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Coordinated regulation of gene expression relies on
transcription factors (TFs) binding to specific DNA sites.
Our large-scale information–theoretical analysis of >950
TF-binding motifs demonstrates that prokaryotes and
eukaryotes use strikingly different strategies to target
TFs to specific genome locations. Although bacterial
TFs can recognize a specific DNA site in the genomic
background, eukaryotic TFs exhibit widespread, non-
functional binding and require clustering of sites to
achieve specificity. We find support for this mechanism
in a range of experimental studies and in our evolution-
ary analysis of DNA-binding domains. Our systematic
characterizationof bindingmotifs provides a quantitative

assessment of the differences in transcription regulation
in prokaryotes and eukaryotes.

DNA binding and gene regulation
Classical experiments have demonstrated that strong
binding of a TF to its cognate site in a promoter is sufficient
to alter gene expression [1]. Significant effort has been put
into experimentally determining [2–6] and computation-
ally inferring [7–10] motifs recognized by TFs, and deter-
mining the occupancy of promoters by TFs [11]. The motifs
and binding locations of a TF have in turn been used to
predict which genes it regulates and their expression levels
[12]. Such studies rely on linking the binding of TFs to
DNA with the regulation of nearby genes.Corresponding author: Mirny, L.A. (leonid@mit.edu).
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Although such an association has been strongly estab-
lished in bacteria, growing experimental evidence in
eukaryotes challenges this assumption by showing a lim-
ited correlation between gene expression and TF binding
[12–14]. For example, Gao et al. found no correlation
between occupancy patterns and gene expression profiles
for the majority (67%) of yeast TFs they studied,
suggesting that only a subset of promoters bound by each
TF is controlled by it [12]. A more striking example comes
from a recent study [13], which demonstrated only a 3%
overlap between TF occupancy and gene response to TF
knockout. Although this discrepancy can be partially
explained by the redundant binding of homologous TFs
[15], it might also be evidence of a more fundamental
uncoupling between TF binding and gene expression in
eukaryotes.

Our analysis of 969 TF-binding motifs provides strong
support for the uncoupling hypothesis by demonstrating
that eukaryotic TFs do not recognize DNA with sufficient
specificity (i.e. do not possess sufficient information) to
bind to cognate sites exclusively; instead they occupy tens
of thousands of decoy sites throughout a genome. Although
managing such promiscuous binding requires several
costly mechanisms, its advantages for eukaryotes are
yet to be understood.

An information–theoretical approach to binding-motif
recognition
To bind its cognate site, a TF has to recognize it among!106

alternative sites in bacteria or !109 sites in eukaryotes.

Using information theory, we ask whether individual TFs
possess enough information for such remarkably precise
recognition. The application of information theory to
protein–DNA recognition has a rich history [16–18] and
provides a theoretical basis for current efforts to charac-
terize motifs recognized by DNA-binding proteins using a
range of in vivo and in vitro techniques [6]. The most
common use of information theory is to construct
‘sequence logos’ that demonstrate the relative contri-
bution of individual base pair positions to binding speci-
ficity (Figure 1). Information theory, also allows us to test
whether the total information contained in a motif is
sufficient to guide a protein to a specific place in a large
genome.

Information theory dictates that finding a unique object
among N alternatives requires Imin ¼ log2N bits of infor-
mation (Figure 1) [19]. Similarly, a minimum of Imin ¼
log2N bits of information is needed to specify a unique
address in a genome containingN possible sites for a TF to
bind (i.e. N bp). For bacteria, with N = 106–107 bp this
yields Imin = 20–23 bits (Imin = 22 bits for Escherichia coli).
For eukaryotic genomes, N = 108–1010 bp leads to
Imin # 27–33 bits (Imin = 24 bits for Saccharomyces cerevi-
siae, Imin = 27 bits for Drosophila melanogaster and
Imin = 31 bits for Homo sapiens).

To test whether TF motifs contain enough information
to identify unique sites in their corresponding genomes,
we calculate the information content of 969 experimen-
tally determined bacterial and eukaryotic motifs. As
a measure of the information contained in a motif, we

Figure 1. Information theory as applied to DNA-bindingmotifs. (a) The concepts of minimal information required in theory and in DNA recognition and the consequences of
information deficiency, which results in spurious hits. (b) The sequence logos for low- and high-information motifs and the likelihood of a spurious hit to the motif in a
‘random’ genomic background.
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apply the commonly used Kullback–Leibler (KL) distance
between the motif and the overall genome composition
[17,18]

I ¼
XL

i¼1

X

b2 A;C;G;Tf g
pi bð Þlog2 pi bð Þ=q bð Þð Þ (Eq. 1)

where L is the length of the motif, pi(b) is the frequency of
base b at position i in the motif and q(b) is its background
frequency. The information content of a motif quantifies
the sensitivity of TF binding affinity to variation in the
binding site sequence from the consensus sequence and
the probability of a site occurring in a ‘random’ stretch of
DNA [16].

Motifs of bacterial and eukaryotic TFs are markedly
different
Using this metric, we find that the motifs of prokaryotic
and eukaryotic TFs are strikingly different (Figure 2,
Tables S5–6 in the online supplementary material). The
average information content of a prokaryotic motif

I # 23 bits is slightly above the required Imin = 22 bits,
demonstrating that a single cognate site is generally suffi-
cient to address a TF to a specific location in prokaryotes,
though there still might be an overlap between the back-
ground and some weak but functional sites (Figure S1 in
the online supplementary material).

Although longer eukaryotic genomes require a TF to be
more specific, we find that eukaryotic TFs are much less
specific than bacterial TFs and do not contain sufficient
information to find a cognate site among 109 decoys. The
average information content of a multicellular eukaryotic
motif is only I # 12.1 bits, falling far below the Imin # 30
bits required to provide a specific address in a eukaryotic
genome (Figure 2). Yeast TF motifs have a mean infor-
mation content of I = 13.8 bits, which is below the required
Imin # 24 bits, but represents a smaller information
deficiency (Imin – I # 10 bits) than that of the multicellular
eukaryotes (Imin – I # 18 bits).

To ensure that the results were not influenced by a poor
choice of data, we employ databases [20,21] that contain
motifs for full biological TF units (i.e. dimers when the

Figure 2. Properties of binding motifs for bacteria, yeast and multicellular eukaryotes. (a) The bar chart displays the minimum required information content for bacteria,
yeast and multicellular eukaryotes (red), and the mean information content of TF-binding motifs (blue) for 98 bacterial [21], 124 yeast [22] and 123 multicellular [20]
eukaryotic motifs. The error bars are & 1 SD for the information content and for Imin the error bars represent the variability in that quantity because of the range of genome
sizes N. The blue circles on top of the bar for bacteria indicate the average information content from several other TF-binding motif databases (Table S6). Below each series
in the bar chart, we display an example of the sequence logo for a binding motif with close to average information content. The chart demonstrates that bacterial TF-binding
motifs are informative enough to make spurious hits to the genomic background unlikely, in contrast to yeast and multicellular eukaryotic motifs. (b) The distributions of
information content of motifs from the three representative databases cited above. The ranges of required information (Imin) are marked in red. Most bacterial motifs have I
> Imin, whereas almost all eukaryotic motifs do not. (c) The average properties of TF-binding motifs, and the expected number and spacing between the spurious sites per
genome in bacteria, yeast and multicellular eukaryotes.
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binding of an individual site is accomplished by a dimer,
e.g. LacI, Gal4). We also rely on in vitro experiments [22]
that used full-length TFs. In addition, the motifs do not
show a significant correlation between the information
content and the number of cognate sites used to derive
the motif (r = –0.27). When motifs with <8 cognate sites in
RegTransBase are eliminated, we see a decrease in the
mean information content by !1 bit. Taken together, we
conclude the biases from the number of sites used to
construct a TF-binding motif do not change our general
findings. Finally, these results are consistent for motifs
obtained both in vivo and in vitro and for all available data
sets (Table S6 in the supplementary material).

Widespread nonfunctional binding in multicellular
eukaryotes
The significant information deficiency in eukaryotes,
which emerges because of their large genomes and the
degeneracy of the motifs, has several biologically import-
ant consequences. Primarily, it suggests that numerous
sites as strong as the cognate ones are expected to be
present in eukaryotic genomes by chance. Using infor-
mation theory and simulations, we estimate the lower
bound of the number of such spurious sites or hits
as h'2Imin(I, with an average spacing s ) 2I between
them (Figure S1c in the supplementary material). There-
fore, an average multicellular eukaryotic TF is expected to
have h # 104–106 spurious sites per genome, which is
reduced to h # 103–105 accessible sites assuming 90%
chromatinization of the genome or h # 102–104 assuming
98% chromatinization. For yeast, the figure is h # 102–104,
assuming 0 to 80% chromatinization.

In multicellular eukaryotes, spurious sites are expected
to arise by chance every s # 4 kb. An important implication
of this is that, in eukaryotes, the presence of a site cannot
be a distinctive feature of a regulatory region. By contrast,
a typical bacterial TF is expected to have few such spurious
sites, making the presence of a single high-affinity site a
unique event and a distinctive feature of a regulatory
region. Consistent with this picture is the atypically low
information content of a few bacterial DNA-binding
proteins that pack and crosslink DNA: H-NS (histone-like
nucleoid structuring protein), Fis (factor for inversion
stimulation) and IHF (integration host factor) (I = 7.5,
7.3 and 7.8 bits, respectively). Similarly, and in agreement
with Sengupta el al. [8], CRP (catabolism repressor
protein) and other global regulators that bind hundreds
of sites in the genome have lower information content
(CRP: I = 11 bits). The low information content of bacterial
global regulatormotifsmakes it particularly challenging to
find their cognate sites [23].

Because information–theoretical results depend on a
rather simple description of the genomic background, we
searched real genomic sequences for matches to several
well-characterizedmotifs. Using a standard bioinformatics
approach, we find, in agreement with the theory, >104

spurious sites per genome for degenerate eukaryotic TFs
(Table S1). This in no way constrains the number of
cognate, functional sites a TFhas in the genome but demon-
strates that, in eukaryotes, cognate sites can be difficult
to recognize among 103–105 equally strong spurious sites.

This creates a binding landscape with a potential for
widespread nonfunctional binding.

Widespread nonfunctional binding is consistent with
diverse experimental data
Evidence of this landscape has been found in several large-
scale experiments. Our estimate of !103 spurious hits in
the chromatinized D. melanogaster genome is consistent
with the 103–104 experimentally observed binding events
for several TFs [14].Moreover, our results explain the large
number of binding events detected by ChIP-chip [11] and
ChIP-seq experiments [24], suggesting that the majority of
these events reflect the widespread binding to sites that
arise by chance and are likely to be nonfunctional. In
agreement with this idea, studies in yeast have shown a
decoupling between binding and apparent regulatory
function for a nontrivial fraction of TF binding events
[12,13].

Using the estimated frequency of spurious sites in
multicellular eukaryotes of once every 4 kb, and assuming
a regulatory (accessible) region of !1 kb around the tran-
scription start site of each gene, we estimate that a single
TF is expected to bind spuriously to!25% of all regulatory
regions. Consistent with these estimates, ChIP-chip exper-
iments found that NOTCH1 binds to 19%,MYC to 48% and
HES1 to 18% of all human promoters [25]. Our expectation
is that most of these binding events have little regulatory
effect. The prevalence of widespread, spurious binding
events in eukaryotes means that we should be cautious
in interpreting all experimentally identified binding
events as regulatory interactions.

The abundance of accessible high-affinity spurious sites
in eukaryotes has two effects: (i) it sequesters TF mol-
ecules; and (ii) it makes it more difficult for the cellular
machinery of gene regulation to detect regulatory regions
occupied by TFs and discriminate them from occupied
spurious sites.

The sequestration of TF molecules by spurious binding
sites necessitates a high TF copy number. The number of
spurious sites h (or the number of cognate sites to be
bound) imposes a lower limit on the TF copy number per
cell [26], which is of the order of 1–10 per cell for bacteria,
1000 for yeast and 103–105 for multicellular eukaryotes.
These estimates are consistent with available experimen-
tal data: 5–10 copies per cell of LacI repressor in E. coli; an
average of approximately 2000 copies per cell of TFs
in yeast; and 105 copies per cell of the prototypical
multicellular eukaryotic TF p53 (Table S4).

Clustering of cognate sites can provide specificity of
eukaryotic TFs
Although high TF copy numbers are necessary to cope with
spurious sites, they are not sufficient to provide specificity
(i.e. to allow cellular machinery to distinguish regulatory
binding sites from equally strong decoys). However, the
presence of multiple sites in proximity to each other can
specify a regulatory region. Many regulatory regions in
eukaryotes contain multiple sites of the same or different
TFs [7,27–35], a property commonly used in bioinformatics
to detect regulatory regions [27,31]. Using the information
content of TFmotifs, we can calculate the minimal number
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of cognate sites (ncluster) in regions of length w # 500–
1000 bp needed to determine a unique location in a genome
(supplementary methods online, Tables S2 and S3). To
obtain ncluster, we first calculate how many clusters of n
spurious sites are expected to be found in a genome of a
given length E(n). Next, we choose ncluster as the minimum
number of sites in a cluster such that E(n) <1. In other
words, a cluster of sites is unique (i.e. informative) if
spurious sites are expected to form less than one such
cluster by chance.

In a region of 1 kb composed of the sites of 3–10 different
TFs, we calculate ncluster = 10–20 sites. This lower limit on
the number of required binding sites is remarkably con-
sistent with the mean of !20 sites per 1 kb observed in fly
developmental enhancers [28]. These results also demon-
strate that, beyond the known examples in flies and sea
urchins [35], clustering of sites is a common phenomenon
applicable to many regulatory regions of multicellular
eukaryotes.

We also use an information–theoretical approach to
calculate the information content of a cluster of sites,
and then estimate the minimum number of sites in each
cluster sufficient to reach the required information Imin.
We demonstrate (see online supplementary material)
that for a cluster of sites spanning a region of w bp, the

contribution of each site i to the total information content of
the cluster (dIi) is approximately

dIi # Ii ( log2w (Eq. 2)

where Ii is the information content of motif i. Choosing
w = 500–1000 bp [31,36] and Ii = 12 bits, we obtain that
each site contributes 2–3 bits of information, necessitating
10–15 sites to achieve the !30 bits of information needed
for multicellular eukaryotes.

Eukaryotic and bacterial TFs using different repertoires
of DNA-binding domains
Our study shows that combinatorial regulation is rooted in
the way eukaryotic TFs recognize DNA, but how did this
difference from prokaryotes arise? The gradual modifi-
cations of DNA-binding residues, expansion or contraction
of the DNA-binding interface and/or re-invention of DNA-
binding domains might have contributed to this difference.
To investigate the possible evolutionary trajectory, we
compare sequences of prokaryotic and eukaryotic DNA-
binding domains of TFs available in the PFAM database
[37] (Figure 3a). This analysis gives a clear result – pro-
karyotes and eukaryotes use different sets of DNA-binding
domains. Of the 133 knownDNA-binding domains, 69 have
only eukaryotic members, 49 are totally prokaryotic and

Figure 3. Membership of PFAM protein domain families by kingdom. To explore the evolution of DNA-binding domains, we examined the membership of PFAM protein
domain families. Each column in (a,b) represents a single PFAM family, and the size of the red or blue bar indicates the proportion of the family’s bacterial and eukaryotic
members, respectively. (a) shows the membership of DNA-binding domains, demonstrating that bacteria and eukaryotes share very few. As a control (b), we plot the
composition of PFAM glycolysis and/or gluconeogenesis enzyme families, which are shared between kingdoms. In (c), we show a Venn diagram after removing the weakest
10% of hits to a PFAM family profile.

Update Trends in Genetics Vol.25 No.10

438



only 15 families have both prokaryotic and eukaryotic
members, but are usually dominated by one of two king-
doms (Table S7). This result is consistent with the previous
observation of the differing rates of expansion and con-
traction of DNA-binding domain families between prokar-
yotes and eukaryotes [38]. As a control, we compare this
result to domains involved in glycolysis and gluconeogen-
esis and find that a few of those domains are kingdom
specific (Figure 3b). The lack of shared prokaryotic and
eukaryotic DNA-binding domain families suggests that the
TFmachinery employed by eukaryotes might have evolved
de novo.

Energy-based considerations of TF binding
As demonstrated in the seminal paper by Berg and von
Hippel [16] and later papers this information–theoretical
approach is closely related to the energy-based analysis
of TF-binding motifs. The constraints on the information
content of motifs considered here can be interpreted as
constraints on the sequence-specific protein–DNA bind-
ing energy. Gerland et al. [26] and Lassig [39] have
considered these constraints and demonstrated that
the energy contribution of each consensus base pair to
the sequence-specific binding energy in bacteria should
be approximately e # 2–3 kBT for a motif of L = 15 bp.

The specificity of TF binding can be assessed using an
energy-based approach. Given a set of cognate sites, how
many sites in a genome are expected to have the energy
lower than the energy of the cognate sites? A direct answer
is provided by our bioinformatics analysis, where such sites
are explicitly counted in each genome. We also use the
information content of TF motifs to estimate the contri-
bution of each consensus base pair to the sequence-specific
binding energy (supplementarymethods online), obtaining
a range e # 1.5–3.5 kBT = 1–2 Kcal/mol for both prokar-
yotes and eukaryotes, which is consistent with recent
micro-fluidic measurements [2].

Another important aspect of TF recognition not con-
sidered here is the nonspecific binding of proteins to DNA
because our focus was on specific (high-affinity) binding.
As demonstrated previously [26,39,40], competition be-
tween specific binding to cognate sites and nonspecific
binding to the rest of the DNA determines whether a
TF is bound to the cognate site or to nonspecific DNA.
Using available dissociation constants for specific and
nonspecific binding [2,41,42], we calculate that a bacterial
TF binds nonspecifically once every 106 bp. Eukaryotic
TFs, by contrast, bind nonspecifically every 103–104 bp.
Therefore, nonspecific binding sequesters almost as
many TF molecules as the spurious sites, making it
difficult for the cell to recognize a regulatory region from
the rest of the DNA where TFs are bound specifically and
nonspecifically.

Concluding remarks
We asked whether individual TF-binding motifs possess
enough information to find a cognate site in the genome.
The promiscuity of eukaryotic TFs leads to widespread,
likely nonfunctional, binding to decoy sites. If supported by
direct experimental evidence, this conclusion will chal-
lenge our understanding of gene regulation, which was

gained largely from experiments in bacterial systems and
can be summarized as: one site – one TF – one binding
event. In multicellular eukaryotes, this paradigm turns
into: multiple sites – thousands of copies of each TF –
multiple cooperative binding events. This makes one bind-
ing event necessary, but certainly not sufficient to regulate
gene expression.

Such a mechanism is consistent with the concept of
combinatorial gene regulation in eukaryotes, but goes
further by suggesting that not only are several sites
required to form a regulatory region, but also binding to
individual sites is likely to be widespread and possibly
nonfunctional. Cooperative binding [1] and synergetic acti-
vation [43] are likely to be some of the mechanisms
employed by the cell to differentiate between individual
sites and clusters.

Although the apparent paradox of information
deficiency in eukaryotes can be resolved by using regulat-
ory regions containing clusters of sites, each TF must
nevertheless be present in very high copy numbers.
Clearly, maintaining the tens of thousands of copies of
each TF per cell needed to saturate decoy sites comes at a
metabolic cost that is likely to be outweighed by the
advantages of promiscuous binding that are yet to be
discovered.

Evolutionary analysis supports our information–theor-
etical results and shows that the observed differences in
DNA recognition are not specific to a few cases but are
likely to span across kingdoms and constitute fundamen-
tally different strategies of transcriptional regulation in
prokaryotes and eukaryotes. The promiscuity of eukaryotic
TFs is likely to constitute one of many eukaryotic evol-
utionary novelties, which might enable more evolvable
gene regulation and, thus, be essential for the evolution
of a variety of structures [44].
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