
Verifying a file system implementation

Konstantine Arkoudas, Karen Zee, Viktor Kuncak, Martin Rinard

MIT Computer Science and AI Lab
{arkoudas,kkz,vkuncak,rinard}@csail.mit.edu

Abstract. We present a correctness proof for a basic file system im-
plementation. This implementation contains key elements of standard
Unix file systems such as inodes and fixed-size disk blocks. We prove the
implementation correct by establishing a simulation relation between
the specification of the file system (which models the file system as an
abstract map from file names to sequences of bytes) and its implementa-
tion (which uses fixed-size disk blocks to store the contents of the files).
We used the Athena proof system to represent and validate our proof.
Our experience indicates that Athena’s use of block-structured natural
deduction, support for structural induction and proof abstraction, and
seamless integration with high-performance automated theorem provers
were essential to our ability to successfully manage a proof of this size.

1 Introduction

In this paper we explore the challenges of verifying the core operations of a
Unix-like file system [28,34]. We formalize the specification of the file system as
a map from file names to sequences of bytes, then formalize an implementation
that uses such standard file system data structures as inodes and fixed-sized disk
blocks. We verify the correctness of the implementation by proving the existence
of a simulation relation between the specification and the implementation.

The proof is expressed and checked in Athena [1], a new interactive theorem-
proving system based on denotational proof languages (DPLs [2]) for first-order
logic with sorts and polymorphism. Athena uses a Fitch-style natural deduction
calculus [32], formalized via the semantic abstraction of assumption bases. High-
level reasoning idioms that are frequently encountered in common mathematical
practice are directly available to the user. Athena also includes a higher-order
functional language in the style of Scheme and ML and offers flexible mechanisms
for expressing proof-search algorithms in a trusted manner (akin to the “tactics”
and “tacticals” of LCF-like systems such as HOL [19] and Isabelle [30]). Block-
structured natural deduction is used not only for writing proofs, but also for
writing tactics. This is a novel feature of Athena; all other tactic languages we
are aware of are based on sequent calculi. This feature proved to be remarkably
useful: Tactics are much easier to write in this style, and are a great help in
making proofs more modular.

The proof comprises 283 lemmas and theorems, and took 1.5 person-months
of full-time work to complete. It consists of roughly 5,000 lines of Athena text,

2 Arkoudas, Zee, Kuncak, Rinard

for an average of about 18 lines per lemma. It takes about 9 minutes to check on
a high-end Pentium, for an average of 1.9 seconds per lemma. Athena seamlessly
integrates cutting-edge automated theorem provers (ATPs) such as Vampire [35]
and Spass [36] in order to mechanically prove tedious steps, leaving the user to
focus on the interesting parts of the proof. Athena invokes Vampire and Spass
over 2,000 times during the course of the proof. That the proof is still sev-
eral thousand lines long reflects the sheer size of the problem. For instance, we
needed to prove 12 invariants and there are 10 state-transforming operations,
which translates to 120 lemmas for each invariant/operation pair (I, f), each
guaranteeing that f preserves I. Most of these lemmas are non-trivial; many re-
quire induction, and several require a number of other auxiliary lemmas. Further
complicating matters is the fact that we can show that some of these invariants
are preserved only if we assume that certain other invariants hold. In these cases
we must consider simultaneously the conjunction of several invariants. The re-
sulting formulas are very long and have dozens of quantified variables. We believe
that Athena’s combination of natural deduction, versatile mechanisms for proof
abstraction, and seamless incorporation of very efficient ATPs were crucial to
our ability to successfully complete a proof effort of this scale.

To place our results in a broader context, consider that organizations rely
on storage systems in general and file systems in particular to store critical
persistent data. Because errors can cause the file system to lose this data, it is
important for the implementation to be correct. The standard wisdom is that
core system components such as file systems will always remain beyond the
reach of full correctness proofs, leaving extensive testing—and the possibility
of undetected residual errors—as the only option. Our results, however, suggest
that correctness proofs for crucial system components (especially for the key
algorithms and data structures at the heart of such components) may very well
be within reach.

The remainder of the paper is structured as follows. In Section 2 we present an
abstract specification of the file system. This specification hides the complexity
of implementation-specific data structures such as inodes and data blocks by
representing files simply as indexable sequences of bytes. Section 3 presents our
model of the implementation of the file system. This implementation contains
many more details, e.g., the mapping from file names to inodes, as well as the
representation of file contents using sequences of non-contiguous data blocks that
are dynamically allocated on the disk. Section 4 presents the statement of the
correctness criterion. This criterion uses an abstraction function [16] that maps
the state of the implementation to the state of the specification. Section 4 also
sketches out the overall strategy of the proof. Section 5 addresses the key role
that reachability invariants played in this project; these invariants express the
fundamental data structure consistency properties needed for correct functioning
of the file system implementation. Section 6 describes some of the proof-specific
Athena tactics that were essential in making the proof more tractable. The
convenience of using these proof tactics illustrates the advantages of a language
that smoothly integrates natural deduction proofs and a Turing-complete higher-

Verifying a file system implementation 3

order proof-search language. Section 7 describes our experience in extending the
basic file system with a form of access control. The last two sections discuss
related work and present our main conclusions.

2 Abstract specification of the file system

The abstract specification of the file system uses two primitive sorts Byte and
FileID , representing bytes and file identifiers, respectively. File is defined as a re-
sizable array of Byte, introduced as a sort abbreviation: File = RSArrayOf (Byte).
The abstract state of the file system, AbState, is defined as a finite map from file
identifiers (FileID) to file contents (File), i.e., AbState = FMap(FileID ,File).
(See the corresponding technical report [7] for details on the Athena formaliza-
tion of finite maps and resizable arrays. For a presentation of Athena’s syntax
and formal semantics see [9]; for further sample applications see [3,4,6,20].) We
also introduce a distinguished element of Byte, called fillByte, which will be used
to pad a file if a write is attempted at a position exceeding the file size.

We begin by giving the signature of the abstract read operation, read:

declare read : FileID × Nat × AbState → ReadResult

Thus read takes a file identifier fid , an index i in the file, and an abstract file
system state s, and returns an element of ReadResult . The latter is defined as
the following datatype:

datatype ReadResult = EOF | Ok(Byte) | FileNotFound

Therefore, the result of any read operation is either EOF , if the index is out of
bounds; or FileNotFound , if the file does not exist; or, if all goes well, a value of
the form Ok(v) for some byte v, representing the content of file fid at position
i. More precisely, the semantics of read are given by the following three axioms:

[AR1] ∀ fid i s . lookUp (fid, s) = NONE ⇒ read(fid , i, s) = FileNotFound

[AR2] ∀ fid i s file . [lookUp (fid, s) = SOME(file) ∧ arrayLen(file) ≤ i]⇒

read(fid , i, s) = EOF

[AR3] ∀ fid i s file v . [lookUp (fid, s) = SOME (file) ∧ arrayRead (file, i) = SOME(v)]⇒

read(fid , i, s) = Ok(v)

Using the equality conditions for finite maps and resizable arrays, we can prove
the following extensionality theorem for abstract states:

∀ s1 s2 . s1 = s2⇔ [∀ fid i . read(fid , i, s1) = read(fid , i, s2)] (1)

The abstract write has the following signature:

declare write : FileID × Nat × Byte × AbState → AbState

This is the operation that defines state transitions in our file system. It takes
as arguments a file identifier fid , an index i indicating a file position, a byte v

4 Arkoudas, Zee, Kuncak, Rinard

root (maps file identifiers to inode numbers)

�
�

�
��+

XXXXXXXXXXXz
resume.doc proposal.pdf

0 1 2

q

�

· · · · · ·

35 36

q · · ·

?inodes[36]

inodes

(maps inode numbers to inode records)

inodes[2]

file

Size:

297

user

Perms

block

Count:

4

block

List:
q

�
�

�+

· · ·

file

Size:

7396

user

Perms

block

Count:

49

block

List:
q

�
�

��+

1 3 83 529

0 1 2 3

J
Ĵ

89· · · 713

J
Ĵ

· · ·

0 481

712 7130 1 2 3

q · · · · · ·

�

q

?
blocks

(maps block numbers to disk blocks)

0

H · · ·

blockSize-1

B

0

A · · ·

blockSize-1

C

blocks[inodes[36].blockList[1]][blockSize − 1] = C

Fig. 1. A snapshot of the file system’s state

representing the value to be written, and a file system state s. The result is a
new state where the file contents have been updated by storing v at position i.
Note that if i exceeds the length of the file in state s, then in the resulting state
the file will be extended to size i + 1 and all newly allocated positions below i

will be padded with fillByte. Finally, if fid does not exist at all in s, then an
empty file of size i+1 is first created and then the value v is written. The axioms
below make this precise:

[AW1] ∀ fid i v s . lookUp (fid, s) = NONE ⇒

write(fid , i, v, s) = update(s,fid , arrayWrite(makeArray(fillByte, i + 1), i, v,fillByte))

[AW2] ∀ fid i v s file . lookUp (fid, s) = SOME (file)⇒

write(fid , i, v, s) = update(s,fid , arrayWrite(file, i, v,fillByte))

3 File system implementation

Standard Unix file systems store the contents of each file in separate disk blocks,
and maintain a table of structures called inodes that index those blocks and

Verifying a file system implementation 5

store various types of information about the file. Our implementation operates
directly on the inodes and disk blocks and therefore models the operations that
the file system performs on the disk. The file system organizes file data in Block
units. Conceptually, a Block is an array of blockSize bytes, where blockSize is a
positive constant. We model a Block as a finite map from natural numbers to
bytes: Block = FMap(Nat ,Byte). A pictorial representation of a sample imple-
mentation state is shown in Figure 1. File meta-data is stored in inodes:

datatype INode = inode(fileSize : Nat , blockCount : Nat , blockList : FMap(Nat ,Nat))

An INode is a datatype consisting of the file size in bytes and in blocks, and a
list of block numbers. The list of block numbers is an array of the block numbers
that contain the file data. We model this array as a finite map from natural
numbers (array indices) to natural numbers (block numbers).

The data type State represents the file system state:

datatype State = state(inodeCount : Nat , stateBlockCount : Nat ,

inodes : FMap(Nat , INode), blocks : FMap(Nat , Block), root : FMap(FileID,Nat))

A State consists of a count of the inodes in use; a count of the blocks in use; an
array of inodes; an array of blocks; and the root directory. We model the array of
inodes as a finite map from natural numbers (array indices) to INode (inodes).
Likewise, we model the array of blocks as a finite map from natural numbers
(array indices) to Block (blocks). We model the root directory as a finite map
from FileID (file identifiers) to natural numbers (inode numbers).

proc extract ov = case ov of NONE -> fail | SOME v -> return v

proc read(fid,i) =

case root[fid] of

| NONE -> return FileNotFound

| SOME inodeNum ->

var inode = extract(inodes[inodeNum]);

if i >= inode.fileSize then return EOF

else var blockNum = extract(inode.blockList[i div blockSize]);

var block = blocks[blockNum];

return extract(block[i mod blockSize])

Fig. 2. Pseudocode for the concrete read operation

The implementation of the fundamental file system operations in our model
is presented in Figures 2 and 3 in pseudo code. In what follows we present the
first-order axioms that correspond to these operations. We have manually derived
these axioms by explicitly modelling the file system state as the argument and
the result of file system operations.

3.1 Definition of the concrete read operation

The concrete read operation, read (Figure 2), has the following signature:

declare read : FileID × Nat × State → ReadResult

6 Arkoudas, Zee, Kuncak, Rinard

proc write(fid,i,v) =

case root[fid] of

| NONE -> allocINode(fid);

var inodeNum = root[fid];

writeExisting(inodeNum,i,v)

| SOME inodeNum -> writeExisting(inodeNum,i,v)

proc writeExisting(inodeNum,i,v) =

var inode = extract(inodes[inodeNum]);

if i div blockSize < inode.blockCount then

if i < inode.fileSize then writeNoExtend(inodeNum,i,v)

else writeSmallExtend(inodeNum,i,v)

else extendFile(inodeNum,i);

writeNoExtend(inodeNum,i,v)

proc writeSmallExtend(inodeNum,i,v) =

var inode = extract(inodes[inodeNum]);

var blockNum = extract(inode.blockList[i div blockSize]);

var block = extract(blocks[blockNum]);

inode.fileSize := i+1;

inodes[inodeNum] := inode;

block[i mod blockSize] := v;

blocks[blockNum] := block

proc writeNoExtend(inodeNum,i,v) =

var inode = extract(inodes[inodeNum]);

var blockNum = extract(inode.blockList[i div blockSize]);

var block = extract(blocks[blockNum]);

block[i mod blockSize] := v;

updateBlock(blockNum,block)

proc updateBlock(blockNum,block) = (blocks[blockNum] := block)

proc extendFile(inodeNum,i) =

var inode = extract(inodes[inodeNum]);

var blockIndex = i div blockSize;

if blockIndex >= inode.blockCount then

allocBlocks(inodeNum, blockIndex-inode.blockCount+1, i)

proc allocBlocks(inodeNum,toAlloc,i) =

if toAlloc>0 then

getNextBlock();

var inode = extract(inodes[inodeNum]);

inode.fileSize := i+1;

inode.blockList[inode.blockCount] := stateBlockCount-1;

inode.blockCount := inode.blockCount+1;

inodes[inodeNum] := inode;

allocBlocks(inodeNum,toAlloc-1,i)

proc getNextBlock() = blocks[stateBlockCount] := initialBlock;

stateBlockCount := stateBlockCount+1

proc allocInode(fid) = root[fid] := inodeCount;

getNextInode()

proc getNextInode() = inodes[inodeCount] := initialInode;

inodeCount := inodeCount+1

Fig. 3. Pseudocode for the concrete write operation

Verifying a file system implementation 7

(As a convention, we use bold italic font to indicate the abstract-state version
of something: e.g., abstract read vs. concrete read , an abstract state s vs. a
concrete state s, etc.) The read operation takes a file identifier fid , an index i in
the file, and a concrete file system state s, and returns an element of ReadResult .
It first determines if fid is present in the root directory of s. If not, read returns
FileNotFound . Otherwise, it looks up the corresponding inode. If i is not less than
the file size, read returns EOF . Otherwise, read looks up the block containing the
data and returns the relevant byte. The following axioms capture these semantics
(for ease of presentation, we omit universal quantifiers from now on; all variables
can be assumed to be universally quantified):

[CR1] lookUp (fid , root(s)) = NONE ⇒ read(fid , i, s) = FileNotFound

[CR2] [lookUp (fid , root(s)) = SOME (n) ∧
lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl)) ∧ (fs ≤ i)]⇒ read(fid , i, s) = EOF

[CR3] [lookUp (fid , root(s)) = SOME (n) ∧
lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl)) ∧ (i < fs) ∧

lookUp (i div blockSize , bl) = SOME(bn) ∧ lookUp (bn, blocks(s)) = SOME (block) ∧
lookUp (i mod blockSize, block) = SOME (v)]⇒ read(fid , i, s) = Ok(v)

3.2 Definition of the concrete write operation

The concrete write operation, write (Figure 3), takes a file identifier fid , a byte
index i, the byte value v to write, and a state s, and returns the updated state:

declare write : FileID × Nat × Byte × State → State

[CW1] lookUp (fid , root(s)) = SOME (n)⇒write(fid , i, v, s) = writeExisting(n, i, v, s)
[CW2] let s′ = allocINode(fid , s) in

[lookUp (fid , root(s)) = NONE ∧ lookUp (fid , root(s′)) = SOME (n)]⇒
write(fid , i, v, s) = writeExisting(n, i, v, s′)

If the file associated with fid already exists, write delegates the write to the helper
function writeExisting . If the file does not exist, write first invokes allocINode ,
which creates a new empty file by allocating and initializing an inode and then
calls writeExisting with the inode number of the new file.

writeExisting takes an inode number n, a byte index i, the byte value v to
write, and a state s, and returns the updated state:

declare writeExisting : Nat × Nat × Byte × State → State

[WE1] [lookUp (n, inodes(s)) = SOME (inode) ∧
(i div blockSize) < blockCount(inode) ∧ i < fileSize(inode)]⇒

writeExisting(n, i, v, s) = writeNoExtend (n, i, v, s)
[WE2] [lookUp (n, inodes(s)) = SOME (inode) ∧

(i div blockSize) < blockCount(inode) ∧ fileSize(inode) ≤ i]⇒
writeExisting(n, i, v, s) = writeSmallExtend(n, i, v, s)

[WE3] [lookUp (n, inodes(s)) = SOME (inode) ∧
blockCount(inode) ≤ (i div blockSize)]⇒

writeExisting(n, i, v, s) = writeNoExtend (n, i, v, extendFile(n, i, s))

If i is less than the file size, writeExisting delegates the writing to the helper
function writeNoExtend , which stores the value v in the appropriate location.

8 Arkoudas, Zee, Kuncak, Rinard

If i is not less than the file size but is located in the last block of the file,
writeExisting delegates to writeSmallExtend , which stores the value v in the
appropriate position and updates the file size. Otherwise, writeExisting first
invokes extendFile, which extends the file by the appropriate number of blocks,
and then calls writeNoExtend on the updated state.1

extendFile takes an inode number n, the byte index of the write, and the
state s. It delegates the task of allocating the necessary blocks to allocBlocks :

declare extendFile : Nat × Nat × State → State

[lookUp (n, inodes(s)) = SOME (inode) ∧ blockCount(inode) ≤ (j div blockSize)]⇒
extendFile(n, j, s) = allocBlocks(n, (j div blockSize)− blockCount(inode) + 1, j, s)

allocBlocks takes an inode number n, the number of blocks to allocate, the
byte index j, and the state s. We define it by primitive recursion:

declare allocBlocks : Nat × Nat × Nat × State → State

[AB1] allocBlocks(n, 0, j, s) = s

[AB2] [getNextBlock (s) = state(inc, bc + 1, inm, bm, root) ∧
lookUp (n, inm) = SOME (inode(fs, inbc, inbl))]⇒

allocBlocks(n, k + 1, j, s) = allocBlocks(n, k, j, state(inc, bc + 1,

update(inm, n, inode(j + 1, inbc + 1, update(inbl, inbc, bc)))))

allocBlocks uses the helper function getNextBlock , which takes the state s, allo-
cates and initializes the next free block, and returns the updated state:

declare getNextBlock : State → State

getNextBlock (state(inc, bc, inm, bm, root)) =
state(inc, bc + 1, inm, update(bm, bc, initialBlock), root)

Reachable states. In what follows we will restrict our attention to reachable
states, those that can be obtained from the initial state by some finite sequence
of write operations. Specifically, we define a predicate reachableN (“reachable in
n steps”) via two axioms: reachableN(s, 0)⇔ s = initialState, and

reachableN(s, n + 1)⇔∃ s
′

fid i v . reachableN(s′, n) ∧ s = write(fid , i, v, s
′)

We then set reachable(s)⇔∃ n . reachableN(s, n). We will write Ŝtate for the
set of all reachable states, and we will use the symbol ŝ to denote a reachable
state. Propositions of the form ∀ · · · ŝ · · · . P (· · · ŝ · · ·) and ∃ · · · ŝ · · · . P (· · · ŝ · · ·)
should be taken as abbreviations for ∀ · · · s · · · . reachable(s)⇒P (· · · s · · ·) and
∃ · · · s · · · . reachable(s) ∧ P (· · · s · · ·), respectively.

4 The correctness proof

4.1 State abstraction and homomorphic simulation

Consider the following binary relation A from concrete to abstract states:

∀ s s . A(s, s)⇔ [∀ fid i . read(fid , i, s) = read(fid , i, s)]

1 We omit the axiomatization of writeNoExtend and a few other functions due to space
constraints. The entire formalization along with the complete proof and a more detailed
technical report [7] can be found at www.cag.lcs.mit.edu/~kostas/dpls/athena/fs.

Verifying a file system implementation 9

FileID × Nat × Ŝtate
Q

QQs

?
FileID × Nat × AbState

i × i × α

�
��3

read

re
ad

ReadResult

FileID × Nat × Byte × Ŝtate -write
Ŝtate

?
FileID × Nat × Byte × AbState

i × i × i × α

-write
AbState

?
α

Fig. 4. Commuting diagrams for the read and write operations.

It follows directly from the extensionality principle on abstract states (1) that
A is functional, i.e., that ∀ s s1 s2 . A(s, s1) ∧A(s, s2)⇒ s1 = s2. Accordingly, we
postulate the existence of an abstraction function α : State → AbState such that
∀ ŝ s . α(ŝ) = s⇔A(ŝ, s). That is, an abstracted state α(ŝ) has the exact same
contents as ŝ: reading any position of a file in one state yields the same result as
reading that position of the file in the other state. Note that α, although total,
is underspecified; it is only defined for reachable states.

A standard way of formalizing the requirement that an implementation I is
faithful to a specification S is to express I and S as many-sorted algebras and
establish a homomorphism from one to the other. In our case the two algebras

are I = (FileID ,Nat ,Byte, Ŝtate; read ,write) and

S = (FileID, Nat , Byte,AbState ; read,write)

The embeddings from I to S for the carriers FileID , Nat , and Byte are simply

the identity functions on these domains; while the embedding from Ŝtate to
AbState is the abstraction mapping α. In order to prove that this translation
yields a homomorphism we need to show that the two diagrams shown in Figure 4
commute. Symbolically, we need to prove the following:

∀ fid i bs . read(fid , i, bs) = read(fid , i, α(bs)) (2)

and
∀ fid i v bs . α(write(fid , i, v, bs)) = write(fid , i, v, α(bs)) (3)

4.2 Proof outline

Goal (2) follows immediately from the definition of the abstraction function α.
For (3), since the consequent is equality between two abstract states and we
have already proven that two abstract states s1 and s2 are equal iff any abstract
read operation yields identical results on s1 and s2, we transform (3) into the
following:

∀ fid i v bs fid ′ j . read(fid ′, j, α(write(fid , i, v, bs))) = read(fid ′, j,write(fid , i, v, α(bs)))

10 Arkoudas, Zee, Kuncak, Rinard

true

 JJ
fid ′ = fid fid ′ 6= fid

C8

 JJ

i = j

C1

i 6= j

�
�

�
Q

Q
Q

lookUp (fid , root(bs)) = NONE

 JJ
i < j

C2

i > j

C3

lookUp (fid , root(bs)) = SOME(n) ∧

lookUp (n, inodes(bs)) = SOME(inode(fs, bc, bl))

 JJ
j < fs

C4

j ≥ fs

 JJ
i < fs

C5

i ≥ fs

 JJ
i < j

C6

i > j

C7

Fig. 5. Case analysis for proving the correctness of write .

Finally, using (2) on the above gives:

∀ fid fid ′ i j v bs . read(fid ′, j,write(fid , i, v, bs)) = read(fid ′, j,write(fid , i, v, α(bs)))

Therefore, choosing arbitrary fid ,fid ′, j, v, i, and ŝ, we need to show L = R,
where L = read(fid ′, j,write(fid , i, v, ŝ)) and

R = read(fid ′, j,write(fid , i, v, α(bs)))

Showing L = R is the main goal of the proof. We proceed by a case analysis as
shown in Fig. 5. The decision tree of Fig. 5 has the following property: if the
conditions that appear on a path from the root of the tree to an internal node u

are all true, then the conditions at the children of u are mutually exclusive and
jointly exhaustive (given that certain invariants hold, as discussed in Section 5).
There are ultimately 8 distinct cases to be considered, C1 through C8, appearing
at the leaves of the tree. Exactly one of those 8 cases must be true for any given
fid ,fid ′, j, v, ŝ and i. We prove that L = R in all 8 cases.

For each case Ci, i = 1, . . . , 8, we formulate and prove a pair of lemmas Mi

and Mi that facilitate the proof of the goal L = R. Specifically, for each case Ci

there are two possibilities: First, L = R follows because both L and R reduce to a
common term t, with L = t following by virtue of lemma Mi and R = t following

by virtue of lemma Mi: L
Mi

−→ t
Mi

←− R. Or, second, the identity follows because
L and R respectively reduce to read(fid ′, i, ŝ) and read(fid ′, i, α(ŝ)), which are
equal owing to (2). In that case, Mi is used to show L = read(fid ′, i, ŝ) and Mi

is used to show R = read(fid ′, i, α(ŝ)):

L
Mi−→ read(fid ′, i, bs) = read(fid ′, i, α(bs))

Mi←− R (4)

Verifying a file system implementation 11

[M1] read(fid , i, write(fid, i, v, bs)) = Ok(v)

[M1] read(fid , i,write(fid, i, v, s) = Ok(v)

[M2] [lookUp (fid , root(bs)) = NONE ∧ i < j] ⇒ read(fid , i,write(fid, j, v, bs)) = Ok(v)

[M2] [lookUp (fid , s) = NONE ∧ i < j] ⇒ read(fid , i,write(fid, j, v, s)) = Ok(v)

[M3] [lookUp (fid , root(bs)) = NONE ∧ j < i] ⇒ read(fid , i,write(fid, j, v, bs)) = EOF

[M3] [lookUp (fid , s) = NONE ∧ j < i] ⇒ read(fid , i,write(fid, j, v, s)) = EOF

[M4]
[lookUp (fid , root(bs)) = SOME(n) ∧

lookUp (n, inodes(bs)) = SOME(inode(fs, bc, bl)) ∧ i 6= j ∧ j < fs] ⇒
read(fid , i,write(fid, j, v, bs)) = read(fid , i, bs)

[M4]
[lookUp (fid , s) = SOME(A) ∧ i 6= j ∧ j < arrayLen(A)] ⇒

read(fid , i,write(fid, j, v, s)) = read(fid , i, s)

[M5]
[lookUp (fid , root(bs)) = SOME(n) ∧

lookUp (n, inodes(bs)) = SOME(inode(fs, bc, bl)) ∧ fs ≤ j ∧ i < fs] ⇒
read(fid , i,write(fid, j, v, bs)) = read(fid , i, bs)

[M5]
[lookUp (fid , s) = SOME(A) ∧ arrayLen(A) ≤ j ∧ i < arrayLen(A)] ⇒

read(fid , i,write(fid, j, v, s)) = read(fid , i, s)

[M6]
[lookUp (fid , root(bs)) = SOME(n) ∧

lookUp (n, inodes(bs)) = SOME(inode(fs, bc, bl)) ∧ fs ≤ i ∧ i < j] ⇒
read(fid , i,write(fid, j, v, bs)) = Ok(fillByte)

[M6]
[lookUp (fid , s) = SOME(A) ∧ arrayLen(A) ≤ j ∧ arrayLen(A) ≤ i ∧ i < j] ⇒

read(fid , i,write(fid, j, v, s)) = Ok(fillByte)

[M7]
[lookUp (fid , root(bs)) = SOME(n) ∧

lookUp (n, inodes(bs)) = SOME(inode(fs, bc, bl)) ∧ fs ≤ j ∧ j < i] ⇒
read(fid , i,write(fid, j, v, bs)) = EOF

[M7]
[lookUp (fid , s) = SOME(A) ∧ arrayLen(A) ≤ j ∧ arrayLen(A) ≤ i ∧ j < i] ⇒

read(fid , i,write(fid, j, v, s)) = EOF

[M8] fid1 6= fid2 ⇒ read(fid2, i, write(fid1, j, v, bs)) = read(fid2, i, bs)

[M8] fid1 6= fid2 ⇒ read(fid2, i,write(fid1, j, v, s)) = read(fid2, i, s)

Fig. 6. Main lemmas

The eight pairs of lemmas are shown in Figure 6. The “abstract-state” ver-
sions of the lemmas ([Mi], i = 1, . . . , 8) are readily proved with the aid of Vam-
pire from the axiomatizations of maps, resizable arrays, options, natural num-
bers, etc., and the specification axioms. The concrete lemmas Mi are much more
challenging.

5 Proving reachability invariants

Reachable states have a number of properties that make them “well-behaved.”
For instance, if a file identifier is bound in the root of a state s to some inode
number n, then we expect n to be bound in the mapping inodes(s). While this
is not true for arbitrary states s, it is true for reachable states. In what follows,
by a state invariant we will mean a unary predicate on states I(s) that is true
for all reachable states, i.e., such that ∀ ŝ . I(ŝ).

12 Arkoudas, Zee, Kuncak, Rinard

There are 12 invariants inv0, . . . , inv11, that are of particular interest. The
proof relies on them explicitly, i.e., at various points in the course of the argument
we assume that all reachable states have these properties. Therefore, for the
proof to be complete, we need to discharge these assumptions by proving that
the properties in question are indeed invariants.

The process of guessing useful invariants—and then, more importantly, try-
ing to prove them—was very helpful in strengthening our understanding of the
implementation. More than once we conjectured false invariants, properties that
appeared reasonable at first glance but later, when we tried to prove them,
turned out to be false. For instance, a seemingly sensible “size invariant” is that
for every inode of size fs and block count bc we have

fs = [(bc − 1) · blockSize] + (fs mod blockSize)

But this equality does not hold when the file size is a multiple of the block count.
The proper invariant is

[fs mod blockSize = 0⇒ fs = bc · blockSize] ∧

[fs mod blockSize 6= 0⇒ fs = ((bc − 1) · blockSize) + (fs mod blockSize)]

For any inode of file size fs and block count bc, we will write szInv(fs , bc) to
indicate that fs and bc are related as shown by the above formula. The following
are the first four of the twelve invariants:

inv0(s) : ∀ fid n . [lookUp (fid , root(s)) = SOME (n)]⇒ inDom(n, inodes(s))

inv1(s) : ∀ n fs bc bl . [lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl))]⇒

[inDom(n, inodes(s))⇔n < bc]

inv2(s): ∀ n inode bn bn ′ . [lookUp (n, inodes(s)) = SOME (inode) ∧

lookUp (bn, blockList(inode)) = SOME(bn ′)]⇒ inDom(bn ′, blocks(s))

inv3(s) : ∀ n fs bc bl . [lookUp (n, inodes(s)) = SOME (inode(fs, bc, bl))]⇒ szInv(fs, bc)

These four invariants are fundamental and must be established before any-
thing non-trivial can be proven about the system. They are also codependent,
meaning that in order to prove that an operation preserves one of these prop-
erties we need to assume that the incoming state has all four of them. For the
complete list of reachability invariants, see [7].

Showing that a unary state property I(s) is an invariant proceeds in two
steps. First, proving that I holds for the initial state; and second, proving
∀ fid i v s . I(s)⇒ I(write(fid , i, v, s)). Once both of these have been established,
a routine induction on n will show ∀ n s . reachableN(s, n)⇒ I(s). It then follows
directly by the definition of reachability that all reachable states have I.

Proving that the initial state has an invariant invj is straightforward: in all
12 cases it is done automatically. The second step, proving that write preserves
invj , is more involved. Including write, the implementation comprises 10 state-
transforming operations,2 and control may flow from write to any one of them.

2 By a “state-transforming operation” we mean one that takes a state as an argument and
produces a state as output. There are ten such operations, nine of which are auxiliary
functions (such as extendFile) invoked by write.

Verifying a file system implementation 13

Accordingly, we need to show that all ten operations preserve the invariant
under consideration. This means that for a total of 10 operations f0, . . . , f9 and
12 invariants inv0, . . . , inv11, we need to prove 120 lemmas, each stating that fi

preserves invj .
The large majority of the proof text (about 80% of it) is devoted to proving

these lemmas. Some of them are surprisingly tricky to prove, and even those that
are not particularly conceptually demanding can be challenging to manipulate,
if for no other reason simply because of their volume. Given the size of the func-
tion preconditions and the size of the invariants (especially in those cases where
we need to consider the conjunction of several invariants at once), an invariance
lemma can span multiple pages of text. Proof goals of that scale test the limits
even of cutting-edge ATPs. For instance, in the case of a proposition P that
was several pages long (which arose in the proof of one of the invariance lem-
mas), Spass took over 10 minutes to prove the trivial goal P ⇒P ′, where P ′ was
simply an alphabetically renamed copy of P (Vampire was not able to prove it
at all, at least within 20 minutes). Heavily skolemizing the formula and blindly
following the resolution procedure prevented these systems from recognizing the
goal as trivial. By contrast, using Athena’s native inference rules, the goal was
derived instantaneously via the two-line deduction assume P in claim P ′, be-
cause Athena treats alphabetically equivalent propositions as identical and has
an efficient implementation of proposition look-ups. This speaks to the need to
have a variety of reasoning mechanisms available in a uniform integrated frame-
work.

6 Proof automation with Athena methods

After proving a few invariance lemmas for some of the operations it became
apparent that a large portion of the reasoning was the same in every case and
could thus be factored away for reuse. Athena makes it easy to abstract con-
crete proofs into natural-deduction proof algorithms called methods. For every
state-transforming operation fi we wrote a “preserver” method Pi that takes
an arbitrary invariant I as input (expressed as a unary function that takes a
state and constructs an appropriate proposition) and attempts to prove the cor-
responding invariance lemma. Pi encapsulates all the generic reasoning involved
in proving invariants for fi. If any non-generic reasoning (specific to I) is addi-
tionally required, it is packaged into a proof continuation K and passed into Pi

as a higher-order method argument. Pi can then invoke K at appropriate points
within its body as needed. Similar methods for other functions made the overall
proof substantially shorter—and easier to develop and to debug—than it would
have been otherwise.

Proof programmability was useful in streamlining several other recurring pat-
terns of reasoning, apart from dealing with invariants. A typical example is this:
given a reachable state ŝ, an inode number n such that lookUp (n, inodes(ŝ)) =
SOME(inode(fs , bc, bl)), and an index i < fs , we often need to prove the exis-
tence of bn and block such that lookUp (i div blockSize, bl) = SOME(bn) and

14 Arkoudas, Zee, Kuncak, Rinard

lookUp (bn , blocks(ŝ)) = SOME(block). The reasoning required for this involves
the invocation of various reachable-state invariants and standard laws of arith-
metic. We packaged this reasoning in a method find-bn-block that takes all the
relevant quantities as inputs, assumes that the appropriate hypotheses are in the
assumption base, and performs the appropriate inferences.

7 Extending the basic model

To test the extensibility of our proof and to better model real systems, we aug-
mented our models with user permissions after we completed the proof. We
associated with each abstract file the set of authorized users, and modified the
read and write operations to check that a user has permission before executing a
read or a write. In the implementation, we similarly stored the user-permission
information in a list associated with each inode. In the resulting models, not only
the read operation, but also the write operation may return an error condition.
The error condition for write occurs when the user does not have the permission
to write a file. We modified the simulation relation condition to imply that a
concrete write returns an error whenever the abstract write returns an error,
and returns the corresponding concrete state otherwise. We then updated the
proof to verify the new simulation relation condition.

Our experience from adapting the existing proof in the presence of changes
to both the specification and to the implementation is encouraging. The overall
structure of the proof did not change: the key components are still simulation
relation conditions and invariants on reachable states. We were able to reuse
a significant number of lemmas with no changes whatsoever. This includes not
only useful abstractions such as resizable arrays, but also some non-interference
properties of state-transforming operations. Most of the other lemmas required
small adaptations to accommodate the additional components in the abstract
and concrete state. We have found that the use of selector functions on algebraic
data types improves the maintainability of proofs because it avoids explicitly
listing all state components. In addition, accessors functions reduce the number
of quantified variables in lemmas, making them more amenable to ATPs.

Another important factor contributing to the maintainability of our proofs is
the abstraction of proof steps using Athena methods: instead of updating several
similar proofs, it was often sufficient to update a single generic proof method.
The ability to write recursive proof methods was also useful in increasing the
granularity of proofs steps, reducing the typical size of proofs. In particular,
we were able to noticeably increase the performance and robustness of calls to
first-order theorem provers by wrapping them into a natural-deduction theorem-
proving method written in Athena.

8 Related work

Techniques for verifying the correct use of file system interfaces expressed as
finite state machines are presented in [15,17]. In this paper we have addressed the

Verifying a file system implementation 15

more difficult problem of showing that the file system implementation conforms
to its specification. Consequently, our proof obligations are stronger and we
have resorted to more general deductive verification. Static analysis techniques
that handle more complex data structures include predicate abstraction and
shape analysis [10,25,33]. These approaches are promising for automating proofs
of program properties, but have not been used so far to show full functional
correctness, as we do here.

Alloy [21] is a specification language based on a first-order relational calculus
that can be used to specify complex structural constraints [23]. It has been used
to describe the directory structure of a file system, but without modeling read
and write operations. The use of the Alloy Analyzer to find counterexamples is
complementary to our proofs [5]. Model checkers have been applied to systems
whose main difficulty stems from concurrency [14, 38]. In contrast, the main
challenge in our study is the complexity of the data structures that are needed
for the correct functioning of the system. Abstract models of file systems have
also been developed in Z [39, Chapter 15] and MooZ [29]; security properties
of a Unix file system are studied in [37, Chapter 10]; security aspects of a CVS
server were analyzed in [13]. These models capture properties that are largely
orthogonal to the correct manipulation of the data stored in the files, which is
the focus of our work.

It is interesting to consider whether the verification burden would be lighter
with a system such as PVS [31] or ACL2 [22] that makes heavy use of automatic
decision procedures for combinations of first-order theories such as arrays, lists,
linear arithmetic, etc. We note that our use of high-performance off-the-shelf
ATPs already provides a considerable degree of automation. In our experience,
both Vampire and Spass have proven quite effective in non-inductive reasoning
about lists, arrays, etc., simply on the basis of first-order axiomatizations of these
domains. Our experience supports a recent benchmark study by Armando et al.
[8], which showed that a state-of-the-art paramodulation-based prover with a fair
search strategy compares favorably with CVC [11] in reasoning about arrays with
extensionality. To further automate the verification process, we are considering
the use of program analyses [18,26,27,33] in conjunction with decision procedures
for decidable logics [12, 24] to formulate the key lemmas in the proof, generate
some of the reachability invariants, and prove the frame conditions.

9 Conclusions

We presented a correctness proof for the key operations (reading and writing) of
a file system based on Unix implementations. We are not aware of any other file
system verification attempts dealing with such strong properties as the simula-
tion relation condition, for all possible sequences of file system operations and
without a priori bounds on the number of files or their sizes. Despite the apparent
simplicity of this particular specification and implementation, our proofs shed
light on the general reasoning techniques that would be required in establishing
full functional correctness for any file system. Our experience with extending

the basic model with new features indicate that the approach can be adapted
to model further relevant aspects of the file system implementation. These re-
sults suggest that a combination of state-of-the art formal methods techniques
greatly facilitates the deductive verification of crucial software infrastructure
components such as file systems.

We have found Athena to be a powerful framework for carrying out a com-
plex verification effort. Polymorphic sorts and datatypes allow for natural data
modeling; strong support for structural induction facilitates inductive reason-
ing over such datatypes; a block-structured natural deduction format helps to
make proofs more readable and writable; and the use of first-order logic allows
for smooth integration with state-of-the-art first-order ATPs, keeping the proof
steps at a high level of detail. Perhaps most importantly, the novel assumption-
base semantics of Athena make it possible to formulate not only proofs but also
tactics in true natural-deduction (“Fitch”) style. A significant technical insight
emerging from this project is that tactics in such a style can be an exceptionally
practical and useful tool for making proofs shorter and more modular.

References

1. K. Arkoudas. Athena. www.cag.csail.mit.edu/~kostas/dpls/athena .

2. K. Arkoudas. Denotational Proof Languages. PhD dissertation, MIT, 2000.

3. K. Arkoudas. Specification, abduction, and proof. In 2004 International Symposium on
Automated Technology for Verification and Analysis, Taiwan, October 2004.

4. K. Arkoudas and S. Bringsjord. Metareasoning for multi-agent epistemic logics. In CLIMA
V, Lisbon, Portugal, September 2004.

5. K. Arkoudas, S. Khurshid, D. Marinov, and M. Rinard. Integrating model checking and
theorem proving for relational reasoning. In 7th International Seminar on Relational
Methods in Computer Science, 2003.

6. K. Arkoudas and M. Rinard. Deductive runtime certification. In Proceedings of the 2004
Workshop on Runtime Verification, Barcelona, Spain, April 2004.

7. K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. On verifying a file system implementa-
tion. Technical Report 946, MIT CSAIL, May 2004.

8. A. Armando, M. P. Bonacina, S. Ranise, M. Rusinowitch, and A. K. Sehgal. High-
performance deduction for verification: a case study in the theory of arrays. In S. Autexier
and H. Mantel, editors, Notes of the Workshop on Verification, Third Federated Logic
Conference (FLoC02), pages 103–112, 2002.

9. T. Arvizo. A virtual machine for a type-ω denotational proof language. Masters thesis,
MIT, June 2002.

10. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate abstraction
of C programs. In Proc. ACM PLDI, 2001.

11. C. W. Barrett, D. L. Dill, and A. Stump. A framework for cooperating decision procedures.
In D. A. McAllester, editor, 17th CADE, volume 1831, pages 79–98. Springer, 2000.

12. E. Börger, E. Gräedel, and Y. Gurevich. The Classical Decision Problem. Springer-Verlag,
1997.

13. A. D. Brucker, F. Rittinger, and B. Wolff. A cvs-server security architec-
ture: Concepts and formal analysis. Technical Report 182, Institut für Infor-
matik Albert-Ludwigs-Universität Freiburg, December 2003. HOL-Z distribution,
http://wailoa.informatik.uni-freiburg.de/holz/index.html.

14. W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D. Reese.
Model checking large software specifications. IEEE TSE, pages 498–520, July 1998.

15. M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial
time. In Proc. ACM PLDI, 2002.

16. W.-P. de Roever and K. Engelhardt. Data Refinement: Model-oriented proof methods
and their comparison, volume 47 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998.

17. R. DeLine and M. Fähndrich. Enforcing high-level protocols in low-level software. In Proc.
ACM PLDI, 2001.

18. P. Fradet and D. L. Métayer. Shape types. In Proc. 24th ACM POPL, 1997.

19. M. J. C. Gordon and T. F. Melham. Introduction to HOL, a theorem proving environment
for higher-order logic. Cambridge University Press, Cambridge, England, 1993.

20. M. Hao. Using a denotational proof language to verify dataflow analyses. Masters thesis,
MIT, September 2002.

21. D. Jackson. Alloy: a lightweight object modelling notation. ACM TOSEM, 11(2):256–290,
2002.

22. M. Kaufmann, P. Manolios, and J. S. Moore, editors. Computer-Aided Reasoning: ACL2
Case Studies. Kluwer Academic Press, 2000.

23. S. Khurshid and D. Jackson. Exploring the design of an intentional naming scheme with
an automatic constraint analyzer. In 15th IEEE ASE, 2000.

24. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. In Proc.
5th International Conference on Implementation and Application of Automata. LNCS,
2000.

25. V. Kuncak and M. Rinard. Boolean algebra of shape analysis constraints. In 5th Inter-
national Conference on Verification, Model Checking and Abstract Interpretation (VM-
CAI’04), 2004.

26. P. Lam, V. Kuncak, and M. Rinard. Generalized typestate checking using set interfaces
and pluggable analyses. SIGPLAN Notices, 39:46–55, March 2004.

27. J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure accesses. In Proc.
ACM PLDI, Atlanta, GA, June 1988.

28. M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A fast file system for UNIX.
Computer Systems, 2(3):181–197, 1984.

29. S. R. L. Meira, A. L. C. Cavalcanti, and C. S. Santos. The unix filing system: A MooZ
specification. In K. Lano and H. Haughton, editors, Object-oriented Specification Case
Studies, chapter 4, pages 80–109. Prentice-Hall, 1994.

30. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

31. S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language Refer-
ence. SRI International, Computer Science Laboratory, 333 Ravenswood Avenue, Menlo
Park CA 94025.

32. F. J. Pelletier. A Brief History of Natural Deduction. History and Philosophy of Logic,
20:1–31, 1999.

33. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM
TOPLAS, 24(3):217–298, 2002.

34. K. Thompson. UNIX implementation. The Bell System Technical Journal, 57(6 (part 2)),
1978.

35. A. Voronkov et al. The anatomy of Vampire (implementing bottom-up procedures with
code trees). JAR, 15(2):237–265, 1995.

36. C. Weidenbach. Combining superposition, sorts and splitting. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume II, chapter 27, pages
1965–2013. Elsevier Science, 2001.

37. M. Wenzel. Isabelle/Isar — a versatile environment for human-readable formal proof
documents. PhD thesis, Technische Universitaet Muenchen, 2002.

38. J. M. Wing and M. Vaziri-Farahani. A case study in model checking software systems.
Science of Computer Programming, 28:273–299, 1997.

39. J. Woodcock and J. Davies. Using Z. Prentice-Hall, Inc., 1996.

