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Abstract—In this paper, we propose a power-efficient under- of the sensor data into an appropriate basis is formed at
water sensor network scheme employing compressed sensingda the FC. Note that in this approach sensors need to be fully
random channel access. The proposed scheme is suitable forsynchronized. In [7] the sensors are tracking the locatibn o

applications where a large number of sensor nodes are depleg . o . . .
uniformly over a certain area to measure a physical phenomeon, " audio source, transmitting their readings to an FC. Is thi

The underlying assumption is that most physical phenomenadve ~ Setting, the signals appearing at each sensor are joiralssp
sparse representations in the frequency domain. The netw&r The authors show that a very small number of measurements

is assumed to have a Fusion Center (FC) that collects the can achieve the signal detection goal. In reference [8]aath

observations of sensor nodes and reconstructs the measurédid _consider an on-off random multiple access channel whers use
based on the obtained measurements. The proposed method is

completely decentralized, i.e., sensor nodes act indepesrly communlcatg simultaneously, egch with a certal_n protigibili
without the need for coordination with each other or with the FC. ~ and the receiver must detect which users transmit. The esitho

During each frame, a Bernoulli random generator at each node transform the problem to an equivalent compressed sensing
determines whether the node participates in sampling or stgs  problem and use sparsity detection algorithms for findireg th
inactive during that sampling period. If selected, it measwves the capacity bounds of the on-off random multiple access channe

physical quantity of interest, e.g. temperature. A secondandom In thi K id | d i twork
generator with a uniform distribution then picks a (random) n this work, we consider a large unaerwater sensor networ

delay for the node to send its data to the FC. The proposed that observes a physical phenomenon for geographical and
network scheme, referred to as Random Access Compressedenvironmental monitoring purposes. We assume the physical
Sensing (RACS), results in a simple power-efficient desigfior: ) phenomenon to be studied is compressible (sparse) in the fre
it eliminates the need fc_)r duplexing, which requires coordnation quency domain. Our proposed method, based on compressed
from the FC; b) there is no need for acknowledgment packets . . _ .
and retransmissions in case packets collide; and moreoveg) it S€NSING and rando_m_access, results_lr_1 an efficient sampling
is efficient in terms of the communication resources used (4n and simple transmission scheme. Individual sensor nodes ar
a small fraction of nodes sample and transmit in each samplip not required to perform any processing, while most of the
period). processing will be done at the FC. A typical sensor network
scheme consists of (i) a sampling procedure, during which
sensor nodes perform the measurement; followed by (i) a
Sensor networks consist of a large number of sensor nodésinnel access method, in order to transmit the measure-
that are deployed over a region of interest to observe theents to the FC; and finally (iii) a recovery process, which
physical environment. Each sensor node communicates igsperformed at the FC using sparsity based reconstruction
observation of the field to a central node, referred to as thfgorithms. In the sampling procedure, we employ prinaple
Fusion Center (FC) and the FC retrieves the information filbaf compressed sensing to reduce the number of measurements
the physical field. In this paper, we are interested in tlrequired, moreover, in the channel access phase we propose
case where the field of interest is sparse in some domadnsimple random access protocol. Random channel access
noting that most natural phenomena are compressible &pacsan lead to packet losses due to collisions. Thus the fusion
in an appropriate basis. The theory of compressed sensggter obtains an incomplete set of measurements, due to (a)
establishes that under certain conditions on a signal,texa@andom sensing in the sampling phase, and (b) random losses
signal recovery is possible with a small number of randodue to the random access protocol. In order to reconstruct
measurements [1],[2]. The application of compressed sgnsthe complete field from an incomplete set of measurements
in sensor networks has been studied in a number of referen@she FC, we use compressive sensing techniques. Note that
Reference [3] introduces compressed cooperative spagipt mour proposed method is completely distributed, requiriog n
ping using mobile networks and studies the minimal colexcti coordination neither among sensor nodes nor among sensors
sensing needed to build an accurate map. Authors in [4],[8hd the FC.
and [6] use phase-coherent transmission of randomly-weigh The paper is organized as follows: In Section Il we introduce
data from sensor nodes to the FC, using a dedicated multipber system model. In Section 1ll, we propose both centrdlize
access channel. Using this method, distributed projestioand distributed sampling using compressed sensing. 8dttio

|I. INTRODUCTION



discusses the use of a simple random multiple access for
transmission of data to the FC. In Section V, we employ
compressive sensing techniques to recover the data from an
incomplete subset of measurements. In Section VI, we offer a
design approach that achieves a desired recovery protyatiili

the FC. Finally, we provide concluding remarks in Sectioh VI

time

Notation: Throughout this paper, we ufeandC to denote sampling point
the set of real numbers and complex numbers, respectively. ,
We let ¢, denote thep-norm of a vectorr = [z1,...,zn]"

. 1/p
defined by| x|, = (Zfil |£Ci|p) :

1 2 3 distance
Il. SYSTEM MODEL —

p=d

Let f(x,t) denote the physical process of interest that
the sensor network intends to measure, such as temperategea. Linear network model and a conventional design aghvavhere all
pressure, current, etc. We set up a linear network congistitpdes perform sampling evely = T¢,, seconds
of N sensors that are uniformly distributed on a line. Note
that the results of this paper can be extended to 2-dimealsion
(area) and 3-dimensional (volume) networks as well. The sen

sors are separated by a distamcand conduct measurements T,

every T seconds as shown in Figure 1. We assume that the — | time at the FC
network has a Fusion Center (FC) with the task of collecting LA IC N B W

the measurements and reconstructing the field of intenest. |

order to determine the appropriate value Tgrwe look at the nT nT+T

correlation properties of the underlying physical procéfss
assume thaff (z,t) is a wide-sense stationary signal and its
autocorrelation can be approximated as

Ryp(Azx,At) = E{f(z+ Az, t + At)f(z,t)} B __time at node 2
Ry (At)RQ (A:v) (1) roe

Q

Let us define the coherence tint,, of f(z,t) as the
time difference over which the process almost de-corrglate
in time, i.e. R1(Teon)/R1(0) = X%, where e.gX = 10. A
conventional design parameter for a network measufingt)
is then to sefl” = Ty, i.e. to obtain new measurements every
T..n seconds. Lef, denote the number of bits per packet o‘t;l d
data. Also, assume that each sensor has a fixed bandwi (EQ
B to communicate with the FC. Therefore, each data packceot
takesT,, = £ seconds to be transmitted. The propagatiqra

Fig. 2. The scheduling required at each node in TDMA

transmit the measurements to the FC using a multiple-
ess scheme. In the rest of this paper, we assume the

nventional network employs the standard TDMA scheme
B

del / i , ket d d the dist et transmit data packets to the FC. This requires nodes to
elay of each sensors packet depends on the distance $hedule their transmissions such that at the FC, eachshode’
the sensor node and the FC. LBt denote the distance of

: ket i ived back-to-back to th i de’ k
node: from the FC, where € {1,..., N}. The propagation packet s recelved back-to-back to the previous node'sqiac
D.

del dina t s ket is i bve: — Di Figure 2 demonstrates the scheduling procedure.
elay corresponding 1o Nods packet Is given byr = - The total number of nodes that a conventional network can
wherecy = 1500 meters/sec is the nominal speed of soun u L
port is given by
Throughout the rest of the paper, we assume that the sensoe
nodes are placed on the sea floor while the FC is located on the N < Teon )

surface of a body of water with depfh, whereD > Nd/2; T,

therefore, we can assume that ~ Dy ~ ... ~ Dy = D.  \whereT,,, is the property of the underlying physical process

Let us define thecoverage area of a network as the total (hew information is needed evef¥..,, seconds). Denoting
area covered by the sensor network. In our network modelthe  ~ — 7, ,/7,, the coverage area of a conventional
coverage area is given hyd. network is thus limited tod = Neonyd? = Teond?/T).

, The process of data gathering consists of two phases:
A. Conventional (Benchmark) Network sensing and communication. The sensing phase can be (i)
In a conventional sensor network dN nodes, separateddeterministic (conventional case), meaning that all senso
by distancesd, conduct measurements evety,, seconds, sample the physical phenomenon, or (ii) random (compressed




meaning that only a random subset of sensor nodes parécipahere it can be shown that(®, ¥) € 1,\/N]. Note that
in sampling. In the communication phase, nodes that hayethe case of Eq. (3), wher®@ = Iy,.y and ¥ is the
taken part in sensing, communicate their measurement®to itverse Fourier transform matrix, the coherence is deragd
FC using a multiple access scheme. Multiple-access teghsiq;,(®, ) = 1. In other words, thg®, ¥) pair is maximally
are generally divided into two categories: i) determimistincoherent. Reference [1] states that for a signal withsipar
access methods, e.g. TDMA, FDMA, CDMA; and ii) randong, if we selectAd/ measurementsniformly at random where
access methods, e.g. Aloha, CSMA and CSMA/CD. Typicallys > C'u2S1og N for some positive constard, solving
deterministic access methods are used in networks wherg use .

have a steady flow of information, whereas if users have min [U(n)lle,  subjectto  y(n) = R(n)¥U(n)  (6)
bursty information, random access methods are preferred.récovers the signal with overwhelming probability. A vayie
deterministic methods, if the transmitter has no data ta@ sesf algorithms for solving this optimization problem as wa#
the channel remains idle, in such situations random accegier recovery methods have been studied [9].

provides an efficient mechanism for accessing the channel. _ .
A. Centralized Sensing

I1l. SAMPLING PROCEDURE In the centralized scheme, a central scheduler at the FC

At each framen, we denote node’s measurement by determines a random subset &f sensors to perform the
wi(n) = f(zi,tn) V\;herei € {1,...,N}. The complete map sampling. This method requires the FC to broadcast the
of the proce“ssnis’ denoted hy(;z) _ [ui(n) ... un(n)]T e Selected set of nodes to all the sensors. The selected nodes
RY which contains the measured quantities at all sendbe" samplef(x,t) and send their measurements back to FC

locations. LetU(n) denote the Fourier transform af(n). using a multiple-access technique. Because the FC brdadcas
Now u(n) = TU(n) where ¥ € CN*N is the inverse the selected sensors, all nodes learn which sensors ttansmi

discrete Fourier transform matrix. Most natural phenome@d in what order. Therefore, the network can simply use
have compressible (sparse) representation in the fregueflgterministic access (TDMA) witld/ slots. All transmitting
domain, hence we assume tHd{(n) is sparse. Note that g nodes organize their transmissions such that they arevegtei
sparse signal is a signal that can be represented by a smai the FC in the requested order. One frame duration thus
number of non-zero coefficients, compared to the dimensiGRANSiSts Of the round trip broadcast time followed by

of the signal. When a signal is sparse, based on the theoryPgFKets of dData, as shown in Figure 3, therers 27+MT,
compressed sensing, it can be recovered from a small suféggre” = ¢ denotes the propagation delay in the network.
of random measurements [1], [2]. At frame a subset of Moreover, the network nee_zds updated data effegy seconds,
sensors is selected to conduct measurements. Note that fifsefore the frame duratidh must be less than or equal to
data vectom(n) is in spatial domain. Leb denote the sensing € coherence time, in other word$T, + 27 < Teon.

basis, i.e. the domain in which we perform the sensing. By Distributed Sensing

randomly selecting sensors, we perform the sensing djrectl

in the spatial domain, henck — I Let y(n) € CMx1 Centralized selection requires scheduling among sensors
3 - NXN - y n

denote the ob ti i d bsetlof d by downlink transmission from the FC. In order to elim-
erote e observations of @ random SLbs €NSOrs, and jhate the need for downlink transmissions at each frame,

g(n) reprehsent the n0|sed dﬁe tocser;]smg ar_ld go(;nmunlcat 8 propose a simple scheme to decentralize the process of
etween the sensors and the FC. The received data Vecmée%cting a random subset of nodes. We simply equip each

FC can be expressed as sensor node with a Bernoulli random generator, generating

y(n) = R(n)u(n) + z(n) (3) independentidentically distributed Bernoulli randomiahles,
' Xi,...,Xn, where foralli € {1,..., N},
where R(n) € RM*N containM uniformly selected rows of 1 with probabilit
® i.e. each of itsM rows contains a single 1 at the position X; = . probaniiityp (7
0 with probability 1 — p

of a selected sensor while all the other elements are zero. . .
Furthermore, ¥ represents the domain in whial(n) has a The total number of sensors selected for transmissldnjs
sparse representation. Therefore, Eq. (3) can be re-wiiitte NOW given as N
terms of the sparse vect&f(n) as follows:
p (n) M=% X,
1=1

y(n) = R(n)¥U(n) + z(n) 4)
) ) which follows a Binomial distribution with parameteis and
In the reconstruction procedgre, one tries to recover tictove p, i.e., M ~ B(N,p). Now the probability density function
U(n) as accurately as possible and reconstruct the measuged ; ig given as

field u(n) = ¥U(n).
The coherence between the sensing bésend the repre- Pys(m) = prob(M = m) = (N)pm(l _p)N-m (8)
sentation basi@ is defined by [1]: m
w@,0) = VN max [(®, ;)] (5)

1<k,j<N

In this case, deterministic access can no longer be used, how
ever, that is of no concern because as we will see in sectipn IV
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Fig. 3. The frame structure when using centralized sensmgTDMA Fig. 4. Random channel access; packets from nodes 5 andidedodt the
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g:ngingcouple random channel access with distributed rand\c/)vWere)\t is the average number of packets[in]. If a user

i transmits with a delay of;, its packet will occupyd;, 6; +
T,]. A collision happens if another user transmits at any time
IV. CHANNEL ACCESSPROCEDURE [0; — T, 0; + T,]. Probability of no-collision is thus given by

—2\T, i i i ;
As a simple and efficient multiple access scheme, We ». Therefore, probability of collision in a network with

investigate the use of random access as a means to accémf_ormly-dlstnbuted transmission time {0,7'—1},] is given
modate random transmissions. The common random access

schemes include Aloha, slotted Aloha and CSMA/CD. Note - _2% (10)
that these protocols rely on ACK (acknowledgment packets) Peol ¢

to ensure that data is transmitted successfully. However, i The proposed RACS protocol is summarized below:
an RACS network, once the FC has obtained a sufﬁueng) at the beginning of frames, sensor node determines

number of measurements, it can successfully reconstrect th whether it participates in sensing (with probability or

data_ ar(;d there ifs”no r;]eelc(zl to_ densEre that aIII paCke_tS Tre stays inactive (with probability — p) during that frame
received successiully. The key i i€a here is t(,) et F_C simp ¥I) if node i is not selected for sampling it stays inactive
discard the colliding packets. This approach is motivated b until the next framen - 1

the compres_sed Sensing theory and the fact that the FC _dc?%s if node i is selected for sampling, it measures the physical
not care which specific sensors are selected as long as (i) the quantity of interest and encodes it into a packet of size
selected subset is chosen uniformly at random and (ii) there L. The sensor’s location is also appended to the packet.
sufficiently many collision-free packets received at the tbC . ) nodei runs a uniform random generator which determines
allow for the reconstruction of the field. Therefore, in RACS the delayd;, uniformly distributed in[0, T — T,], for the
scheme once a collision is detected FC simply discards the <. <qr's transmission of its packet ’ P

colliding packets and reconstructs the data using the rfest FC collects the packets received during’, nT + T

the packets. Note that a collision is said to have occurred ii) §

Kets f diff lan in ti Fi 4d if a collision is detected, FC discards the colliding keis
packets from different sensors overlap in time. Figure 4alsp vii) at the end of the frame, at timeT + 7', FC uses the
the random access scheme.

) o correctly received packets to reconstruct the data using
Assume that each sensor picks a random transmission delay ¢, minimization (or other sparsity based reconstruction
6; uniformly distributed in[0, 7' — 7, ]. Let us assume that methods). We assume packets that do not collide are

sensors are selected for transmission. The average nurhber o correctly received.

packet arrivals at the FC per unit of time is given hy=

77 In order to determine the probability of collision, let V. DATA RECOVERY

us denote the number of packet arrivalg§nt] by the random
variable N (¢). Note that\V/(¢) has a Poisson distribution wit
parameter\t [10], given by

h Let K denote the number of correctly received packets at the
FC andN,; = CSlog(N) denote the number of observations
required to allow accurate reconstruction. In general rdete

PO mining N, analytically depends on the value of the constant

prob(N () = K) = K ¢ (9) ¢, a theoretical upper-bound for which is offered in [11].




. that K will be larger thanN; = CSlog(N) i.e. accurate

reconstruction can not be guaranteed, however, by choosing

o T [ S p carefully, reconstruction with a certain probabilify, is

i possible.

! ] Assumem sensors are selected for sampling, resulting in

correctly received packets at the FC, wher€ m. Therefore,

1 to ensure thatV, packets arrive at the FC collision-free, the

probability of sensor selectignhas to be such that the number

of selected sensors: is greater than the desired number of

observationsN,. This brings us to the question of how

should be selected to enable reconstruction with a certain
e probability. We will propose a design approach in section VI

TR T T et 0 but first let us look at some examples.

) ) ) ) A. Numerical Examples
Fig. 5. The average normalized reconstruction error iggdots. the number . . .
of measurementsA(), for a signal of sizeN = 1000 and with a sparsity ~ We consider a linear network consisting 6f = 1000

of § = 10. The desired num_ber of measur_emeN@ to obtain error-free equa”y spaced sensor nodes. Assume the physical quantity
reconstruction can be determined from the figure. of interest is fully-sparse in the frequency domain with a
sparsity ofS = 10. Furthermore, assunig. = 120 seconds,
each sensor is given a transmission bandwidthBof= 5
Kbps and each packet has a sizelof 1000 bits. Figure 6
shows the number of collision-free received packets as a

It turns out that the empir_ical value .(NS is typically.much function of the sensing probability. As seen in the figure,
smaller than the one obtained following the theoretCalAs there is an interplay between the number of measurements

an example, assume that we generate random sparse S'ggr%sthe number of collisions. While increasipgesults in a

with a S'Zef]\tfh: 1.000 ﬁnd ;ﬁspars;ty OSb: 12 and study _thet greater number of measurementsand thus could improve
recovery ot In€ signal for different number ot measurements, . accuracy of reconstruction, however, it also incredses

a noise-free setting. Figure 5 shows the average r_econsmgc robability of collision and after a certain point may even
error vs. the number of measurements. A,‘S seen In the figUi&rrease the number of collision-free packets received at
for appro_>gmate|yM = 70 recovery Is _attalneq with an €Mmoline FC and affect negatively on the reconstruction quality.
below10~*. Hence, a reasonable choice 19 is determined Figure 7(a) plots the average normalized reconstructioor er
as i = 10. . . . ) as a function ofp for a randomly generated sparse data. As
In the centralized sensing, ignoring packet losses due {8y in the figure, accurate reconstruction is possibleafor

channel fading, the nu_mber of received packets is the S_ameréﬁge of values of. Figure 7(b) shows the corresponding
the number of transmitted packet (= M). Thus choosing average power consumption of the network as a function

M = N, = CSlog(N) provides a sufficient number of o¢ \, " order to minimize the power consumption of the
packets at the FC.:' In this case,_the ”“mt_’er of nadlethat network while maintaining the quality of reconstructiom(o
can be deployed in the network is determined as the average), we choose the smallest valuep dbr which
accurate reconstruction is possible. In our simulations, w
MT, + 23 < Toon = log(N) < Toon — 2% usedCVX [12], a package _fqr _spe_cifying and solving convex
M > CSlog(N) 0g = 7CSTP programs, to solve thé -minimization.

However, one can empirically determifg as the number of
measurements for which the reconstruction error is nduiégi

VI. DESIGNAPPROACH

Let Px(k) = prob{K = k}. The overall probability
|istribution function forK is given by

In comparison Witr11 the conveDntionaI scheme in Eqg. (2), we
have thatN < T8 Weonn=23515) Consequently, by using
centralized random sensing jointly with TDMA as the channg
access method, significantly more nodes can be deployed in N

the network than in the benchmark case. Since sensor nodd¥x(k) = prob(K = k|M = m) prob(M = m)
are separated by a fixed sensing dista#icby increasing the m=k

number of sensors we can extend the coverage area of the N m P
network. Moreover, total power consumption of the network = > (k) (1= peot) "Proy " Prr(m) (11)
is reduced by a factor of. where M = CSlog(N). Note m=k

that the coverage extension and power saving are achievetkere Py, (m) is given by Eq. (8). The above expression does
at the cost of additional downlink communication from th@ot appear tractable. We thus turn to finding an approximatio
FC. In the distributed sensing case howev€rand M are for Pk (k). We conjecture thaf is binomial like M, with
both random variables. The fact that is a random variable the sameN but a probabilityg < p, i.e. K ~ B(N,q).
now has the following implication: There is no guarante€his is intuitively pleasing because the received packets a
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Fig. 6. Average number of collision-free received packgtss. p; simulation
parameters aréV = 1000, T,,; = 120 seconds and}, = 0.2 second.
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Fig. 7. Average normalized reconstruction errory$a) and the correspond-
ing power consumption (b); within the region where perfegtonstruction is
possible we pick the smallegtresulting in the least power consumption

Binomial(N,q)
0.06- — — _ Binomial(N,dg,)

I measured

N=1000
p=0.1
-2NBT /(T-T)

q=pe

P, (k)=P{K=k}

50 60 70 80 90 100
number of successful receptions, k

Fig. 8. Probability density function; Simulation paramstare Ng;,,, =
50000 simulation runsT, = 0.2 sec andl,, = 120 sec.

the same as transmitted packets minus random collisions. To
empirically verify the conjecture, we simulate the procasd
count the number of successfully received packets. Figure 8
shows the probability density function &f for an example set

of system parameters. In this figure, thg (k) obtained from
measurements is compared with that of an estimated model
B(N, ¢est) and a hypothesized mod& (N, ¢) where

Nsirn -
W 2im” k()
Qest = N
wherek(i) is the number of successfully received packets in

the i-th simulation run andVy;,, is the total number of runs,
and

NpTp

q=pe T

We note thatg and ¢.5; are very close and the resulting
binomial distributions closely match that ok, thus the
K process indeed seem to follow the binomial distribution
and there is very good agreement between the histogram
and B(N, q). Figure 9 shows the complementary cumulative
probability function@ x (k) from measurements, as well as for
B(N,q) and B(N, gest)-

For a givenN, let Ny = C'Slog(N) denote the number of
packets needed for reconstruction. We define the probabilit
of sufficient sensing as

prob{ K > N,} = Qk (N;)

Let us defineP; as the desired recovery probability, meaning
we would like the recovery to happen at the FC with proba-
bility P;. We need to determing, such that

QK(NS) Z Ps for q 2 qs (12)
Now, let ¢ = pe~ P, wherea = 2TN_7;€ . The so-obtained

value of ¢, is then used to determine ‘the underlyingand
« required to maintain Eq. (12). There are multiple solutions
to this equation. We want to identify the ones such that
T..n. Moreover, our design approach is to minimize the power
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Fig. 9. Complementary cumulative function; Simulation graeters are
Ngim = 50000 simulation runs,T), = 0.2 sec andl,,, = 120 sec.

Fig. 10. q(pe) vs. p for different values ofy; For a givengs a smallera
results in a smallep .

consumption, hence we want the solution yielding the sratlle

p. Figure 10 shows plots af(p, «) for different values of.

As we see in this figure, for a givep, the curve with a smaller [°]

« yields a smaller solution fgp. Hence, the smaller the the

smaller the probability. The smallesty is determined using [10]

T =T, to be

INT,

Apin = .
min Tcoh — Tp

(13)

VIl. CONCLUSION

In this paper, we proposed a simple power-efficient sensor
network scheme, denoted as RACS, which employs random
sensing and random channel access to deliver a subset of
sensor measurements to the FC. Coupling random access
with random sensing, we eliminated the need for duplexing.
We then used compressed sensing techniques to recover the
field from this random subset of measurements. Furthermore,
given a desired recovery probabilify;, we provided a design
methodology to determine the sensing probabilitysuch
that the FC recovers the field with the desired probability.
Under the assumption that most physical phenomena have
compressible (sparse) representation in the frequencyiiom
we showed that the proposed RACS scheme is capable of
recovering the measured field with a desired probabilityygis
considerably less resources than a conventional netwarte N
that power is a scarce resource in an underwater sensor
network due to the limited battery life of the nodes, therefo
saving power can extend the life-time of a network.
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Thus, the first step in the design approach is to solve;for

in Eq. (12). This can be done numerically for a givi§n The

second step is to find the underlyipgising the hypothesized
model forg given by ¢ = pe P*min  wherea,,;, is given by

Eq. (13). In summary, we have a design approach that avails
itself to a simplified model. Starting with a given number of
sensors and a frame siZé< T, this approximate model is
used to determine the sensing probabitityuch that recovery
happens with a desired probabilif§; at the FC.



