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Abstract—In this paper, we propose a new real-time retail
pricing model characterized by ex-post adjustments to exanté
price, and investigate the stability and efficiency properties of
the ensuing closed loop system. Under this pricing mechanism,
electricity is priced at the exanté price (calculated based on
predicted demand) up to the amount consumed at the previous
time period. Any deviation of the demand from the previous time
period is penalized or reimbursed at the ex-post price (calculated
based on actual demand, after consumption). It is assumed
that the exanté and ex-post prices are calculated based on the
aggregate consumption of the population. Therefore, although an
individual consumer is a price-taker, he might adjust his behavior
strategically based on the mean consumption of the population.
Within this class of pricing mechanisms we investigate the social
welfare and price stability properties. Simulation is used to show
that the approximate dynamics with individual-mass interaction
has better stability and robustness properties than pure exanté
pricing.

Index Terms—Real-Time Pricing, Market Stability, Economic
Efficiency.

I. INTRODUCTION

A paramount attribute of smart grids in comparison to
today’s electric power systems is an advanced communication
and IT infrastructure, which enables multi-directional flow
of information between consumers, producers, and system
operators, and allows for a refined granularity of monitoring
and control. This, in turn, would enable active participation of
consumers in real-time balancing of demand and stochastically
fluctuating supply. However, presence of a complex demand
structure with uncertain preferences and dependence on price
and other incentives poses significant challenges to realizing
these potentials. Pricing mechanisms and associated markets
that guarantee stability and economic efficiency are difficult
to design under endogenous and exogenous uncertainties
arising from uncertain consumer behavior and stochastic
uncertainties that are inherent to renewable energy supply [1]
[13] [5]. This paper is a step toward the design of dynamic
pricing mechanisms with suitable stability and economic
efficiency properties.

The existing body of literature on dynamic pricing in
transportation or communication networks is extensive. See
for instance [9], [4], [11] and the references therein. However,
application of the underlying concepts and tools available
in these fields to electric power grids poses new formidable
challenges due to the asymmetry of information, the safety-
critical nature of the system, and the firm coupling between
physics and economics. There has been some recent work
on the interaction of economics and physics. For instance, in
[7] and [8], a framework is proposed for translating global
objectives and constraints into real-time prices based on
first-order optimality conditions, and applications to optimal
power flow and transmission network congestion control
problems are considered. However, the key challenges, i.e.,
analysis and design of controllers with provable stability
and performance properties, are yet to be addressed. With
the targeted scale of granularity of real-time monitoring
and control up to the individual consumer level, stability
and economic analysis of real-time pricing mechanisms is a
priority.

In the context of stability, recent work on price volatility
and stability in power systems has shown that real-time retail
pricing of electricity, characterized by relaying the wholesale
electricity prices to the end consumers, creates a closed-loop
feedback system, which could be unstable or non-robust
[12] [13]. The framework of [13] considers the consumer as
an autonomous agent who myopically adjusts her usage in
response to the price signal in order to maximize a concave
quasi-linear utility function. The adjusted demand is, in turn,
a feedback signal to the wholesale market and affects the
prices for the next time step. Under exanté pricing, the price
per unit of consumption is announced at the beginning of the
pricing interval and, therefore, must be calculated based on
predicted demand. It is binding and cannot change until the
next pricing interval. The results indicate that price volatility
is a function of the system’s relative price elasticity, defined
as the maximal ratio of the price-elasticity of consumers to



the price elasticity of producers. As this ratio increases, the
system becomes more volatile, eventually becoming unstable
as the relative price elasticity approaches to one. In practice,
instability—in its dynamic sense—could manifest itself as
extreme volatility in the spot market prices along with wild
fluctuations of demand [13]. The same notion of relative
price elasticity can be used to characterize the system’s
robustness to external disturbances. The higher the relative
price elasticity is, the higher is the incremental L2-gain
from the external disturbances to the market prices. The
system could be stabilized and volatility could be reduced in
many different ways, e.g., via static or dynamic controllers
regulating the interaction of wholesale markets and retail
consumers. However, different pricing mechanisms pose
different consequences on competing factors of interest.

In this paper we introduce a new pricing mechanism
characterized by ex-post adjustments to exanté prices. The
exanté price is calculated based on predicted demand, which
is assumed to be equal to the demand during the previous
pricing interval. The ex-post price is calculated at the end
of each dispatch interval based on the actual accumulated
consumption, which could exceed or recede the predicted
demand. In our proposed pricing mechanism, electricity is
priced at the exanté price up to the amount consumed at the
previous time period. Only the deviation of the demand from
the previous time period is penalized or reimbursed at the
ex-post price. Therefore, although an individual consumer
is a price-taker, he might adjust his behavior strategically
based on the mean consumption of the population. Our model
invokes ideas from mean-field stochastic control and results
in a Nash-Cournot type dispatch model. Representation of
a large number of interacting consumers by a mean-field
is an adequate and plausible approximation and can be
used to overcome computational intractability that generally
constrains the applicability of algorithms seeking for best
response dynamics to obtain Markov perfect equilibria
[3]. Moreover, individual control strategies only based on
individual-mass interaction can be designed such, that the
population’s mean state reaches an optimum in the game
theoretic sense of Nash [6].

The organization of the paper is as follows. In Section II,
we describe the market structure followed by the dynamics
of market operation in Section III. In Section IV, we present
and discuss results obtained from simulation in terms of price
stability, robustness and market efficiency. Finally, in Section
V we present our conclusions and an outlook for future work.

II. PRELIMINARIES

A. Notation

The set of positive real numbers (integers) is denoted by R+

(Z+), and nonnegative real numbers (integers) by R+ (Z+).
For a differentiable function f : Rn → Rm, we use ḟ to
denote the Jacobian matrix of f. When f is a scalar function

of a single variable, ḟ simply denotes the derivative of f with
respect to its argument: ḟ (x) = df (x) /dx.

B. Market Structure
The electricity market model adopted in this paper has three

participants: (a) The producers, (b) The consumers, and (c) An
independent system operator (ISO).

1) The Consumers and the Producers: Let D = {1, ..., N}
and S = {1, ...,M} denote the index sets of consumers and
producers respectively. Each consumer j ∈ D is associated
with a strictly increasing, strictly concave value function
vj : R+ → R, where vj (x) can be thought of as the monetary
value that consumer j derives from consuming x units of
electricity. Similarly, to each producer i ∈ S, a cost function
is assigned ci : R+ → R+, which is strictly increasing, and
strictly convex, and represents the monetary cost of production
per unit.

Let dj : R+ → R+, j ∈ D, and si : R+ → R+, i ∈ S be
demand and supply functions mapping price to consumption
and production, respectively. In the framework adopted in this
paper, the producers and consumers are price-taking, utility-
maximizing agents. Therefore, letting λ be the price per unit
of electricity, we define

dj (λ) = arg max
x∈R+

vj (x)− λx, j ∈ D, (1)

= max {0, {x | v̇j (x) = λ}}
and

si (λ) = arg max
x∈R+

λx− ci (x) , i ∈ S. (2)

= max {0, {x | ċi (x) = λ}}
In the interest of simplicity in notation and technical de-
velopment, we will assume in the remainder of this paper
that dj (λ) = v̇−1 (λ) and si (λ) = ċ−1 (λ) . This can be
mathematically justified by assuming that v̇ (0) = ∞, and
ċ (0) = 0, or that λ ∈ [ċ (0) , v̇ (0)] .

Definition 1: The social welfare S is the aggregate benefit
of the producers and the consumers:

S =
∑
j∈D

(vj (dj)− λjdj)−
∑
i∈S

(λisi − ci (si))

If λi = λj = λ, ∀i, j, we say that λ is a uniform market
clearing price, and in this case, we have:

S =
∑
j∈D

vj (dj)−
∑
i∈S

ci (si)

2) The Independent System Operator (ISO): The ISO is
an independent, profit-neutral player in charge of optimally
matching supply and demand, that is, maximizing the so-
cial welfare subject to reliability and physical constraints.
The constraints include power flow constraints, transmission
line constraints, generator capacity constraints, and local and
system-wide reserve capacity requirements. A set of Loca-
tional Marginal Prices (LMP) emerge as the dual variables
corresponding to the nodal power balance constraints of the
underlying optimization problem. The interested readers are
referred to [14], [16], [12], [15] for more details.



a) Real-Time Market Operation: We consider the case
of real-time market operation and assume that price-sensitive
consumers do not bid in the real-time market, though they may
adjust their consumption in response to real-time wholesale
market prices. In this case, the demand is taken as fixed over
each pricing interval, and supply is matched to demand. Fur-
thermore, in order to obtain simplified models that highlight
the effects of the behavior of producers and consumers on
system stability, price volatility, and system efficiency, we
will make the following simplifying assumptions: (a) Resistive
losses are negligible, (b) The line capacities are high enough,
(c) The generator capacities are high enough, and (d) There
are no reserve capacity requirements. The ISO’s real-time
optimization problem reduces to meeting the fixed demand
at minimum cost:

min
∑
i∈S

ci(si)

s.t.
∑
i∈S

si =
∑
j∈D

d̂j

(3)

where d̂j is the predicted demand of consumer j for the
next time period. We assume that the system operator solves
(3) and sets the price to the marginal cost of production at
the minimum cost solution, i.e., the Lagrangian multiplier
corresponding to the balance constraint1. This constitutes the
basics of the real-time market clearing model adopted in this
paper. More specific details regarding dynamic extensions of
this model are presented in the next Section.

III. DYNAMIC SUPPLY-DEMAND MODEL

In this section, we present the details of the real-time
retail pricing models under examination. These models are
consistent with the practice of marginal cost pricing in whole-
sale electricity markets, with the additional feature that the
consumers adjust their usage based on the real-time wholesale
market prices. The practice of defining the clearing price
corresponding to each pricing interval based on the predicted
demand at the beginning of the interval is called exanté
pricing. As opposed to this, ex-post pricing refers to the
practice of defining the clearing price for each pricing interval
based on the materialized consumption at the end of the
interval.

A. A New Pricing Model with Ex-Post Adjustment

Under exanté pricing, the consumers are guaranteed a price
at the beginning of the interval, though the ISO needs to
reimburse the generators based on the actual marginal cost
of production, i.e., the ex-post price [13]. In what follows,
we present a new pricing model, where the price uncertainty
and the associated risk is shared. That producers guarantee the

1By setting the market price to be the Lagrangian multiplier corresponding
to the balance constraint, the system operator creates a competitive environ-
ment in which, the collective selfish behavior of the participants results in
a system-wide optimal condition. In other words, the aggregate surplus is
maximized while each agent maximizes her own net benefit. [9], [13]

supply to balance the predicted demand at a fixed price, and
excess or shortfall in consumption are charged at the ex-post
price.

Let d̂t and dt represent, respectively, the predicted and
observed demands for the interval [t, t + 1], t ∈ Z+. Let
d̂t = dt−1, ∀t, that is, the predicted demand for each period
is equal to the demand for the previous period. Therefore,
when there is only one producer, λt = ċ(d̂t) = ċ(dt−1)
represents the exanté price. Any deviation δt of the consumer
from previous consumption dt−1 will be charged at the ex-
post price λt+1 = ċ(dt−1 + δt). Hence, at time t, the total
cost to the consumer is λtdt−1 + λt+1δt. Now, assume that
the consumer optimizes energy usage according to:

dt = arg max
δt

v(dt−1 + δt)− δtλ̂t+1 − λtdt−1 (4)

= arg max
δt

v(dt−1 + δt)− δtλ̂t+1 (5)

where λ̂t+1 denotes the ex-post price anticipated by the
consumer. For the remainder of this paper, for simplicity of
notation, we assume that there is only one producer with cost
function c.

1) Single Stage Game-Theoretic Formulation: In the case
of N agents playing a single-stage game, d =

(
d1, · · · , dN

)
and δ =

(
δ1, · · · , δN

)
are vectors for the demands and

deviations for the agents. The utility function for agent i is
then

Ui (λ, d)=−λdi+max
δi

{
vi
(
di + δi

)
−δiċ

(∑N

k=1
dk + δk

)}
Define

Wi (d, δ) = vi
(
di + δi

)
− δiċ

(∑N

k=1
dk + δk

)
If there exists an optimizing δ∗ =

(
δ1∗, · · · , δN∗

)
, then it is

assumed that δ∗ satisfies
∂Wi

∂δi

∣∣∣∣
δ=δ∗

= 0 ∀i

We then have the following necessary and sufficient condition
for δ∗ to be a Nash equilibrium:

v̇i
(
di + δi∗

)
− c̈

(∑N

k=1
dk + δk∗

)
δi∗

= ċ

(∑N

k=1
dk + δk∗

)
∀i (6)

Equivalently, since dit+1 = dit + δit,

v̇i
(
dit+1

)
− c̈

(∑N

k=1
dkt+1

)(
dit+1 − dit

)
=

ċ

(∑N

k=1
dkt+1

)
∀i (7)

Assuming that the consumers know the cost function c and the
demand dit for all other consumers at time t, the solution to the
system of N simultaneous implicit equations (7) determines
each agent’s strategic demand for the next time period. When



the cost function is quadratic, c (x) = ρx2, the discrete-time
dynamical system (7), simplifies to:

−v̇i
(
dit+1

)
+ 2ρdit+1 + 2ρ

∑N

k=1
dkt+1 = 2ρdit (8)

2) Mass Approximations: Dynamical system Equations (7)
and (8) are models for ideal but unlikely consumer behavior.
As a result, they are more realistic for modeling situations
where there are only a few large consumers, or a few consumer
groups consisting of a large number of small consumers that
can be presented via a representative agent model. When these
conditions do not hold, proper approximations may results in
a model which is both more realistic and more tractable. We
present two such models. The first is obtained when each agent
simply ignores its own impact on the ex-post price, that is:

∂

∂δi
ċ

(∑N

k=1
dk + δk

)
' 0, ∀i

We then obtain the following simplified dynamics

v̇i
(
di + δi∗

)
= ċ

(∑N

k=1
dk + δk∗

)
Equivalently,

v̇i
(
dit+1

)
= ċ

(∑N

k=1
dkt+1

)
, ∀i (9)

In the full-information case, when the vector of value functions
v = (v1, · · · vN ) is available to all agents, (9) reduces to a
static system of equations and the equilibrium is reached in
one step. If there is asymmetry of information, the consumers
may need to either run a prediction on the aggregate demand∑N

k=1
dkt+1, the ex-post price ċ

(∑N

k=1
dkt+1

)
, or both.

In a more interesting scenario, we consider each agent
playing against a mass of agents, while ignoring the effects of
its own actions on the mass. Here, we let v̄ and δ̄ be the as-
sumed value function and demand-deviation (respectively) of
the mass from the perspective of the agent, and d =

∑N

k=1
dk

will be the actual demand of the mass. Then,

vi
(
di + δi

)
− ċ

(
d+ δ̄

)
δi → max

δi

v̄i
(
d+ δ̄

)
− ċ

(
d+ δ̄

)
δ̄ → max

δ̄

Letting d̄t+1 = dt + δ̄t, we have the following dynamical
system:

v̇i
(
dit+1

)
− ċ

(
d̄t+1

)
= 0

˙̄v
(
d̄t+1

)
− c̈

(
d̄t+1

) (
d̄t+1 − dt

)
= ċ

(
d̄t+1

)
dt =

∑N

k=1
dkt

We consider a special case where all consumers are identical:
vi = vj = v, ∀i, j. In this case, a plausible choice for the
value function of the mass is given by [13]:

v̄ (x) = Nv
( x
N

)

We then have

v̇
(
dit+1

)
− ċ
(
d̄t+1

)
=0 (10)

v̇

(
d̄t+1

N

)
− c̈
(
d̄t+1

)(
d̄t+1−

∑N

k=1
dkt

)
=̇c
(
d̄t+1

)
(11)

Remark 1: The equations (10)–(11) were derived for the
full information scenario. That is, when N is a deterministic
variables and is known to all agents. More realistic and more
interesting dynamics arise under asymmetry of information,
e.g., when the agents have different beliefs about, or different
estimates of N, which could possibly be a random process.

3) Auto-Regressive Demand Predictive: First, we consider
agents who individually predict that the overall demand for
energy changes according to the auto-regressive system

xt+1 = xt + γ(xt − xt−1)

where xt =
∑N

k=1
dkt . By following the same steps as in

the derivation of (7), the dynamics of the Auto-Regressive
Demand Predictive model are given by

v̇i
(
dit+1

)
− ċ ((1 + γ) dt − γdt−1) = 0 (12)

dt =
∑N

k=1
dkt

4) Auto-Regressive Cost Predictive: Next, we consider the
case where the agents decide their own consumption based
on a simple prediction of energy costs. The dynamics of the
Auto-Regressive Demand Predictive model are given by

v̇i
(
dit+1

)
− (1 + γ) ċ (dt) + γċ (dt−1) = 0 (13)

dt =
∑N

k=1
dkt

5) Demand Averaging: Now, we consider the case where
the agents decide on their consumption based on tracking (not
predicting) the average demand. Following the same procedure
as before, the dynamics of the Demand Averaging model are
given by:

v̇i
(
dit+1

)
= ċ

(
d̃t+1

)
(14)

d̃t+1 = d̃t + γ

(∑N

k=1
dkt − d̃t

)
(15)

6) Cost Averaging: Finally, we consider the case where
the agents decide on their consumption based on tracking
(not predicting) the average price. The dynamics of the Cost
Averaging model are as follows:

v̇i
(
dit+1

)
= c̃t+1 (16)

c̃t+1 = c̃t + γ

(
ċ

(∑N

k=1
dkt

)
− c̃t

)
(17)



7) Mass Approximation with Stochastic Price Uncertainty:
Assume that in the mean of the population, a single consumer’s
deviation from the predicted demand is negligible, and that
the variation of the anticipated ex-post price is only due to
unknown exogenous effects, i.e. λ̂t+1 = λt + ε. Then, a risk-
averse consumer would seek to maximize the expected value
of his utility

dt 7−→ max
δt

(1− µ)E [v(dt−1 + δt)− δtλt − δtε]− µδ2
t σ

2

(18)
Here, δ2

t σ
2 is the variance of the consumer’s utility, and

µ ∈ [0, 1] is a measure of risk-sensitivity. The value µ = 1
corresponds to the case where a consumer does not take any
risk at all. In contrast, a risk-neutral consumer with µ = 0
would consume according to

max
δt

E [v(dt−1 + δt)− δtλt − δtε] (19)

v̇−1(λt) = dt−1 + δt (20)

as to him δt = 0 in the statistical limit, i.e., E [δt] = 0. Thus,
he is a pure price-taker.

Applying the first-order optimality condition and taking
δt = dt − dt−1 the price dynamics under a consumer utility
as in (18) is

λt+1 = ċ(dt) (21)

(1− µ)v̇(dt)− 2µdtσ
2 = (1− u)λt − 2µdt−1σ

2 (22)

Rewriting these equations in terms of only the dynamics of
the demand yields

(1− µ)v̇(dt)− 2µdtσ
2 = (1− µ)ċ(dt−1)− 2µdt−1σ

2 (23)

We define the parameter κ = 2µσ2/(1 − µ) so that (23)
becomes

v̇(dt)− κdt = ċ(dt−1)− κdt−1 (24)

These dynamics depend on the unknown consumption devi-
ation δt. Each consumer maximizes its own expected utility
based on the local parameter µ and the announced locational
marginal price λt as global parameter. When κ = 0, we obtain
the dynamics

v̇(dt) = ċ(dt−1)

which is the same dynamic obtained in [13] under pure exanté
or ex-post pricing. However, it can be verified, either by
simulation or by applying the stability criterion of [13], that
κ > 0 has a stabilizing effect, and for a given v and c it is
more likely that (24) would be stable.

B. Exanté Pricing without Ex-Post Adjustment

The real-time retail pricing dynamics without ex-post ad-
justment are akin to the pricing scheme developed in [13].
Let ŝt+1 denote the supply balancing the demand predicted
for the time interval [t, t + 1]. The equations describing the

market dynamics are

λt+1 = ċ(ŝt+1)

ŝt+1 = dt

dt = arg max
x∈R̄+

v(x)− λtx

Then the price dynamics are

λt+1 = ċ(v̇−1(λt)) (25)

Alternatively, the demand dynamics are

dt+1 = v̇−1 (ċ (dt))

Remark 2: We could consider an exanté pricing model in
which the agents are not myopic and compute or predict the
effects of their actions on future prices, particularly the price
for the next round. However, in this paper, we do not discuss
such models.

IV. SIMULATION RESULTS

In this section we present simulation results for three of the
proposed models: (a) Mass Approximation, (b) Cost Averag-
ing, and (d) Demand Averaging. In all of these simulations
we assume that all consumers are identical, i.e., the have the
same value function. The only differentiating factor among
individual consumers is their initial consumption. Furthermore,
we assume that the production cost function is quadratic and
the demand value function is logarithmic:

c (x) = βx2 (26)
vi (x) = v (x) = α log (x) , ∀i = 1, .., N (27)

The economically efficient solution is the maximizer of the
social welfare function S:

S = Nα log (x)− β (Nx)
2 → max

x

It can be verified that the optimal solution is

x∗ =

√
α

2βN
(28)

We will use (28) to examine optimality of the equilibrium in
the simulations. For each one of the models of interest, we ran
50 simulations for N = 10 consumers with initial conditions
uniformly distributed in [0.5, 5.5] .

A. Mass Approximation

The simulation results corresponding to the mass approx-
imation dynamics (10)–(11) with the functions defined in
(26)-(27) are shown in Figure 1. The system always con-
verged to the efficient equilibrium. The following statistics
were reported: Average deviation of final demand to efficient
equilibrium: 1.5791e−06, Standard deviation of final demand
to efficient equilibrium: 3.7153e − 08, Average number of
iterations to convergence: 4.
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B. Cost Averaging

The simulation results corresponding to the cost averaging
model (17) are shown in Figure 2. In this case too, the system
always converged to the efficient equilibrium, though at a
much slower rate for the chose value of γ = 0.1. The following
statistics were reported: Average deviation of final demand to
efficient equilibrium: 2.8507e−04, Standard deviation of final
demand to efficient equilibrium: 6.1415e−06, Average number
of iterations to convergence: 2.

C. Demand Averaging

The simulation results for the demand averaging model
were qualitatively and quantitatively very similar to the cost
averaging model. In both cases, convergence to the efficient
equilibrium can be made faster by choosing a larger value of
γ.

D. Exanté Pricing

For comparison, we examine the dynamics under pure
exanté pricing. We have

dit+1 = v̇−1 (ċ (dt)) , ∀i = 1, .., N

Hence,

dt+1 = Nv̇−1 (ċ (dt)) =
Nα

βdt
(29)

It can be seen that the system is marginally unstable and fragile
against external disturbances.

V. CONCLUSIONS AND FUTURE WORK

In comparison to pure exanté or ex-post pricing, the new
real-time pricing model introduced in this paper offers bet-
ter stability and robustness properties under several models
of consumer behavior. Furthermore, the equilibrium of the
dynamical system resulting from these models was shown
to be efficient. Future work includes theoretical proofs of
stability and extensions of the models to situations with more
asymmetry of information and stochastic uncertainty.
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