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Avoiding Interruptions - a QoE Reliability Function
for Streaming Media Applications†
Ali ParandehGheibi, Muriel Médard, Asuman Ozdaglar, Srinivas Shakkottai

Abstract—We take an analytical approach to study funda-
mental rate-delay-reliability trade-offs in the context of media
streaming. We consider the probability of interruption in media
playback (buffer underflow) as well as the number of initially
buffered packets (initial waiting time) as the Quality of user
Experience (QoE) metrics. We characterize the optimal trade-
off between these metrics as a function of system parameters
such as the packet arrival rate and file size, for different channel
models. In the first model, we assume packets arrive according to
independent Poisson processes from multiple servers or peers. We
use random linear network coding to simplify the packet requests
at the network layer and avoid duplicate packet reception. This
allows us to model the receiver’s buffer as a queue with Poisson
arrivals and deterministic departures. For this model, we show
that for arrival rates slightly larger than the play rate, the
minimum initial buffering required to achieve certain level of
interruption probability remains bounded as the file size grows.
This is not the case when the arrival rate and the play rate
match. In the second model, we consider channels with memory,
which can be modeled using Markovian arrival processes. We
characterize the optimal trade-off curves for the infinite file size
case, in such Markovian environments.

I. INTRODUCTION

Peer-to-peer networks (P2P) are a fast-growing means of
video delivery. It has been estimated that between 35-90%
of Internet bandwidth is consumed by P2P applications [2],
[3]. Today, P2P file-sharing networks are seeing a drop in
popularity [4], but the original file sharing ideas are being
used for video streaming in networks such as PPLive [5]
and QQLive [6]. As smart phones become the medium of
choice for Internet media access, P2P video distribution over
the wireless medium is likely to gain significance.

Our goal in this paper is to understand the fundamental
trade-offs among end-user rate, delay and reliability metrics
in the context of video streaming. For communication over a
noisy channel (physical layer), the following equation captures
the essence of such trade-offs from an information theoretic
point of view:

Probability of error = e−E(R)·(block length), (1)

where E(R) is the error exponent (reliability function), which
depends on rate R and the properties of the channel. The block
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length is considered as the delay metric, and probability of re-
covering the original block of symbols captures the reliability
of communication. The delay-reliability trade-off is governed
by the error exponent, which is an increasing function of the
distance between the rate, R, and the channel’s capacity. In
this work, we establish similar rate-delay-reliability trade-offs
for media streaming applications.

P2P video streaming is generally accomplished by dividing
the video file into blocks, which are then further divided into
packets for transmission. After each block is received, it can
be played out by the receiver. In order to ensure smooth
sequential playback, a fresh block must be received before
the current block has been played. If such a fresh block
is not available the playback stops, causing a negative user
experience. Blocks may be buffered in advance of playing out
in order to provide a level of protection against a playback
interruption. Hence, there is a trade-off between the initial
waiting time and likelihood of playback interruptions.

In this paper, our main objective is to characterize the
amount of buffering needed for a target probability of playback
interruption over the duration of the video. However, since
the wireless channel is unreliable, packets cannot be obtained
deterministically. Thus, our question is how much should we
buffer prior to playback in order to account for wireless
channel variations?

We first consider the problem of streaming a media file of
finite size from multiple servers (peers) to a single receiver.
We assume that each server can effectively transmit packets
according to an independent Poisson process. We use random
linear network coding to simplify the packet requests at the
network layer and avoid duplicate packet reception. This
allows us to model the receiver’s buffer as an M/D/1 queue. We
then provide upper and lower bounds on the minimum initial
buffering required so that the playback interruption probability
is below a desired level. The optimal trade-off between the
initial buffering and the interruption probability depends on
the file size as well as the playback rate compared to the arrival
rate of the packets. Our bounds are asymptotically tight as the
file size tends to infinity. Moreover, when the arrival rate and
the play rate match, we show that the minimum initial buffer
size grows as the square-root of the file size. However, if the
arrival rate is slightly larger than the play rate, the minimum
initial buffering for a given interruption probability remains
bounded as the file size grows. In particular, for the infinite
file size case, we establish the following relation

Probability of interruption = e−I(R)·(initial buffering), (2)

where we define I(R) as the interruption exponent or reliabil-
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ity function in analogy with (1). In (2), the reliability metric
(interruption probability) is related to the delay metric (initial
buffering) via the reliability function I(R). We further study
the problem of streaming an infinite file size over channels
with memory, which are modeled using Markov modulated
arrival processes. We establish a relation similar to (2), and
characterize the interruption exponent.

There is significant work in the space of P2P streaming.
Close to our work, [7], [8], [9], [10] develop analytical
models on the trade-off between the steady state probability of
missing a block, and buffer size under different block selection
policies for live streaming in a full mesh P2P network with
deterministic channels. A further modification is to use random
linear network coding techniques [11] to make block selection
simpler [12], [13], [14], [15] in the wired and wireless context.
In contrast, we focus on a very different scenario of streaming
of pre-prepared content over unreliable wireless channels using
network coding. Further, our analysis is on transient effects—
we are interested in the first time that video playback is
interrupted as a function of the initial amount of buffering.
In another related work Liang and Liang [16] and Luan et
al. [17] address a similar problem mainly through extensive
simulations or diffusion approximation, but their analytical
bounds does not provide any further insight on system design
in terms of system parameters such as the file size.

For infinite file sizes, the techniques we use to compute the
optimal trade-off curves, are similar to those used in the liter-
ature of Ruin Theory [18], which study insurer’s vulnerability
to insolvency. In particular, Reinhard [19] employs a system
of integro-differential equations to characterize the non-ruin
probabilities of an insurer with constant premium rates and
exponentially distributed claim amounts in a Markovian envi-
ronment. For the finite file size case, we need to characterize
hitting probabilities of crossing a time-varying threshold for
which such methods are not effective. Our work could be
of independent interest since it provides novel techniques for
characterizing the trade-offs with finite file sizes.

The rest of this paper is organized as follows. In Section
II, we give an overview of a media streaming system with
network coding. In Section III, we present the system model
and formally define QoE metrics. Section IV is dedicated to
characterization of the optimal trade-off curves for Poisson
arrivals. In Section V, we generalize these results to case of
Markov modulated arrival processes. We verify our analytical
results numerically in Section VI. Finally, concluding remarks
and extensions are discussed in Section VII.

II. SYSTEM OVERVIEW

We consider a media streaming system as follows. Media
files are divided into blocks consisting of multiple frames.
The video coding is such that all the frames in the block need
to be available before any frames can be played. Blocks are
requested in sequence by the playback application from the
user-end. The server (or other peers) packetize the requested
block and transmit them to the user as in Figure 1. Requesting
packets form a single peer may cause delays due to channel
uncertainty. However, requesting each packet from multiple
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Fig. 1. The media player (application layer) requires complete blocks. At
the network layer each block is divided into packets and delivered.

peers introduces the need to keep track of packets, and the
duplicate packet reception problem. This is alleviated by using
random linear network coding. Here, instead of requesting
a particular packet in block i, the receiver simply requests
a random linear combination of all the packets in block i.
The coefficients of each combination are chosen uniformly
at random from a Galois field of size q. The coded packets
delivered to the receiver can be thought of as linear equations,
where the unknowns are the original packets in block i. Block
i can be fully recovered by solving a system of linear equations
if it is full rank. It can be shown that if the field size q is large
enough, the received linear equations are linearly independent
with very high probability [11]. Therefore, for recovering a
block of W packets, it is sufficient to receive W coded packets
from different peers. In a P2P system, it is unlikely that a
randomly contacted peer would have all packets corresponding
to a particular block. However, storing blocks in a random
linear coded fashion ensures that the selected peer has a useful
equation to offer (see [14] for further discussion).

Note that such random linear coding does not introduce
additional decoding delay for each block, since the frames
in a block can only be played out when the whole block
is received. So there is no difference in delay whether the
end-user received W uncoded packets of the block or W
independent coded packets that can then be decoded.

III. SYSTEM MODEL AND QOE METRICS

Consider a single user receiving a media file from various
peers it is connected to. Each peer could be a wireless
access point or another wireless user operating as a server.
We assume that the media file consists of T packets that
are divided into blocks of W packets. Each server sends
random linear combinations of the packets within the current
block to the receiver. We assume that the linear combination
coefficients are selected from a Galois field of large enough
size. Moreover, we assume that the block size W is small
compared to the total length of the file, but large enough
to ignore the boundary effects of moving from one block
to the next. Time is continuous, and the arrival process of
packets from each peer is a Poisson process independent of
other arrival processes. Since no redundant packet is delivered
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from different peers, we can combine the arrival processes into
one Poisson process of rate R. We normalize the playback
rate to one, i.e., it takes one unit of time to play a single
packet. Thus, our simplified model is just a single-server-
single-receiver system. We also assume that the parameter R
is known at the receiver, which first buffers D packets from
the beginning of the file, and then starts the playback. The
dynamics of the receiver’s buffer size Q(t) can be described
as follows

Q(t) = D +A(t)− t, (3)

where D is the initial buffer size and A(t) is a Poisson process
of rate R. The presence of some packets in the buffer does not
guarantee that there will be no interruption since we require
W packets corresponding to a block before it can be decoded
and played out. However, if there are at least W packets in
the buffer, there is at least one playable packet. We declare an
interruption in playback when the buffer size decreases to the
threshold W . For simplicity of notation, we assume that an
extra block is initially buffered (not taken into account in D).
Hence, we can declare an interruption in playback when the
buffer size reaches zero before reaching the end of the file.
More precisely, let

τe = inf{t : Q(t) ≤ 0}, τf = inf{t : Q(t) ≥ T − t}, (4)

where τf corresponds to time of completing the file download,
because we have already played τf packets and the buffer
contains the remaining T−τf packets to be played. The media
streaming is interrupted if and only if τe < τf .

We consider the following metrics to quantify Quality of
user Experience (QoE). The first metric is the initial waiting
time before the playback starts. This is directly captured by
the initial buffer size D. Another metric that affects QoE is
the probability of interruption during the playback denoted by

p(D) = Pr{τe < τf}, (5)

where τe and τf are defined in (4). In our model, the user
expects to have an interruption-free experience with proba-
bility higher than a desired level 1 − ε. Note that there is
a fundamental trade-off between the interruption probability
ε and the initial buffer size D. For example, owing to the
randomness of the arrival process, in order to have zero
probability of interruption, it is necessary to fully download
the file, i.e., D = T . Nevertheless, we need to buffer only a
small fraction of the file if user tolerates a positive probability
of interruption. These trade-offs and their relation to system
parameters R and T are addressed in the following section.

IV. OPTIMAL QOE TRADE-OFFS

We would like to obtain the smallest initial buffer size so
that the interruption probability is below a desired level ε,
which is denoted by

D∗(ε) = min{D ≥ 0 : p(D) ≤ ε}, (6)

where p(D) is the interruption probability defined in (5).
Note that in general p(D) and hence D∗(ε) depend on the
arrival rate R and the file size T which are assumed to to be
known. In the following we characterize the optimal trade-off

between the initial buffer size and the interruption probability
by providing bounds on D∗(ε). An upper bound (achievability
theorem) on D∗(ε) is particularly useful, since it provides
a sufficient condition for desirable user experience. A lower
bound (converse theorem) of D∗(ε) is helpful to show that the
provided upper bound is close to the exact value. The proofs
of the main theorems are included in the appendix.

Theorem 1. [Achievability] Let D∗(ε) be defined as in (6),
and I(R) be the largest root of γ(r) = r +R(e−r − 1), i.e.,

I(R) = sup{r : γ(r) = 0}. (7)

(a) For all R > 1,

D∗(ε) ≤ 1

I(R)
log
(1

ε

)
. (8)

(b) For all 0 ≤ R ≤ 1 +
(

1
2T log

(
1
ε

)) 1
2

,

D∗(ε) ≤ min
{
T (1−R) +

(
2TR log

(1

ε

)) 1
2

,

1

I(R)
log
(1

ε

)}
. (9)

When the arrival rate R is smaller than one (the playback
rate), the upper bound in Theorem 1 consists of two com-
ponents. The first term, T (1− R), compensates the expected
number of packets that are required by the end of [0, T ] period.

The second component,
(

2TR log
(
1
ε

)) 1
2

, compensates the
randomness of the arrivals to avoid interruptions with high
probability. Note that this term increases by decreasing the
maximum allowed interruption probability, and it would be
zero for a deterministic arrival process. For the case when
the arrival rate is larger than the playback rate, the minimum
required buffer size does not grow with the file size. This is so
since the buffer size in (3) has a positive drift. Hence, if there
is no interruption at the beginning of the playback period, it
becomes more unlikely to happen later.

In the following, we show that the upper bounds presented
in Theorem 1 are asymptotically tight, by providing lower
bounds on the minimum required buffer size D∗(ε), for
different regimes of the arrival rate R. Let us first define the
notion of a tight bound.

Definition 1. Let D̂ be a lower or upper bound of the
D∗(ε), which depends on the file size T . The bound D̂ is an
asymptotically tight bound if |D̂−D

∗(ε)|
D∗(ε) vanishes as T goes to

infinity.

Theorem 2. [Converse] Let D∗(ε) be defined as in (6), and
I(R) be given by (7). Then

(a) For all R > 1,

D∗(ε) ≥ − 1

I(R)
log
(
ε+ 2e−

(R−1)2

4(R+1)
T
)
. (10)

(b) For each R ≤ 1 and ε ≤ 1
16 , if T ≥ C log

(
1
ε

)
for a

constant C, then

D∗(ε) ≥ T (1−R) +
1

2

(
2TR log

(1

ε

)) 1
2

.(11)
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Fig. 2. The reliability function (interruption exponent) defined in (7) for the
Poisson arrival process. Simple lower and upper bounds are given by Lemma
1.

Note that the inequality (11) in part (b) of Theorem 2 does
not hold for all ε. In fact, we can show that D∗(ε) < T (1 −
R) for a large interruption probability ε. In the extreme case
ε = 1, it is clear that D∗(ε) = 0. Nevertheless, since we
are interested in avoiding interruptions, we do not study this
regime of the interruption probabilities. Comparing the lower
bounds obtained in Theorem 2 with the upper bounds obtained
in Theorem 1, we observe that they demonstrate a similar
behavior as a function of the parameters T and R.

Corollary 1. The upper bounds and lower bounds of D∗(ε)
given by Theorems 1 and 2 are asymptotically tight, if R > 1,
or R < 1 and ε ≤ 1

16 .

Corollary 2. Let p(D) be the interruption probability defined
in (5). For the case of R > 1, and infinite file size, T = ∞,
we have

p(D) = Pr
{

min
t≥0

Q(t) ≤ 0
}

= e−I(R)D, for all D ≥ 0,

(12)
where I(R) is defined in (7).

Proof: The proof simply follows from Theorems 1 and
2, and continuity of the probability measure.

Corollary 2 relates the reliability of media playback (inter-
ruption probability) to delay in media playback (initial buffer
size) via the reliability function, I(R). The reliability function
or interruption exponent depends on the rate and distribution
of the arrival process, i.e., properties of the communication
channel. Figure 2 plots the reliability function I(R) as a func-
tion of the arrival rate. Observe that as the ratio of the arrival
rate and the playback rate increases, so does the reliability
function. When arrival and playback rates match, the reliability
function is zero. This behavior is reminiscent of the error
exponent of a noisy communication channel, i.e., the error
exponent is zero when the rate is equal to the capacity, and
is increasing in the distance between the communication rate
and the capacity. In the context of media streaming, Corollary
2 provides an analogue of the error-exponent characterizations
that capture the delay-rate-reliability trade-off of block channel
codes used for communication over noisy channels.

Thus far, we have studied the QoE trade-offs for media

1 2
λ2

1 2

λ1R1 R2

Fig. 3. Two-state Markov process used to model the burstiness of packet
arrivals. λ1 and λ2 denote transition rates.

streaming applications with Poisson arrivals. This model does
not capture the burstiness of the traffic often associated with
correlated losses over a wireless channel. In the following, we
generalize the results of this section to the case where packets
arrive according to a Markovian process. These results are
analogous to error exponent characterization of channels with
memory such as the Gilbert-Elliot channel [20].

V. QOE TRADE-OFFS FOR BURSTY TRAFFIC (MARKOVIAN
CHANNELS)

Consider a media streaming scenario from a server to a
single receiver. In this part, we focus on the case where the
media file size is infinite, and the packet arrival rate is strictly
larger than the playback rate (normalized to one). The packet
arrival process is governed by a two-state continuous time
Markov process depicted in Figure 3. For each state i, λi
denotes the transition rate from state i to the other state.
We may verify that the stationary distribution of this Markov
process is given by πi = 1− λi

λ1+λ2
, i = 1, 2.

Let the packets arrive at the receiver according to some
stationary stochastic process with rate Ri, when the underlying
Markov process is in state i. Throughout this work, we assume
that R1 and R2 are such that the average arrival rate is larger
than the playback rate, i.e.,

R̄ =
∑
i=1,2

πiRi =
λ2R1 + λ1R2

λ1 + λ2
> 1. (13)

For R̄ < 1, the receiver’s queue-length has a negative
drift and interruption occurs almost surely for any finite
initial buffer size. For a Markovian channel, the interruption
probability not only depends on D, but also on the initial state.
Let pi(D) be the interruption probability, when the initial state
of the underlying Markov process is i, and the initial buffer
size is D. In the following, we study QoE trade-offs for various
scenarios of Markovian packet arrival processes.

A. Markovian Channels with Deterministic Arrivals

In this part, we focus on the case where the packet arrival
process is deterministic with rate Ri, when the underlying two-
state Markov process is in state i. The trade-off between the
interruption probability and the initial buffer size is character-
ized next.

Theorem 3. Consider the Markov process depicted in Figure
3. Let the arrival process at the receiver be deterministic with
rate Ri, when in state i. If R1 > 1 > R2 and (13) holds, then

p1(D) =
ρ1
ρ2
e−(ρ2−ρ1)D, p2(D) = e−(ρ2−ρ1)D, (14)



5

Fig. 4. The reliability function, ρ2−ρ1, given by Theorem 3 for the Gilbert-
Elliot channel with deterministic arrivals. Here, λ1 = λ2 = 1, and R2 = 0.8.

where ρi = λi
|Ri−1| , for i = 1, 2.

Proof: Since we are considering the infinite file size case,
the interruption probability starting from any particular time,
only depends on the queue-length and the state of the Markov
process at that time. For any D,h ≥ 0, write

pi(D) = λihp−i
(
D + (Ri − 1)h

)
+(1− λih)pi

(
D + (Ri − 1)h

)
+ o(h), i = 1, 2,

where −i denotes the index of the state other than i, and o(h)
denotes the terms that vanish faster than h, as h goes to zero.
Dividing by h and letting h tend to 0, we get

∂pi(D)

∂D
= ρi

(
p1(D)− p2(D)

)
, i = 1, 2, (15)

with the boundary condition pi(∞) = 0. The assumption in
(13) is necessary for this boundary condition to hold. Using
(15) together with the boundary condition, we have p1(D) =
ρ1
ρ2
p2(D). Replacing this relation back in (15) for i = 2, we

obtain a differential equation for p2(D)

∂p2(D)

∂D
= ρ2

(
ρ1
ρ2
− 1

)
p2(D),

which has the solution p2(D) = c1e
−(ρ2−ρ1)D + c2. Observe

that c2 = 0 by the boundary condition. Since R2 < 1, we also
have p2(0) = 1. Hence, c1 = 1, that proves the claim in (14).

We observe similar exponential decay in the interruption
probability as in Corollary 2. The interruption exponent (reli-
ability function) given by ρ2−ρ1 is increasing in R1 and R2.
Figure 4 plots the reliability function, ρ2 − ρ1, as a function
of R1, when R2 = 0.8 and λ1 = λ2 = 1. Observe that
the reliability function goes to zero as the average arrival
rate R̄ approaches the playback rate. It is worth mentioning
that for a fixed average arrival rate, as λ1 and λ2 increase
the mixing time of the Markov process decreases and the
hence, the arrival process tend to look deterministic with rate
R̄ > 1. Therefore, larger reliability function is achieved. This
behavior is similar to that of the conventional Gilbert-Elliot
communication channel [20].

Note that the characterization of the trade-off curve is trivial
for the case where R1, R2 > 1. In this case, pi(D) = 0, for
i = 1, 2.

B. Markovian Channels with Poisson Arrivals

We consider a two-state Markov modulated Poisson process
as the packet arrival process. The Poisson arrivals allow us to
model the channel variations in small time scales, while the
underlying Markov process models the large scale changes
in the environment. Next, we characterize the interruption
probabilities as a function of the initial state and buffer size.

Theorem 4. Consider the two-state Markov process depicted
in Figure 3. Let the arrival process at the receiver be Poisson
with rate Ri, when in state i. If the average arrival rate is
larger than the playback rate, i.e., (13) holds, then

p1(D) = c11e
−s1D+c12e

−s2D, p2(D) = c21e
−s1D+c22e

−s2D,
(16)

where s1 < s2 are the positive roots of the characteristic
function

Φ(s) = (s+R1(e−s−1)−λ1)(s+R2(e−s−1)−λ2)−λ1λ2,
(17)

and

ci1 =
s2 +Ri(e

−s2 − 1)

(s2 − s1) +Ri(e−s2 − e−s1)
,

ci2 = − s1 +Ri(e
−s1 − 1)

(s2 − s1) +Ri(e−s2 − e−s1)
. (18)

Proof: We sketch the proof owing to space limitation.
Similarly to the proof of Theorem 3, and [19], we obtain the
following system of delay differential equations

∂pi(D)

∂D
= Ri

(
pi(D + 1)− pi(D)

)
+λi

(
p−i(D)− pi(D)

)
, i = 1, 2. (19)

Using the assumption in (13), we get the boundary conditions
p1(∞) = p2(∞) = 0. Moreover, since the packets depart from
the receiver’s queue deterministically, we obtain the additional
boundary conditions p1(0) = p2(0) = 1. We may solve
the above system of differential equations using the roots of
characteristic equation given by (17). Observe that the first set
of boundary conditions imply that we only need to consider
the terms that vanish as D grows to infinity. We may verify
that Φ(s) has two roots s1, s2 > 0 if the condition in (13)
holds (see Figure 5). Therefore, the interruption probabilities
take the form of (16). Further, the second set of boundary
conditions imply that ci1 +ci2 = 1 for i = 1, 2. We may solve
for the coefficients in (18) by plugging (16) in (19), and using
these boundary conditions.

The behavior of the interruption probabilities given by
Theorem 4 is governed by the dominant mode s1. Even
though, we cannot compute the roots of the characteristic
function analytically, we may examine approximate solutions
of the characteristic equation when the Markov process is fast
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Fig. 5. The characteristic function Φ(s) given by (17). s1 denotes the
dominant root.
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Fig. 6. The dominant root of the characteristic function given by (17), as
a function of the average arrival rate for different λ1 = λ2 = λ. Here, we
select R1 = 1.4R̄, and R2 = 0.6R̄.

mixing, i.e., λ1, λ2 � 1. Using the notation in (13), we can
rewrite (17) as

Φ(s) =
(
s+R1(e−s − 1)

)(
s+R2(e−s − 1)

)
−(λ1 + λ2)

(
s+ R̄(e−s − 1)

)
. (20)

Now, let λ1, λ2 tend to infinity, while keeping R1 and R2

fixed. There are two possibilities for the roots of Φ(s): First,
the root does not grow to infinity; second, the root scales to
infinity as λ1, λ2 grow. In the former case, we need to have
the coefficient of (λ1 + λ2) in (20) go to zero, i.e., for λ1, λ2
large enough we have s + R̄(e−s − 1) ≈ 0. Therefore, using
the notation in (7), s = I(R̄) is an approximate root of Φ(s).
Figure 6 plots s1, the exact root of Φ(s), as a function of the
average arrival rate, R̄, for different mixing times. Observe
that as λ grows, s1 approaches I(R̄), which is the reliability
function for the Poisson arrival case (see Corollary 2). In the
second case, we may approximate the characteristic function
in (20) as Φ(s) ≈ s2−(λ1+λ2)s. This results in s2 ≈ λ1+λ2
that grows to infinity with λ1 and λ2. This root is significantly
larger than the dominant root, s1, which remains bounded.
Finally, note that if R1 = R2 = R, we have c12 = c22 = 0
for all λ1 and λ2. This confirms the earlier result of Corollary

Fig. 7. The minimum buffer size D∗(ε) as a function of the interruption
probability. The perfect match between the optimal curve and the upper bound
is due to the rounding effect.

Fig. 8. The minimum buffer size D∗(ε) as a function of the arrival rate R.

2.
Next, we numerically obtain the optimal trade-off curve

between the interruption probability and initial buffer size, and
compare the results with the bounds derived earlier.

VI. NUMERICAL RESULTS

We use MATLAB simulations to compute the minimum
initial buffer size D∗(ε) for a given interruption probability
ε in various scenarios. We start from a small initial buffer size
D, and for each D we compute the interruption probability
p(D) via the Monte-Carlo method. We increase D until the
constraint p(D) ≤ ε is satisfied. Since p(D) is monotonically
decreasing in D, this gives the minimum required buffer size.
We restrict D to take only integer values, and round each
upper bound value up, and each lower bound value down to
the nearest integer.

Figure 7 shows the minimum required buffer size D∗(ε) as
a function of 1

ε , as well as the bounds given by Theorems
1, 2. The arrival rate is fixed to R = 1.2 and the file size
T = 500. We observe that the numerically computed trade-off
curve closely matches our analytical results.
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Figure 8 plots the minimum required buffer size D∗(ε) as
well as the upper and lower bounds given by Theorems 1
and 2 versus the arrival rate R, where ε = 10−2 and the file
size is fixed to T = 103. Note that when the arrival rate is
almost equal or less than the playback rate, increasing the
arrival rate can significantly reduce the initial buffering delay.
However, for larger arrival rates D∗(ε) is small enough such
that increasing R does not help anymore.

VII. CONCLUSIONS

In this paper, we studied the problem of media streaming
with focus on the trade-offs between the two QoE metrics—
probability of interruption in media playback, and the initial
waiting time before starting the playback. In our system, the
user can receive packets of the media stream from multiple
sources by requesting packets in each block of the file. We
used the fact that sending random linear combinations of the
packets within each block of the media file simplifies the
packet selection strategies of P2P systems. This fact allowed
us to describe the receiver’s buffer dynamics as an M/D/1
queue, and explicitly characterize the trade-off between the
QoE metrics for different ranges of the system parameters.

We observed that the minimum initial buffer size to attain
a desired level of interruption probability scales as the square
root of the file size if the arrival rate and the playback rate
match. However, when the arrival rate is slightly larger than
the playback rate, the initial buffer size remains bounded.
Moreover, we proved that our bounds on the optimal trade-off
curve are asymptotically tight as the file size grows. We further
generalized the results to the channels with memory mod-
eled using Markov modulated arrival processes. We explicitly
characterized interruption probabilities for two-state Markov
processes. The generalization to any finite state Markov mod-
ulated process is straightforward. Finally, our numerical results
confirmed that the optimal trade-off curves demonstrate a
similar behavior to that predicted by our bounds.

This work is the first step in analytical characterization
of QoE trade-offs in wireless media streaming applications.
Many of the insights obtained from the presented simple
model may be extended to a general class of arrival processes.
Other future research directions include further justification
of our system model through extensive simulations using
real network traces, generalization of the QoE metrics to
allow for few tolerable interruptions during media playback,
and characterization of the optimal re-buffering policies once
interruptions occur. Another interesting extension to this work
would be to obtain optimal resource allocation policies to
satisfy users who have different interruption probability and
initial waiting time targets.

APPENDIX

We first prove some useful lemmas used in the proof of
Theorem 1.
Lemma 1. Let I(R) be given by (7). The following relations

hold:

I(R) = 0, if 0 ≤ R ≤ 1, (21)
2(R− 1)

R
≤ I(R) ≤ 2(R− 1), if 1 ≤ R ≤ 2, (22)

R− 1 ≤ I(R) ≤ R ≤ 2(R− 1), if R ≥ 2. (23)

Proof: We consider three different cases separately.
Case I (0 ≤ R ≤ 1): First note that γ(r) is a continuously

differentiable function, and γ(0) = 0. For each R < 1, we
have γ′(r) > 0 for all r ≥ 0. Therefore, γ(r) > 0 for all
r > 0, i.e., I(R) = 0 for each R < 1.

Case II (1 ≤ R ≤ 2): By definition of I(R) in (7),

0 = γ(I(R)) = I(R) +R(e−I(R) − 1)

≤ I(R) +R(−I(R) +
I2(R)

2
).

Rearranging the terms in the above relation, gives the lower
bound in (22). We show the upper bound in two steps. First,
we show that γ(2(R− 1)) > 0 for R > 1, then we verify that
γ(r) ≥ 0 for all r ≥ 2(R − 1). These two facts imply that
γ(r) > 0 for all r ≥ 2(R − 1), i.e., I(R) ≤ 2(R − 1). The
first step can be verified by noting that

γ(2(R− 1))
∣∣
R=1

= 0,
∂

∂R
γ(2(R− 1)) > 0.

It is also straightforward to show that ∂
∂rγ(r) > 0, for all

r ≥ log(R), which immediately yields the second step by
noting r ≥ 2(R− 1) ≥ log(R).

Case III (R ≥ 2): We use a similar technique as in
the preceding case. The upper bound is immediate by the
following facts:

γ(R) = Re−R > 0,
∂

∂r
γ(r) > 0, for all r ≥ R.

We may also check that γ(R−1) < 0 for all R ≥ 2. Moreover,
note that γ(R) > 0. Therefore, by the intermediate value
theorem, γ(r) has a root in [R− 1, R], i.e., I(R) ≥ R− 1.

Lemma 2. Let X(t) = e−rQ(t), where Q(t) is given by (3).
Also let γ(r) = r + R(e−r − 1). Then for every r ≥ 0 such
that γ(r) ≥ 0, X(t) is a sub-martingale with respect to the
canonical filtration Ft = σ(X(s), 0 ≤ s ≤ t), i.e., the smallest
σ-field containing the history of the stochastic process X up
to time t. Moreover, if γ(r) = 0 then X(t) is a martingale.

Proof: For every t, |X(t)| ≤ 1. Hence, X(t) is uniformly
integrable. It remains to show that for every t ≥ 0 and h > 0,

E[X(t+ h)|Ft] ≥ X(t) a.s. (24)

X(t) is a martingale if (24) holds with equality. The left-hand
side of (24) can be expressed as

E[X(t+ h)|Ft] = E
[
e−r(Q(t+h)−Q(t))

∣∣∣Ft]X(t)

= E
[
e−r(A(t+h)−A(t))

∣∣∣Ft]erhX(t)

(a)
= E

[
e−rA(h)

]
erhX(t)

(b)
= eh(r+R(e−r−1))X(t) = ehγ(r)X(t),
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where (a) follows from independent increment property of the
Poisson process, and (b) follows from the fact that A(t) is
a Poisson random variable. Now, it is immediate to verify
(24) for any r with γ(r) ≥ 0. Finally, note that if γ(r) =
0, the equality in the above relations hold through, and (24)
holds with equality. Therefore, X(t) is a martingale for r with
γ(r) = 0.

Next, we use Doob’s maximal inequality [21] to bound the
interruption probability.

Lemma 3. Let p(D) be the interruption probability defined
in (5), and γ(r) = r +R(e−r − 1). Then, for any r ≥ 0 with
γ(r) ≥ 0

p(D) ≤ e−rD+Tγ(r), for all D,T,R ≥ 0. (25)

Proof: By definition of p(D) in (5), we have

p(D) = Pr{τe < τf} ≤ Pr{τe ≤ T}

= Pr
{

inf
0≤t≤T

Q(t) ≤ 0
}

= Pr
{

sup
0≤t≤T

e−rQ(t) ≥ 1
}

(a)

≤ E[e−rQ(T )] = E[e−r(D+A(T )−T )]

= e−r(D−T )eRT (e−r−1) = e−rD+Tγ(r),

where (a) holds by applying Doob’s maximal inequality [21]
to the non-negative sub-martingale X(t) = e−rQ(t). Note that
X(t) is a sub-martingale for all r with γ(r) ≥ 0 by Lemma
2.

Lemma 4. It holds that −(1− z) log(1− z)− z ≤ − z
2

2 , for
all 0 ≤ z < 1.

Proof: Let f(z) = −(1 − z) log(1 − z) − z + z2

2 . f(z)
is a continuously differentiable function on [0, 1). Moreover,
f(0) = 0, and f ′(z) = log(1− z) + z ≤ 0. Therefore, f(z) ≤
f(0) = 0, for all z ∈ [0, 1).
Proof of Theorem 1. First, note that for any upper bound
p̄(D) of the interruption probability p(D), any feasible solu-
tion of

D̄(ε) = min{D ≥ 0 : p̄(D) ≤ ε} (26)

provides an upper bound on D∗(ε). This is so since the optimal
solution of the above problem is feasible in the minimization
problem (6). If the problem in (26) is infeasible, we use the
convention D̄(ε) =∞, which is a trivial bound on D∗(ε). The
rest of the proof involves finding the tightest bounds on p(D)
and solving (26).

Part (a): By Lemma 3, for r = I(R), we can write p(D) ≤
p̄a(D) = e−I(R)D, for all D,T,R ≥ 0. Solving p̄a(D) = ε
for D gives the result of part (a). Since I(R) = 0 for R ≤ 1
(cf. Lemma 1), this bound is not useful in that range.

Part (b): First, we claim that for all D ≥ T (1−R+ I(R)),
we have p(D) ≤ p̄b(D) = e−

1
2TRz

2

, where z = 1− 1
R

(
1−D

T

)
.

We use Lemma 3 with r = r∗ = − log
(
1
R

(
1− D

T

))
to prove

the claim. Note that r∗ ≥ 0, because D ≥ T (1 − R). In
order to verify the second hypothesis of Lemma 3, consider

the following

R(e−r
∗
− e−I(R)) = I(R) +R(e−r

∗
− 1)− γ(I(R))

(a)
= I(R)−R+ (1− D

T
)

(b)
=

1

T

[
T (1−R+ I(R))−D

] (c)

≤ 0,

where (a) and (b) follow from the definition of I(R) and r∗,
respectively, and (c) holds by the hypothesis of the claim.
Thus, r∗ ≥ I(R). Using the facts that I(R) is the largest
root of γ(r), and γ(r) → +∞ as r → ∞, we conclude that
γ(r∗) ≥ 0. Now, we apply Lemma 3 to get

p(D) ≤ e−r
∗D+Tγ(r∗)

(a)
= eTR

(
1
R (1−DT )r∗−(1−e−r

∗
)
)

(b)
= eTR

(
−(1−z) log(1−z)−z

) (c)

≤ e−
1
2TRz

2

,

where (a) and (b) follow from the definition of γ(r) and z,
and (c) is true by Lemma 4. Therefore, the claim holds.

Now, let D̄ = T (1−R)+
(

2TR log
(
1
ε

)) 1
2

. Using the claim
that we just proved, we may verify that p(D̄) ≤ p̄b(D̄) = ε,
if D̄ ≥ T (1−R+ I(R)). In order to check the hypothesis of
the claim, note that for R ≤ 1, I(R) = 0 (cf. Lemma 1), and

for all 1 ≤ R ≤ 1 +
(

1
2T log

(
1
ε

)) 1
2

,

D̄ − T (1−R) =
(

2TR log
(1

ε

)) 1
2 ≥ 2T

( 1

2T
log
(1

ε

)) 1
2

(d)

≥ 2T (R− 1)
(e)

≥ TI(R),

where (d) follows from the hypothesis, and inequality (e) is
true by Lemma 1. Therefore, D∗(ε) ≤ D̄ for all R ≤ 1 +(

1
2T log

(
1
ε

)) 1
2

. Note that, the upper bound that we obtained
in Part (a) is also valid for all R. Hence, the minimum of the
two gives the tightest bound. �

Next, we establish some lemmas used in the proof of
Theorem 2. The proofs of Lemmas 5 and 6 are based on
the results from [22], [23], and are removed owing to space
limitations.

Lemma 5. Let Z be a Poisson random variable with mean
λ. If λ ≥ 2, and k ≥ 2, then

Pr{Z ≤ λ− k} ≤ exp
( 1

2λ

(
k − 3

2

)2)
. (27)

Lemma 6. Let Z be a Poisson random variable with mean
λ. For all m ≤

√
λ

20 − 1

Pr{Z ≤ λ−m
√
λ} ≥ 1

3
exp

(
− 1

1.9

(
m+

1

2

)2)
. (28)

Lemma 7. Let Q(t) be given by (3). For s, δ > 0, define the
boundary function

u(t) = D + δ + (R+ s− 1)t.

If s ≤ R, then the probability of crossing the boundary is
bounded from above as

Pr
{

sup
0≤t≤T

Q(t) ≥ u(t)
}
≤ exp

(
− s · δ

R

)
.
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Q(t)
T

B

D

TT' t

D

τe τB τf

Fig. 9. Two sample paths of the buffer size Q(t) demonstrating the
interruption event at time τe, crossing the threshold B at time τB , and the
download complete event at time τf .

Proof: Define Z(t) = erQ
′(t), where Q′(t) = Q(t) −

u(t) = −δ + A(t) + (R + s)t, and r > 0 satisfies ϕ(r) :=
er − 1 − r(1 + s

R ) = 0. Similarly to the proof of Lemma 2,
we can show that Z(t) is a martingale. This allows us to use
Doob’s maximal inequality to obtain

Pr
{

sup
0≤t≤T

Q(t) ≥ u(t)
}

= Pr
{

sup
0≤t≤T

Z(t) ≥ 1
}

≤ E[Z(T )] = e−r·δ.

Now it is sufficient to show that r ≥ s
R . Observe that for

all 0 ≤ x ≤ 1, ex ≤ 1 + x+ x2. Hence, for all s ≤ R

ϕ(
s

R
) = e

s
R − 1− s

R
(1 +

s

R
)

≤ s

R
+ (

s

R
)2 − s

R
(1 +

s

R
) = 0. (29)

Moreover, ϕ(r) → ∞ when r → ∞. Therefore, by
intermediate value theorem there exists r ≥ s

R such that
ϕ(r) = 0. This completes the proof.
Proof of Theorem 2. Part(a): Similarly to the argument as
in the proof of Theorem 1, it is sufficient to provide a lower
bound on p(D) defined in (5).

Define τB as the first time that Q(t) crosses a threshold
B > D, i.e., τB = inf{t : Q(t) ≥ B}.

A necessary condition for the interruption event to happen is
to have the receiver’s buffer emptied before time T ′ = T −B,
or crossing the threshold B (see Figure 9). In particular,

p(D) = Pr{τe < τf} ≥ Pr
{
τe ≤ min{τB , T ′}

}
. (30)

Define the stopping time τ = min{τe, τB , T ′}, and let
Y (t) = e−I(R)Q(t), where I(R) > 0 is given by (7). By
Lemma 2, Y (t) is a martingale. Moreover, Y (t) ≤ 1, and
τ ≤ T < ∞. Therefore, we can apply Doob’s optional
stopping theorem [21] to get

e−I(R)·D = E[Y (0)]
(a)
= E[Y (τ)]

(b)

≤ e−I(R)·0(Pr{τ = τe}+ Pr{τ = T ′}
)

+e−I(R)·B(1−Pr{τ = τe} −Pr{τ = T ′}
)

≤ Pr{τ = τe}+ Pr{τ = T ′}+ e−I(R)·B

(c)

≤ p(D) + Pr{τ = T ′}+ e−I(R)·B ,

Q(t)
T

D+δ
D

'

u1(t)
D+δ1

E[Q(T')]
T – T'=αT

D2
u2(t)

E[Q(t)]

TT' t

Fig. 10. Guideline for the proof of Theorem 2(b).

where (a) is the result of Doob’s optional stopping time. (b)
holds because Y (t) ≤ 1 for all t, and Y (t) ≤ e−I(R)·B if
Q(t) ≥ B. Finally, (c) follows from (30). Rearranging the
terms in the above relation, we obtain

p(D) ≥ e−I(R)D − e−I(R)B −Pr{τ = T ′}. (31)

Now, choose B = (1 − α)T , where α = R+1
2R > 1

R for all
R > 1. For all D,T ≥ 2, we have

Pr{τ = T ′}
(a)

≤ Pr{0 ≤ Q(T −B) ≤ B}
(b)
= Pr{αT −D ≤ A(αT ) ≤ T −D}
≤ Pr

{
A(αT ) ≤ RαT − ((Rα− 1)T +D)

}
(c)

≤ exp

(
− 1

2RαT

(
(Rα− 1)T +D − 3

2

)2)
(d)

≤ exp

(
− (R− 1)2

4(R+ 1)
T

)
, (32)

where (a) holds because Q(t) cannot be negative or above
the threshold B if stopping at T ′, and (b) follows from the
buffer dynamics in (3). Recall that A(αT ) is a Poisson random
variable with mean RαT . Since α ≥ 1

R , (c) holds for D,T ≥ 2
by employing Lemma 5 with

λ = RαT ≥ T ≥ 2, k = (Rα− 1)T +D ≥ D ≥ 2.

Finally, (d) is immediate by definition of α noting that D ≥ 2.
By Lemma 1, we have I(R) ≥ (R − 1) for all R > 1.

Therefore, we can bound the second term in (31) as follows

e−I(R)B ≤ exp

(
− (R− 1)

R− 1

2R
T

)
≤ exp

(
− (R− 1)2

4(R+ 1)
T

)
. (33)

Combine the bounds in (32) and (33) with (31) to obtain

p(D) ≥ e−I(R)D − 2e−
(R−1)2

4(R+1)
T , for all D,T ≥ 2. (34)

Therefore, p(D) ≥ ε if D = − 1
I(R) log

(
ε+2e−

(R−1)2

4(R+1)
T
)
≥

2. This immediately gives the result in (10). For the case in
which D < 2 or T < 2, the claim holds trivially.

Part(b): It is sufficient to show p(D) ≥ ε for ε ≤ 1
16 and T

large enough where

D = T (1−R) +
1

2

(
2TR log

(1

ε

)) 1
2

. (35)
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Let us first define the boundary functions

u1(t) = D + δ1 + (R+
δ1
T ′
− 1)t, t ∈ [0, T ′],

u2(t) = D2 + δ2 + (R+
δ2

T − T ′
− 1)(t− T ′), t ∈ [T ′, T ],

where T ′ = (1− α)T for some constant 0 < α < 1, and

δ1 =
1

2
αTR− 1

4

(
2TR log

(1

ε

)) 1
2

, (36)

δ2 =
(
αTR log

(1

ε

)) 1
2

, (37)

D2 = αT (1−R)− 2
(
αTR log

(1

ε

)) 1
2

. (38)

Denote by τi the first time to hit the boundary ui(t), i.e.,
τi = inf{t : Q(t) ≥ ui(t)}, for i = 1, 2.

Observe that for every sample path of the buffer size Q(t),
the only way for completing the file download, Q(t) = T − t,
is to cross the boundary functions ui(t) or have Q(T ′) ≥
D2 (cf. Figure 10). This gives a necessary condition for the
interruption event. Hence,

p(D) = Pr{τe < τf} ≥ Pr{τe ≤ min{τ1, T ′}}
+Pr{τe ≤ τ2, T ′ ≤ min{τe, τ1}, Q(T ′) ≤ D2}

= Pr{τe ≤ min{τ1, T ′}}
+Pr{τe ≤ τ2|T ′ ≤ min{τe, τ1}, Q(T ′) ≤ D2}

[
1

−Pr{τ1 ≤ min{τe, T ′}} −Pr{τe ≤ min{τ1, T ′}}
−Pr{T ′ ≤ min{τe, τ1}, Q(T ′) > D2}

]
≥ Pr{τe ≤ τ2|T ′ ≤ min{τe, τ1}, Q(T ′) ≤ D2}

[
1

−Pr{τ1 ≤ min{τe, T ′}}
−Pr{T ′ ≤ min{τe, τ1}, Q(T ′) > D2}

]
. (39)

In the following we provide bounds on each of the terms
in (39). By Markov property of the Poisson process we have

Pr{τe ≤ τ2|T ′ ≤ min{τe, τ1}, Q(T ′) ≤ D2}
= Pr{τe ≤ τ2|Q(T ′) ≤ D2}
≥ Pr{τe ≤ τ2|Q(T ′) = D2}
= 1−Pr{τ2 ≤ τe|Q(T ′) = D2}
≥ 1−Pr

{
sup

T ′≤t≤T
Q(t) ≥ u2(t)|Q(T ′) = D2

}
≥ 1− e−

δ22
R(T−T ′) = 1− ε, (40)

where the last inequality follows from Lemma 7 with parame-
ters δ = δ2 and s = δ2

T−T ′ , if its hypothesis s ≤ R is satisfied.
This is equivalent to having T satisfy T ≥ 1

αR log
(
1
ε

)
.

Similarly, by employing Lemma 7 with δ = δ1 and s = δ1
T ′

we have

Pr{τ1 ≤ min{τe, T ′}} ≤ Pr
{

sup
0≤t≤T ′

Q(t) ≥ u1(t)
}

≤ exp

(
− δ21
RT ′

)
= exp

(
− α2RT

4(1− α)

[
1−

( log
(
1
ε

)
2α2RT

) 1
2
]2)

.

Note that the hypothesis of Lemma 7 is satisfied here for all
α ≤ 2

3 . Moreover, if T ≥ 16
α2R log

(
1
ε

)
, we have

Pr{τ1 ≤ min{τe, T ′}} ≤ exp

(
− 4 log

(1

ε

)
[1− 1√

32
]2
)

≤ exp
(
− 2 log

(1

ε

))
= ε2. (41)

For the last term in (39) write

1−Pr{T ′ ≤ min{τe, τ1}, Q(T ′) > D2}
≥ 1−Pr{Q(T ′) > D2} = Pr{Q(T ′) ≤ D2}

= Pr{D +A(T ′)− T ′ ≤ D2}
= Pr{A(T ′) ≤ T ′R−m

√
T ′R}, (42)

where A(T ′) is a Poisson random variable with mean RT ′,
and

m =
( log

(
1
ε

)
2(1− α)

) 1
2 [

1 + (8α)
1
2

]
. (43)

For T ≥ 16
α2R log

(
1
ε

)
and α, ε ≤ 1

16 , we may verify that
m ≤

√
RT ′/20 − 1. Hence, we can use Lemma 6 to bound

(42) from below and conclude

1−Pr{T ′ ≤ min{τe, τ1}, Q(T ′) > D2} ≥
1

3
e−

1
1.9

(
m+ 1

2

)2
.

Observe that for α = 0, we have m = m0 =
(

1
2 log

(
1
ε

)) 1
2

and verify that

1

1.9

(
m0 +

1

2

)2
< log

(1

ε

)
− log

(17

15

)
, for all ε ≤ 1

16
.

By continuity of m in α (cf. (43)), we can choose α = α0 >

0 small enough such that 1
3e
− 1

1.9

(
m+ 1

2

)2
≥ 17

15ε. Now, by
plugging this relation as well as (40) and (41) back in (39)
we have for all ε ≤ 1

16 ,

p(D) ≥ (1− ε)
(17

15
ε− ε2

)
≥ 15

16

(17

15
− 1

16

)
ε ≥ ε, (44)

if T ≥ 16
α2

0R
log
(
1
ε

)
. Therefore, the buffer size D, defined in

(35), is a lower bound on D∗(ε). �
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