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Abstract

This thesis investigates two variants of the approximate nearest neighbor problem.
First, motivated by the recent research on diversity-aware search, we investigate

the k-diverse near neighbor reporting problem. The problem is defined as follows:
given a query point q, report the maximum diversity set S of k points in the ball of
radius r around q. The diversity of a set S is measured by the minimum distance be-
tween any pair of points in S (the higher, the better). We present two approximation
algorithms for the case where the points live in a d-dimensional Hamming space. Our
algorithms guarantee query times that are sub-linear in n and only polynomial in the
diversity parameter k, as well as the dimension d. For low values of k, our algorithms
achieve sub-linear query times even if the number of points within distance r from
a query q is linear in n. To the best of our knowledge, these are the first known
algorithms of this type that offer provable guarantees.

In the other variant, we consider the approximate line near neighbor (LNN) prob-
lem. Here, the database consists of a set of lines instead of points but the query is
still a point. Let L be a set of n lines in the d dimensional euclidean space Rd. The
goal is to preprocess the set of lines so that we can answer the Line Near Neighbor
(LNN) queries in sub-linear time. That is, given the query point q ∈ Rd, we want to
report a line ` ∈ L (if there is any), such that dist(q, `) ≤ r for some threshold value
r, where dist(q, `) is the euclidean distance between them.

We start by illustrating the solution to the problem in the case where there are
only two lines in the database and present a data structure in this case. Then we
show a recursive algorithm that merges these data structures and solve the problem
for the general case of n lines. The algorithm has polynomial space and performs
only a logarithmic number of calls to the approximate nearest neighbor subproblem.

Thesis Supervisor: Piotr Indyk
Title: Professor
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Chapter 1

Introduction

The Nearest Neighbor problem is a fundamental geometry problem which is of major

importance in several areas such as databases and data mining, information retrieval,

image and video databases, pattern recognition, statistics and data analysis. The

problem is defined as follows: given a collection of n points, build a data structure

which, given any query point q, reports the data point that is closest to the query.

A particularly interesting and well-studied instance is where the data points live in

a d-dimensional space under some (e.g., Euclidean) distance function. Typically in

the mentioned applications, the features of each object of interest (document, image,

etc.) are represented as a point in Rd and the distance metric is used to measure

the similarity of objects. The basic problem then is to perform indexing or similarity

searching for query objects. The number of features (i.e., the dimensionality) ranges

anywhere from tens to millions. For example, one can represent a 1000× 1000 image

as a vector in a 1,000,000-dimensional space, one dimension per pixel.

There are several efficient algorithms known for the case when the dimension d is

low (e.g., up to 10 or 20). The first such data structure, called kd-trees was introduced

in 1975 by Jon Bentley [11], and remains one of the most popular data structures

used for searching in multidimensional spaces. Many other multidimensional data

structures are known, see [30] for an overview. However, despite decades of intensive

effort, the current solutions suffer from either space or query time that is exponential

in d. In fact, for large enough d, in theory or in practice, they often provide little
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improvement over a linear time algorithm that compares a query to each point from

the database. This phenomenon is often called “the curse of dimensionality”.

In recent years, several researchers have proposed methods for overcoming the

running time bottleneck by using approximation (e.g., [9, 24, 22, 26, 20, 25, 13, 12,

28, 5], see also [31, 21]). In this formulation, the algorithm is allowed to return a

point whose distance from the query is at most c times the distance from the query

to its nearest points; c > 1 is called the approximation factor. The appeal of this

approach is that, in many cases, an approximate nearest neighbor is almost as good

as the exact one. In particular, if the distance measure accurately captures the notion

of user quality, then small differences in the distance should not matter. Moreover,

an efficient approximation algorithm can be used to solve the exact nearest neighbor

problem by enumerating all approximate nearest neighbors and choosing the closest

point.

The Near Neighbor Problem is the decision version of the nearest neighbor prob-

lem, in which a threshold parameter r is also given in advance and the goal is to report

any point within distance r of the query point q (if there is any). In the Approximate

Near Neighbor Problem, we the goal is to output any point within distance cr of the

query point q, if there is any point within distance r of q. In the case where c = 1+ ε,

that is when the data structure is allowed to report any point within distance r(1+ε),

efficient solutions exist for this problem in high dimensions. In particular, several data

structures with query time of (d + log n + 1/ε)O(1) using n(1/ε)O(1)
space are known.

[22, 26, 20].

1.1 Our results

In this thesis, we investigate two variants of the approximate nearest neighbor prob-

lem, namely the diverse near neighbor problem and the line near neighbor problem. In

the diverse near neighbor problem, we are given an additional output size parameter

k. Given a query point q, the goal is to report the maximum diversity set S of k points

in the ball of radius r around q. The diversity of a set S is measured by the minimum
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distance between any pair of points in S. The line near neighbor problem is another

natural variation of the near neighbor problem in which the database consists of a

set of lines instead of a set of points, and given a query point q, the goal is to report

a line whose distance to the query is at most r (if one exists).

In Chapter 2, we present two efficient approximate algorithms for the k-diverse

near neighbor problem. The key feature of our algorithms is that they guarantee

query times that are sub-linear in n and polynomial in the diversity parameter k and

the dimension d, while at the same time providing constant factor approximation

guarantees1 for the diversity objective. Note that for low values of k our algorithms

have sub-linear query times even if the number of points within distance r from q is

linear in n. To the best of our knowledge, these are the first known algorithms of

this type with provable guarantees. One of the algorithms (Algorithm A) is closely

related to algorithms investigated in applied works [2, 32]. However, those papers did

not provide rigorous guarantees on the answer quality. The results of our work on

this problem are published in [2, 1].

The line near neighbor problem is studied in Chapter 3. The problem has been pre-

viously investigated in [10, 27]. The best known algorithm for this problem achieved a

very fast query time of (d+log n+1/ε)O(1), but the space requirement of the algorithm

was super-polynomial, of the form 2(logn)O(1)
. In contrast, our algorithm has space

bound that is polynomial in n, d, log ∆ and super-exponential in (1/ε), and achieves

the query time of (d + log n + log ∆ + 1/ε)O(1) where we assume that the input is

contained in a box [0,∆]d. This is the first non-trivial algorithm with polynomial

space for this problem.

We start the description by providing an efficient algorithm for the case where

we have only two lines in the database. It is achieved by considering two exhaustive

cases: one when where the two lines are almost parallel to each other, and the case

where the two lines are far from being parallel. In both cases the problem is reduced

to a set of approximate point nearest neighbor data structures. Then we show how

1Note that approximating the diversity objective is inevitable, since it is NP-hard to find a subset
of size k which maximizes the diversity with approximation factor a < 2 [29].
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to merge the data structures constructed for each pair of lines to get an efficient

algorithm for the general case.
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Chapter 2

Diverse Near Neighbor Problem

The near neighbor reporting problem (a.k.a. range query) is defined as follows: given

a collection P of n points, build a data structure which, given any query point, reports

all data points that are within a given distance r to the query. The problem is of

major importance in several areas, such as databases and data mining, information

retrieval, image and video databases, pattern recognition, statistics and data analy-

sis. In those application, the features of each object of interest (document, image,

etc) are typically represented as a point in a d-dimensional space and the distance

metric is used to measure similarity of objects. The basic problem then is to perform

indexing or similarity searching for query objects. The number of features (i.e., the

dimensionality) ranges anywhere from tens to thousands.

One of the major issues in similarity search is how many answers to retrieve and

report. If the size of the answer set is too small (e.g., it includes only the few points

closest to the query), the answers might be too homogeneous and not informative [14].

If the number of reported points is too large, the time needed to retrieve them is high.

Moreover, long answers are typically not very informative either. Over the last few

years, this concern has motivated a significant amount of research on diversity-aware

search [16, 36, 8, 23, 35, 34, 15] (see [14] for an overview). The goal of that work is

to design efficient algorithms for retrieving answers that are both relevant (e.g., close

to the query point) and diverse. The latter notion can be defined in several ways.

One of the popular approaches is to cluster the answers and return only the cluster

15



Algorithm A Algorithm B
Distance approx factor c > 2 c > 1
Diversity approx factor 6 6

Space O((n log k)1+ 1
c−1 + nd) O(log k · n1+ 1

c + nd)

Query Time O((k2 + logn
r

)d · (log k)
c
c−1 · n

1
c−1 ) O((k2 + logn

r
)d · log k · n1/c)

Table 2.1: Performance of our algorithms

centers [14, 16, 32, 2]. This approach however can result in high running times if the

number of relevant points is large.

Our results In this chapter we present two efficient approximate algorithms for the

k-diverse near neighbor problem. The problem is defined as follows: given a query

point, report the maximum diversity set S of k points in the ball of radius r around

q. The diversity of a set S is measured by the minimum distance between any pair

of points in S. In other words, the algorithm reports the approximate solution to the

k-center clustering algorithm applied to the list points that are close to the query.

The running times, approximation factors and the space bounds of our algorithms

are given in Table 2.1. Note that the Algorithm A is dominated by Algorithm B;

however, it is simpler and easier to analyze and implement, and we have used it in

applications before for diverse news retrieval [2].

The key feature of our algorithms is that they guarantee query times that are sub-

linear in n and polynomial in the diversity parameter k and the dimension d, while at

the same time providing constant factor approximation guarantees1 for the diversity

objective. Note that for low values of k our algorithms have sub-linear query times

even if the number of points within distance r from q is linear in n. To the best of our

knowledge, these are the first known algorithms of this type with provable guarantees.

One of the algorithms (Algorithm A) is closely related to algorithms investigated in

applied works [2, 32]. However, those papers did not provide rigorous guarantees on

the answer quality.

1Note that approximating the diversity objective is inevitable, since it is NP-hard to find a subset
of size k which maximizes the diversity with approximation factor a < 2 [29].
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2.0.1 Past work

In this section we present an overview of past work on (approximate) near neighbor

and diversity aware search that are related to the results in this chapter.

Near neighbor The near neighbor problem has been a subject of extensive re-

search. There are several efficient algorithms known for the case when the dimension

d is “low”. However, despite decades of intensive effort, the current solutions suf-

fer from either space or query time that is exponential in d. Thus, in recent years,

several researchers proposed methods for overcoming the running time bottleneck by

using approximation. In the approximate near neighbor reporting/range query, the

algorithm must output all points within the distance r from q, and can also output

some points within the distance cr from q.

One of the popular approaches to near neighbor problems in high dimensions is

based on the concept of locality-sensitive hashing (LSH) [18]. The idea is to hash the

points using several (say L) hash functions so as to ensure that, for each function,

the probability of collision is much higher for objects which are close to each other

than for those which are far apart. Then, one can solve (approximate) near neighbor

reporting by hashing the query point and retrieving all elements stored in buckets

containing that point. This approach has been used e.g., for the E2LSH package for

high-dimensional similarity search [7].

The LSH algorithm has several variants, depending on the underlying distance

functions. In the simplest case when the dis-similarity between the query points is

defined by the Hamming distance, the algorithm guarantees that (i) each point within

the distance r from from q is reported with a constant (tunable) probability and (ii)

the query time is at most O(d(n1/c + |Pcr(q)|)), where PR(q) denotes the set of points

in P with the distance R from q. Thus, if the size of the answer set Pcr(q) is large, the

efficiency of the algorithm decreases. Heuristically, a speedup can be achieved [32] by

clustering the points in each bucket and retaining only the cluster centers. However,

the resulting algorithm did not have any guarantees (until now).
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Diversity In this work we adopt the ”content-based” definition of diversity used

e.g., in [14, 16, 32, 2, 15]. The approach is to report k answers that are ”sufficiently

different” from each other. This is formalized as maximizing the minimum distance

between any pair of answers, the average distance between the answers, etc. In

this thesis we use the minimum distance formulation, and use the greedy clustering

algorithm of [17, 29] to find the k approximately most diverse points in a given set.

To the best of our knowledge, the only prior work that explicitly addresses our

definition of the k-diverse near neighbor problem is [2]. It presents an algorithm

(analogous to Algorithm A in this paper, albeit for the Jaccard coefficient as opposed

to the Hamming metric) and applies it to problems in news retrieval. However, that

paper does not provide any formal guarantees on the accuracy of the reported answers.

2.0.2 Our techniques

Both of our algorithms use LSH as the basis. The key challenge, however, is in

reducing the dependence of the query time on the size of the set Pcr(q) of points

close to q. The first algorithm (Algorithm A) achieves this by storing only the k most

diverse points per each bucket. This ensures that the total number of points examined

during the query time is at most O(kL), where L is the number of hash functions.

However, proving the approximation guarantees for this algorithm requires that no

outlier (i.e., point with distance > cr from q) is stored in any bucket. Otherwise that

point could have been selected as one of the k diverse points for that bucket, replacing

a “legitimate” point. This requirement implies that the algorithm works only if the

distance approximation factor c is greater than 2.

The 6-approximation guarantee for diversity is shown by using the notion of core-

sets [4]. It is easy to see that the maximum k-diversity of a point set is within a

factor of 2 from the optimal cost of its (k − 1)-center clustering cost. For the latter

problem it is known how to construct a small subset of the input point set (a coreset)

such that for any set of cluster centers, the costs of clustering the coreset is within a

constant factor away from the cost of clustering the whole data set. Our algorithm

then simply computes and stores only a coreset for each LSH bucket. Standard core-
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set properties imply that the union of coresets for the buckets touched by the query

point q is a coreset for all points in those buckets. Thus, the union of all coresets

provides a sufficient information to recover an approximately optimal solution to all

points close to q.

In order to obtain an algorithm that works for arbitrary c > 1, we need the

algorithms to be robust to outliers. The standard LSH analysis guarantees that that

the number of outliers in all buckets is at most O(L). Algorithm B achieves the

robustness by storing a robust coreset [19, 3], which can tolerate some number of

outliers. Since we do not know a priori how many outliers are present in any given

bucket, our algorithm stores a sequence of points that represents a coreset robust to

an increasing number of outliers. During the query time the algorithm scans the list

until enough points have been read to ensure the robustness.

2.1 Problem Definition

Let (∆, dist) be a d-dimensional metric space. We start from two definitions.

Definition 2.1.1. For a given set S ∈ ∆, its diversity is defined as the minimum

pairwise distance between the points of the set, i.e., div(S) = minp,p′∈S dist(p, p
′)

Definition 2.1.2. For a given set S ∈ ∆, its k-diversity is defined as the maximum

achievable diversity by choosing a subset of size k, i.e., divk(S) = maxS′⊂S,|S′|=k div(S ′).

We also call the maximizing subset S ′ the optimal k-subset of S. Note that k-

diversity is not defined in the case where |S| < k.

To avoid dealing with k-diversity of sets of cardinality smaller than k, in the

following we adopt the convention that all points p in the input point set P are

duplicated k times. This ensures that for all non-empty sets S considered in the rest

of this paper the quantity divk(S) is well defined, and equal to 0 if the number of

distinct points in S is less than k. It can be easily seen that this leaves the space

bounds of our algorithms unchanged.
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The k-diverse Near Neighbor Problem is defined as follows: given a query

point q, report a set S such that: (i) S ⊂ P ∩B(q, r), where B(q, r) = {p|dist(p, q) ≤

r} is the ball of radius r, centered at q; (ii) |S| = k; (iii) div(S) is maximized.

Since our algorithms are approximate, we need to define the Approximate k-

diverse Near Neighbor Problem. In this case, we require that for some ap-

proximation factors c > 1 and α > 1: (i) S ⊂ P ∩ B(q, cr); (ii) |S| = k; (iii)

div(S) ≥ 1
α
divk(P ∩B(q, r)).

2.2 Preliminaries

2.2.1 GMM Algorithm

Suppose that we have a set of points S ⊂ ∆, and want to compute an optimal

k-subset of S. That is, to find a subset of k points, whose pairwise distance is max-

imized. Although this problem is NP-hard, there is a simple 2-approximate greedy

algorithm [17, 29], called GMM .

In this work we use the following slight variation of the GMM algorithm 2. The

algorithm is given a set of points S, and the parameter k as the input. Initially, it

chooses some arbitrary point a ∈ S. Then it repeatedly adds the next point to the

output set until there are k points. More precisely, in each step, it greedily adds the

point whose minimum distance to the currently chosen points is maximized. Note

that the convention that all points have k duplicates implies that if the input point

set S contains less than k distinct points, then the output S ′ contains all of those

points.

Lemma 2.2.1. The running time of the algorithm is O(k · |S|), and it achieves an

approximation factor of at most 2 for the k-diversity divk(S).

2The proof of the approximation factor this variation achieves is virtually the same as the proof
in [29]
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Algorithm 1 GMM

Input S: a set of points, k: size of the subset
Output S ′: a subset of S of size k.

1: S ′ ← An arbitrary point a
2: for i = 2→ k do
3: find p ∈ S \ S ′ which maximizes minx∈S′ dist(p, x)
4: S ′ ← S ′ ∪ {p}
5: end for
6: return S ′

2.2.2 Coresets

Definition 2.2.2. Let (P, dist) be a metric. For any subset of points S, S ′ ⊂ P ,

we define the k-center cost, KC(S, S ′) as maxp∈Sminp′∈S′dist(p, p
′). The Metric

k-center Problem is defined as follows: given S, find a subset S ′ ⊂ S of size k

which minimizes KC(S, S ′). We denote this optimum cost by KCk(S).

k-diversity of a set S is closely related to the cost of the best (k − 1)-center of S.

That is,

Lemma 2.2.3. KCk−1(S) ≤ divk(S) ≤ 2KCk−1(S)

Proof. For the first inequality, suppose that S ′ is the optimal k-subset of S. Also let

a ∈ S ′ be an arbitrary point and S ′− = S ′\{a}. Then for any point b ∈ S \S ′, we have

minp∈S′−dist(b, p) ≤ minp∈S′−dist(a, p), otherwise b was a better choice than a, i.e.,

div(b ∪ S ′−) > div(S ′). Therefore, KC(S, S ′−) ≤ divk(S) and the inequality follows.

For the second part, let C = {a1, · · · , ak−1} be the optimum set of the (k − 1)-

center for S. Then since S ′ has size k, by pigeonhole principle, there exists p, p′ ∈ S ′

and a, such that

a = arg minc∈C dist(p, c) = arg minc∈C dist(p
′, c)
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and therefore, by triangle inequality we get

divk(S) = div(S ′) ≤ dist(p, p′) ≤ dist(p, a) + dist(a, p′)

≤ 2KCk−1(S)

Definition 2.2.4. Let (P, dist) be our metric. Then for β ≤ 1, we define a β-coreset

for a point set S ⊂ P to be any subset S ′ ⊂ S such that for any subset of (k − 1)

points F ⊂ P , we have KC(S ′, F ) ≥ βKC(S, F ).

Definition 2.2.5. Let (P, dist) be our metric. Then for β ≤ 1 and an integer `, we

define an `-robust β-coreset for a point set S ⊂ P to be any subset S ′ ⊂ S such

that for any set of outliers O ⊂ P with at most ` points, S ′ \O is a β-coreset of S \O.

2.2.3 Locality Sensitive Hashing

Locality-sensitive hashing is a technique for solving approximate near neighbor prob-

lems. The basic idea is to hash the data and query points in a way that the probability

of collision is much higher for points that are close to each other, than for those which

are far apart. Formally, we require the following.

Definition 2.2.6. A family H = h : ∆→ U is (r1, r2, p1, p2)-sensitive for (∆, dist),

if for any p, q ∈ ∆, we have

• if dist(p, q) ≤ r1, then PrH[h(q) = h(p)] ≥ p1

• if dist(p, q) ≤ r2, then PrH[h(q) = h(p)] ≤ p2

In order for a locality sensitive family to be useful, it has to satisfy inequalities

p1 > p2 and r1 < r2.

Given an LSH family, the algorithm creates L hash functions g1, g2, · · · , gL, as well

as the corresponding hash arrays A1, A2, · · · , AL. Each hash function is of the form

gi =< hi,1, · · · , hi,K >, where hi,j is chosen uniformly at random from H. Then each

point p is stored in bucket gi(p) of Ai for all 1 ≤ i ≤ L. In order to answer a query
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q, we then search points in A1(g1(q)) ∪ · · · ∪AL(gL(q)). That is, from each array, we

only have to look into the single bucket which corresponds to the query point q.

In this paper, for simplicity, we consider the LSH for the Hamming distance.

However, similar results can be shown for general LSH functions. We recall the

following lemma from [18].

Lemma 2.2.7. Let dist(p, q) be the Hamming metric for p, q ∈ Σd, where Σ is any

finite alphabet. Then for any r, c ≥ 1, there exists a family H which is (r, rc, p1, p2)−

sensitive, where p1 = 1− r/d and p2 = 1− rc/d. Also, if we let ρ = log 1/p1
log 1/p2

, then we

have ρ ≤ 1/c. Furthermore, by padding extra zeros, we can assume that r/d ≤ 1/2.

2.3 Algorithm A

The algorithm (first introduced in [2]) is based on the LSH algorithm. During the pre-

processing, LSH creates L hash functions g1, g2, · · · , gL, and the arraysA1, A2, · · · , AL.

Then each point p is stored in buckets Ai[gi(p)], for all i = 1 · · ·L. Furthermore, for

each array Ai, the algorithm uses GMM to compute a 2-approximation of the opti-

mal k-subset of each bucket, and stores it in the corresponding bucket of A′i. This

computed subset turns out to be a 1/3-coreset of the points of the bucket.

Given a query q, the algorithm computes the union of the buckets Q = A′1(g1(q))∪

· · · ∪A′L(gL(q)), and then it removes from Q all outlier points, i.e., the points which

are not within distance cr of q. In the last step, the algorithm runs GMM on the set

Q and returns the approximate optimal k-subset of Q.

The pseudo codes are shown in Algorithm 2 and 3. In the next section we discuss

why this algorithm works.

2.3.1 Analysis

In this section, first we determine the value of the parameters L and K in terms of n

and ρ ≤ 1/c, such that with constant probability, the algorithm works. Here, L is the

total number of hash functions used, and K is the number of hash functions hi,j used
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Algorithm 2 Preprocessing

Input G = {g1, · · · , gL}: set of L hashing functions, P : collection of points, k
Output A′ = {A′1, · · · , A′L}

1: for all points p ∈ P do
2: for all hash functions gi ∈ G do
3: add p to the bucket Ai[gi(p)]
4: end for
5: end for
6: for Ai ∈ A do
7: for j = 1→ size(Ai) do
8: A′i[j] = GMM(Ai[j], k) // only store the approximate k-diverse points in

each bucket
9: end for

10: end for

in each of the gi. We also need to argue that limiting the size of the buckets to k,

and storing only the approximate k most diverse points in A′, works well to achieve

a good approximation. We address these issues in the following.

Lemma 2.3.1. For c > 2, There exists hash functions g1, · · · , gL of the form gi =<

hi,1, · · · , hi,K > where hi,j ∈ H, for H, p1 and p2 defined in 2.2.7, such that by setting

L = (log (4k)/p1)1/(1−ρ) × (4n)ρ/(1−ρ), and K = dlog1/p2(4nL)e, the following two

events hold with constant probability:

• ∀p ∈ Q∗ : ∃i such that p ∈ Ai[gi(q)], where Q∗ denotes the optimal solution (the

optimal k-subset of P ∩B(q, r)).

• ∀p ∈
⋃
iAi[gi(q)] : dist(p, q) ≤ cr, i.e., there is no outlier among the points

hashed to the same bucket as q in any of the hash functions.

Proof. For the first argument, consider a point p ∈ Q∗. By Definition 2.2.6 the

probability that gi(p) = gi(q) for a given i, is bounded from below by

pK1 ≥ p
log1/p2

(4nL)+1

1 = p1(4nL)
− log 1/p1

log 1/p2 = p1(4nL)−ρ
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Algorithm 3 Query Processing

Input q: The query point, k
Output Q : The set of k-diverse points.

1: Q← ∅
2: for i = 1→ L do
3: Q← Q ∪ A′i[gi(q)]
4: end for
5: for all p ∈ Q do
6: if dist(q, p) > cr then
7: remove p from Q // since it is an outlier
8: end if
9: end for

10: Q← GMM(Q, k)
11: return Q

Thus the probability that no such gi exists is at most

ζ = (1− p1(4nL)−ρ)L ≤ (1/e)L·
p1

(4nL)ρ = (1/e)L
(1−ρ)· p1

(4n)ρ

= (1/e)(log (4k)/p1(4n)ρ)· p1
(4n)ρ ≤ 1

4k

Now using union bound, the probability that ∀p ∈ Q∗ : ∃i, such that p ∈ Ai[gi(q)] is

at least 3
4
.

For the second part, note that the probability that gi(p) = gi(q) for p ∈ P \B(q, cr)

is at most pK2 = 1
4nL

. Thus, the expected number of elements from P\B(q, cr) colliding

with q under fixed gi is at most 1
4L

, and the expected number of collisions in all g

functions is at most 1
4
. Therefore, with probability at least 3

4
, there is no outlier in⋃

iAi[gi(q)].

So both events hold with probability at least 1
2
.

Corollary 2.3.2. Since each point is hashed once in each hash function, the total

space used by this algorithm is at most

nL = n(log (4k)/p1(4n)ρ)1/(1−ρ) = O((
n log k

1− r/d
)

1
1−ρ )

= O((n log k)1+ 1
c−1 )
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where we have used the fact that c > 2, ρ ≤ 1/c, and r/d ≤ 1/2. Also we need O(nd)

space to store the points.

Corollary 2.3.3. The query time is O(((log n)/r + k2) · (log k)
c
c−1 · n

1
c−1d).

Proof. The query time of the algorithm for each query is bounded by O(L) hash

computation each taking O(K)

O(KL) = O((log1/p2 (4nL)) · L) = O(
log n

log (1/p2)
L)

= O(
d

r
log n · ( log k

1− r/d
)

c
c−1 · n

1
c−1 )

= O(
d

r
(log k)

c
c−1n

1
c−1 log n)

Where we have used the approximation log p2 ≈ 1− p2 = cr
d

, c ≥ 2 and r/d ≤ 1/2.

Also in the last step, we need to run the GMM algorithm for at most kL number

of points in expectation. This takes

O(k2Ld) = O(k2 · (log k/p1(4n)ρ)1/(1−ρ)d)

= O(k2(log k)
c
c−1 · n

1
c−1d)

Lemma 2.3.4. GMM(S, k) computes a 1/3-coreset of S.

Proof. Suppose that the set of k points computed by GMM is S ′. Now take any

subset of k − 1 points F ⊂ P . By pigeonhole principle there exist a, b ∈ S ′ whose

closest point in F is the same, i.e., there exists c ∈ F , such that

c = arg minf∈F dist(a, f) = arg minf∈F dist(b, f)

and therefore, by triangle inequality we get

div(S ′) ≤ dist(a, b) ≤ dist(a, c) + dist(b, c) ≤ 2KC(S ′, F )

Now take any point s ∈ S and let s′ be the closest point of S ′ to s and f be the
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closest point of F to s′. Also let a ∈ S ′ be the point added in the last step of the

GMM algorithm. Then from definitions of s′ and a, and the greedy choice of GMM,

we have

dist(s, s′) ≤ min
p∈S′\{a}

dist(p, s) ≤ min
p∈S′\{a}

dist(p, a) ≤ div(S ′)

and thus by triangle inequality,

dist(s, f) ≤ dist(s, s′) + dist(s′, f) ≤ div(S ′) +KC(S ′, F )

≤ 3KC(S ′, F )

Since this holds for any s ∈ S, we can infer that KC(S, F ) ≤ 3KC(S ′, F ) which

completes the proof.

Lemma 2.3.5. Suppose S1, · · · , Sm are subsets of P , and let S =
⋃
i Si. Also suppose

that Ti = GMM(Si, k) is the 2-approximation of the optimal k-subset of Si which is

achieved by running the GMM algorithm on Si. Also define T =
⋃
i Ti, and let

T ′ = GMM(T, k) be the 2-approximation of the optimal k-subset of T . Then we have

div(T ′) ≥ 1
6
divk(S).

Proof. Let S ′ denote the optimal k-subset of S. Also let a ∈ T ′ be the added point

at the last step of algorithm GMM(T, k) and T ′− = T ′ \ {a}. By pigeonhole principle

there exists p, p′ ∈ S ′ and c ∈ T ′− such that

c = arg mint∈T ′− dist(t, p) = arg mint∈T ′− dist(t, p
′)

Therefore, by triangle inequality, lemma 2.3.4, and the fact that union of β-coresets

of Si is a β-coreset for the union S, we have

divk(S) = div(S ′) ≤ dist(p, p′) ≤ dist(p, c) + dist(p′, c)

≤ 2KC(S, T ′−) ≤ 6KC(T, T ′−)
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And since for any b ∈ T we have

min
t∈T ′−

dist(t, b) ≤ min
t∈T ′−

dist(t, a) ≤ div(T ′)

And thus, KC(T, T ′−) ≤ div(T ′) and the lemma follows.

Corollary 2.3.6. With constant probability, the approximation factor achieved by the

algorithm is 6.

Proof. Let Si = Ai[gi(q)] and S =
⋃
i Si. Also let Ti = A′i[gi(q)] and T =

⋃
i Ti.

Furthermore define Q∗ be the optimal k-subset of P ∩B(q, r), T ′ = GMM(T, k) and

Q be our returned set. From the description of the algorithm, it is obvious that

Q ⊂ B(q, cr). So, we only have to argue about its diversity.

By Theorem 2.3.1, with constant probability the two following statements hold:

• S ⊂ B(q, cr). Therefore, we have T ⊂ B(q, cr), which shows that when we run

the Algorithm 3 for q, since T contains no outlier, the GMM algorithm in Line

10 is called on the set T itself and thus, Q = T ′.

• Q∗ ⊂ S. So we have divk(S) ≥ divk(Q
∗) = div(Q∗)

Therefore, by Lemma 2.3.5 we have

div(Q) ≥ 1

6
divk(S) ≥ 1

6
div(Q∗)

2.4 Algorithm B

In this section, we introduce and analyze a modified version of Algorithm A which also

achieves a constant factor approximation. Suppose that we knew the total number of

outliers in any bucket is at most `. Then, we can store for each single bucket of the

array A, an `-robust 1
3
-coreset in the corresponding bucket of array A′. First we show

in Algorithm 4, how to find an `-robust β-coreset if we know how to find a β-coreset.
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This is the algorithm of [3] that “peels” coresets β-coresets, and its analysis follows

[33].

Algorithm 4 (`, β)-coreset

Input S: set of points
Output S ′: An array which is a (`, β)-coreset of S

1: S ′ ← ∅
2: for i = 1→ (`+ 1) do
3: Ri ← β-coreset of S
4: Append Ri to the end of S ′

5: S ← S \Ri

6: end for
7: return S ′

Lemma 2.4.1. Let O ⊂ P be the set of outliers and S ′j denote set of the first (kj)

points in S ′ which is S ′ after the jth round of the algorithm. Then for any 0 ≤ j ≤ `

that satisfies
∣∣S ′j+1 ∩O

∣∣ ≤ j, we have that S ′j+1 \O is a β-coreset for S \O.

Proof. Let F ⊂ P be any subset of (k − 1) points, and q be the furthest point from

F in (S \O), i.e.,

q = arg maxp∈S\O min
f∈F

dist(p, f)

Now for any i ≤ (j+ 1), if q is a point in Ri, then the lemma holds since KC(S, F ) =

KC(S ′j+1, F ). Otherwise, because q has not been chosen in any of the first (j + 1)

rounds, each of the Ri’s (for i ≤ j + 1) contains an ri such that KC({ri}, F ) ≥

βKC({q}, F ). Of these (j + 1)ri’s, at least one is not in O and therefore, KC(S ′j+1 \

O,F ) ≥ βKC(S \O,F ).

Corollary 2.4.2. Algorithm 4 computes the (`, β)-coreset of S correctly.

Proof. Note that here for any set of outliers O ⊂ P such that |O| ≤ `, the condition in

lemma 2.4.1 is satisfied for j = `. Thus when the algorithm returns, it has computed

an `-robust β-coreset correctly.

Since by lemma 2.3.4, we know that GMM(S, k) computes a 1
3
-coreset of size k

for S, it is enough to replace line 3 of the algorithm 4 with R ← GMM(S, k), in

order to achieve an `-robust 1
3
-coreset of size k(`+ 1) for the set S.
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Then the only modification to the preprocessing part of Algorithm A is that now,

each bucket of A′i keeps an `-robust 1
3
-coreset of the corresponding bucket of Ai. So

the line 8 of Algorithm 2 is changed to A′i[j] = (`, β)-coreset(Ai[j], ` = 3L, β = 1/3).

The pseudo-code of processing a query is shown in Algorithm 5. For each bucket

that corresponds to q, it tries to find the smallest value of ` such that the total number

of outliers in the first k(` + 1) elements of A′i[gi(q)] does not exceed `. It then adds

these set of points to T and returns the approximate optimal k subset of non-outlier

points of T .

Algorithm 5 Query Processing

Input q: The query point
Output Q : The set of k-diverse points.

1: T ← ∅
2: O ← set of outliers
3: for i = 1→ L do
4: for ` = 0→ 3L do
5: U `+1

i = the first k(`+ 1) points of A′i[gi(q)]
6: if

∣∣U `+1
i ∩O

∣∣ ≤ ` then
7: `i ← `
8: Ti ← U `+1

i

9: break
10: end if
11: end for
12: T ← T ∪ Ti
13: end for
14: Q← GMM(T \O, k)
15: return Q

Note that the inner loop (lines 4 to 11) of Algorithm 5 can be implemented ef-

ficiently. Knowing the number of outliers in U j
i , there are only k more elements to

check for being outliers in U j+1
i . Also, each point can be checked in O(d) if it is an

outlier. So in total the inner loop takes O(k`id).
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2.4.1 Analysis

We first state the following theorem which is similar to Theorem 2.3.1. The proof is

very similar to the original proof of correctness of the LSH algorithm given in [18].

Theorem 2.4.3. There exists hash functions g1, · · · , gL of the form gi =< hi,1, · · · , hi,K >

where hi,j ∈ H, for H, p1 and p2 defined in 2.2.7 such that by setting L = log(4k)×

nρ/p1, and K = dlog1/p2 ne, with constant probability the following two events hold:

• ∀p ∈ Q∗ : ∃i such that p ∈ Ai[gi(q)], where Q∗ denotes the optimal solution (the

optimal k-subset of P ∩B(q, r)).

• |{p ∈
⋃
iAi[gi(q)] : dist(p, q) > cr}| ≤ 3L, i.e. the number of outliers among

points hashed to the same bucket as q, is at most 3L.

Proof. For the first argument, consider a point p ∈ Q∗, the probability that gi(p) =

gi(q) for a given i is bounded from below by

pK1 ≥ p
log1/p2

n+1

1 = p1n
− log 1/p1

log 1/p2 = p1n
−ρ

Thus the probability that no such gi exists is at most

ζ = (1− p1n
−ρ)L ≤ (1/e)log(4k) =

1

4k

Now using union bound, the probability that ∀p ∈ Q∗ : ∃i, such that p ∈ Ai[gi(q)] is

at least 3
4
.

For the second part, note that the probability that gi(p) = gi(q) for p ∈ P \B(q, cr)

is at most pK2 = 1
n
. Thus, the expected number of elements from P \B(q, cr) colliding

with q, under fixed gi is at most 1, and the expected number of collisions in all g

functions, is at most L. Using Markov’s inequality, the probability that we get less

that 3L outliers is at least 2/3.

So both events hold with constant probability 5
12

.
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Corollary 2.4.4. Since each point is hashed once in each hash function and each

bucket of A′i is a subset of the corresponding bucket of Ai, the total space used by this

algorithm is at most

nL = n log(4k) · nρ/p1 = O(log k · n1+1/c)

where we have used the fact that ρ ≤ 1/c, and that p1 = 1− r/d ≥ 1/2. Also we need

O(nd) space to store the points.

Theorem 2.4.5. With constant probability, the approximation factor achieved by the

algorithm is 6.

Proof. First we start by defining a set of notations which is useful in the proof.

• Let Si = A[gi(q)], and S =
⋃
i Si.

• Let O be the set of outliers, i.e., O = S \B(q, cr). We know that with constant

probability |O| ≤ 3L

• Let S ′ be the optimal k-subset of S \O.

• Let Ui = A′i[gi(q)] and U j
i be the first jk elements of Ui (note that since Algo-

rithm 4 returns an array, the elements of U are ordered). We define Ti = U
(`i+1)
i

where `i is chosen such that for any `′i < `i, we have
∣∣∣U (`′i+1)

i ∩O
∣∣∣ > `′i. This is

exactly the Ti variable in Algorithm 5. Moreover, let T =
⋃
i Ti.

• Define Q∗ to be the optimal k-subset of P ∩B(q, r), and Q be our returned set,

i.e., Q = GMM(T \ O, k). Let a ∈ Q be the added point at the last step of

GMM, then define Q− = Q \ {a}.

From the description of algorithm it is obvious that Q ⊂ B(q, cr). Also by Theorem

2.4.3, with constant probability we have Q∗ ⊂ S, and that the total number of outliers

does not exceed 3L. Thus we have divk(Q
∗) = div(Q∗) ≤ divk(S \O), and therefore it

is enough to prove that under these conditions, div(Q) ≥ divk(S \O)/6 = div(S ′)/6.
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By pigeonhole principle, since |S ′| = k and |Q−| = k − 1, then there exist

p, p′ ∈ S ′ whose closest point in Q− is the same, i.e., there exists c ∈ Q− such that

KC({p}, Q−) = dist(p, c) and KC({p′}, Q−) = dist(p′, c). Therefore, by triangle

inequality, we have

div(S ′) ≤ dist(p, p′) ≤ dist(p, c) + dist(p′, c)

≤ 2KC(S \O,Q−)
(2.1)

By lemma 2.4.1 Ti \O is a 1
3
-coreset for Si \O, and therefore their union T \O, is a

1
3
-coreset for S \O, and thus we have

KC(S \O,Q−) ≤ 3KC(T \O,Q−) (2.2)

Now note that a is chosen in the last step of GMM(T \ O, k). Thus for any point

b ∈ (T \O) \Q, since it is not chosen by GMM, b should be closer to Q− than a, i.e.,

we should have KC({b}, Q−) ≤ KC({a}, Q−). This means that

KC(T \O,Q−) ≤ KC({a}, Q−) ≤ div(Q) (2.3)

Putting together equations 2.1, 2.2 and 2.3 finishes the proof.

Lemma 2.4.6. With constant probability the query time is O((k2 + logn
r

)d · log k ·n1/c)

Proof. The query time of the algorithm for each query, has three components. First

there are O(L) hash computations each taking O(K)

O(KL) = O((log1/p2 n) · L) = O(
d

r
log n · log k

1− r/d
· n1/c)

= O(log k · n1/c · log n · d
r

)

Where we have used the approximation log p2 ≈ 1 − p2 = cr
d

, c ≥ 1 and r/d ≤ 1/2.

Second, in the last step of Algorithm 5, with constant probability the total number

of outliers is at most 3L. Therefore, we need to run the GMM algorithm for at most
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O(kL) number of points, i.e., |T | ≤ 3L. Then GMM takes

O(k2Ld) = O(d · k2 log k · n1/c)

Finally, as mentioned before, the inner loop (steps 4− 11) of the algorithm 5 can be

implemented incrementally such that the total time it takes is O(k`id).Thus the total

running time of the loop is O(kd
∑

i `i) = O(kLd).
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Chapter 3

Line Near Neighbor Problem

The approximate nearest neighbor problem can be generalized to the case where

database and/or the query objects are more complex than points and are essentially

k-dimensional flats. From the practical perspective, lines and low dimensional flats

in general, are used to model data under linear variations such as physical objects

under different lighting [10]. Despite their practical importance, these problems have

not been investigated in depth.

There are two basic ways of extending the nearest neighbor problem to k-flats.

One way of extension is to let the query be a k-dimensional flat for some small value of

k. It is defined in [6] and is called the Approximate k-Flat Nearest Neighbor problem

which is a generalization of ANN problem where k = 0. For the case when the query

is a 1-flat, i.e., a line, they provide a data structure which has query time sub-linear

in n and uses polynomial space. Specifically, for 1+ ε approximation, they obtained a

query time of O(d3n0.5+t) with a space of d2nO(1/ε2+1/t2) for any desired t > 0. In the

dual problem, the query is still a point but the data set consists of k-flats. Two results

are known in this case [10, 27]. The first algorithm is essentially heuristic (although it

allows some control of the quality of approximation). The second algorithm provides

provable guarantees and fast query time of (d + log n + 1/ε)O(1). Unfortunately, the

space requirement of the algorithm is super-polynomial, of the form 2(logn)O(1)
.

In this thesis, we consider the problem of Approximate Line Near Neighbor (LNN)

in which the database is a set of n lines L in the d dimensional euclidean space Rd.
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We want to preprocess the set of lines so that we can answer the Line Near Neighbor

(LNN) queries in sub-linear time. That is, given a query point q ∈ Rd, We want to

report a line ` ∈ L (if there is any), such that dist(q, `) ≤ r for some threshold value

r, where dist(q, `) is the euclidean distance between them. However, since solving

the exact problem seems to require scanning all lines, we focus on the approximate

version of the problem. More specifically we present a (1+ε)-approximation algorithm

which uses polynomial space, i.e., O(n + log ∆ + d)O(1/ε2), and has the running time

of the form (d+ log n+ 1/ε+ log ∆)O(1), where we assume that all points of interest

(query points and the closest point of the closest line) live in [0,∆]d. This will be

polynomial in n when ε is fixed and ∆ is at most exponential in n and therefore is an

improvement over the existing results.

We first solve the problem in the special case where we have only two lines in

the database. Based on the relative angle of the two lines, we design two different

algorithms. The first case is when the angle between two lines is not too small for

some appropriate definition of small. This mean that the lines diverge quickly and

their distance grows fast as we go farther from their intersection (or the point where

their distance is minimal). The approach here is to sample a set of points from the

lines which can almost represent those lines and thus calling ANN on the union of

those points can lead us to the closest line. We show that in this case, the number of

samples we need is not too large.

However in the second case where the angle between the two lines is too small, we

can consider the lines to be almost parallel. Then we can define a set of hyperplanes

which are almost perpendicular to both of them and project the lines on tho them.

We then build an instance of ANN on each hyperplane using the points of intersection

of lines and the hyperplane. Given the query point q, we find the closest hyperplane

and project q onto it and solve ANN on that hyperplane and report the corresponding

line of the approximate nearest neighbor of the projected query point.

In the second section, we show how to merge the data structures for different pairs

of lines and provide a two phase algorithm. In the first phase, we find a line which

is either close to the query point or almost parallel to the optimum line. Then in
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the second phase, we recursively improve the current line and prove that the we can

eventually find the approximate near line.

3.1 Problem Definition

Let L be a set of n lines in the d dimensional euclidean space Rd. We want to

preprocess the set of lines so that we can answer the Line Near Neighbor (LNN)

queries in sub-linear time. That is, given the query point q ∈ Rd, We want report a

line ` ∈ L (if there is any), such that dist(q, `) ≤ r, where dist(q, `) is the euclidean

distance between them. The approximate version of the problem defined below.

Definition 3.1.1. Approximate Line Near Neighbor Problem LNN(L, ε),

given n = |L| lines in Rd and an error parameter ε, we want to build a data structure

such that given a query point q and a search radius r, if there is a line `∗ ∈ L such

that dist(q, `∗) ≤ r, then it reports a line ` ∈ L such that dist(q, `) ≤ r(1 + ε).

Furthermore, we assume that the query point q and the closest point p∗ ∈ L on the

closest line lie in the bounding box [0,∆]d and provide an algorithm whose running

time depends on ∆. Also it is easy to see that we can scale everything (including ∆)

by r and assume that the search radius is just 1.

Moreover, for ease of notation, we assume that log d = O(log ∆) and thus log (∆
√
d) =

O(log ∆), otherwise the term corresponding to log ∆ will be dominated by the d term

in the running time and space bounds. This assumption is used since the length of

any line that falls in the bounding box [0,∆]d is at most ∆
√
d.

Let us also define another notation. By ANN(P, ε) for any point set P and

error parameter ε, we mean the approximate nearest neighbor data structure on P

and error parameter ε. Also let ANNP (q, ε), denote finding the approximate closest

point using the previously built data structure ANN(P, ε). Moreover, let S(n, ε) and

T (n, ε) respectively denote the space bound used by ANN(P, ε), and the query time

of ANNP (q, ε), when |P | = n. We will use this notation in describing and analyzing

our algorithms.
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3.2 Two lines

In this section we consider the case where we want to distinguish the closest among

two lines to the query point. We present two different approaches for two different

cases. The first case is when the angle between two lines is not too small and the

second case is when the angle is too small so that we can consider the lines to be

almost parallel.

Let the two lines be `1 and `2. Also let D = dist(`1, `2) be their distance which

is the length of the shortest segment ab for a ∈ `1 and b ∈ `2 , e.g. D = 0 when

they collide. It can be easily seen that ab is perpendicular to both of `1 and `2.

Furthermore, let α be the smaller of the two angles between the two lines. We

introduce the following definition:

Definition 3.2.1. We say that the two lines `1 and `2 are δ-close to parallel for

some value of δ, if we have (sinα ≤ δ), otherwise we say that they are δ-far from

being parallel. Also we say that the two lines are almost parallel if (sinα ≤ ε), and

otherwise they are non-parallel.

3.2.1 Non-parallel lines

Here we consider the case where the lines are non-parallel. The approach here is to

sample a set of points from each line and show that they can almost represent the

lines and thus calling ANN on them will suffice. It is shown in the following lemma.

Lemma 3.2.2. If the two lines are non-parallel, i.e., (sinα > ε), then we can

solve LNN(L, 4ε) for L = {`1, `2} and ε ≤ 1/7, within space and time bounds of

S(O( log ∆
ε2

), ε) and T (O( log ∆
ε2

), ε).

Proof. We sample points from `1 as follows. Let p0 = a, and for any integer 1 ≤ i ≤

log (∆
√
d), let pi ∈ ` be the point with distance 2i−1 from a (recall that (∆

√
d) is the

maximum length of a line which falls into the bounding box [0,∆]d). For 0 ≤ i ≤

log (∆
√
d), let Si be the set of 1/ε2 points that divide the interval [pi, pi+1) to equal seg-

ments, that is their distance from pi is {0, 2i−1ε2, 2i−1(2ε2), 2i−1(3ε2), · · · , 2i−1(( 1
ε2

)−
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1)ε2}. Note that we should sample the line `1 on both sides of a. We also sample

from `2 in the same way. Let S denote the union of all these samples. It is clear that

the total number of samples is at most 4
ε2

log (∆
√
d) = O( log ∆

ε2
).

Now build an approximate nearest neighbor data structure on the set S with pa-

rameter ε, i.e., ANN(S, ε). Given the query point q, we report the line corresponding

to the call of ANNS(q, ε).

Now suppose that line `1 is closer to q than `2. Also assume that p ∈ `1 is the

closest point to q, and p′ ∈ `2 is the closest point to q on the line `2, and let ρ be the

closest distance of q to any of the two lines, i.e., ρ = dist(q, p). Also let p∗ be the

closest point on `2 to p. Furthermore assume that p lies in the interval [pk, pk+1).

Figure 3-1: Non-parallel lines

Now suppose that the ANN algorithm does not find the correct line and instead

returns some point which lies on `2. Let this point be pf and let pt be the closest point

in Sk∩`1 to q, as shown in figure 3-1. This means that pt is either the immediate point

of Sk ∩ `1 to the right of p, or the one to the left of it and thus dist(p, pt) ≤ 2k−1ε2.

Then by properties of ANN algorithm and triangle inequality, we have

dist(q, pf ) ≤ dist(q, pt) ∗ (1 + ε) ≤ (1 + ε)(dist(q, p) + dist(p, pt)) ≤ (1 + ε)(ρ+ 2k−1ε2)
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However see that since pt ∈ Sk, we have dist(p, a) ≥ 2k−1 and thus dist(p, p∗) ≥

2k−1 sinα ≥ 2k−1ε. Therefore we get

2k−1ε ≤ dist(p, p∗) ≤ dist(p, p′) ≤ dist(p, q) + dist(q, p′) ≤ ρ+ dist(q, pf )

So we have

dist(q, pf ) ≤ (1 + ε)(ρ+ (ρ+ dist(q, pf )) ε)

dist(q, pf ) ≤
ρ(1 + ε)(1 + ε)

1− ε− ε2
≤ ρ(1 + 4ε)

where the last inequality holds for ε ≤ 1/7.

3.2.2 Almost parallel lines

Here we consider the case where the lines are almost parallel. However instead of

having the condition (sinα ≤ ε), we consider an equivalent formulation which is

going to be directly useful in solving LNN in the general case. Suppose that there is

a base line `. Let α1 = angle(`, `1) and α2 = angle(`, `2). Then we consider the case

where (sinα1 ≤ δ), (sinα2 ≤ δ) and (sinα ≥ δ/2) for some δ ≤ ε. That is, `1 and `2

are δ-close to ` but they are δ/2-far from each other. Clearly by setting ` = `1 and

δ = ε2−i for some integer value 0 ≤ i, this generalizes the original condition sinα ≤ ε.

By rotation and translation, without loss of generality we can assume that ` is

the x axis and that a has its x-coordinate equal to 0 and that b has its x-coordinate

equal to −w for some w ≥ 0. Also since dist(a, b) ≤ D, we have w ≤ D. Now we

define three sets of hyperplanes which are perpendicular to `.

• Let H1, H2, · · · , Hk be the set of hyperplanes with positive x coordinate which

are perpendicular to ` such that dist(a,H1) = ε2, and dist(a,Hi) = (1 +

ε)dist(a,Hi−1). Note that k is at most log1+ε(∆
√
d/ε2) ≈ log(∆/ε)/ε.

• LetG1, · · · , Gm be the set of hyperplanes between a and b such that dist(a,G1) =

0 and we have dist(Gi, Gi−1) = Dε and with the last hyperplane Gm passing

through b, i.e. dist(Gm, b) = 0. Then since clearly the x-coordinate of a and b
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differ by at most D, then we have that m = O(1/ε).

• Let H ′1, · · ·H ′k′ be defined the same as the first type but for the interval -infinity

to b.

Algorithm For any hyperplane h ∈ (
⋃k
i=1 Hi)∪ (

⋃m
i=1Gi)∪ (

⋃k′

i=1 H
′
i), we build an

instance ANNh({`1, `2}∩h, ε) on the intersection of the two lines with the hyperplane

in the preprocessing step. Given the query point q, first we find the closest hyperplane

g ∈ (
⋃k
i=1Hi)∪(

⋃m
i=1 Gi)∪(

⋃k′

i=1 H
′
i) to the query point and project q onto g to get the

point qg. Then we report the line corresponding to the point returned by ANNg(qg, ε).

In order to prove the correctness of the algorithm, we consider three cases sepa-

rately: whether the closest hyperplane to q is an H-type, G-type or H ′-type hyper-

plane.

Case q falls between H-type hyperplanes, This case is equivalent to the

condition that (xa +Dε2 ≤ xq ≤ ∞) (where xp denotes the value of the x-coordinate

of a point p). Suppose that the x-coordinate of q is between the x-coordinate of Hi−1

and the x-coordinate of Hi for some value of i > 1. Let h denote the hyperplane

which is perpendicular to ` and passes through q. Let ah = `1 ∩ h and bh = `2 ∩ h be

the intersection of the lines with the hyperplane h. Also let c1 and c2 be the points on

`1 and `2 with the minimum distance to q. Define ρ = ||ah − bh||2 to be the distance

of the lines on the hyperplane h, and t to be the distance of Hi−1 from the point a

(x-coordinate of Hi−1).

We prove a more general argument in this case. Let g be any hyperplane perpen-

dicular to ` whose x coordinate is between Hi−1 and Hi. We define ag = g ∩ `1 and

bg = g ∩ `2 to be the intersections of the lines with the hyperplane g. Suppose that

we have the data structure for ANNg({ag, bg}, ε) on the points ag and bg. Let qg be

the projection of the point q onto g. Furthermore let e1 and e2 be the projections of

ah and bh onto g.

The following lemmas will prove that if we project q onto g and find the approxi-

mate point nearest neighbor of qg using the data structure we had, i.e., ANNg(qg, ε),

then the corresponding line to this point will be an approximate nearest line for q.
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Lemma 3.2.3. dist(q, ah) ≤ dist(q, c1)(1 + δ) for δ ≤ 2/3. (Similarly dist(q, bh) ≤

dist(q, c2)(1 + δ)).

Proof. Let p be the projection of a onto h, and o be the projection of a onto line qah.

Then since 4qahc1 and 4aaho are similar, we have

dist(ah, q)

dist(q, c1)
=
dist(a, ah)

dist(a, o)
=
dist(a, ah)

dist(a, p)

dist(a, p)

dist(a, o)
≤ 1

cosα1

· 1 ≤ 1√
1− δ2

≤ (1 + δ)

The last inequality holds for δ ≤ 2/3.

Figure 3-2: Almost parallel lines

Lemma 3.2.4. ρ ≥ tδ/4 for sufficiently small δ.

Proof. Let p be the projection of a onto h. Let h′ be the hyperplane that passes

through ah and is perpendicular to `1. Let bh′ = `2 ∩ h′ be the intersection of `2 with

this hyperplane. Furthermore, let `′2 be the translated `2 along the vector ~ba. This

translation will move b to a and also since ~ba is perpendicular to `1, it means that ~ba

is parallel to h′. So this translation will move bh′ to some other point inside h′ such
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as b′h′ . Now clearly we have

dist(ah, bh′) ≥ dist(ah, b
′
h′) ≥ dist(a, ah) tanα ≥ dist(a, p) sinα ≥ tδ/2

Let f be the projection of bh′ onto h. Then we have

ρ = dist(bh, ah) ≥ dist(f, ah)− dist(f, bh) ≥ dist(bh′ , ah) cosα1 − dist(f, bh′) tanα2

≥ dist(bh′ , ah)(cosα1 − sinα1 tanα2) ≥ tδ(1− 2δ)/2 ≥ tδ/4

where the last inequality holds for sufficiently small δ.

Lemma 3.2.5. If dist(q, `1) ≤ dist(q, `2) then we have (1 − O(ε)) ≤ dist(qg ,bg)

dist(q,bh)
≤

(1 +O(ε)) for sufficiently small ε.

Proof. First note that using lemma 3.2.3 we can get

dist(q, ah) ≤ (1 + δ)dist(q, c1) ≤ (1 + δ)dist(q, c2) ≤ (1 + δ)dist(q, bh)

and thus by triangle inequality we have

dist(q, bh) ≥
ρ

2 + δ
≥ ρ

2
(1− δ) (3.1)

Also using triangle inequality we have

dist(qg, e2)− dist(bg, e2) ≤ dist(qg, bg) ≤ dist(qg, e2) + dist(bg, e2)

and since dist(qg, e2) = dist(q, bh), we get

1− dist(bg, e2)

dist(q, bh)
≤ dist(qg, bg)

dist(q, bh)
≤ 1 +

dist(bg, e2)

dist(q, bh)
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Thus it is enough to bound dist(bg ,e2)

dist(q,bh)
.

dist(bg, e2)

dist(q, bh)
≤ dist(bh, e2) tanα2

ρ(1− δ)/2
(using Equation 3.1)

≤ tεδ/
√

1− δ2

tδ(1− δ)/8
(by Lemma 3.2.4 and since dist(h, g) ≤ dist(Hi, Hi−1) = tε)

≤ 8ε

(1− δ)(
√

1− δ2)
≤ 16ε

where the inequalities hold for sufficiently small ε.

Lemma 3.2.6. If q falls in the H-type hyperplane, that is if the x-coordinate of q is

greater or equal to the x-coordinate of H1, then the output of the algorithm is within

a factor of (1 +O(ε)) from the optimum for sufficiently small value of ε.

Proof. Suppose that the result of our algorithm was not the actual closest line that

it had to output. We then prove that we are not off by more than a multiplicative

factor of (1 + O(ε)). Without loss of generality suppose that dist(q, `1) ≤ dist(q, `2)

but we output `2 instead. We prove a bound on the distance of q to `2. First we see

the following claim.

Claim 3.2.7. dist(qg, ag) ≥ ρ(1−O(ε))/2.

Proof.

dist(qg, ag) ≥
dist(qg, bg)

1 + ε
by properties of ANN

≥ (1−O(ε))

(1 + ε)
dist(q, bh) by Lemma 3.2.5

≥ (1−O(ε))(1− δ)
2(1 + ε)

ρ by Equation 3.1

≥ ρ(1−O(ε))/2

Claim 3.2.8. dist(qg, ag) ≤ dist(q, ah)(1 +O(ε)) for sufficiently small value of ε.
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Proof.

dist(qg, ag)

dist(ag, e1)
≥ ρ(1−O(ε))/2

dist(ah, e1) tanα1

(by claim 3.2.7)

≥ tδ(1−O(ε))/8

tεδ/
√

1− δ2
(by Lemma 3.2.4)

≥ (1−O(ε))

8ε

(3.2)

dist(qg, ag)

dist(q, ah)
≤ 1 +

dist(ag, e1)

dist(qg, e1)
(by triangle inequality and since dist(qg, e1) = dist(q, ah))

≤ 1 +
1

dist(qg ,ag)

dist(ag ,e1)
− 1

(by triangle inequality)

≤ 1 +
8ε

(1−O(ε))
(by equation 3.2)

≤ 1 + 8ε(1 +O(ε))

≤ 1 +O(ε)

where the last two inequalities work for sufficiently small value of ε

Now we prove the final part of the lemma.

dist(q, `2) = dist(q, c2) ≤ dist(q, bh)

≤ dist(qg, bg)

(1−O(ε))
(by lemma 3.2.5)

≤ (1 + ε)

(1−O(ε))
dist(qg, ag) (by properties of ANN)

≤ (1 + ε)(1 +O(ε))

(1−O(ε))
dist(q, ah) (by claim 3.2.8)

≤ (1 + ε)(1 +O(ε))(1 + ε)

(1−O(ε))
dist(q, c1) (by lemma 3.2.3)

≤ dist(q, `1)(1 +O(ε))

where the inequalities hold for sufficiently small ε.

Case q falls between H ′-type hyperplanes That is equivalent to the condition

that (−∞ ≤ xq ≤ xb −Dε2). The proof in this case is exactly the same as the proof
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for H-type hyperplanes.

Case q falls between G-type hyperplanes.This case is equivalent to the con-

dition that (xb − Dε2 ≤ xq ≤ xa + Dε2). Suppose that the x-coordinate of q is

between the x-coordinate of Gi−1 and the x-coordinate of Gi for some value of

(1 ≤ i ≤ m + 1) where we define G0 = H1 and Gm+1 = H ′1. Note that we have

dist(G0, G1) = dist(Gm, Gm+1) = ε2. Similar to the proof for H-type, let us define

h,ah, bh, c1, c2, ρ (Note that t will be defined later).

Again, let g be any hyperplane perpendicular to ` whose x coordinate is between

Gi−1 and Gi. We define ag, bg, qg, e1 and e2 similarly. Suppose that we have the data

structure for ANNg({ag, bg}, ε) on the points ag and bg. We will prove that reporting

the line corresponding to the point returned by ANNg(qg, ε), is an approximate near

line for q.

To prove the correctness, we consider two different possibilities.

First, suppose that D ≤ ε. Without loss of generality assume that q is closer to

`1 rather than `2. Since we want to answer the decision problem whether there is a

line within distance 1 of the query point q, we assume that dist(q, `1) ≤ 1 (otherwise

we don’t have to report the correct line). Then we have

dist(q, `2) ≤ dist(q, b) ≤ dist(q, ah) + dist(ah, a) + dist(a, b) (by triangle inequality)

≤ (1 + ε)dist(q, c1) + dist(G1, h)/ cosα1 +D (by lemma 3.2.3)

≤ dist(q, `1)(1 + ε) + (D + ε2)/(
√

1− ε2) + ε

≤ (1 + ε) + ε(1 + ε)/(
√

1− ε2) + ε

≤ 1 + 4ε

Where the last inequality holds for ε ≤ 1/3. Therefore we just showed that it does

not really matter which line to report in this case. So whatever we report is an

approximate near line.

Next suppose that D ≥ ε. The proof of this case is almost similar to the case in

H-type hyperplanes. It is enough to define t = D in the proof. Note that since a and
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b are the closest points of `1 and `2, we have that

ρ = dist(ah, bh) ≥ D = t ≥ tδ/4

So Lemma 3.2.4 still holds. The only other fact using t was that the distance between

two successive hyperplanes (and thus the distance of g and h) is at most tε. This is

also true in our case where the distance of two consecutive G-type hyperplanes is at

most Dε, and also we have dist(G0, G1) = dist(Gm, Gm+1) = ε2 ≤ Dε. So we get the

same bounds as for the H-type hyperplanes.

This finishes the proof of the correctness of the algorithm. We summarize the

results of this section in the following theorem.

Theorem 3.2.9. In the case where (sinα1 ≤ δ), (sinα2 ≤ δ) and (sinα ≥ δ/2), the

presented algorithm works correctly within a multiplicative factor of (1 + O(ε)) for

sufficiently small value of ε, the space it uses is O(m ∗ S(2, ε)) and its query time is

equal to O(logm+ T (2, ε)) where m = O( log(∆/ε)
ε

) is the total number of hyperplanes.

Remark 3.2.10. The set of hyperplanes presented in this section is sufficient for

approximately distinguishing between the two lines. Furthermore, adding extra hyper-

planes to this set does not break the correctness of the algorithm. This holds since we

proved that if q falls between two successive hyperplanes in this set, then projecting

onto any other parallel hyperplane between them also works.

3.3 General case

The main algorithm for the general case of this problem consists of two phases. As

shown in Lemma 3.2.2, for any pair of lines in L whose angle is not too small, we have

come up with a set of points which almost represent the lines and they are enough to

almost distinguish which line is closer to the query point q. Now in the first phase of

the algorithm we merge these sets of points for any such pair of lines to get the set

U and build an instance of ANN(U, ε) as described in Algorithm 6. Given the query
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point q, we find the approximate nearest neighbor among U , which we denote by u.

Let the initial value of ` to be the line corresponding to u, i.e., `u.

In the second phase of the algorithm, we only look at the lines which have similar

angle to that of ` and using the method described in Section 3.2.2, we recursively

update `. The query processing part is shown in Algorithm 7.

More formally, we keep a data structure for each such line. For each base line

` ∈ L and each value of δ = ε2−i for 0 ≤ i, we keep the subset of lines L`,δ ⊂ L

such that for each `′ ∈ L`,δ we have (sin angle(`, `′) ≤ δ). By Theorem 3.2.9, we

know how to approximately distinguish between any two lines `1, `2 ∈ L`,δ that have

angle greater than δ/2. That is, it is enough to have O( log(∆/ε)
ε

) hyperplanes that

are perpendicular to ` and look at the intersection of the lines with the hyperplanes.

Since by Remark 3.2.10, adding extra hyperplanes only increases the accuracy, we can

merge the set of hyperplanes for each such pair `1, `2 ∈ L`,δ into the set H`,δ. Then

for each hyperplane H ∈ H`,δ, we build an instance of approximate nearest neighbor

ANNH(L`,δ ∩H, ε).

At the query time, after we find the initial line ` in the first phase of the algorithm,

in the second phase, we set the initial value of δ = ε. We then find the closest

hyperplane g ∈ H to the query point q and project q onto h to get qg. We then update

` with the line corresponding to the approximate nearest neighbor ANNg(qg, ε) and

halve the value of δ and repeat this phase again. We continue this process until all the

lines we are left with, are parallel to ` and report the best of the lines we found in each

iteration. The following lemmas establishes a more formal proof for the correctness

and time and space bounds of the algorithms.

Lemma 3.3.1. For a sufficiently small ε, the Algorithm 7 computes the approximate

line near neighbor correctly.

Proof. Let `∗ be the optimal closest line to q. Then by Lemma 3.2.2 if (sin angle(`u, `
∗) ≥

ε), then the reported line satisfies the approximate bounds, i.e., if dist(q, `∗) ≤ 1 then

dist(q, `u) ≤ (1 + 4ε) and since `opt can only improve over `u, we get the same bound

for `opt.
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Algorithm 6 Preprocessing

Input The set of lines L

1: U ← ∅
2: for all pairs of non-parallel lines `1, `2 ∈ L do
3: Add the set of O( 1

ε2
log ∆) points as described in Lemma 3.2.2 to U

4: end for
5: Build ANN(U, ε)
6: for ` ∈ L do
7: for 0 ≤ i do
8: δ ← ε2−i

9: L`,δ ← all lines `′ ∈ L s.t. sin angle(`, `′) ≤ δ
10: H`,δ ← ∅
11: for `1, `2 ∈ L`,δ do
12: if sin angle(`1, `2) ≥ δ/2 then
13: add the set of hyperplanes perpendicular to ` to distinguish between `1

and `2 as described in Theorem 3.2.9 to H`,δ

14: end if
15: end for
16: sort H`,δ based on their order on `
17: for H ∈ H`,δ do
18: P ← L`,δ ∩H
19: build an instance of approximate nearest neighbor on P with parameter ε,

i.e., ANNH(P, ε).
20: end for
21: end for
22: end for

Now consider the case where in the first phase we have (sin angle(`u, `
∗) < ε). In

this case we maintain the following invariant before each iteration of the algorithm in

the second phase. If `opt is not an approximate near neighbor of q, then L`,δ contains

`∗. By the earlier argument, in the first iteration this claim is true, since either `u is

an approximate nearest neighbor of `∗, or L`u,ε contains `∗. For the inductive step,

let `p be the line we find in the iteration. Then if (sin angle(`∗, `p) ≥ δ/2), then

by Theorem 3.2.9 we should have dist(q, `p) ≤ dist(q, `∗)(1 + O(ε)). That is true,

since we have included set of sufficient hyperplanes in H`,δ to be able to distinguish

between them and furthermore, by Remark 3.2.10 having extra hyperplanes in H`,δ

just increases the accuracy of the line we find and does not hurt. Also if we are in the
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Algorithm 7 Query processing

Input query point q
Output approximate nearest line `opt

1: u← ANNU(q, ε) , `u ← the line which u lies on
2: `← `u
3: `opt ← `u
4: for 0 ≤ i do
5: δ ← ε2−i

6: Find the closest hyperplanes g ∈ H`,δ to the query point q
7: qg ← projection of q onto g
8: p← ANNg(qg, ε), `p ← the line which p lies on
9: update `opt with the best of {`opt, `p}

10: if all lines in L`,δ are parallel to ` then
11: break
12: end if
13: `← `p
14: end for
15: Output `opt

case that (sin angle(`∗, `p) ≤ δ/2), then by definition `∗ should be contained in L`p,δ/2

which is exactly L`,δ of the next iteration. By the time we end the algorithm, either

there is only one line left in L`,δ and thus we have ` = `∗, or there are some parallel

lines to ` in it. In this case, it is easy to see that the approximate nearest neighbor of

the projected q onto any hyperplane perpendicular to ` finds the approximate nearest

line among L`,δ. Thus dist(q, `) = dist(q, `∗)(1 +O(ε)).

Note that since we take the best line we find in each iteration, we output the correct

solution in the end. Also if αmin denotes the minimum pairwise angle between any

two non parallel lines, then since we halve the angle threshold δ in each iteration, at

some point it will pass over αmin and the loop ends.

Lemma 3.3.2. The space bound of the presented algorithm with parameters c = 1+ ε

and r = 1 is

O(
n3 log ∆ log(∆/ε)

ε
)× S(n, ε) + S(O(

n2 log ∆

ε2
), ε)
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and the query processing time bound is

O(log ∆)× T (n, ε) + T (O(
n2 log ∆

ε2
), ε)

Proof. In the first phase of the algorithm, the space we use is equal to the space we

need to keep ANN(U, ε). By Lemma 3.2.2, the set U contains at most O( log ∆
ε2

) points

per each pair of lines. Moreover the running time of the first phase is bounded by the

time needed to find ANNU(q, ε).

In the second phase, suppose that the minimum pairwise angle in the database is

equal to αmin and let εmin = sinαmin. Then there are at most n log(ε/εmin) different

L`,δ sets. By Theorem 3.2.9, for each of them we build O(n2 × log(∆/ε)
ε

) instances of

ANN each of size at most n. However, we will only search one of them per iteration,

therefore the lemma holds.

So the total space we get is

O(
n3 log(ε/εmin) log(∆/ε)

ε
)× S(n, ε) + S(O(

n2 log ∆

ε2
), ε)

the the total running time is

log(ε/εmin)× T (n, ε) + T (O(
n2 log ∆

ε2
), ε)

However note that if the two lines are at a distance less than ε in the entire bounding

box [0,∆]d, then they are approximately the same. Therefore we have εmin ≥ ε
∆
√
d

and thus log(ε/εmin) ≤ log(∆
√
d) = O(log ∆) and we get the bounds.
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