. temperature. A second random
generator with a uniform distribution then picks a (random)
delay for the node to send its data to the FC. The proposed
network scheme, referred to as Random Access Compressed
Sensing (RACS), results in a simple power-efficient design,for: a)
it eliminates the need for duplexing, which requires coordination
from the FC; b) there is no need for acknowledgment packets
and retransmissions in case packets collide; and moreover,c) it
is efficient in terms of the communication resources used (only
a small fraction of nodes sample and transmit in each sampling
period).

I. I NTRODUCTION

Sensor networks consist of a large number of sensor nodes
that are deployed over a region of interest to observe the
physical environment. Each sensor node communicates its
observation of the field to a central node, referred to as the
Fusion Center (FC) and the FC retrieves the information about
the physical field. In this paper, we are interested in the
case where the field of interest is sparse in some domain,
noting that most natural phenomena are compressible (sparse)
in an appropriate basis. The theory of compressed sensing
establishes that under certain conditions on a signal, exact
signal recovery is possible with a small number of random
measurements [1],[2]. The application of compressed sensing
in sensor networks has been studied in a number of references.
Reference [3] introduces compressed cooperative spatial map-
ping using mobile networks and studies the minimal collective
sensing needed to build an accurate map. Authors in [4],[5]
and [6] use phase-coherent transmission of randomly-weighted
data from sensor nodes to the FC, using a dedicated multiple-
access channel. Using this method, distributed projections

of the sensor data into an appropriate basis is formed at
the FC. Note that in this approach sensors need to be fully
synchronized. In [7] the sensors are tracking the location of
an audio source, transmitting their readings to an FC. In this
setting, the signals appearing at each sensor are jointly sparse.
The authors show that a very small number of measurements
can achieve the signal detection goal. In reference [8] authors
consider an on-off random multiple access channel where users
communicate simultaneously, each with a certain probability,
and the receiver must detect which users transmit. The authors
transform the problem to an equivalent compressed sensing
problem and use sparsity detection algorithms for finding the
capacity bounds of the on-off random multiple access channel.

In this work, we consider a large underwater sensor network
that observes a physical phenomenon for geographical and
environmental monitoring purposes. We assume the physical
phenomenon to be studied is compressible (sparse) in the fre-
quency domain. Our proposed method, based on compressed
sensing and random access, results in an efficient sampling
and simple transmission scheme. Individual sensor nodes are
not required to perform any processing, while most of the
processing will be done at the FC. A typical sensor network
scheme consists of (i) a sampling procedure, during which
sensor nodes perform the measurement; followed by (ii) a
channel access method, in order to transmit the measure-
ments to the FC; and finally (iii) a recovery process, which
is performed at the FC using sparsity based reconstruction
algorithms. In the sampling procedure, we employ principles
of compressed sensing to reduce the number of measurements
required, moreover, in the channel access phase we propose
a simple random access protocol. Random channel access
can lead to packet losses due to collisions. Thus the fusion
center obtains an incomplete set of measurements, due to (a)
random sensing in the sampling phase, and (b) random losses
due to the random access protocol. In order to reconstruct
the complete field from an incomplete set of measurements
at the FC, we use compressive sensing techniques. Note that
our proposed method is completely distributed, requiring no
coordination neither among sensor nodes nor among sensors
and the FC.

The paper is organized as follows: In Section II we introduce
our system model. In Section III, we propose both centralized
and distributed sampling using compressed sensing. Section IV



discusses the use of a simple random multiple access for
transmission of data to the FC. In Section V, we employ
compressive sensing techniques to recover the data from an
incomplete subset of measurements. In Section VI, we offer a
design approach that achieves a desired recovery probability at
the FC. Finally, we provide concluding remarks in Section VII.

Notation: Throughout this paper, we useR andC to denote
the set of real numbers and complex numbers, respectively.
We let ℓp denote thep-norm of a vectorx = [x1, . . . , xN ]T

defined by‖x‖ℓp
=

(

∑N
i=1 |xi|p

)1/p

.

II. SYSTEM MODEL

Let f(x, t) denote the physical process of interest that
the sensor network intends to measure, such as temperature,
pressure, current, etc. We set up a linear network consisting
of N sensors that are uniformly distributed on a line. Note
that the results of this paper can be extended to 2-dimensional
(area) and 3-dimensional (volume) networks as well. The sen-
sors are separated by a distanced and conduct measurements
every T seconds as shown in Figure 1. We assume that the
network has a Fusion Center (FC) with the task of collecting
the measurements and reconstructing the field of interest. In
order to determine the appropriate value forT , we look at the
correlation properties of the underlying physical process. We
assume thatf(x, t) is a wide-sense stationary signal and its
autocorrelation can be approximated as

Rff (∆x, ∆t) = E{f(x + ∆x, t + ∆t)f(x, t)}
≈ R1(∆t)R2(∆x) (1)

Let us define the coherence timeTcoh of f(x, t) as the
time difference over which the process almost de-correlates
in time, i.e.R1(Tcoh)/R1(0) = X%, where e.g.X = 10. A
conventional design parameter for a network measuringf(x, t)
is then to setT = Tcoh i.e. to obtain new measurements every
Tcoh seconds. LetL denote the number of bits per packet of
data. Also, assume that each sensor has a fixed bandwidth
B to communicate with the FC. Therefore, each data packet
takesTp = L

B seconds to be transmitted. The propagation
delay of each sensor’s packet depends on the distance between
the sensor node and the FC. LetDi denote the distance of
nodei from the FC, wherei ∈ {1, . . . , N}. The propagation
delay corresponding to nodei’s packet is given byτi = Di

c0

,
wherec0 = 1500 meters/sec is the nominal speed of sound.
Throughout the rest of the paper, we assume that the sensor
nodes are placed on the sea floor while the FC is located on the
surface of a body of water with depthD, whereD ≫ Nd/2;
therefore, we can assume thatD1 ≈ D2 ≈ . . . ≈ DN = D.

Let us define thecoverage area of a network as the total
area covered by the sensor network. In our network model the
coverage area is given byNd.

A. Conventional (Benchmark) Network

In a conventional sensor network allN nodes, separated
by distancesd, conduct measurements everyTcoh seconds,

Fig. 1. Linear network model and a conventional design approach where all
nodes perform sampling everyT = Tcoh seconds

Fig. 2. The scheduling required at each node in TDMA

and transmit the measurements to the FC using a multiple-
access scheme. In the rest of this paper, we assume the
conventional network employs the standard TDMA scheme
to transmit data packets to the FC. This requires nodes to
schedule their transmissions such that at the FC, each node’s
packet is received back-to-back to the previous node’s packet.
Figure 2 demonstrates the scheduling procedure.

The total number of nodes that a conventional network can
support is given by

N ≤ Tcoh

Tp
(2)

whereTcoh is the property of the underlying physical process
(new information is needed everyTcoh seconds). Denoting
Nconv = Tcoh/Tp, the coverage area of a conventional
network is thus limited toA = Nconvd

2 = Tcohd2/Tp.
The process of data gathering consists of two phases:

sensing and communication. The sensing phase can be (i)
deterministic (conventional case), meaning that all sensors
sample the physical phenomenon, or (ii) random (compressed),



meaning that only a random subset of sensor nodes participate
in sampling. In the communication phase, nodes that have
taken part in sensing, communicate their measurements to the
FC using a multiple access scheme. Multiple-access techniques
are generally divided into two categories: i) deterministic
access methods, e.g. TDMA, FDMA, CDMA; and ii) random
access methods, e.g. Aloha, CSMA and CSMA/CD. Typically,
deterministic access methods are used in networks where users
have a steady flow of information, whereas if users have
bursty information, random access methods are preferred. In
deterministic methods, if the transmitter has no data to send
the channel remains idle, in such situations random access
provides an efficient mechanism for accessing the channel.

III. SAMPLING PROCEDURE

At each framen, we denote nodei’s measurement by
ui(n) = f(xi, tn), wherei ∈ {1, . . . , N}. The complete map
of the process is denoted byu(n) = [u1(n) . . . uN(n)]T ∈
RN which contains the measured quantities at all sensor
locations. LetU(n) denote the Fourier transform ofu(n).
Now u(n) = ΨU(n) where Ψ ∈ CN×N is the inverse
discrete Fourier transform matrix. Most natural phenomena
have compressible (sparse) representation in the frequency
domain, hence we assume thatU(n) is sparse. Note that a
sparse signal is a signal that can be represented by a small
number of non-zero coefficients, compared to the dimension
of the signal. When a signal is sparse, based on the theory of
compressed sensing, it can be recovered from a small subset
of random measurements [1], [2]. At framen, a subset of
sensors is selected to conduct measurements. Note that the
data vectoru(n) is in spatial domain. LetΦ denote the sensing
basis, i.e. the domain in which we perform the sensing. By
randomly selecting sensors, we perform the sensing directly
in the spatial domain, henceΦ = IN×N . Let y(n) ∈ CM×1

denote the observations of a random subset ofM sensors, and
z(n) represent the noise due to sensing and communication
between the sensors and the FC. The received data vector at
FC can be expressed as

y(n) = R(n)u(n) + z(n) (3)

whereR(n) ∈ RM×N containM uniformly selected rows of
Φ i.e. each of itsM rows contains a single 1 at the position
of a selected sensor while all the other elements are zero.
Furthermore,Ψ represents the domain in whichu(n) has a
sparse representation. Therefore, Eq. (3) can be re-written in
terms of the sparse vectorU(n) as follows:

y(n) = R(n)ΨU(n) + z(n) (4)

In the reconstruction procedure, one tries to recover the vector
U(n) as accurately as possible and reconstruct the measured
field u(n) = ΨU(n).

The coherence between the sensing basisΦ and the repre-
sentation basisΨ is defined by [1]:

µ(Φ, Ψ) =
√

N max
1≤k,j≤N

|〈Φk, Ψj〉| (5)

where it can be shown thatµ(Φ, Ψ) ∈
[

1,
√

N
]

. Note that
in the case of Eq. (3), whereΦ = IN×N and Ψ is the
inverse Fourier transform matrix, the coherence is derivedas
µ(Φ, Ψ) = 1. In other words, the(Φ, Ψ) pair is maximally
incoherent. Reference [1] states that for a signal with sparsity
S, if we selectM measurementsuniformly at random where
M ≥ Cµ2S log N for some positive constantC, solving

min ‖U(n)‖ℓ1 subject to y(n) = R(n)ΨU(n) (6)

recovers the signal with overwhelming probability. A variety
of algorithms for solving this optimization problem as wellas
other recovery methods have been studied [9].

A. Centralized Sensing

In the centralized scheme, a central scheduler at the FC
determines a random subset ofM sensors to perform the
sampling. This method requires the FC to broadcast the
selected set of nodes to all the sensors. The selected nodes
then samplef(x, t) and send their measurements back to FC
using a multiple-access technique. Because the FC broadcasts
the selected sensors, all nodes learn which sensors transmit
and in what order. Therefore, the network can simply use
deterministic access (TDMA) withM slots. All transmitting
nodes organize their transmissions such that they are received
at the FC in the requested order. One frame duration thus
consists of the round trip broadcast time followed byM
packets of data, as shown in Figure 3, thereforeT = 2τ+MTp

whereτ = D
c0

denotes the propagation delay in the network.
Moreover, the network needs updated data everyTcoh seconds,
therefore the frame durationT must be less than or equal to
the coherence time, in other wordsMTp + 2τ ≤ Tcoh.

B. Distributed Sensing

Centralized selection requires scheduling among sensors
by downlink transmission from the FC. In order to elim-
inate the need for downlink transmissions at each frame,
we propose a simple scheme to decentralize the process of
selecting a random subset of nodes. We simply equip each
sensor node with a Bernoulli random generator, generating
independent identically distributed Bernoulli random variables,
X1, . . . , XN , where for alli ∈ {1, . . . , N},

Xi =

{

1 with probabilityp
0 with probability 1 − p

(7)

The total number of sensors selected for transmission,M , is
now given as

M =

N
∑

i=1

Xi,

which follows a Binomial distribution with parametersN and
p, i.e., M ∼ B(N, p). Now the probability density function
of M is given as

PM (m) = prob(M = m) =

(

N

m

)

pm(1 − p)N−m (8)

In this case, deterministic access can no longer be used, how-
ever, that is of no concern because as we will see in section IV,



Fig. 3. The frame structure when using centralized sensing and TDMA

we can couple random channel access with distributed random
sensing.

IV. CHANNEL ACCESSPROCEDURE

As a simple and efficient multiple access scheme, we
investigate the use of random access as a means to accom-
modate random transmissions. The common random access
schemes include Aloha, slotted Aloha and CSMA/CD. Note
that these protocols rely on ACK (acknowledgment packets)
to ensure that data is transmitted successfully. However, in
an RACS network, once the FC has obtained a sufficient
number of measurements, it can successfully reconstruct the
data and there is no need to ensure that all packets are
received successfully. The key idea here is to let FC simply
discard the colliding packets. This approach is motivated by
the compressed sensing theory and the fact that the FC does
not care which specific sensors are selected as long as (i) the
selected subset is chosen uniformly at random and (ii) thereare
sufficiently many collision-free packets received at the FCto
allow for the reconstruction of the field. Therefore, in RACS
scheme once a collision is detected FC simply discards the
colliding packets and reconstructs the data using the rest of
the packets. Note that a collision is said to have occurred if
packets from different sensors overlap in time. Figure 4 depicts
the random access scheme.

Assume that each sensor picks a random transmission delay
θi uniformly distributed in[0, T − Tp]. Let us assume thatm
sensors are selected for transmission. The average number of
packet arrivals at the FC per unit of time is given byλ =

m
T−Tp

. In order to determine the probability of collision, let
us denote the number of packet arrivals in[0, t] by the random
variableN (t). Note thatN (t) has a Poisson distribution with
parameterλt [10], given by

prob(N (t) = K) =
(λt)K

K!
e−λt (9)

Fig. 4. Random channel access; packets from nodes 5 and 7 collided at the
FC

whereλt is the average number of packets in[0, t]. If a user
i transmits with a delay ofθi, its packet will occupy[θi, θi +
Tp]. A collision happens if another user transmits at any time
[θi − Tp, θi + Tp]. Probability of no-collision is thus given by
e−2λTp . Therefore, probability of collision in a network with
uniformly-distributed transmission time in[0, T −Tp] is given
by

pcol = 1 − e
−2

mTp

T−Tp (10)

The proposed RACS protocol is summarized below:

i) at the beginning of framen, sensor nodei determines
whether it participates in sensing (with probabilityp) or
stays inactive (with probability1 − p) during that frame

ii) if node i is not selected for sampling it stays inactive
until the next framen + 1

iii) if node i is selected for sampling, it measures the physical
quantity of interest and encodes it into a packet of size
L. The sensor’s location is also appended to the packet.

iv) nodei runs a uniform random generator which determines
the delayθi, uniformly distributed in[0, T − Tp], for the
sensor’s transmission of its packet

v) FC collects the packets received during[nT, nT + T ]
vi) if a collision is detected, FC discards the colliding packets

vii) at the end of the frame, at timenT + T , FC uses the
correctly received packets to reconstruct the data using
ℓ1 minimization (or other sparsity based reconstruction
methods). We assume packets that do not collide are
correctly received.

V. DATA RECOVERY

Let K denote the number of correctly received packets at the
FC andNs = CS log(N) denote the number of observations
required to allow accurate reconstruction. In general deter-
mining Ns analytically depends on the value of the constant
C, a theoretical upper-bound for which is offered in [11].
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Fig. 5. The average normalized reconstruction error is plotted vs. the number
of measurements (M ), for a signal of sizeN = 1000 and with a sparsity
of S = 10. The desired number of measurementsNs to obtain error-free
reconstruction can be determined from the figure.

However, one can empirically determineNs as the number of
measurements for which the reconstruction error is negligible.
It turns out that the empirical value ofNs is typically much
smaller than the one obtained following the theoreticalC. As
an example, assume that we generate random sparse signals
with a sizeN = 1000 and a sparsity ofS = 10 and study the
recovery of the signal for different number of measurementsin
a noise-free setting. Figure 5 shows the average reconstruction
error vs. the number of measurements. As seen in the figure,
for approximatelyM ≥ 70 recovery is attained with an error
below10−8. Hence, a reasonable choice forNs is determined
asNs = 70.

In the centralized sensing, ignoring packet losses due to
channel fading, the number of received packets is the same as
the number of transmitted packets (K = M ). Thus choosing
M = Ns = CS log(N) provides a sufficient number of
packets at the FC. In this case, the number of nodesN that
can be deployed in the network is determined as

MTp + 2 D
c0

≤ Tcoh

M ≥ CS log(N)

}

⇒ log(N) ≤
Tcoh − 2 D

c0

CSTp

In comparison with the conventional scheme in Eq. (2), we
have thatN ≤ e

1

CS
(Nconv−2 D

c0Tp
). Consequently, by using

centralized random sensing jointly with TDMA as the channel
access method, significantly more nodes can be deployed in
the network than in the benchmark case. Since sensor nodes
are separated by a fixed sensing distanced, by increasing the
number of sensors we can extend the coverage area of the
network. Moreover, total power consumption of the network
is reduced by a factor ofNM whereM = CS log(N). Note
that the coverage extension and power saving are achieved
at the cost of additional downlink communication from the
FC. In the distributed sensing case however,K and M are
both random variables. The fact thatK is a random variable
now has the following implication: There is no guarantee

that K will be larger thanNs = CS log(N) i.e. accurate
reconstruction can not be guaranteed, however, by choosing
p carefully, reconstruction with a certain probabilityPs is
possible.

Assumem sensors are selected for sampling, resulting ink
correctly received packets at the FC, wherek ≤ m. Therefore,
to ensure thatNs packets arrive at the FC collision-free, the
probability of sensor selectionp has to be such that the number
of selected sensorsm is greater than the desired number of
observationsNs. This brings us to the question of howp
should be selected to enable reconstruction with a certain
probability. We will propose a design approach in section VI,
but first let us look at some examples.

A. Numerical Examples

We consider a linear network consisting ofN = 1000
equally spaced sensor nodes. Assume the physical quantity
of interest is fully-sparse in the frequency domain with a
sparsity ofS = 10. Furthermore, assumeTc = 120 seconds,
each sensor is given a transmission bandwidth ofB = 5
Kbps and each packet has a size ofL = 1000 bits. Figure 6
shows the number of collision-free received packets as a
function of the sensing probabilityp. As seen in the figure,
there is an interplay between the number of measurements
and the number of collisions. While increasingp results in a
greater number of measurementsm and thus could improve
the accuracy of reconstruction, however, it also increasesthe
probability of collision and after a certain point may even
decrease the number of collision-free packets received at
the FC and affect negatively on the reconstruction quality.
Figure 7(a) plots the average normalized reconstruction error
as a function ofp for a randomly generated sparse data. As
noted in the figure, accurate reconstruction is possible fora
range of values ofp. Figure 7(b) shows the corresponding
average power consumption of the network as a function
of p. In order to minimize the power consumption of the
network while maintaining the quality of reconstruction (on
the average), we choose the smallest value ofp for which
accurate reconstruction is possible. In our simulations, we
usedCVX [12], a package for specifying and solving convex
programs, to solve theℓ1-minimization.

VI. D ESIGN APPROACH

Let PK(k) = prob{K = k}. The overall probability
distribution function forK is given by

PK(k) =

N
∑

m=k

prob(K = k|M = m) prob(M = m)

=

N
∑

m=k

(

m

k

)

(1 − pcol)
kpm−k

col PM (m) (11)

wherePM (m) is given by Eq. (8). The above expression does
not appear tractable. We thus turn to finding an approximation
for PK(k). We conjecture thatK is binomial like M , with
the sameN but a probabilityq < p, i.e. K ∼ B(N, q).
This is intuitively pleasing because the received packets are
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Fig. 6. Average number of collision-free received packetsK vs.p; simulation
parameters areN = 1000, Tcoh = 120 seconds andTp = 0.2 second.
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Fig. 8. Probability density function; Simulation parameters areNsim =

50000 simulation runs,Tp = 0.2 sec andTcoh = 120 sec.

the same as transmitted packets minus random collisions. To
empirically verify the conjecture, we simulate the processand
count the number of successfully received packets. Figure 8
shows the probability density function ofK for an example set
of system parameters. In this figure, thePK(k) obtained from
measurements is compared with that of an estimated model
B(N, qest) and a hypothesized modelB(N, q) where

qest =
1

Nsim

∑Nsim

i=1 k(i)

N

wherek(i) is the number of successfully received packets in
the i-th simulation run andNsim is the total number of runs,
and

q = pe
−2

NpTp

T−Tp

We note thatq and qest are very close and the resulting
binomial distributions closely match that ofK, thus the
K process indeed seem to follow the binomial distribution
and there is very good agreement between the histogram
and B(N, q). Figure 9 shows the complementary cumulative
probability functionQK(k) from measurements, as well as for
B(N, q) andB(N, qest).

For a givenN , let Ns = CS log(N) denote the number of
packets needed for reconstruction. We define the probability
of sufficient sensing as

prob{K ≥ Ns} = QK(Ns)

Let us definePs as the desired recovery probability, meaning
we would like the recovery to happen at the FC with proba-
bility Ps. We need to determineqs such that

QK(Ns) ≥ Ps for q ≥ qs (12)

Now, let q = pe−αp, whereα = 2
NTp

T−Tp
. The so-obtained

value of qs is then used to determine the underlyingp and
α required to maintain Eq. (12). There are multiple solutions
to this equation. We want to identify the ones such thatT ≤
Tcoh. Moreover, our design approach is to minimize the power



50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of successful receptions, k

Q
K
(k

)=
P

{K
>

k}

 

 

N=1000

p=0.1

q=pe−2NpT
p
/(T−T

p
)

Binomial(N,q)
Binomial(N,q

est
)

measured

Fig. 9. Complementary cumulative function; Simulation parameters are
Nsim = 50000 simulation runs,Tp = 0.2 sec andTcoh = 120 sec.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

q

p

α=2.22

α=2.67

α=4

α=2

q
s

Fig. 10. q(p,α) vs. p for different values ofα; For a givenqs a smallerα
results in a smallerp .

consumption, hence we want the solution yielding the smallest
p. Figure 10 shows plots ofq(p, α) for different values ofα.
As we see in this figure, for a givenqs, the curve with a smaller
α yields a smaller solution forp. Hence, the smaller theα the
smaller the probabilityp. The smallestα is determined using
T = Tcoh to be

αmin =
2NTp

Tcoh − Tp
. (13)

Thus, the first step in the design approach is to solve forq
in Eq. (12). This can be done numerically for a givenN . The
second step is to find the underlyingp using the hypothesized
model forq given byq = pe−pαmin , whereαmin is given by
Eq. (13). In summary, we have a design approach that avails
itself to a simplified model. Starting with a given number of
sensors and a frame sizeT ≤ Tcoh, this approximate model is
used to determine the sensing probabilityp such that recovery
happens with a desired probabilityPs at the FC.

VII. C ONCLUSION

In this paper, we proposed a simple power-efficient sensor
network scheme, denoted as RACS, which employs random
sensing and random channel access to deliver a subset of
sensor measurements to the FC. Coupling random access
with random sensing, we eliminated the need for duplexing.
We then used compressed sensing techniques to recover the
field from this random subset of measurements. Furthermore,
given a desired recovery probabilityPs, we provided a design
methodology to determine the sensing probabilityp such
that the FC recovers the field with the desired probability.
Under the assumption that most physical phenomena have
compressible (sparse) representation in the frequency domain,
we showed that the proposed RACS scheme is capable of
recovering the measured field with a desired probability, using
considerably less resources than a conventional network. Note
that power is a scarce resource in an underwater sensor
network due to the limited battery life of the nodes, therefore,
saving power can extend the life-time of a network.
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