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Abstract—The deterministic wireless relay network model,
introduced by Avestimehr et al., has been proposed for approx-
imating Gaussian relay networks. This model, known as the
ADT network model, takes into account the broadcast nature
of wireless medium and interference. Avestimehr et al. showed
that the Min-cut Max-flow theorem holds in the ADT network.

In this paper, we show that the ADT network model can
be described within the algebraic network coding framework
introduced by Koetter and Médard. We prove that the ADT
network problem can be captured by a single matrix, called the
system matrix. We show that the min-cut of an ADT network
is the rank of the system matrix; thus, eliminating the need to
optimize over exponential number of cuts between two nodes to
compute the min-cut of an ADT network.

We extend the capacity characterization for ADT networks
to a more general set of connections. Our algebraic approach
not only provides the Min-cut Max-flow theorem for a single
unicast/multicast connection, but also extends to non-multicast
connections such as multiple multicast, disjoint multicast, and
two-level multicast. We also provide sufficiency conditions for
achievability in ADT networks for any general connection set.
In addition, we show that the random linear network coding, a
randomized distributed algorithm for network code construction,
achieves capacity for the connections listed above. Finally, we
extend the ADT networks to those with random erasures and
cycles (thus, allowing bi-directional links).

I. INTRODUCTION

The capacity of the wireless relay networks, unlike its wired
counterparts, is still a generally open problem. Even for a
simple relay network with one source, one sink, and one
relay, the capacity is unknown. In order to better approximate
wireless relay networks, [1][2] proposed a binary linear de-
terministic network model (known as the ADT model), which
incorporates the broadcast nature of the wireless medium as
well as interference. A node within the network receives the
bit if the signal is above the noise level; multiple bits that
simultaneously arrive at a node are superposed. Note that this
model assumes operation under high Signal-to-Noise-Ratio
(SNR) – interference from other users’ dominate the noise.

References [1][2] characterized the capacity of the ADT
networks, and generalized the Min-cut Max-flow theorem for
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graphs to ADT networks for single unicast/multicast connec-
tions. Efficient algorithms to compute the coding strategies to
achieve minimum cut has been proposed in [3][4]. Reference
[5] introduced a flow network, called linking network, which
generalizes the ADT model, and relates the ADT networks
to matroids; thus, allowing the use of matroid theory to
solve ADT network problems. Note that [1][2][3][4][5] only
considered single unicast/ multicast connection.

In this paper, we make a connection between the ADT
network and algebraic network coding introduced by Koetter
and Médard [6], in which they showed an equivalence between
the solvability of a network problem and certain algebraic
conditions. This paper does not address ADT network model’s
ability to approximate the capacity of the wireless networks,
but shows that the ADT network problems, including that
of computing the min-cut and constructing a code, can be
captured by the algebraic framework.

Reference [6] showed that the solvability of network coding
problem [7] is equivalent to ensuring that a certain polynomial
does not evaluate to zero. Furthermore, [6] showed that there
are only a fixed finite number of roots of the polynomial; thus,
with large enough field size, decodability can be guaranteed
even under randomized coding schemes [8].

We show that the solvability of ADT network problem can
be characterized in the same manner. The important difference
between the algebraic network coding in [6] and the ADT
network is that the broadcast as well as the interference
constraints are embedded in the ADT network. Note that the
interference constraint, represented by additive multiple access
channels (MAC), can be easily incorporated to the algebraic
framework in [6] by pre-encoding at the transmitter.

On the other hand, broadcast constraint may seem more
difficult to incorporate, as the same code affects the outputs of
the broadcast hyperedge simultaneously, and the dependencies
propagate through the network. Thus, in essence, this paper
shows that this broadcast constraint is not problematic.

To briefly describe the intuition, consider an ADT net-
work without the broadcast constraint – i.e. the broadcast
edges do not need to carry the same information. Using this
“unconstrained” version of the ADT network, the algebraic
framework in [6] can be applied directly; thus, there are only
a finite fixed number of roots that need to be avoided. Now,
we “re-apply” the broadcast constraints to this unconstrained
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Fig. 1: Additive MAC with two users, and the corresponding
rate region. The triangular region is modeled as a set of finite
field addition MACs.

ADT network. The broadcast constraint fixes the codes of
the broadcast edges to be the same; this is equivalent to
intersecting the space of network code solutions with an
hyperplane, which enforces the output ports of the broadcast
to carry the same code. Note that this operation does not
affect the roots of the polynomial; thus, there are still only
a fixed finite number of roots that need to avoided, and with
high enough field size, the probability of randomly selecting
a root approaches zero. Therefore, similarly to [6][8], we can
show that the solvability of an ADT problem is equivalent to
ensuring that a certain polynomial does not evaluate to zero
within the space defined by the polynomial and the broadcast
constraint hyperplane. Thus, we can describe the ADT network
within algebraic network coding framework and extend the
random linear network coding results to the ADT networks.

II. NETWORK MODEL

As in [1][2], we shall consider a high SNR regime, in which
interference is the dominating factor. For high SNR, the Cover-
Wyner region may be well approximated by the combination
of two regions, one square and one triangular as in Figure
1. The square part can be modeled as parallel links for the
users, since they do not interfere. The triangular part can be
considered as that of a noiseless finite-field additive MAC [9].
In high SNR, analog network coding, which allows/encourages
strategic interference, is near optimal [10].

The ADT model uses binary channels, and thus, binary
additive MACs are used to model interference. Prior to [1][2],
Effros et al. presented an additive MAC over a finite field
Fq [11]. The Min-cut Max-flow theorem holds for all of the
cases above. It may seem that the ADT model differs greatly
from that of [11] owing to the difference in field sizes used.
However, we can achieve a higher field size in ADT networks
by combining multiple binary channels and using a binary-
vector scheme [12]. Reference [12] introduced permute-and-
add network codes that only require bit-wise vector operations,
and showed that codes in higher field size Fq can be converted
to binary-vector codes without loss in performance.

In other words, consider two nodes V1 and V2 with two
binary channels connecting them. Now, we can “combine”
the two channels as one with capacity of 2-bits. In this case,
instead of using F2, we can use a larger field size of F4. Thus,
selecting a larger field size Fq, q > 2 in ADT network results
in fewer but higher capacity parallel channels. Furthermore, it
is known that to achieve capacity for multicast connections,
F2 is not sufficient [4]; thus, we need to operate in a higher
field size. Therefore, we shall not restrict ourselves to F2.
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Fig. 2: Example network. We omit I(S) and O(T ) in this
diagram as they do not participate in the communication.

We now proceed to defining the network model precisely.
A wireless network is modeled using a directed graph G =
(V , E) with a node set V and an edge set E , as shown in Figure
2. Let S, T ⊆ V be the set of sources and destinations. A node
V ∈ V consists of input ports I(V ) and output ports O(V ).
An edge (e1, e2) exists only from an output port e1 ∈ O(V1)
to an input port e2 ∈ I(V2), for any V1, V2 ∈ V . Let E(V1, V2)
be the set of edges from O(V1) to I(V2). All edges are of unit
capacity, normalized to the symbol size of Fq. Parallel links of
E(V1, V2) deterministically model noise between V1 and V2.

Given such a wireless network G = (V , E), a source
node S ∈ S has independent random processes X (S) =
[X(S, 1), X(S, 2), ..., X(S, µ(S))], µ(S) ≤ |O(S)|, which it
wishes to communicate to a set of destination nodes T (S) ⊆
T . In other words, we want nodes T ∈ T (S) to replicate a
subset of the random processes, denoted X (S, T ) ⊆ X (S),
by the means of the network. We define a connection c
as a triple (S, T,X (S, T )), and the rate of c is defined as
R(c) =

∑

X(S,i)∈X (S,T )H(X(S, i)) = |X (S, T )| (symbols).
Information is transmitted through the network in the fol-

lowing manner. A node V sends information through e ∈
O(V ) at a rate at most one. Let Y (e) denote the random
process at port e. In general, Y (e), e ∈ O(V ), is a function
of Y (e′), e′ ∈ I(V ). Here, we consider only linear functions.

Y (e) =
∑

e′∈I(V )

β(e′,e)Y (e′), for e ∈ O(V ). (1)

For a source node S, and its output port e ∈ O(S), Y (e) =
∑

e′∈I(V ) β(e′,e)Y (e′) +
∑

X(S,i)∈X (S) α(i,e)X(S, i). Finally,
the destination T receives a collection of input processes
Y (e′), e′ ∈ I(T ). Node T generates a set of random processes
Z(T ) = [Z(T, 1), Z(T, 2), ..., Z(T, ν(T ))] where

Z(T, i) =
∑

e′∈I(T )

ǫ(e′,(T,i))Y (e′). (2)

A connection c = (S, T,X (S, T )) is established successfully
if X (S) = Z(T ). A node V is said to broadcast to a set
V ′ ⊆ V if E(V, V ′) 6= ∅ for all V ′ ∈ V ′. In Figure 2, node
S broadcasts to nodes V1 and V2. Superposition occurs at the
input port e′ ∈ I(V ), i.e. Y (e′) =

∑

(e,e′)∈E Y (e) over a
finite field Fq. We say there is a |V ′|-user MAC channel if
E(V ′, V ) 6= ∅ for all V ′ ∈ V ′. In Figure 2, nodes V1 and V2

are users, and T the receiver in a 2-user MAC.
For a given network G and a set of connections C, we say

that (G, C) is solvable if it is possible to establish successfully
all connections c ∈ C. The broadcast and MAC constraints
are given by the network; however, we are free to choose the
variables α(i,e), β(e′,e), and ǫ(e′,i) from Fq. Thus, the problem
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Y (e1) = α(1,e1)X(S, 1) + α(2,e1)X(S, 2)

Y (e2) = α(1,e2)X(S, 1) + α(2,e2)X(S, 2)

Y (e3) = Y (e6) = Y (e1)

Y (e4) = Y (e2)

Y (e5) = Y (e8) = 0

Y (e7) = β(e3,e7)Y (e3) + β(e4,e7)Y (e4)

Y (e9) = Y (e11) = β(e6,e9)Y (e6)

Y (e10) = β(e6,e10)Y (e6)

Y (e12) = Y (e7) + Y (e10)

Z(T, 1) = ǫ(e11,(T,1))Y (e11) + ǫ(e12,(T,1))Y (e12)

Z(T, 2) = ǫ(e11,(T,2))Y (e11) + ǫ(e12,(T,2))Y (e12)

Fig. 3: Equations relating the various processes of Figure 2.

of checking whether a given (G, C) is solvable is equivalent to
finding a feasible assignment to α(i,e), β(e′,e), and ǫ(e′,(T,i)).

Example 1: The equations in Figure 3 relate the various
processes in the example network in Figure 2. Note that in
Figure 2, we have set Y (e1) = a, Y (e2) = b, Y (e7) = c,
Y (e9) = d, and Y (e10) = f for notational simplicity.

A. An Interpretation of the Network Model

The ADT network model uses multiple channels to model
broadcast. In Figure 2, the two edges (e1, e3) and (e1, e6),
although distinct, carry the same information a due to the
broadcast constraint. This introduces considerable complexity
in constructing a network code as well as computing the min-
cut of the network [1][2][3][5]. This is because multiple edges
from a port do not capture the broadcast dependencies.

In our approach, we remedy this by introducing the use of
hyperedges, as shown in Figure 4 and Section III. An output
port’s decision to transmit affects the entire hyperedge; thus,
the output port transmits to all the input ports connected to
the hyperedge simultaneously. This removes the difficulties of
computing the min-cut of ADT networks (Section IV), as it
naturally captures the broadcast dependencies.

The finite field additive MAC model can be viewed as a set
of codes that an input port may receive. As shown in Figure
4, input port e12 receives one of the four possible codes. The
code that e12 receives depends on output ports e7’s and e9’s
decision to transmit or not.

The difficulty in constructing a network code does not come
from any single broadcast or MAC constraint, but from satis-
fying multiple MAC and broadcast constraints simultaneously.
For example, in Figure 5, the fact that e4 may receive a + b
does not constrain the choice of a nor b. The same argument
applies to e6 receiving a + c. However, the problem arises
from the fact that a choice of value for a at e4 interacts both
with b and c. As we shall see in Section IV, we eliminate this
difficulty by allowing the use of a larger field, Fq.

III. ALGEBRAIC FORMULATION

We provide an algebraic formulation for the ADT network
problem (G, C). For simplicity, we describe the multicast
problem with a single source S and a set of destination nodes
T . This formulation can be extended to multiple source nodes
S1, S2, ...SK by adding a super-source S as in Figure 6.
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Fig. 4: A new interpretation of the example network from
Figure 2.
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Fig. 5: An example of finite field additive MAC.

We define a system matrix M to describe the relationship
between source’s processes X (S) and the destinations’ pro-
cesses Z = [Z(T1),Z(T2), ...,Z(T|T |)]. Thus, we want to
characterize M where

Z = X (S) ·M. (3)

The matrix M is composed of three matrices, A, F , and B.
Given G, we define the adjacency matrix F as follows:

Fi,j =











1 if (ei, ej) ∈ E ,

β(ei,ej) if ei ∈ I(V ), ej ∈ O(V ) for V ∈ V ,

0 otherwise.

(4)

Matrix F is defined on the ports, rather than on the nodes.
This is because, in the ADT model, each port is the basic
receiver/transmitter unit. Each entry Fi,j represents the input-
output relationships of the ports. A zero entry indicates that
the ports are not directly connected, while an entry of one
represents that they are connected. The adjacency matrix F
naturally captures the physical structure of the ADT network.
Note that a row with multiple entries of 1 represent the
broadcast hyperedge; while a column with multiple entries of
1 represent the MAC constraint. Note that the 0-1 entries of F
represent the fixed network topology as well as the broadcast
and MAC constraints. On the other hand, β(ei,ej) are free
variables, representing the coding coefficients used at V to
map the input port processes to the output port processes. This
is the key difference between the work presented here and
in [6] – F is partially fixed in the ADT network model due
to network topology and broadcast/MAC constraints, while in
[6], only the network topology affect F .

In [1][2], the nodes are allowed to perform any internal
operations; while in [3][5], only permutation matrices (i.e.
routing) are allowed. References [1][2] showed that linear
operations are sufficient to achieve capacity for multicasting
in ADT networks. We consider a general setup in which
β(ei,ej) ∈ Fq , allowing any matrix operation, as in [1][2].

Note that F k, the k-th power of an adjacency matrix of a
graph G, shows the existence of paths of length k between any
two nodes in G. Therefore, the series I + F + F 2 + F 3 + ...
represent the connectivity of the network. It can be verified
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a “one-to-one connection” to a ej ∈ O(Si), for i ∈ [1,K].

that F is nilpotent, which means that there exists a k such
that F k is a zero matrix. As a result, I+F +F 2+F 3+ ... =
(I−F )−1. Thus, (I−F )−1 represents the impulse response of
the network. Note that, (I−F )−1 exists for all acyclic network
since I−F is an upper-triangle matrix with all diagonal entries
equal to 1; thus, det(I − F ) = 1.

Example 2: In Figure 7, we provide the 12× 12 adjacency
matrix F for the example network in Figures 2 and 4. Note that
the first row (with two entries of 1) represents the broadcast
hyperedge, e1 connected to both e3 and e6. The last column
with two entries equal to 1 represents the MAC constraint,
both e7 and e10 talking to e12. The highlighted elements in F
represent the coding variables, β(e′,e), of V1 and V2. For some
(e′, e), β(e′,e) = 0 since these ports of V1 and V2 are not used.

Matrix A represents the encoding operations performed at
S. We define a |X (S)| × |E| encoding matrix A as follows:

Ai,j =

{

α(i,ej) if ej ∈ O(S) and X(S, i) ∈ X (S),

0 otherwise.
(5)

Example 3: We provide the 2 × 12 encoding matrix A for
the network in Figure 2.

A =
(

α1,e1 α1,e2 0 ··· 0
α2,e1 α2,e2 0 ··· 0

)

.

Matrix B represents the decoding operations performed at
the destination nodes T ∈ T . Since there are |T | destination
nodes, B is a matrix of size |Z| × |E| where Z is the set of
random processes derived at the destination nodes. We define
the decoding matrix B as follows:

Bi,(Tj ,k) =

{

ǫ(ei,(Tj ,k)) if ei ∈ I(Tj), Z(Tj, k) ∈ Z(Tj),

0 otherwise.
(6)

Example 4: We provide the 2× 12 decoding matrix B for
the example network in Figure 2.

B =
(

0 ··· 0 ǫ(e11,(T,1)) ǫ(e12,(T,1))

0 ··· 0 ǫ(e11,(T,2)) ǫ(e12,(T,2))

)

.

Theorem 1: Given a network G = (V , E), let A, B,
and F be the encoding, decoding, and adjacency matrices,
respectively. Then, the system matrix M is given by

M = A(1 − F )−1BT . (7)

Proof: The proof of this theorem is similar to that of
Theorem 3 in [6].
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Fig. 7: 12× 12 adjacency matrix F for network in Figure 2.

Note that the algebraic framework shows a clear separation
between the given physical constraints (fixed 0-1 entries of F
showing the topology and the broadcast/MAC constraints), and
the coding decisions. As mentioned previously, we can freely
choose the coding variables α(i,ej), ǫ(ei,(Tj,k)), and β(ei,ej).
Thus, solvability of (G, C) is equivalent to assigning values to
α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) such that each receiver T ∈ T
is able to decode the data it is intended to receive.

Example 5: We can combine the matrices F , A, and B
from Examples 2, 3, and 4 respectively to obtain the system
matrix M = A(I − F )−1BT for the network in Figure 2.

IV. DEFINITION OF MIN-CUT

Consider a source S and a destination T . Reference [1]
proves the maximal achievable rate to be the minimum value
of all S-T cuts, denoted mincut(S, T ), which we reproduce
below in Definition 1.

Definition 1: [1][2] A cut Ω between S and T is a partition
of the nodes into two disjoint sets Ω and Ωc such that S ∈ Ω
and T ∈ Ωc. For any cut, GΩ is the incidence matrix associated
with the bipartite graph of ports in Ω and Ωc. Then, the
capacity of the given network, mincut(S, T ), is defined as

mincut(S, T ) = min
Ω

rank(GΩ).

This capacity of mincut(S, T ) can be achieved using linear
operations for a single unicast/multicast connection. �

With Definition 1, we need to optimize over all cuts between
S and T to compute mincut(S, T ). In addition, the proof of
achievability in [1] is not constructive, as it assumes infinite
block length and does not consider the details of internal node
operations. We introduce a new algebraic definition of the min-
cut, and show that it is equivalent to that of Definition 1.

Theorem 2: The capacity of the given ADT, equivalently
the minimum value of all S − T cuts mincut(S, T ), is

mincut(S, T ) = min
Ω

rank(GΩ)

= max
α(i,e),β(e′,e),ǫ(e′,i)

rank(M).

Proof: By [1], we know that mincut(S, T ) =
minΩ rank(GΩ). Therefore, we show that maxα,β,ǫ rank(M) is
equivalent to the maximal achievable rate in an ADT network.

First, we show that mincut(S, T ) ≥ maxα,β,ǫ rank(M).
In our formulation, Z(T ) = X (S)M ; thus, the rank of M
represents the rate achieved. Let R = maxα,β,ǫ rank(M).
Then, there exists an assignment of α(i,e), β(e′,e), and ǫ(e′,i)
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such that the network achieves a rate of R. By the definition
of min-cut, it must be the case that mincut(S, T ) ≥ R.

Second, we show that mincut(S, T ) ≤ maxα,β,ǫ rank(M).
Assume that R = mincut(S, T ). Then, by [1][2], there exists
a linear configuration of the network such that we can achieve
a rate of R such that the destination node T is able to
reproduce X (S, T ). This configuration of the network pro-
vides a linear relationship of the source-destination processes
(actually, the resulting system matrix is an identity matrix);
thus, an assignment of the variables α(i,e), β(e′,e), and ǫ(e′,i)
for our algebraic framework. We denote M ′ to be the system
matrix corresponding to this assignment. Note that, by the
definition, M ′ is an R×R matrix with a rank of R. Therefore,
maxα,β,ǫ rank(M) ≥ rank(M ′) = mincut(S, T ).

The matrix M depends not only on the structure of the
ADT network, but also on the field size used, nodes’ internal
operations, transmission rate, and connectivity. For example,
the network topology may change with a choice of larger field
size, since larger field sizes result in fewer parallel edges.

V. MIN-CUT MAX-FLOW THEOREM

We provide an algebraic interpretation of the Min-cut Max-
flow theorem for a single unicast connection and a single
multicast connection [1][2]. This result is a direct consequence
of [6] when applied to the algebraic formulation for the ADT
network. We also show that a distributed randomized coding
scheme achieves capacity for these connections.

Theorem 3 (Min-cut Max-flow Theorem): Given an acyclic
network G with a single connection c = (S, T,X (S, T )) of
rate R(c) = |X (S, T )|, the following are equivalent.

1) A unicast connection c is feasible.
2) mincut(S, T ) ≥ R(c).
3) There exists an assignment of α(i,ej), ǫ(ei,(Tj ,k)), and

β(ei,ej) such that the R(c) × R(c) system matrix M is
invertible in Fq (i.e. det(M) 6= 0).

Proof: Statements 1) and 2) have been shown to be equiv-
alent in ADT networks [1][3][5]. From Theorem 2, we have
shown that mincut(S, T ) = maxα,β,ǫ rank(M). Therefore,
for any rate R(c) ≤ mincut(S, T ), M is a full-rank square
matrix. Thus, M is invertible.

Corollary 4 (Random Coding for Unicast): Consider
an ADT network problem with a single connection c =
(S, T,X (S, T )) of rate R(c) = |X (S, T )| ≤ mincut(S, T ).
Then, random linear network coding, where some or all
code variables α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) are chosen
independently and uniformly over all elements of Fq,
guarantees decodability at destination node T with high
probability at least (1 − 1

q
)η , where η is the number of links

carrying random combinations of the source processes.
Proof: From Theorem 3, there exists an assignment of

α(i,ej), ǫ(ei,(Tj ,k)), and β(ei,ej) such that det(M) 6= 0, which
gives a capacity-achieving network code for the given (G, C).
Thus, this connection c is feasible for the given network.
Reference [8] proves that random linear network coding
is capacity-achieving and guarantees decodability with high
probability (1− 1

q
)η for such feasible unicast connection c.

Theorem 5 (Single Multicast Theorem): Given an acyclic
network G and connections C = {(S, T1,X (S)), (S, T2,
X (S)), ..., (S, TN ,X (S))}, (G, C) is solvable if and only if
mincut(S, Ti) ≥ |X (S)| for all i.

Proof: If (G, C) is solvable, then mincut(S, Ti) ≥
|X (S)|. Therefore, we only have to show the converse. As-
sume mincut(S, Ti) ≥ |X (S)| for all i ∈ [1, N ]. The system
matrix M = {Mi} is a concatenation of |X (S)| × |X (S)|
matrix where Z(Ti) = X (S)Mi, as shown in Figure ??.
We can write M = [M1,M2, ...,MN ] = A(I − F )−1BT =
A(I−F )−1[B1, B2, ..., BN ]. Thus, Mi = A(I−F )−1Bi. Note
that A and Bi’s do not substantially contribute to the system
matrix Mi since A and Bi only perform linear encoding and
decoding at the source and destinations, respectively.

By Theorem 3, there exists an assignment of α(i,ej),
ǫ(ei,(Tj ,k)), and β(ei,ej) such that each individual system
submatrix Mi is invertible, i.e. det (Mi) 6= 0. However, an as-
signment that makes det (Mi) 6= 0 may lead to det (Mj) = 0
for i 6= j. Thus, we need to show that it is possible to achieve
simultaneously det (Mi) 6= 0 for all i. By [8], we know that if
the field size is larger than the number of receivers (q > N ),
then there exists an assignment of α(i,ej), ǫ(ei,(Tj ,k)), and
β(ei,ej) such that det (Mi) 6= 0 for all i.

Corollary 6 (Random Coding for Multicast): Consider an
ADT network problem with a single multicast connection
C = {(S, T1,X (S)), (S, T2,X (S)), ..., (S, TN ,X (S))} with
mincut(S, Ti) ≥ |X (S)| for all i. Then, random linear
network coding, where some or all code variables α(i,ej),
ǫ(ei,(Tj ,k)), and β(ei,ej) are chosen independently and uni-
formly over all elements of Fq , guarantees decodability at des-
tination node Ti for all i simultaneously with high probability
at least (1 − N

q
)η , where η is the number of links carrying

random combinations of the source processes; thus, η ≤ |E|.
Proof: Given that the multicast connection is feasible

(Theorem 5), [8] shows that random linear network coding
achieves capacity for multicast connections, and allows all
destination nodes to decode the source processes X (S) with
high probability (1− N

q
)η .

VI. EXTENSIONS TO OTHER CONNECTIONS

In this section, we extend the ADT network results to a
more general set of traffic requirements. We use the algebraic
formulation and the results from [6] to characterize the feasi-
bility conditions for a given problem (G, C).

Theorem 7 (Multiple Multicast Theorem): Given a network
G and a set of connections C = {(Si, Tj ,X (Si)) | Si ∈
S, Tj ∈ T }, (G, C) is solvable if and only if Min-cut Max-
flow bound is satisfied for any cut between source nodes S
and a destination Tj , for all Tj ∈ T .

Proof: We first introduce a super-source S with |O(S)| =
∑

Si∈S |O(Si)|, and connect each e′j ∈ O(S) to an input of
Si such that ej ∈ O(Si) as shown in Figure 6. Then, we apply
Theorem 5, which proves the statement.

Theorem 8 (Disjoint Multicast Theorem): Given an acyclic
network G with a set of connections C = {(S, Ti, X (S, Ti))
| i = 1, 2, ...,K} is called a disjoint multicast if X (S, Ti) ∩
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Fig. 8: Disjoint multicast problem can be converted into a
single destination problem by adding a super-destination T .
The system matrix M for the disjoint multicast problem is
shown as well.

X (S, Tj) = ∅ for all i 6= j. Then, (G, C) is solvable if and
only if mincut(S, T ′) ≥

∑

Ti∈T ′ |X (S, Ti)| for any T ′ ⊆ T .
Proof: Create a super-destination node T with |I(T )| =

∑K

i=1 |I(Ti)|, and an edge (e, e′) from e ∈ O(Ti), i ∈ [1,K]
to e′ ∈ I(T ), as in Figure 8. This converts the problem
of disjoint multicast to a single-source S, single-destination
T problem with rate X (S, T ) =

∑

T ′∈T |X (S, T )|. The
mincut(S, T ) ≥ |X (S, T )|; so, Theorem 3 applies. Now, we
have to guarantee that Ti is able to receive the exact subset of
processes X (S, Ti). Since the system matrix to T is full rank,
we can carefully choose the encoding matrix A such that the
system matrix M at super-destination T is an identity matrix.
This implies that for each edge from the output ports of Ti

(for all i) to the input ports of T is carrying a distinct symbol,
disjoint from all the other symbols carried by those edges
from output ports of Tj , for all i 6= j. Thus, by appropriately
permuting the symbols at the source can deliver the desired
processes to the intended Ti as shown in Figure 8.

Theorem 9 (Two-level Multicast Theorem): Given an
acyclic network G with a set of connections C = Cd ∪ Cm
where Cd = {(S, Ti,X (S, Ti))|X (S, Ti) ∩ X (S, Tj) = ∅,
i 6= j, i, j ∈ [1,K]} is a set of disjoint multicast connections,
and Cm = {(S, Ti,X (S)) | i ∈ [K + 1, N ]} is a set of single
source multicast connections. Then, (G, C) is solvable if and
only if the min-cut between S and any T ′ ⊆ {T1, ..., TK} is
at least

∑

Ti∈T ′ |X (S, Ti)|, and min-cut between S and Tj is
at least |X (S)| for j ∈ [K + 1, N ].

Proof: We create a super-destination T for the disjoint
multicast destinations as in the proof for Theorem 8. Then, we
have a single multicast problem with receivers T and Ti, i ∈
[K + 1, N ]. Theorem 5 applies. By choosing the appropriate
matrix A, S can satisfy both the disjoint multicast and the
single multicast requirements.

Theorem 9 does not extend to a three-level multicast.
In the theorem below, we present sufficient conditions for

solvability of a general connection set. This theorem does not
provide necessary conditions, as shown in [13].

Theorem 10 (Generalized Min-cut Max-flow Theorem):
Given an acyclic network G with a connection set C, let
M = {Mi,j} where Mi,j is the system matrix for source
processes X (Si) to destination processes Z(Tj). Then, (G, C)
is solvable if there exists an assignment of α(i,ej), ǫ(ei,(Tj ,k)),
and β(ei,ej) such that

1) Mi,j = 0 for all (Si, Tj,X (Si, Tj)) /∈ C,

2) Let (Sσ(i), Tj ,X (Sσ(i), Tj)) ∈ C for i ∈ [1,K(j)].
Thus, this is the set of connections with Tj as a receiver.
Then, [MT

σ(1),j,M
T
σ(2),j , ..., M

T
σ(Kj),j

] is a |Z(Tj))| ×
|Z(Tj)| is a nonsingular system matrix.

Proof: Note that [MT
σ(1),j ,M

T
σ(2),j , ..., MT

σ(Kj),j
] is a

system matrix for source processes X (Sσ(i)), i ∈ [1,K(j)],
to destination processes Z(Tj). Condition 1) states that the
destination Tj should be able to distinguish the information
it is intended to receive from the information that may have
been mixed into the flow it receives. Condition 2) states the
Min-cut Max-flow condition; thus, is necessary to establish the
connections. These two conditions are sufficient to establish
all connections in C. We do not provide the details for want
of space; the proof is similar to that of Theorem 6 in [6].

We briefly note the capacity achieving code construction for
the non-multicast connections described in this section. For
multiple multicast, a random linear network coding approach
achieves capacity – i.e. the source nodes and the intermediate
nodes can randomly and uniformly select coding coefficients.
However, a minor modification is necessary for disjoint mul-
ticast and two-level multicast. We note that only the source’s
encoding matrix A needs to be modified. As in the proofs
of Theorems 8 and 9, the intermediate nodes can randomly
and uniformly select coding coefficients; thus, preserving the
distributed and randomized aspect of the code construction.
Once the coding coefficients at the intermediate nodes are
selected, S carefully chooses the encoding matrix A such that
the system matrix corresponding to the receivers of the disjoint
multicast (in the two-level multicast, these would correspond
to Ti, i ∈ [1,K]) is an identity matrix. This can be done
because the system matrix M is full rank.

VII. NETWORK WITH RANDOM ERASURES

Wireless networks are stochastic in nature, and random
erasures occur dynamically over time. However, the original
ADT network models noise deterministically with parallel
noise-free bit-pipes. As a result, the min-cut (Definition 1)
and the network code [3][4][5], which depend on the hard-
coded representation of noise, have to be recomputed every
time the network changes.

We show that the algebraic framework for the ADT network
is robust against random erasures.First, we show that for some
set of link failures, the network code remain successful. This
translate to whether the system matrix M preserves its full
rank even after a subset of variables α(i,ej), ǫ(ei,(Dj ,k)), and
β(ei,ej) of the failed links is set to zero. Second, we show that
the specific instance of the system matrix M and its rank are
not as important as the average rank(M) when computing the
time average min-cut. We shall use the results from [14] to
show that random linear network coding achieves the time-
average min-cut; thus, is capacity-achieving.

We assume that any link within the network may fail. Given
an ADT network G and a set of link failures f , Gf represents
the network G experiencing failures f . This can be achieved
by deleting the failing links from G, which is equivalent to
setting the coding variables in B(f) to zero, where B(f) is
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the set of coding variables associated with the failing links.
We denote M be the system matrix for network G. Let Mf

be the system matrix for the network Gf .

A. Robust against Random Erasures

Given an ADT network problem (G, C), let F be the set of
all link failures such that, for any f ∈ F , the problem (Gf , C)
is solvable. The solvability of a given (Gf , C) can be verified
using resulting in Sections V and VI. We are interested in
static solutions, where the network is oblivious of f . In other
words, we are interested in finding the set of link failures that
remain successful. For a multicast connection, we show the
following surprising result.

Theorem 11 (Static Solution for Random Erasures): Given
an ADT network problem (G, C) with a multicast connection
C = {(S, T1,X (S)), (S, T2,X (S)), ..., (S, TN ,X (S))}, there
exists a static solution to the problem (Gf , C) for all f ∈ F .

Proof: By Theorem 5, we know that for any given f ∈
F , the problem (Gf , C) is solvable; thus, there exists a code
det (Mf ) 6= 0. Now, we need to show that there exists a code
such that det (Mf ) 6= 0 for all f ∈ F simultaneously. This
is equivalent to finding a non-zero solution to the following
polynomial:

∏

f∈F det (Mf ) 6= 0. Reference [8] showed that
if the field size is large enough (q > |F||T | = |F|N ), then
there exists an assignment of α(i,ej), ǫ(ei,(Dj ,k)), and β(ei,ej)

such that det (Mf ) 6= 0 for all f ∈ F .
Corollary 12 (Random Coding against Random Erasures):

Consider an ADT network problem with a multicast
connection C = {(S, T1,X (S)), ..., (S, TN ,X (S))}, which is
solvable under link failures f , for all f ∈ F . Then, random
linear network coding guarantees decodability at destination
nodes Ti for all i simultaneously and remains successful
regardless of the failure pattern f ∈ F with high probability
at least (1− N |F|

q
)η, where η is the number of links carrying

random combinations of the source processes.
We note that it is unclear whether this can be extended to

the non-multicast connections, as noted in [6].

B. Time-average Min-cut

Use techniques similar to that from [14], we study the
time-average behavior of the ADT network given random
erasures. Consider an ADT network G. In order to study
the time-average steady state behavior, we introduce erasure
distributions. Let F ′ be a set of link failure patterns in G. A
set of link failures f ∈ F ′ may occur with probability pf .

Theorem 13 (Min-cut for Time-varying Network): Assume
an ADT network G in which link failure pattern f ∈ F ′

occurs with probability pf . Then, the average min-cut between
two nodes S and T in G, mincutF ′(S, T ) is

mincutF ′(S, T ) =
∑

f∈F ′

pf

(

max
α(i,e),β(e′,e),ǫ(e′,i)

rank(Mf )

)

.

Proof: We skip the proof for want of space.
The key difference between Theorems 11 and 13 is that in

Theorem 11, any f ∈ F may change the network topology
as well as min-cut but mincut(S, T ) ≥ |X (S)| holds for all

f ∈ F – i.e. (Gf , C) is assumed to be solvable. However, in
Theorem 13, we make no assumption about the connection as
we are evaluating the average value of the min-cut.

Unlike the case of static ADT networks, with random
erasures, it is necessary to maintain a queue at each node in
the ADT network. This is because, if a link fails when a node
has data to transmit on it, then it will have to wait until the
link recovers. In addition, a transmitting node needs to be able
to learn whether a packet has been received by the next hop
node, and whether it was innovative – this can be achieved
using channel estimation, feedback and/or redundancy. In the
original ADT network, the issue of feedback was removed by
assuming that the links are noiseless bit-pipes. We present the
following corollaries under these assumptions.

Corollary 14 (Multicast in Time-varying Network):
Consider an ADT network G and a multicast connection
C = {(S, T1,X (S)), ..., (S, TN ,X (S))}. Assume that failures
occur where failure patten f ∈ F ′ occurs with probability
pf . Then, the multicast connection is feasible if and only if
mincutF ′(S, Ti) ≥ |X (S)| for all i.

Corollary 15 (Random Coding for Time-varying Network):
Consider (G, C) where C is a multicast connection. Assume
failure pattern f ∈ F ′ occurs with probability pf . Then,
random linear coding guarantees decodability at destinations
Ti, ∀i, simultaneously with arbitrary small error probability.

VIII. NETWORK WITH CYCLES

ADT networks are acyclic. However, wireless networks
intrinsically have cycles as wireless links are bi-directional
by nature. We extend the ADT network model to networks
with cycles. To do so, we need to introduce the notion of time
by introducing delay on the links – since, without the notion
of time, the network with cycles may not be casual. As in [6],
we model each link to have the same delay, and express the
network random processes in the delay variable D.

We define Xt(S, i) and Zt(T, j) to be the i-th and j-th
binary random process generated at source S and received
at destination T at time t, for t = 1, 2, .... We define
Yt(e) to be the process on edge e at time t = 1, 2, ...,
respectively. We express the source processes as a power series
in D, X (S,D) = [X(S, 1, D), X(S, 2, D), ..., X(S, µ(S), D)]
where X(S, i,D) =

∑∞
t=0 Xt(S, i)D

t. Similarly, we express
the destination random processes Z(T,D) = [Z(T, 1, D),
..., Z(T, ν(Z), D)] where Z(T, i,D) =

∑∞
t=0 Zt(T, i)D

t. In
addition, we express the edge random processes as Yt(e,D) =
∑∞

t=0 Yt(e)D
t. Then, we can rewrite Equations (1) as

Yt+1(e) =
∑

e′∈I(V )

β(e′,e)Yt(e
′) +

∑

Xt(S,i)∈X (S)

α(i,e)Xt(S, i).

Furthermore, the output processes Zt(T, i) can be rewritten as

Zt+1(T, i) =
∑

e′∈I(T )

ǫe′,(T,i)Yt(e
′).

Using this formulation, we can extend the results from [6] to
ADT networks with cycles. We show that a system matrix
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Fig. 9: 12× 12 matrix (I −DF )−1 for network in Figure 2. The matrix F can be found in Figure 7.

M(D) captures the input-output relationships of the ADT
networks with delay and/or cycles.

Theorem 16: Given a network G = (V , E), let A(D),
B(D), and F be the encoding, decoding, and adjacency
matrices, as defined here:

Ai,j =

{

α(i,ej )(D) if ej ∈ O(S) and X(S, i) ∈ X (S),

0 otherwise.

Bi,(Tj ,k) =

{

ǫ(ei,(Tj,k))(D) if ei ∈ I(Tj), Z(Tj , k) ∈ Z(Tj),

0 otherwise.

and F as in Equation (4). The variables α(i,ej)(D) and
ǫ(ei,(Tj ,k))(D) can either be constants or rational functions in
D. Then, the system matrix of the ADT network with delay
(and thus, may include cycles) is given as

M(D) = A(D) · (I −DF )−1 · B(D)T . (8)

Proof: The proof for this is similar to that of Theorem 1;
thus, we shall not discuss this in detail for want of space.

Similar to Section III, (I −DF )−1 = I +DF +D2F 2 +
D3F 3 + ... represents the impulse response of the network
with delay. Note that an entry of Dk signifies that the path
is of length k. An example of (I − DF )−1 for the example
network in Figure 4 is shown in Figure 9.

Using the system matrix M(D) from Theorem 16, we can
extend Theorem 3, Theorem 5, Theorem 7, Theorem 8, and
Theorem 9 to ADT networks with cycles/delay. However, there
is a minor technical change. We now operate in a difference
field – instead of having coding coefficients from the finite
field Fq, the coding coefficients are now from Fq(D), the field
of rational functions of D. We shall not discuss the proofs in
detail; however, this is a direct application of results in [6].

IX. CONCLUSIONS

ADT networks [1][2] have drawn considerable attention for
its potential to approximate the capacity of wireless relay
networks. We showed that the ADT network can be described
well within the algebraic network coding framework [6]. We
emphasize again that the aim of this paper is not to address
ADT network model’s ability to approximate the wireless net-
works, but to show that the ADT network problems, including
that of computing the min-cut and constructing a code, can be
captured by the algebraic network coding framework.

We derived an algebraic definition of min-cut for the ADT
networks, and provided an algebraic interpretation of the Min-
cut Max-flow theorem for a single unicast/mulciast connection

in ADT networks. Furthermore, using the algebraic structure,
we showed feasibility conditions for a variety of set of connec-
tions C, such as multiple multicast, disjoint multicast, and two-
level multicast. We also showed optimality of linear operations
for the connections listed above in the ADT networks, and
showed that random linear network coding achieves capacity.

We extended the capacity characterization to networks with
cycles and random erasures/failures. We proved the optimal-
ity of linear operations for multicast connections in ADT
networks with cycles. Furthermore, by incorporating random
erasures into the ADT network model, we showed that random
linear network coding is robust against failures and erasures.
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