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Abstract— Non-traditional, relaxed consistency, triple store 
databases are the backbone of many web companies (e.g., Google 
Big Table, Amazon Dynamo, and Facebook Cassandra).  The 
Apache Accumulo database is a high performance open source 
relaxed consistency database that is widely used for government 
applications.  Obtaining the full benefits of Accumulo requires 
using novel schemas.  The Dynamic Distributed Dimensional 
Data Model (D4M)[http://www.mit.edu/~kepner/D4M] provides a 
uniform mathematical framework based on associative arrays 
that encompasses both traditional (i.e., SQL) and non-traditional 
databases.  For non-traditional databases D4M naturally leads to 
a general purpose schema that can be used to fully index and 
rapidly query every unique string in a dataset. The D4M 2.0 
Schema has been applied with little or no customization to cyber, 
bioinformatics, scientific citation, free text, and social media data.  
The D4M 2.0 Schema is simple, requires minimal parsing, and 
achieves the highest published Accumulo ingest rates. The 
benefits of the D4M 2.0 Schema are independent of the D4M 
interface.  Any interface to Accumulo can achieve these benefits 
by using the D4M 2.0 Schema.  
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I.  INTRODUCTION  
Non-traditional, relaxed consistency, triple store databases 

provide high performance on commodity computing hardware 
to I/O intensive data mining applications with low data 
modification requirements.  These databases are the backbone 
of many web companies (e.g., Google Big Table [1], Amazon 
Dynamo [2,3], Facebook Cassandra [4,5], and Apache HBase 
[6]).  The Google Big Table architecture has spawned the 
development of a wide variety of open source “NoSQL” 
database implementations [7].  Many of these implementations 
are built on top of the Apache Hadoop [8,9] distributed 
computing infrastructure that provides distributed data storage 
and replication services to these databases.  A key element of 
these databases is relaxed consistency.  Traditional databases 
provide a high level of ACID (atomicity, consistency, isolation, 
durability).  High ACID databases guarantee that separate 
queries of the same data at the same time will give the same 
answer.  Relaxed consistency databases provide BASE (Basic 
Availability, Soft-state, Eventual consistency), and guarantee 
that queries will provide the same answers eventually.  In 
exchange, relaxed consistency databases can be built simply 
and provide high performance on commodity computing 
hardware. 

The Apache Accumulo [10] database is the highest 
performance open source relaxed consistency database 
currently available and is widely used for government 
applications [11].  Accumulo is based on the Google Big Table 
architecture and formally sits on top of the Apache Hadoop 
distribute file system.  Accumulo does not directly use the 
Apache Hadoop MapReduce parallel programming model. 
Accumulo was developed by the National Security Agency and 
was released to the open source community in 2011.   

Obtaining the full benefits of Accumulo (and other non-
traditional databases) requires using novel schemas.  
Traditional schema design begins with a data model and a set 
of target queries.  The schema turns the data model into an 
ontology of relationships among tables with a variety of indices 
designed to accelerate the queries.  The strengths of this 
approach can also cause challenges in certain applications.  A 
data model requires a priori knowledge of the data and requires 
ingest processes that fully parse and normalize the data to the 
data model.  Query optimization requires a priori knowledge of 
the queries so they may be captured in the table structure.  
Non-traditional databases allow data to be ingested and indexed 
with very little a priori knowledge.  This allows new classes of 
data and queries to be added to the existing tables without 
modifying the schema of the database. 

The Dynamic Distributed Dimensional Data Model (D4M) 
[12,13] provides a uniform framework based on the 
mathematics of associative arrays [14] that encompasses both 
traditional (i.e., SQL) and non-traditional databases.  For non-
traditional databases D4M naturally leads to a general purpose 
Accumulo schema that can be used to fully index and rapidly 
query every unique string in a dataset. The D4M 2.0 Schema 
builds on the D4M 1.0 schema [15] that helped inspire the 
widely used NuWave schema that is used across the Accumulo 
community.  The D4M 2.0 Schema has been applied with no 
modification to cyber, bioinformatics, scientific citation, free 
text, and social media data.  The D4M 2.0 Schema is simple, 
allows data to be ingested with minimal parsing, and the 
highest published Accumulo ingest rates have been achieved 
using this Schema [11]. The benefits of the D4M 2.0 Schema 
can easily be obtained using the D4M interface to Accumulo.  
These benefits are independent of the interface and any 
interface to Accumulo can achieve these benefits by using the 
D4M 2.0 Schema. 
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The organization of the rest of this paper is as follows. 
Section II introduces the concept of the associative array that 
forms the mathematical basis of the D4M 2.0 Schema. Section 
III presents the organization and structure of the D4M 2.0 
Schema in the context of a social media example (Twitter).  
Section IV describes how the D4M 2.0 Schema fits into an 
overall data analysis pipeline.  Section V shows the 
performance results using Graph500 benchmark data.  Section 
VI summarizes the results. 

II. ASSOCIATIVE ARRAYS 
Spreadsheets are used by nearly 100M people every day 

and may be the most commonly used analytical structure on 
Earth.  Likewise triple stores (e.g., Big Table, Dynamo, 
Cassandra, and HBase) store a large fraction of the analyzed 
data in the world.  Both spreadsheets and big tables can hold 
diverse data (e.g., strings, dates, integers, and reals) and lend 
themselves to diverse representations (e.g., matrices, functions, 
hash tables, and databases).  Despite their common usage, there 
have been no formal mathematics developed that can be used 
to describe and manipulate these data structures algebraically. 

Associations between multidimensional entities (tuples) 
using number/string keys and number/string values can be 
stored in data structures called associative arrays. For example, 
in two dimensions, a D4M associative array entry might be 

A('alice ', 'bob ') = 'cited ' 
or A('alice ', 'bob ') = 47.0 

The above tuples have a 1-to-1 correspondence with their triple 
store representations  

('alice ','bob ','cited ') 
or ('alice ','bob ',47.0) 

Associative arrays can represent complex relationships in 
either a sparse matrix or a graph form (see Figure 1). Thus, 
associative arrays are a natural data structure for performing 
both matrix and graph algorithms. Such algorithms are the 
foundation of many complex database operations across a wide 
range of fields [16]. 

Constructing complex composable query operations can be 
expressed using simple array indexing of the associative array 
keys and values, which themselves return associative arrays: 

A('alice ',:)  alice row 
A('alice bob ',:)  alice and bob rows 
A('al* ',:)  rows beginning with al 
A('alice : bob ',:) rows alice to bob 
A(1:2,:)   first two rows 
A == 47.0    subarray with values 47.0 

The composability of associative arrays stems from the 
ability to define fundamental mathematical operations whose 
results are also associative arrays. Given two associative arrays 
A and B, the results of all the following operations will also be 
associative arrays 

A + B    A - B    A & B    A|B    A*B 

 

 
Figure 1.  A graph describing the relationship between alice, bob, 
and carl (left). A sparse associative array A captures the same 
relationships (right). The fundamental operation of graphs is finding 
neighbors from a vertex (breadth first search). The fundamental 
operation of linear algebra is vector matrix multiply. D4M associative 
arrays make these two operations identical.  Thus, algorithm 
developers can simultaneously use both graph theory and linear 
algebra to exploit complex data. 

Associative array composability can be further grounded in the 
mathematical closure of semirings (i.e., linear algebraic “like” 
operations) on multidimensional functions of infinite, strict, 
totally ordered sets (i.e., sorted strings).  Associative arrays 
when combined with fuzzy algebra [17,18,19] allows linear 
algebra to be extended beyond real numbers to include words 
and strings.  For example, in standard linear algebra, 
multiplying the vector x = ('alice bob ') by the vector y = 
('carl bob ')  is undefined.  In fuzzy algebra we can replace 
the traditional plus (+) operation with a function like “max” 
and the traditional multiply operation with an operation like 
“min” resulting in 

      x yT  =  ('alice bob ') ('carl bob ')T 

=  max(min('alice carl '),min('bob bob ')) 

=  max('alice bob ') 

= 'bob '  

where T denotes the transpose of the vector.  Using fuzzy 
algebra allows D4M to apply much of the extensive 
mathematics of linear algebra to an entirely new domain of data 
consisting of words and strings (e.g., documents, network logs, 
social media, and DNA sequences). Measurements using D4M 
indicate these algorithms can be implemented with a tenfold 
decrease in coding effort when compared to standard 
approaches [20,21]. 

III. D4M 2.0 SCHEMA 
The D4M 2.0 Schema is best explained in the context of a 

specific example. Twitter is a micro-blog that allows its users 
to globally post 140 character entries or “tweets.” Twitter has 
over 100M users who produce 500M tweets per day.  Each 
tweet consists of a message payload and metadata.  To 
facilitate social media research the NIST Tweets2011 corpus 
[22,23] was assembled consisting of 16M tweets over a two-
week period in early 2011.  At the time of our harvesting this 
corpus it consisted 161M distinct data entries from 5.3M 
unique users.  The entire Tweets2011 corpus was ingested into 
the D4M 2.0 schema running on a single node Accumulo 
instance in about 20 minutes, corresponding to an ingest rate of 
>200K entries/second. 
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Figure 2.  The D4M 2.0 Schema as it is applied to Twitter data consists of four tables.  The raw tweet text is stored in one column in the 
TedgeTxt table. All the meta data (stat|, user|, time|) and the parsed text (word|) are stored in Tedge such that each column|value pair is 
a unique column.  Storing the transpose of the metadata in TedgeT creates an index to every unique string in the dataset and allows it to be 
looked up in a few milliseconds.  The sums of the unique column|value pairs are stored using an accumulator column labeled Degree in the 
TedgeDeg table.  The sum table enables efficient query planning by allowing queries to estimate the size of their results prior to executing 
queries.  The row keys are flipped to allow for efficient load balancing as the table grows and is split across multiple servers. 

The simplest way to view Accumulo is as a triple store of 
strings consisting of a row key, a column key, and a value that 
correspond to the entries of a sparse matrix.  In Accumulo 
terminology these are the row, column qualifier, and value 
(Accumulo has additional row properties that will be discussed 
shortly).  In the case of twitter, a triple might be 

(31963172416000001,user|getuki,1) 

The above triple denotes that the flipped tweet id 
31963172416000001 was from the user getuki.  As is often 
the case in the D4M 2.0 Schema the value of 1 is used to 
simply denote the existence of the relationship and the value 
itself has no additional meaning. 

Figure 2 shows the D4M 2.0 Schema applied to the 
Tweets2011 data resulting in four distinct tables.  The raw 
tweet text is stored in one column in the TedgeTxt table. All 
the meta data (stat|, user|, time|) and the parsed text 
(word|) are stored in Tedge such that each column|value pair 
is a unique column.  Storing the transpose of the metadata in 
TedgeT indices every unique string the dataset allows it to be 
looked up in a few milliseconds.  The sums of the unique 
column|value pairs are stored using an accumulator column 
labeled Degree in the TedgeDeg table.  The sum table enables 
efficient query planning by allowing queries to estimate the 
size of results prior to executing queries.  The row keys are 
stored in flipped format to allow for efficient load balancing as 
the table grows and is split (or sharded) across multiple servers. 

The specific features of Accumulo and how they are 
exploited by the D4M 2.0 Schema are as follows. 

A. Row Store 
Accumulo is a row store so any row key (e.g., the tweet ID 

31963172416000001) can be looked up in constant time.  
However, looking up a column (e.g., user|getuki) or value (e.g., 
1) requires a complete scan of the table.  The D4M 2.0 Schema 
addresses this limitation by storing both the table (Tedge) and 
its transpose (TedgeT), allowing any row or column to be 
looked up in constant time.  

B. Sparse 
Accumulo storage is sparse. Only non-empty columns are 

stored in a row.  This is critical since many of the data sets that 
Accumulo are used on are naturally represented as extremely 
sparse tables.  In the Tweet2011 data 99.99997% of the 16M x 
30M sparse matrix is empty. 

C. Unlimited Columns 
Accumulo can add new columns with no penalty.  This is a 

key capability of Accumulo that is heavily exploited by the 
D4M 2.0 Schema.  It is often the case that there will be more 
unique columns than rows.  Tweet2011 has 16M unique rows 
and 30M unique columns.  

D. Arbitrary Text 
Accumulo rows, columns, and values can be arbitrary byte 

strings.  This is very useful for storing numeric data (e.g., 
counts) or multi-lingual data (e.g., unicode).  For example, 
consider the following Twitter entry 
TweetID           stat time                user   text 
10000061427136913  200  2011-01-31 06:33:08  getuki  バスなう 

In a traditional database, the above entry would be represented 
by one row in a four column table.  In the Accumulo D4M 2.0 
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Scheme this entry is represented in the Tedge table by the 
following four triples with flipped row keys 

(31963172416000001,stat|200,1) 
(31963172416000001,time|2011-01-31 06:33:08,1) 
(31963172416000001,user|getuki,1) 
(31963172416000001,word|バスなう,1) 

Note: since this tweet has only one word the text field is 
parsed into just one word.  The raw entry for this tweet would 
likewise be stored in the TedgeTxt table as 

(31963172416000001,text,バスなう) 

This raw table allows all data to be preserved in case the 
original context of the tweet is desired (as is often the case). 

E. Collective Updates 
Accumulo performs collective updates to tables called 

“mutations” that can update many triples at the same time.  It is 
often optimal to have thousands of triples in a single mutation.  
In the Tweets2011 data, inserts were performed in batches of 
10,000 tweets to achieve optimal performance. 

F. Accumulators 
Accumulo can modify values at insert time.  For example, 

if the following triple were inserted into the TedgeDeg table 

(word|バスなう,Degree,1) 

and the table entry already had a value of 

(word|バスなう,Degree,16) 

then Accumulo can be instructed that any such collision on the 
column Degree should be handled by converting the strings 16 
and 1 to numeric values, adding them, and then converting 
them back to a string to be stored as 

(word|バスなう,Degree,17) 

An accumulator column is used to create the TedgeDeg 
column sum table in the D4M 2.0 Schema.  The TedgeDeg 
sum table provides several benefits.  First, the sum table allows 
tally queries like “how many tweets have a specific word” to be 
answered trivially.  Second, the sum tables provides effective 
query planning.  For example, to find all tweets containing two 
words, one first queries to the sum table to select the word that 
is the least popular before proceeding to query the transpose 
table (TedgeT). 

Note: Directly inserting all triples into the sum table can create 
a bottleneck.  During large ingests into Accumulo it is vital to 
pre-sum the columns in each batch prior to ingesting into the 
sum table.  Pre-summing can reduce the traffic into the sum 
table by 10x or more. In the D4M API pre-summing can be 
achieved by constructing an associative array A of all the triples 
in the batch and then simply inserting the result of sum(A,2) 
into TedgeDeg.   

G. Parallel 
Accumulo is highly parallel.  At any given time it is 

possible to have many processes inserting and querying the 
database.  Even on a single node, the optimal ingest 
performance for the Tweets2011 data was achieved using 4 
ingest processes on the same node. 

H. Distributed 
Accumulo uses distributed storage.  As Accumulo tables 

become large they are broken up into pieces called tablets that 
can be stored on different tablets. 

I. Partitions 
Accumulo tables are partitioned (or sharded) into different 

tablets at specific row keys that are called splits.  As a table 
increases in size Accumulo will automatically pick splits that 
keep the pieces approximately equal.  If the row key has a time 
like element to it (as does the tweet ID), then it is important to 
convert it to a flipped format so the most rapidly changing 
digits are first.  This will cause inserts to be spread across all 
the tablets.  If the row key is sequential in time, all the inserts 
will be performed on only one tablet and then slowly migrated 
to the other tablets.  Avoiding this “burning candle” effect is 
critical to achieve high performance in Accumulo. 

Because the size at which Accumulo starts splitting tables is 
quite large, it is often necessary to pre-split the table to achieve 
optimal performance.  Pre-splitting is even important on single 
node databases (see Figure 5). 

J. Hadoop without MapReduce 
Accumulo lives on top of the Apache Hadoop Distributed 

File System (HDFS) [9].  Apache Hadoop also provides an 
interface to the simple and very popular MapReduce parallel 
programming model.  Unfortunately, many applications require 
more sophisticated programming models to achieve high 
performance [24].  Accumulo does not use the Hadoop 
MapReduce parallel Java API for any of its internal operations.  
The highest performance Accumulo applications typically do 
not use Hadoop MapReduce to execute their ingest and query 
programs.  In this paper the results were obtained using either 
the pMatlab [25,26,27] parallel programming environment that 
uses a distributed arrays parallel programming model or the 
LLGrid_MapReduce interface that leverages the GridEngine 
parallel computing scheduler [11]. 

K. Accumulo Advanced Features 
Accumulo has a number of additional features.  For most 

applications, viewing Accumulo entries as triples is sufficient.  
In reality, an Accumulo entry is not a 3-tuple (row, column, 
value) but a 6-tuple (row, column family, column qualifier, 
visibility label, timestamp, value).  The D4M 2.0 Schema 
chooses to view Accumulo entries as triples because it 
simplifies table design, takes full advantage of Accumulo’s 
core features (high performance and unlimited columns), and is 
compatible with the 2D tabular view found in nearly every 
database.  The D4M 2.0 Schema views the other parts of the 
Accumulo entry (column family, visibility label, timestamp) as 
additional metadata on the triples that can used when needed. 

Every Accumulo entry is coded with a timestamp that 
allows an entry to hold its entire history of values.  The most 
common use of the timestamp is in Accumulo’s internal 
automated data role-off that cleanses the system of older 
values.  Role-off is the most common way data is truly deleted 
from the Accumulo system.  Until role-off, data is typically 
only marked for deletion and still remains on the system.  The 
specific role-off policy is application dependent and is typically 
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set by the database administrator.  Actual time data is best held 
in a column (e.g., time|2011-01-31 06:33:08).  A time 
column can be queried and manipulated like any other data. 

Accumulo visibility labels provide a sophisticated Boolean 
algebra for each entry to determine who can see each piece of 
data.  In some systems visibility labels are essential, in other 
systems visibility labels are unused. Visibility policy is usually 
application dependent and is typically set by the database 
administrator. 

Accumulo column families provide an additional hierarchy 
to the Accumulo columns for accelerating certain operations.  
Columns families can be kept together on the same table split, 
which can increase the performance of certain queries that 
always have data together.  In addition, Accumulo iterators 
have been written that allow joining data more efficiently.  The 
D4M 2.0 Schema provides these benefits through the use of the 
sum table TedgeDeg.  It is tempting to use the Accumulo 
column family to convey one additional level of semantic 
hierarchy, but this can have unintended performance 
implications. The D4M 2.0 Schema embeds arbitrary levels of 
semantic of hierarchy directly into the column (e.g., stat|200 
and user|getuki).  This column format has the added 
advantage of being easily represented as a row in the transpose 
table TedgeT. 

A final Accumulo advanced feature is bulk ingest.  Bulk 
ingest stages data in the internal Accumulo format and adds it 
to the database as part of its internal bookkeeping processes.  In 
certain instances bulk ingest may provide higher performance 
at the cost of delaying when the data is available for query.  
The highest published ingest rates [11] use Accumulo’s 
standard ingest mechanism with batched mutations that make 
the data immediately available for query. 

IV. PIPELINE 
Accumulo databases do not run in isolation and are usually 

a part of a data analysis pipeline.  The D4M 2.0 Schema 
typically has a four-step pipeline consisting of parse, ingest, 
query/scan, and analyze.  The parse step converts the raw data 
(e.g., CSV, TSV, or JSON format) to simple triples.  In 
addition, each batch of triples is also saved as a D4M 
associative array.   

 
Figure 3.  D4M 2.0 Schema pipeline consists of parse, ingest, 
query/scan, and analyze steps. 

The ingest step reads the triple files and ingests them into the 
Tedge, TedgeT, and TedgeTxt tables.  In addition, the 
associative array files are read in, summed and the results 
added to the sum table TedgeDeg.  Extraction of data for 
analysis is done either by querying the data directly or by 
scanning the associative array files.   If the amount of data 
required for the analysis is small then querying the database 
will be fastest.  If the amount of data required is a large fraction 

of the entire database (>10%) then it is often faster to run the 
analysis in parallel over the associative array files.  

V. PERFORMANCE RESUTLS 
The ingest performance of the D4M 2.0 Schema on an 8-

node (192 core) system is taken from [11] and shown in Figure 
4.  The best published performance results we were able to find 
for Cassandra [28] and HBase [29] are also shown.  Figure 4 is 
consistent with the claim that Accumulo is the highest 
performance and most scalable open source triple store 
database currently available.  Likewise, Figure 4 is also 
consistent with the claim that the D4M 2.0 Schema is currently 
the highest performance Accumulo schema. 

 
Figure 4.  Ingest performance vs. number of ingest processors of 
Accumulo using the D4M 2.0 Schema [11], Cassandra [28], and 
HBase [29]. 

  
Figure 5.  D4M 2.0 Schema performance on a 1-node (32 core) Accumulo 
system ingesting Graph500 data [31,32].  Using pre-splitting a single ingestor 
is able to achieve sustained performance of 70K inserts/sec.  Likewise using 
multiple ingestors and pre-splits it is possible achieve nearly 350K inserts/sec. 
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Figure 5 is a more detailed analysis of the performance of 
the D4M 2.0 Schema on a 1-node (32 core) system using 
Graph500 data [30,31]. Figure 5 (bottom) is the ingest 
performance of a single ingestor with no pre-splitting.  A drop 
occurs halfway thru the ingest due to collisions.  Even though 
only one ingestor is used, a very high performance D4M 
ingestor can post mutations to Accumulo faster than it can 
retire them.  Figure 5 (bottom middle) shows that by adding 
splits a sustained performance of 70K (entries/sec) can be 
achieved by a single ingestor.  Figure 5 (top middle) shows the 
sustained performance for 2 ingestors (140K entries/sec) and  3 
ingestors (190K entries/sec).  Figure 5 (top) shows the single 
node performance peaking a ~350K entries/sec) 

VI. SUMMARY 
The D4M 2.0 Schema is simple and requires minimal 

parsing. The highest published Accumulo ingest rates have 
been achieved using this schema.   The  benefits of the schema 
have been illustrated using the 16M record Tweets2011 corpus 
which was fully parsed, ingested, and indexed in <1 hour with 
<1 day of programmer effort.  Additional performance results 
are shown using the Graph500 benchmark that achieved an 
insert rate ~350K entries/sec on a single node database while 
preserving constant (subsecond) access time to any entry. The 
benefits of the D4M 2.0 Schema are independent of the D4M 
interface and any interface to Accumulo can achieve these 
benefits by using the D4M 2.0 Schema. 
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