
Network Coding for Multiple Unicasts: An Approach based
on Linear Optimization

Danail Traskov, Niranjan Ratnakar, Desmond S. Lun, Ralf Koetter, and Muriel Médard

Abstract—In this paper we consider the application of network
coding to a multiple unicast setup. We present two suboptimal, yet
practical code construction techniques. One consists of a linear
program and the other of an integer program with fewer variables
and constraints. We discuss the performance of the proposed tech-
niques as well as their complexity.

I. INTRODUCTION

We consider the problem of setting up several simultane-
ous and independent point-to-point connections that share a
common network and refer to this as a multiple unicast setup.
The notion of network coding [1] permits intermediate network
nodes to encode observed data as opposed to traditional oper-
ation, where the network nodes are restricted to routing and
replicating. An example of such an encoding is illustrated in
Fig. 1(a), where u observes b1 and b2 and transmits b1 ⊕ b2.

We are interested in applying network coding to the multi-
ple unicast setup. Most results on network coding so far as-
sume a multicast setting, i.e. a single source transmits the
same data simultaneously to a set of receivers [1, 2]. This sce-
nario is considerably simpler than the multiple unicast problem.
One simplifying aspect is the fact that the problem of finding a
minimum-cost multicast connection decomposes into two in-
dependent subproblems [3]. First, one has to identify a sub-
graph whose link capacities can support the multicast connec-
tion. Second, the code can be constructed independent of the
subgraph by e.g. a randomized code construction [2]. On the
other hand, in the multiple unicast scenario, the problems of se-
lecting a subgraph and the code construction have to be solved
jointly. The selection of a subgraph is typically modeled as an
optimization problem on flows in a network, whereas the code
construction is an algebraic and combinatorial problem. Since
we have to solve them jointly, we restrict ourselves to simple
network codes, whose construction can be combined with net-
work flow problems of tractable complexity.

We assume the underlying network to be a directed graph
G = (V, E), where V and E are the sets of vertices and directed
edges respectively. We desire communication of independent
information from nodes si to di at a rate Ri for i = 1, . . . , n.
A connection is defined as a triple (si, di, Ri). The n triples
(si, di, Ri) are feasible with network coding if there exists a
network code that allows for simultaneous transmission of in-
formation at a rate Ri from si to di. The triples are said to

D. Traskov, N. Ratnakar, and R. Koetter are with the Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign, 1308 Main St., Urbana
IL 61801 (email: {traskov2, ratnakar, koetter}@uiuc.edu). This material is
based upon work supported by the NSF under Award No. NSF CCR-0325673.

D. S. Lun, M. Médard are with the Laboratory for Information and Deci-
sion Systems, Massachusetts Institute of Technology, Cambridge, MA 02139
(email: {dslun, medard}@mit.edu).

be feasible with routing if there exists a network code involv-
ing only routing and in this case the problem of determining
flows that satisfy these connections is referred to as a multi-
commodity flow problem [4].

The application of network coding in a multiple unicast setup
is discussed in [5]. In particular, we know of two approaches for
constructing network codes for the non-multicast scenario. In
[6], the authors present algebraic code construction techniques
for all connection triples that are feasible with linear network
coding. However, the computational complexity of solving the
resulting system of polynomial equation is exponential in the
size of the underlying network and therefore hardly tractable
in practice. On the other hand, the authors in [7] present an
opportunistic heuristic code construction for wireless networks.
The approach presented in this paper fits in between these two
schemes. We present code construction techniques for certain
connection triples that are feasible with network coding, but are
not necessarily feasible with routing. However, we emphasize
that the techniques described here fail to provide network codes
for all connection triples that are feasible with linear network
coding. We restrict network coding to operations using only
binary XOR, derive flow formulations of the problem, and state
it first as a linear program and then as an integer program. This
constitutes a suboptimal, yet practical and systematic scheme
to construct network codes. The linear and integer program
model the same problem and, although not equivalent, are quite
similar. Their main difference lies in computational issues.

The paper is organized as follows: In Section II, we present a
code construction scheme based on a linear program. In Section
III we present an alternative formulation with fewer variables
and constraints, albeit in the form of an integer program. A
comparison of both formulations in terms of their complexity
and simulation results is given in Section IV. We summarize
our results in Section V.

II. CODE CONSTRUCTION AS A LINEAR PROGRAM

For an edge e = (u, v) we define tail(e) = u and head(e) = v.
We use ΓI(v) to denote the set of edges whose head is v ∈ V
and ΓO(v) to denote the set of edges with tail v. The n triples
(si, di, Ri) are feasible with routing if the following conditions
are satisfied [4]. For i = 1, 2, . . . , n and e ∈ E , v ∈ V ,

n∑
i=1

xe(i) ≤ ze ≤ Ce, xe(i) ≥ 0 (1)

∑
e∈ΓO(v)

xe(i) −
∑

e∈ΓI(v)

xe(i) =

⎧⎨
⎩

Ri if v = si

−Ri if v = di

0 otherwise
(2)

ISIT 2006, Seattle, USA, July 9 14, 2006

17581424405041/06/$20.00 ©2006 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 16:23:52 EST from IEEE Xplore. Restrictions apply.

1 2

3

4

5

6 7

s1 s2

d1d2

u

b1

b2
b1

b2

b1 ⊕ b2 b1 ⊕ b2

b1 ⊕ b2

(a)

s1 s2

d1d2

u

q(1 →
2) = −1 q(2

→ 1) = −1

r(
1
→

2)
=

1 r(2→
1)

=
1

p(1 → 2) = −1
p(2 → 1) = −1

p(1
→ 2) = −1 p(2 →

1) = −1

(b)

Fig. 1. (a) shows the butterfly network. The edges 1 through 7 are marked and
the network coding solution with the corresponding transmission on each edge
is shown. bi represents data for the i-th connection for i = 1, 2. In (b), the
butterfly network with the poison, antidote request, and antidote variables that
are non-zero on each edge. All variables correspond to the poison generated at
node u.

In the above equations, xe(i) is a flow from si to di of value Ri

and ze is the aggregate load on e.
However, when network coding is permitted, the notion of a

flow is not clear. For example, consider the so-called butter-
fly network shown in Fig. 1(a) where all the edges have unit
capacity. It can be verified that R1 = R2 = 1 is not feasible
with routing, yet feasible with network coding as shown in Fig.
1(a). It is no longer clear how to interpret this code as concur-
rent flows. Note that the data transmitted on edge 4 is b1 ⊕ b2

and knowledge of b2 is needed at d1 in order to recover b1. We
interpret the transmission of b1⊕ b2 as a “poisoning” of the two
flows and the transmission of b2 (b1) on edge 5 (3) as an “an-
tidote”. We also introduce the notion of an “antidote request”
which notifies node s1 (s2) of the poisoning downstream and
requests an antidote to d2 (d1).

Given an arbitrary network and multiple unicast connections,
we wish to identify network codes using this poison-antidote
approach. In order to do so, we enrich the variable-space by in-
troducing variables pe(i → j, u), qe(i → j, u), re(i → j, u) for
every vertex u. These variables respectively keep track of the
poison, antidote request, and antidote associated with the poi-
soning of user j’s data by user i’s data at vertex u. This is done
to ensure that the poison originating at a particular vertex u is
remedied by the appropriate antidote. In this section, we de-
rive sufficient conditions for the existence of a network coding
solution involving routing, duplicating, and bit-level XOR.

Theorem 1: For a network G = (V, E), with the capacity of
edge e given by Ce and the ranges of the variables given by
v, u ∈ V , e ∈ E , 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i �= j, consider
the following set of equations.

For all v, u, i, and j:
∑

e∈ΓI(v)

pe(i → j, u) + qe(i → j, u) + re(i → j, u)

=
∑

e∈ΓO(v)

pe(i → j, u) + qe(i → j, u) + re(i → j, u) (3)

∑
e∈ΓI(v)

qe(i → j, u)−
∑

e∈ΓO(v)

qe(i → j, u)
{ ≤ 0 if v = u

≥ 0 otherwise

(4)

∑
e∈ΓI(v)

pe(i → j, u)−
∑

e∈ΓO(v)

pe(i → j, u)
{ ≥ 0 if v = u

≤ 0 otherwise

(5)
For all u, i, and j:

pe(j → i, u) = pe(i → j, u) if e ∈ ΓO(u) (6)

At every edge e:

∑
u

∑
i,j
i<j

max(pe(i → j, u), pe(j → i, u)) +
n∑

i=1

xe(i)

+
∑

u

∑
i,j
i�=j

re(i → j, u) ≤ ze ≤ Ce (7)

At every edge e and j:

xe(j) +
∑

u

∑
i

(pe(i → j, u) + qe(j → i, u)) ≥ 0 (8)

xe(·) ≥ 0, re(·) ≥ 0, pe(·) ≤ 0, qe(·) ≤ 0

If the conditions specified in (2) - (8) are satisfied, then the rate
triples (si, di, Ri) for i = 1, 2, . . . , n are feasible with network
coding. Further, the only operations involved are duplication,
routing, and bit-level XOR.

Proof: We assume that the variables satisfying (2) - (8)
are integers, which is justified by scaling the network over time
[6]. We begin by making the following observations.
Observation 1: From (4) we see that antidote request qe(i →
j, u) (a negative quantity) can “terminate” only at node u.
Observation 2: From (5) we see that poison pe(i → j, u) (a
negative quantity) can “originate” only at node u.
Observation 3: For edge e, let fe(i → j, u) = pe(i →
j, u) + qe(i → j, u) + re(i → j, u). Fix i, j, and u. From
(3) we see that fe(i → j, u) is conserved at each node. In the
example shown in Fig. 1(b), fe(1 → 2, u) = 1 for e = 3
and fe(1 → 2, u) = −1 for e = 1, 4, 6. Notice that the edges
1,3,4, and 6 form a cycle if we reverse the direction of edges
with fe(1 → 2, u) = −1, i.e., 1,4, and 6. In general, for any
network, fe(i → j, u) can be decomposed as a superposition
of cycles where f ′

e(i → j, u) = ±1 for all edges e with the
understanding that if f ′

e(i → j, u) = −1, then the direction of
e is reversed. Due to paucity of space, we skip the proof here.
We refer to each of these cycles as an f ′(i → j, u) cycle for
i, j, and u. Further, since the quantities p(·), q(·), and r(·) are
integers, it follows that along any edge of an f ′(i → j, u) cycle,
only one of these quantities is nonzero.

From Observations 1 and 2 we see that qe(i → j, u) “ter-
minates” only at u and that pe(i → j, u) “originates” only at
u. (To simplify notation we represent a path from u1 to vm as
(u1, vm). The distinction between an edge (u, v) and a path
(u1, vm) is clear from the context.) Thus, any f ′(i → j, u)
cycle comprises three paths (v, u), (u,w) and (v, w) such that
(v, u) satisfies qe(i → j, u) = −1, (u,w) satisfies pe(i →
j, u) = −1, and (v, w) satisfies re(i → j, u) = 1. Some
f ′(i → j, u) cycles might have v = u, which would mean
that it comprises of only the poison and antidote paths.

ISIT 2006, Seattle, USA, July 9 14, 2006

1759

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 16:23:52 EST from IEEE Xplore. Restrictions apply.

From (6), we see that if tail(e) = u then we can associate
pe(j → i, u) with pe(i → j, u). This can be extended and we
can associate an f ′(j → i, u) cycle with an f ′(i → j, u) cycle.
Thus, all the poison, antidote, and antidote-request variables
can be written as a superposition of pairs of f ′(i → j, u) and
f ′(j → i, u) cycles.

We show that we can perform network coding on each of
these pairs of cycles. Consider one such pair of cycles. Let
the cycles be f ′(i → j, u3) and f ′(j → i, u3). From the dis-
cussion above, the f ′(i → j, u3) cycle is composed of paths
(u1, u3) with qe(i → j, u3) = −1, (u3, u4) with pe(i →
j, u3) = −1, and (u1, u4) with re(i → j, u3) = 1. Simi-
larly, the f ′(j → i, u3) cycle is composed of paths (u2, u3)
with qe(j → i, u3) = −1, (u3, u5) with pe(j → i, u3) = −1,
and (u2, u5) with re(j → i, u3) = 1.

Using (8), we note that we can associate a unique unit-rate
path, say, x′

e(i) = 1 to the paths (u1, u3) and (u3, u5). Simi-
larly we can associate a unique unit-rate path say x′

e(j) = 1 to
the paths (u2, u3) and (u3, u4).

In the example shown in Fig. 1(b), we have u1 = s1, u2 =
s2, u3 = u, u4 = d1, and u5 = d2. Note that xe(1) = 1
(xe(2) = 1)) for e = 1, 4, 7. (e = 2, 4, 6.) Let b1 represent a
unit rate bit stream corresponding to x(i) available at u1 and b2

represent a unit rate bit stream corresponding to x(j) available
at u2. We perform the following network coding in order to
reliably transmit one unit data from u1 to u5 and one unit of
data from u2 to u4.

• b1 is transmitted along the paths (u1, u3) and (u1, u4).
• b2 is transmitted along the paths (u2, u3) and (u2, u5).
• b1⊕b2 is transmitted along the paths (u3, u4) and (u3, u5).
This encoding, in effect, is equivalent to replacing

x′
e(i), x

′
e(j) and the f ′(i → j, u3), f ′(j → i, u3) cycles by two

unit-capacity virtual edges e1 = (u1, u5) and e2 = (u2, u4)
such that xe1(i) = 1 and xe2(j) = 1. This replacement en-
sures that the number of f ′(i → j, u)and f ′(j → i, u) cycles is
reduced while still ensuring that xe(i) and xe(j) (the affected
flows) satisfy the flow-conservation equations.

For this encoding, it can be verified that the usage of all edges
along the paths (u1, u3), (u2, u3), (u3, u4), (u3, u5), (u1, u4),
and (u2, u5) is given by the expression

max(pe(i → j, u3), pe(j → i, u3)) + xe(i) + xe(j)
+re(i → j, u3) + re(j → i, u3) (9)

which evaluates to one along all the edges. Thus, the usage of
the edges in this pair of f ′(i → j, u3) and f ′(j → i, u3) cycles
is given by (9).

Note that the terms re(i → j, u3)+re(j → i, u3) correspond
to physical transmissions of bits. The term xe(i)+xe(j) can be
thought of as the data that would be transmitted if data is sent
by routing. However, by sending b1⊕b2, we transmit at a lower
rate, lower by max(pe(i → j, u3), pe(j → i, u3)). These can
be thought of as savings obtained due to network coding.

Using Observation 3, we see that fe(i → j, u) is a super-
position of pairs of cycles, each of which can be replaced by a
pair of virtual edges over which routing suffices. By performing
this operation till there are no more such cycles left, we end up
with an equivalent network over which the connection triples
(si, di, Ri) for i = 1, 2, . . . , n are feasible with routing.

If all the data is transmitted by routing, then the load on any
edge is

∑n
i=1 xe(i). However, recall that due to an f ′(i → j, u)

cycle, the load on the edges in the cycle is adjusted by the quan-
tity in (9). Since fe(i → j, u) is a superposition of many
f ′(i → j, u) cycles, the net adjustment of the load on the
edges is obtained by summing (9) over all the f ′(i → j, u)
cycles. This expression is given by the left hand side of (7).
The interpretation of the various terms appearing in the sum-
mation is as follows: By network coding, we obtain a savings
of

∑
u

∑
i,j
i�=j

max(pe(i → j, u), pe(j → i, u)) (which is nega-

tive) which is offset by excess load of
∑

u

∑
i,j
i�=j

re(i → j, u)

(which is positive) due to the remedies. Usually, the savings are
non-zero on congested edges and the remedies are non-zero on
edges with spare capacity, thus allowing us to trade off bottle-
neck links with excess capacities.
Every solution that satisfies the constraints (2) - (8) corresponds
to a network code that transmits data at a rate ze (see (7))
on edge e. These constraints can be combined with several
possible objective functions, e.g., one can maximize the total
throughput (the sum of rates

∑
i Ri) or minimize the cost of

communicating certain fixed rates subject to the capacity con-
straints of the graph.

III. INTEGER PROGRAMMING FORMULATION

The previous linear program offers some flexibility in the
choice of objective functions, permits routing (and network
coding) along several paths from source to destination and
makes little assumption about the underlying network topol-
ogy. However, it results in large optimization problems, both in
terms of the number of constraints and the number of variables.
We will discuss the complexity in Section IV. In particular,
keeping track of the origin of the poison increases the complex-
ity drastically. (The term u in pe(i → j, u) can be thought
of as the variable keeping track of the origin of the poison.)
This motivates us to consider a simpler optimization problem,
where we restrict the connections to be of unit rate.1 This makes
the resulting optimization problem an integer program, but with
fewer constraints and variables than the original formulation.

Consider the following linear program, where throughout
1 ≤ i, j ≤ n, and i �= j:

min
∑
e∈E

ae · ze

at every node v ∈ V:

∑
e∈ΓO(v)

xe(i) −
∑

e∈ΓI(v)

xe(i) =

⎧⎨
⎩

+1 if v = si

−1 if v = di

0 otherwise
(10)

∑
e∈ΓO(v)

re(i) −
∑

e∈ΓI(v)

re(i) ≤
∑

e∈ΓI(v)

(xe(i) +
n∑

j=1

pe(i, j))

(11)∑
e∈ΓO(v)

pe(i, j) −
∑

e∈ΓI(v)

pe(i, j) ≤
∑

e∈ΓI(v)

re(j) (12)

1Higher rates can be modeled by placing several connections between the
same source-destination pair.

ISIT 2006, Seattle, USA, July 9 14, 2006

1760

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 16:23:52 EST from IEEE Xplore. Restrictions apply.

at every destination node di:

∑
e∈ΓO(di)

n∑
j=1

pe(i, j) = 0 (13)

at every edge e ∈ E :

∑
i,j
i<j

max(pe(i, j), pe(j, i)) +
n∑

i=1

xe(i) +
n∑

i=1

re(i) ≤ ze ≤ Ce

(14)

xe(i) +
n∑

j=1

pe(i, j) ≥ 0 (15)

xe(·) ≥ 0, re(·) ≥ 0, pe(·) ≤ 0

Note that we require flows of unit rate (10), thus losing some
flexibility in the problems that can be modeled. The cost func-
tion takes the form of a minimum cost flow problem, with cost
coefficients ae multiplying the usage ze of every edge. Fur-
thermore, we require the underlying graph to be acyclic, which
becomes necessary to exclude invalid network coding solutions.
In the following we prove that solutions of this integer program
are in fact valid network codes, which can be constructed by
using routing and the binary XOR operation.

Lemma 1: The cost of the optimal solution of the linear pro-
gram (10)-(15) is smaller or equal to the optimal cost of the
associated multi-commodity flow problem (10), (16), and (17).

Proof: Set all variables re(·) and pe(·) to zero. Then, the
linear program reduces to the following form:

min
∑
e∈E

ae · ze

subject to (10) at every node v ∈ V and

n∑
i=1

xe(i) ≤ ze ≤ Ce (16)

xe(i) ≥ 0 (17)

at every edge e ∈ E . This is identified to be the associated
multi-commodity flow problem consisting of the flow conserva-
tion constraints at the nodes, the constraint that the edge usages
ze do not exceed the edge capacities Ce and the nonnegativity
constraints on the flows. The optimal solution to this multi-
commodity flow problem is a basic feasible solution to the lin-
ear program (10)-(15) and therefore is also an upper bound on
its optimal solution. Continuing along similar lines, it is possi-
ble to prove that the optimal cost of the linear program (2)-(8) is
also lower than the cost of the optimal solution of the associated
multi-commodity flow problem

Theorem 2: If a solution to the linear program (10)-(15) is
integer, then it corresponds to a feasible network coding solu-
tion involving only the binary XOR as a coding operation.

Proof: Assume, we have an integer solution. Since the
flows are of unit rate we have xe(i) ∈ {0,+1}. Furthermore,
from (15) we conclude that pe(i, j) ∈ {0,−1}. If all pe(·, ·)
variables are zero, then according to the previous lemma the

Variables Constraints
Linear Program 3|E||V|n(n − 1) |V|(n2 − n)(3|V| + |E|)
Integer Program |E|n(n − 1) (n2 + n)|V| + (n + 1)|E|

TABLE I
THE COMPLEXITY OF BOTH OPTIMIZATION PROBLEMS. WE APPROXIMATE

THE NUMBERS UP TO LEADING TERMS.

solution corresponds to a multi-commodity flow problem and
therefore the connections can be established by routing only.

Assume now some p(·, ·) variables equal to −1 and pick an
edge e (with tail(e) = u and head(e) = v), where pe(i, j) =
−1. (15) implies that xe(i) = 1 on this edge also. Since the
flows are of rate one and we insist on integer solutions, flow i
takes precisely one path from its source si to its destination di

and clearly edge e lies on this path. The poison pe(i, j) satisfies
a conservation law of the form (12), and therefore forms a path
which can use only edges on the path of flow i (15). From (13)
the pe(i, j)-path has to terminate at a node w ≤ di

2. At the
termination point w of the pe(i, j)-path an antidote r(j) has to
enter the node (12). This antidote also forms a path (11) and let
its source be node t. The RHS of (11) has to be strictly positive
at node t, which implies that the flow x(j) entering node t must
be one, and the poison p(j, ·) entering t must be zero.

Given a solution to the proposed integer linear program, we
construct the network code by transmitting the following bit
streams on edge e:

• x(i) if xe(i) = 1 and pe(i, ·) = 0,
• x(i) ⊕ x(j) if xe(i) = 1 and pe(i, j) = −1 for some j,
• x(i) if re(i) = 1.
We have proved, that every poison is canceled by the appro-

priate antidote, and that every antidote has its origin at a node,
where unpoisoned flow of the proper type enters. The assump-
tion that the graph is acyclic is needed to ensure that the anti-
dote comes from a node upstream of the poisoning node. This
shows the validity of the proposed code construction scheme
and completes the proof.

IV. PERFORMANCE EVALUATION

Counting the number of variables and constraints (see Table
I) of both formulations, we see that the integer program is of
considerably smaller size than the linear program. On the other
hand, solving an integer program is in general more complex
than solving a linear program without integer constraints. Inte-
ger programming is NP-complete [8] and networks exist where
the integer program is very difficult to solve. To find integer so-
lutions we have used a linear programming-based branch-and-
bound algorithm. In general one has to consider the trade-off
between the reduced size of the optimization problem (10)-(15)
and the increase in complexity due to branch-and-bound.

The first setup that we considered for performance evalua-
tion of our network coding scheme is the frequently used geo-
metric random graph model. Here, a number of nodes are scat-
tered uniformly over a unit square and nodes whose distance
is below a certain threshold are considered connected with a
point-to-point link. We have conducted extensive simulations

2Since we require a directed acyclic graph, the vertices can be topologically
sorted, thereby defining an order on the vertex set V .

ISIT 2006, Seattle, USA, July 9 14, 2006

1761

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 16:23:52 EST from IEEE Xplore. Restrictions apply.

on random geometric networks, using different objective func-
tions such as total throughput or minimum cost, but could not
observe gains. This observation motivates us to consider more
regular grid networks, such as the one depicted in Fig. 2. We
illustrate the performance of the integer program3 on the grid
network as documented in Table II. We consider no capacity
constraints and a minimum-cost objective function. The ran-
dom parameters in the simulations are the cost coefficients of
the links. We consider two different distributions according to
which they are drawn. The first distribution models a scenario
where most links have low cost, and a few links have large cost,
thus representing bottlenecks. In this setup we observe gains
due to network coding. When the link costs are uniformly dis-
tributed, however, the gains disappear.

A comparison with the simulation results given by the au-
thors in [9] and more recently [7] is in order. In particular, in [7]
the authors consider a wireless network, which uses geographic
(min-hop) routing. They report large gains in the total through-
put, when implementing an opportunistic heuristic code con-
struction technique. These gains can be explained with several
factors, the most important being the lack of congestion control
when using solely geographic routing. If the routes are chosen
based on geography, without taking congestion into account, a
drastic breakdown of the total throughput is experienced as the
number of flows is increased. Network coding acts here as a
congestion resolution technique and gives large gains. Another
fundamental difference between the setup in [7] and our model
is that the former works on a wireless network, where nodes
broadcast their messages to a set of neighbors, a phenomenon
referred to as the wireless multicast advantage [10]; we on the
other hand consider a wired network with point-to-point links.

The gains that we report are fairly modest, compared to [7,9].
However, these results hold only for the narrow setup that we
consider, namely wireline networks, optimal routing4 as the
benchmark and no consideration of practical implementation
issues such as protocol design. Furthermore, we assume the
flows in the network static and do not consider the dynamic be-
havior of the network. It is worthwhile to investigate the utility
of network coding, when any of these restrictions is relaxed.
Based on the previous discussion, larger gains might be ob-
served in wireless networks (due to the wireless multicast ad-
vantage), when the cost coefficients or capacities of the links
are distributed highly non-uniform, or when considering net-
work coding as a tool to enhance routing, e.g. as a congestion
resolution technique. Also, further research is indicated on the
dynamic aspects of networks using network coding and the in-
terplay between practical network design and network coding.

V. CONCLUSIONS

Few explicit code construction techniques are known for the
multiple unicast setup. In this paper we proposed a systematic
approach to introduce suboptimal, yet practical network coding
for multiple unicasts. Our scheme comes in two variations, a
linear program and an integer program of smaller size. We dis-
cussed the computational complexity and based on simulations

3Since both the linear and the integer program model the same problem, the
linear program in this case would have given equivalent results.

4By optimal routing we mean the optimal solution of the associated multi-
commodity flow problem.

a b c

d e f

Fig. 2. The grid network used for simulations. Note, that all edges are directed
from the sources a, b, c down to the sinks d, e, f .

Approach Connections Networks Average
with gains gain

ai ∼ 1 wp 0.9 2 1.1% 28.0%
100 wp 0.1 3 5.8% 24.9%

ai ∼ unif(1, 100) 2 0 0
3 0 0

TABLE II
SIMULATION RESULTS ON THE GRID NETWORK IN FIG. 2: A NUMBER OF

CONNECTIONS IS RANDOMLY SELECTED FROM THE DESIGNATED SOURCE

AND DESTINATION PAIRS. THE LINK COSTS ARE RANDOMLY FIXED

ACCORDING TO THE SPECIFIED DISTRIBUTION. WE REPORT THE

FRACTION OF NETWORKS, WHERE NETWORK CODING RESULTED IN A

LOWER TRANSMISSION COST THAN ROUTING. THE COST GAIN IS DEFINED

AS
costrouting−costcoding

costrouting
AND IS CALCULATED OVER THE NETWORKS,

WHERE A GAIN WAS OBSERVED.

evaluated the network coding gains. We also compared them
with recently published results by other authors.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information
flow”, IEEE Trans. on Inf. Theory, vol. IT-46, pp. 1204–1216, 2000.

[2] T. Ho, M. Médard, R. Koetter, D.R. Karger, M. Effros, J. Shi, and B.
Leong, “A random linear network coding approach to multicast”, submit-
ted to IEEE Trans. on Inf. Theory.

[3] D. S. Lun, M. Medard, T. Ho, and R. Koetter, “Network coding with a
cost criterion”, in Proc. Intl. Symp. on Inf. Theory and its Appl., 2004.

[4] D. P. Berstekas, Network optimization: Continuous and discrete models,
Belmont, MA: Athena Scientific, 1998.

[5] N. Ratnakar, D. Traskov, and R. Koetter, “Approaches to network coding
for multiple unicast”, in Intern. Zurich Seminar on Comm., Febr. 2006.

[6] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. on Networking, vol. 11, no. 5, pp. 782-795, Oct. 2003.

[7] S. Katti, D. Katabi, Wenjun Hu, and Rahul Hariharan, “The importance
of being opportunistic: Practical network coding for wireless environ-
ments”, in Allerton Conference, 2005.

[8] I. Barland, P.G. Kolaitis, and M.N. Thakur, “Integer programming as a
framework for optimization and approximability”, In Proc. IEEE Confer-
ence on Computational Complexity, pages 249–259, 1996.

[9] R. Khalili and K. Salamatian, “A new relaying scheme for cheap wireless
relay nodes” in Wiopt 2005, Trentino, Italy.

[10] D.S. Lun, N. Ratnakar, M. Medard, R. Koetter, D.R. Karger, T. Ho, E.
Ahmed, “Minimum-cost multicast over coded packet networks”, submit-
ted to IEEE Trans. on Inf. Theory.

ISIT 2006, Seattle, USA, July 9 14, 2006

1762

Authorized licensed use limited to: MIT Libraries. Downloaded on March 04,2010 at 16:23:52 EST from IEEE Xplore. Restrictions apply.

