
Capacity of MIMO Systems in
Shallow Water Acoustic Channels

Andreja Radosevic†, Dario Fertonani††, Tolga M. Duman††, John G. Proakis†, and Milica Stojanovic‡

†University of California, San Diego, Dept. of Electrical and Computer Engineering, La Jolla, CA 92093
††Arizona State University, School of Electrical, Computer and Energy Engineering, Tempe, AZ 85287-5706

‡Northeastern University, Dept. of Electrical and Computer Engineering, Boston, MA 02115

Abstract—Underwater acoustic (UWA) channels are typically
characterized by a multipath structure with large delay spread,
where only a few propagation paths carry significant energy.
Each path exhibits time variability, which, together with the
transmitter and receiver motion, induces Doppler spreading and
shifting of the signal. In this paper, we analyze the limits on
the information rate achievable through multiple-input multiple-
output (MIMO) communications over UWA channels. Assuming
full channel state information (CSI) at the receiver, we evaluate
the ergodic capacity in two scenarios: one with partial CSI at
the transmitter, and another with no CSI. Also, we consider the
constrained capacity for practical modulations, e.g., BPSK and
QPSK, and, exploiting the sparseness of the multipath structure,
we provide new lower bounds on the achievable information rate.
Statistical characterization and numerical examples are given
based on the data collected in a recent experiment, conducted
off the coast of Kauai, Hawaii, in June 2008.

I. INTRODUCTION

In recent years, there has been an increased interest in under-
water acoustic communications due to a variety of applications
(e.g., in marine research, oceanography, and offshore oil
industry). Ongoing research investigates the design of systems
with improved performance and robustness, which requires the
physical nature of the channel to be captured through proper
channel modeling. This is a challenging problem because the
UWA channel is characterized by frequency-dependent path
loss, time-varying multipath propagation, and low propagation
speed (i.e., about 1500 m/s) [1]. Time variations of the
propagation paths, induced by the system motion as well
as by changes in the medium, result in Doppler spreading
and shifting of the signal. Also, since acoustic propagation
is best supported at low frequencies, the system is inherently
wideband. This fact is of particular importance because of the
large delay spreads that typically affect the UWA channels,
which cause inter-symbol interference (ISI) spanning tens or
even hundreds of symbol intervals in the case of wideband
single-carrier systems. However, the channel impulse response
is typically sparse, i.e., very few propagation paths carry
significant energy [1].
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Ray theory has been used to provide a deterministic (av-
erage) description of the multipath propagation. However, in
order to explore the communication limits of this complex
medium, a statistical description of the random time variations
of the channel is needed. Recent works [2], [3] provide a
short-term statistical characterization of the fading process,
showing that a Rician model with a slowly time-varying
parameterization satisfactorily matches the experimental data
collected at different sites. Hence, we will adopt a time-varying
Rician model for the information-theoretical analysis of the
UWA channels.

Growing interest in the use of MIMO systems and space-
time coding has been sparked by the information-theoretical
results in [4], [5], which showed that the ergodic capacity
of a fading channel increases linearly with the number of
transmit or receive elements, whichever is smaller. The ergodic
capacity of UWA MIMO channel is analyzed in [2], where a
Rician fading model is assumed, with rank-1 channel matrix
and no individual path dispersion. In this paper, we extend
these results to more realistic channel models with higher-
rank matrices and individual path dispersions. We consider
two different scenarios: in one the transmitter has partial CSI
and knows the statistics of the channel, while in the other it
has no CSI. In both scenarios, perfect CSI at the receiver is
assumed.

Besides the capacity analysis for unconstrained inputs, we
also investigate the ultimate information rate for practical con-
strained inputs, chosen from finite-order constellations such as
BPSK and QPSK. For this case, analytical results are available
that provide upper and lower bounds on the achievable infor-
mation rates [6] (see [7] for the extension of the bounds in [6]
to MIMO systems). Another approach is introduced in [8],
according to which we can obtain an unbiased estimate of the
information rate by running long simulations of the channel
and of the optimal maximum-a-posteriori detector, i.e., the
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm. Unfortunately,
this second approach is infeasible for an UWA environment
since the complexity of the BCJR algorithm exponentially
grows with the delay spread of the equivalent discrete-time
channel model, which, in UWA channels, can be on the order
of hundreds of symbols. In this paper, we present a novel
approach that, by exploiting the sparseness of the channel



impulse response, allows us to compute lower bounds on the
achievable information rate that improve upon those in [7].

The paper is organized as follows. In Section II, we in-
troduce the equivalent discrete-time channel model. In Sec-
tion III, we provide a capacity analysis for UWA MIMO
systems with unconstrained inputs. In Section IV, we consider
constrained inputs, presenting new bounds on the information
rate and comparing them with the existing ones. Finally, in
Section V, we give concluding remarks.

II. CHANNEL MODEL

Let us define a discrete-time equivalent baseband channel
model for the MIMO system under consideration. Assuming a
spatially correlated channel with Nt transmit and Nr receive
elements, the channel matrix of size Nr ×Nt is given by

H[n,m] =
L∑
l=0

Hl[m]δ[n− l], (1)

where m is the time index, n denotes the delay, and Hl[m]
is the l-th tap gain matrix at time m. More insights into
the channel model are provided in Figure 1. We remark
that typically very few channel taps contain energy as a
consequence of the sparseness of the UWA channels.

Assuming a Rician model, we can write

Hl[m] =
√

Ωlkl
kl + 1

H̄l +
√

Ωl
kl + 1

H̃l[m], (2)

where kl and Ωl are the k-factor and the average power of
the l-th tap, respectively, with {Ωl} representing the MIMO
multipath delay profile of the channel, normalized according
to the constraint

∑
l Ωl = 1. Moreover, H̄l is a deterministic

matrix (i.e., the mean-value matrix of the Rician process)
whose Frobenius norm is normalized to

∥∥H̄l

∥∥2

F
=NtNr for all

values of l, while H̃l contains the random channel components
and can be written as

H̃l = Θ1/2
R,l H̃ω,lΘ

1/2
T,l , (3)

where H̃ω,l is an Nr × Nt matrix of independent zero-mean
complex Gaussian random variables whose Frobenius norm
is
∥∥H̃ω,l

∥∥2

F
= NtNr for all values of l, and ΘR,l and ΘT,l

are the receive and the transmit correlation matrices of the l-
th tap. We assume that different taps are uncorrelated, i.e.,
the only correlation in the channel is among the elements
of the l-th tap, which is defined by ΘR,l and ΘT,l. This
assumption is justified for wideband acoustic systems in which
the uniformly-spaced taps of the discrete-time model (1) can
be associated with the physical propagation paths. We also
assume that all the elements of the tap with index l have the
same distribution, characterized by Ωl and kl. According to
(1), we denote by L the total extent of ISI in our channel
model. We also denote by L′ the number of significant ISI taps,
i.e., those taps whose energy is above a pre-specified threshold
— in our experimental environment we found L′ � L. In
the following analysis we assume that the channel is affected
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Fig. 1. Pictorial example of a sparse MIMO channel, with focus on the
impulse response hl related to the transmit/receive pair (nt, nr).

by additive white Gaussian noise (AWGN) modeled as an
Nr × 1 circularly symmetric complex Gaussian vector with
independent and identically distributed (i.i.d.) elements, with
zero mean and variance 1/2 per complex component.

III. ERGODIC CAPACITY

An underwater acoustic channel is characterized by
frequency-selective fading and requires dealing with the mem-
ory in the channel as described in (1). Therefore, the analysis
of the ergodic capacity is to be based on the observation
of large input/output signal vectors. Following the treatment
in [9], we will study the system under the assumption that the
channel can be considered constant for M consecutive time
indices, where the choice of the value of M is driven by the
coherence time of the channel. Also, we will assume that the
only constraint on the signal at the channel input is that the
average transmission power cannot exceed P .

For each length-M block, the problem of the capacity
evaluation can be conveniently approached in the frequency
domain, adopting the input-output relationship [9]

Y = HX + W , (4)

where X is the MNt × 1 space-time vector representing
the input block, Y and W are MNr × 1 space-time vectors
representing the output block and the noise, respectively, and
H is the MNr×MNt block-diagonal channel matrix induced
by (1). In practice, as discussed in [9], a Rician frequency-
selective MIMO channel can be represented in the frequency
domain as a set of M parallel independent MIMO channels,
with different channel gains given by [9]

Gi =
L∑
l=0

Hle
−j2πl(i/M), (5)
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Fig. 2. Ergodic capacity of a 2 × 2 system for uniform-like eigenvalue
distribution of the matrices of the channel mean values.

where i specifies the frequency bin. We recall that we are
studying the channel over M units of time in which it does
not change, so that the dependence of Hl on the time index
can be omitted in (5). The ergodic capacity of the system is
equal to the sum of the jointly-maximized information rates
for each of the M sub-bands, so that the spectral efficiency
yields

E

{
1
M

M−1∑
i=0

Ii

}
, (6)

where
Ii = log2

∣∣∣INr +GiRxx[i]GH
i

∣∣∣
is the information rate for the i-th sub-channel, and Rxx[i] =
E{xixHi } is the covariance matrix of the Nt × 1 complex
Gaussian vector xi at the input of the i-th sub-channel. If
we assume, for simplicity, that ΘR,l and ΘT,l are identity
matrices, the columns of the matrix Gi become uncorrelated
with different mean values Ḡi, due to the presence of the full-
rank matrix of the mean values H̄l. This assumption on the
channel matrices implies that the distribution of Ii depends
on i, unlike for the case of Rayleigh fading [10], where all
frequency bins show the same statistical description.

If no CSI is available at the transmitter side, for all sub-
channels we have the identity matrix as the optimal solu-
tion for the covariance matrix, corresponding to the optimal
signaling strategy in Rayleigh fading [4]. In the case of
partial CSI (i.e., the channel statistics are known, but not the
specific realizations), there is no closed-form solution for the
ideal transmission strategy. The optimal solution for all flat-
fading sub-bands is provided in [11] using a semi-analytical
approach where the eigenvectors of the optimal covariance
matrix are identical to the eigenvectors of ḠiḠ

H
i and the

optimal eigenvalues are computed based on the iterative power
allocation algorithm. Even though this strategy is not the
water-filling solution corresponding to the complete CSI at
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Fig. 3. Ergodic capacity of a 2× 2 system for non-uniform-like eigenvalue
distribution of the matrices of the channel mean values.

the transmitter, it is similar. In fact, the eigenvector structure
indicates that the transmission strategy attempts to decorrelate
the channel output, at least on average. This solution, due to
the non-orthogonality of the parallel channels after eigenvector
decorrelation, cannot avoid part of the power transmitted on
each eigenvector spilling as interference onto other channels
(which is a consequence of not having full CSI). Beside this
semi-analytical optimal solution, we consider a sub-optimal
heuristic solution previously discussed in [2] in the UWA
context, and originally proposed in [12]. For the full-rank
matrix of the channel mean values in (1), the covariance matrix
for the i-th sub-band is given by

Rxx[i] =
P

MNt(1 + k[i])
(INt + k[i]ΨNt [i]), (7)

where k[i] is the Rician k-factor for the i-th sub-band, and
ΨNt

[i] is the Nt×Nt matrix that provides exact water-filling
solution in the case of deterministic channel with AWGN when
k[i] → ∞. The rationale behind this idea is to exploit the
knowledge of the Rician k-factor by linearly combining the
optimal solutions for the covariance matrix in two limiting
scenarios: Rayleigh fading and deterministic channel [2].

In Fig. 2 and Fig. 3 we illustrate the ergodic capacities
for two different 2 × 2 MIMO systems. The channel param-
eters have been set according to the data collected in the
Kauai Acomms MURI 2008 (KAM08) experiment, which was
conducted in shallow water off the western coast of Kauai,
Hawaii, in June 2008. In both cases, the channel has L = 52
ISI taps, L′ = 3 of which are significant, with Ω0 = 0.25,
Ω21 = 0.5, Ω34 = 0.15 and Ω52 = 0.1 — we recall
that the tap with index 0 is not considered an ISI tap. The
values of kl are all equal to 10, and the correlation between
different transmit/receive pairs is neglected (ΘR,l = INr and
ΘT,l = INt

). The results of Fig. 2 refer to a channel where
all H̄l’s in (2) are different full-rank matrices. In this case
the eigenvalue distribution of the matrix of the channel mean



values for each sub-band tends to a uniform distribution. We
note that the channel capacity is slightly greater than the
capacity of the Rayleigh fading channel which is presented as a
reference. Despite the sub-optimality of the heuristic solution,
we observe a degradation in its performance with respect to the
optimal one only at low SNR. Even though it is a sub-optimal
solution, due to the low complexity of implementation, it
seems to be a convenient choice for system design. The results
of Fig. 3 refer to a channel where we assume that all full-
rank matrices of the channel mean values are identical, which
will result in non-uniform eigenvalue distribution unlike in the
previous scenario. Clearly, the channel capacity is degraded
in comparison with the results presented in Fig. 2. We also
note that the sub-optimal solution causes a more significant
degradation than in the former case, which suggests that
the heuristic solution is more effective when the eigenvalue
distribution of the matrix of the channel mean values tends to
a uniform distribution.

IV. INFORMATION RATE FOR STANDARD MODULATIONS

The ergodic capacity investigated in the previous section
gives the performance limit of the system according to the
Shannon’s definition, which relies on the concept of infinitely-
long codewords and allows the use of arbitrary input alpha-
bets [13]. However, in any practical communication system,
the codewords adopted to protect the information are of finite
length and the input alphabet is a finite-order constellation
such as BPSK, QPSK, or QAM. In this section, we investi-
gate the performance limit of the system under the practical
constraints of finite-length codewords and independent and
uniformly distributed (i.u.d.) inputs, drawn from finite-order
modulation alphabets. Specifically, our analysis is carried out
under the assumption of quasi-static channel, according to
which the codeword length is much lower than the coherence
time of the channel, so that each transmitted codeword sees a
time-invariant channel. Hence, the problem reduces to charac-
terizing the constrained capacity (also known as information
rate) of time-invariant frequency-selective MIMO systems
with finite-order modulation alphabets. Clearly, because of
the time evolution, different codewords may see different
channel realizations, each supporting a different information
rate. The aim of this work is to characterize the information
rate supported by a specific realization of the MIMO channel,
and not to give a statistical characterization of the system in
terms of outage capacity [13], i.e., evaluate the fraction of time
that a given information rate is supported by the time-varying
channel.

The information rate supported by a time-invariant MIMO
channel can be expressed as [13]

I(X;Y ) = lim
N→∞

I(X1, X2, . . . , XN ;Y1, Y2, . . . , YN )
N

, (8)

where, for each time index n, Xn is the Nt × 1 channel
input vector and Yn is the Nr × 1 channel output vector.
Currently, no single-letter expression of the information rate

in (8) is available [7], [8]. In principle, we can obtain an
estimate of the information rate as accurately as desired by
means of the simulation-based algorithm described in [8].
This approach requires the simulation of a full-complexity
BCJR receiver that processes a trellis with |X|NtL states,
where |X| is the cardinality of the modulation alphabet. For
example, in a 2×Nr system adopting QPSK over a channel
with memory L = 3, the number of states is 42·3 = 4096.
Unfortunately UWA channels are often characterized by large
values of L, which makes the adoption of the simulation-
based algorithm infeasible — the data collected in the KAM08
experiment show values of L on the order of 50 symbols.
Hence, to the best of our knowledge, the only tools for the
characterization of the information rate of UWA channels with
large memory are the analytical bounds presented in [7], which
are the extension of the bounds proposed in [6] to MIMO
channels. Specifically, the author of [7] introduced a provable
upper bound (UB) on the achievable information rate, together
with a provable lower bound (LB) and a conjectured LB. Such
bounds are shown in Fig. 4 for two different realizations of
the UWA channel with memory L = 52 already considered in
Fig. 2 and Fig. 3. Note that, in both cases, the gap between the
upper and lower bounds is significant, which does not allow
us to satisfactorily characterize the information rate of interest.
In the following, we introduce two new lower bounds that are
much tighter than the existing ones.

Let us consider an arbitrary MIMO receiver that, processing
the received samples {Yn}, produces the decisions {Zn}.
For example, in the case of hard-output detection, Zn is
the estimate of the symbol Xn transmitted at time n, and
thus belongs to the signaling constellation. In general, we
can consider soft-output detection, in which case Zn does
not necessarily belong to the signaling constellation. In both
cases, the data-processing inequality [13] guarantees that the
information rate

I(X;Z) = lim
N→∞

I(X1, X2, . . . , XN ;Z1, Z2, . . . , ZN )
N

(9)

is lower than I(X;Y ). The mutual information in (9) still in-
volves infinite-length sequences, which makes it impractical to
compute when the channel and the receiver have memory. On
the other hand, the chain rule for the mutual information [13]
guarantees that I(X;Z) is lower bounded by

ILB = I(Xn;Zn) (10)

for each value of the time index n at which the system is not
affected by border effects due to the channel variations. Note
that the evaluation of ILB requires computing the mutual infor-
mation between elements of the sequences, and not between
the whole sequences as in (9). Hence, we can evaluate ILB

first by collecting the joint statistics of Xn and Zn through
long simulations of the channel and the receiver, and then by
numerically computing the mutual information I(Xn;Zn).

The specific receiver adopted for the computation of the
lower bound in (10) does not affect its validity, but does
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Fig. 4. Comparison of various bounds on the information rate of a 2× 2 system with BPSK inputs. The two plots refer to two different realizations of the
channel matrix, both randomly generated according to the same fading distribution.

affect its tightness. In fact, the value of ILB gives the ulti-
mate information rate supported by a system adopting that
specific receiver, when concatenated with a fully-interleaved
outer code [14]. Hence, the better the receiver, the tighter
the lower bound. We have considered several receivers in
the literature and found that the best performance/complexity
tradeoff is provided by that proposed in [15]. The most
attractive feature of this receiver is its complexity, which is
proportional to |X|NtL

′
and thus increases exponentially not

with the channel memory L (as in the BCJR algorithm),
but with the number of non-zero taps L′. The advantage is
very clear in the case of the UWA channel considered in the
examples given throughout the paper, where we have L′ = 3
and L = 52. The value of ILB provided by the adopted
receiver is shown in Fig. 4 for the soft-decision (SD) version
originally proposed in [15] as well as for the hard-decision
(HD) version induced by the original one. Note that the SD-
LB significantly improves the existing bounds, and even the
HD-LB is satisfactory at low SNR values. Interestingly, Fig. 4
also shows that the gap between the upper and lower bounds
depends on the specific channel realization.

V. CONCLUSIONS

We have investigated the ultimate information rate achiev-
able by MIMO communications over time-varying UWA chan-
nels. Considering a slowly-varying Rician model for the fading
process, we have first evaluated the channel capacity with av-
erage transmission-power constraint. Under the assumption of
full CSI at the receiver, we have analyzed two different scenar-
ios: one with partial CSI at the transmitter, and another with no
CSI. The transmission rate limits have been studied under the
practical constraint of independent and uniformly distributed
inputs drawn from finite-order constellations. Particularly, we
have presented new lower bounds on the information rates,
making use of a sparse channel representation. These bounds
improve upon the existing ones, and indicate the utility of
receivers that exploit the sparseness of the multipath structure.
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